Towards a Visual Notation, and Editor,
for User Interface Design

Ian Rogers

School of Cognitive and Computing Sciences
Sussex University, Falmer, E. Sussex, UK.

with

Dr. Jonathan Cunningham

British Maritime Technology Ltd.
Orlando House, Teddington, Middlesex, UK.

Prof. Aaron Sloman

School of Computing Science
Birmingham University, Edgbaston, Birmingham, UK.

ABSTRACT

A visual programming language and editor is described that aims to support User
Interface design through rapid, exploratory programming.

This paper describes work in progress in the User Interface Design Environment (UIDE)
project (DTI/SERC: IED 4/1/1577), due for completion in August 1993.

CONTENTS

Part 1 - Preface..ueeeeeeeeeeeeeeeeeeeiiisssesesesssesssseseseseeeesssssssssssssssssssssssns 6
1 INTRODUCTION .aueeeeeiiieiieiseenneeeeeeecssssssssssesssesessses 6
1.1 Objective and Significance...........cccocoeueveiiieieiniiiiiiiicce e 6
1.2 IMLEEIOAS .o e areaaeaeareearaaareraaaaaees 6
1.3 CUTTONE STATUS oottt e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeees 7
14 Acknowledg@ments...........coooiiiiiiiiiiiiiiii 7
1.5 TNEENAEA AUAIEINICE .o e aaaaaaes 7
1.6 Document Organisation ..., 8
Part 2 - Sibal Semantics and Implementationcceueuueu.c. 9
2 INTRODUCTION .uuuueeeeeeeiiceiscenneeeeeeccsssssssssssssesses 9
2.1 RELATEA WOTK e e e e e e e e et ee e e e e e e e s aeneaeaens 10
3 FETCH LINKS ... ceteettteeeeesseenseeeeeeecssssssssssssssssesssssssssssssssessssssssssssssssssssssses 11
3.1 AATISIVOT oot e e e e e ettt eeee s e e e e e et raaeseeeeetaaanaeseseaeraaannaaaeaas 11
3.2 A e ettt e e e e e e ————————aeeeaaaaaaa—————teeeeeaaaaaa—————aaaaaaas 11
3.3 Bt LIS e e e e e e e e e e e e e e e e ee s e e s aeneeeeens 12
4 PASS LINKS oo eeeeiitteeeteeeecesssssnsseeeesess 12
4.1 ROCEIVE .ottt e e e e e et reee s e s eeetaaanressseeesaaannnaneeas 12
4.2 TLATISIIUIL vt e e e e e e e e et e aeseeeeeeaaanaaeeeeeeareaanaaaaeeas 13
4.3 PSS LIS e e e e e e e e e e e e e e e e —————aaeens 14
44 Example Pass LinK ..., 14
4.5 TNSTANICE VATIADLOS ..o e e 15
5 GUI ODjJECtS...ueeineiireirciiiteiieetceinctcescnseesesessssssesesesssssessssessasssenes 15
6 MEANINGEFUL LINKS. ... oo eeevceeeeeteeeceeesesssseeeseesesssssssssssssssessssssssssssssssssssssses 17
6.1 PACOMP . 17
6.2 DU T et e e e e e e e e et ee e e e e e e e e e e e e e e e e e e 18
6.3 update demOn.........ccouiuiiiiiiiii s 18
6.4 Arity DIfferences ... 18
7 EXECUTION SEMANTICS ..eeetteeeiiieeesiescsseeeesessossssssssssssssssssssssssssssssssssssssses 19
7.1 CONITOL OF COMETOL ..ot e e e e e eeeeereaaeaaaes 19
8 PORT NOTATION ...uuuuueeteeeeecesssrsnnreeeesccssssssssssseseessssssssssssssesssssssssssssssssasssssssses 20
8.1 Port Signatures ...t 21

9 EXAMPLESoittiiitnisssssssssssesssssessssssssssssssssssssssessssasasenes 21
9.1 Control ODJECtS......c.ccviiiiiiiiiiiiiiiiic s 21
9.2 Scheduling and Parallelism ..., 24
9.3 Example: fifo scheduler...........cccccoooiiiiiiiiii, 25
9.4 Example: Maplistccccccviiiiiiiiiiiiiii 26
10 FOUR TYPES OF OBJECTS.......ccorririiiririniiinsncsisnsssesssssssssesssssssnes 26
101 RaAW SIDAL...iiiiiiiicc e 27
10.2 A POPTT FUNCHON. ..ot 27
10.3 Encapsulated Sibal..........ccccocooiiiiiiiiii 28
10.4 Constant ODbjJects.........cccccvviiiiiiiiiiiiiiiii s 28
11 ENCAPSULATED SIBAL NETWORKSiereeeintereneeniesesenenenes 29
12 NON-OBJECTCLASS OBJECTSuirriririiinnsescinssesessssssesesssssnes 29
Part 3 - The Behaviour Editor.........eieenrennncricicincnnncnnene. 31
13 TERMS ...ttt sesssssssssssssssssssssssessssssassssssssssans 31
14 INTRODUCTION ...uiiiiiiiiniineninissesnnnissesesssssssssssssssssssssssssssssssssesssssnss 31
141 Intended AUdIience ... 32
142 OVEIVIEW ..ot s 32
15 MAIN EDITOR ..uutereteeiininteenisissssesssssssesessssssssssssesssssssssssssssssssssssssssnss 34
15.1 Editing Window (OVeIVIEW)........ccccceuiuiiiiiiiiiiiiiiiicccccccnnes 35
15.2 Context COIUMN ..o 36
153 Menu Bar ... 37
15.3.1 properties:diagram propertiesccccocovriiiiininiiiiiiiiinces 37
15.3.2 editi@XPpand ... 38
16 LIBRARIAN PALETTE......ueittcteiiicnesenssssesesenssssesesssssssesessssansnes 38
16.1 On-the-fly palettescccooeiiiiiiiiiiiicc s 39
17 DRAG AND DROPuiiititciiinncinnisscssssssesssssssssessssssssssesssssssssnes 39
18 USER VIEWuiiiictccnissnenssesssans 40
19 EDITING A NETWORK (DETAIL) ..ccueititninenntsrsrnsnesstsssssssssssssssssssessnns 40
191 NOAES...oiiiiiiiicc s 40
19.1.1 Edit MENU...uiiiiiiiiiiiciitececeeecet ettt 40
19.1.2 Expanding a NOde ..o 41
19.1.3 Editing node details..........c.coeiiiiiiiiiiiiii 41
19.1.4 MOVING @ NOAE.....ccoiuiiiiiiiiiiiiici s 41
19.1.5 Making a constant node............cccoeiiiiiiniiiii 41

19.2 LANKS ittt 41

19.2.1 Making a linK ..o 41
19.3 Diagram Properti€s........cccooviiiiiiiiniiiieecee 42
19.4 Grouping a Submnet........cccoooiiiiiiii 42
20 NORMAL USAGE OF THE BEHAVIOUR EDITOR.............ccoceererereneneee. 42
20.1 BOttOmM Up .o 42
20.2 TOP DOWI .ot 43
Part 4 - Future Research and Development...............c..ceucueunene. 44
21 TOWARDS A STRONGER EXECUTION MODELcccceeueererenennee. 44
21.1 Consequences and Dependencies............cccoeieiriiniiininiciiniciniiiiicccne, 44
21.2 Type propagation......... it 44
22 DISTRIBUTED APPLICATIONSeeeeeeeneneneeneneenenenenenesenesesesenene 45
22.1 Distributed Interfaces............cccccouviiiiiiiiiiiiiiic e, 45
222 Distributed Processescccccocoiviiniiiiiiiiiniiiiiciiiccccces 46
23 BEHAVIOUR EDITOR EXTENSIONSccueererenenenererenenenenenenenenenens 46
23.1 Editing Graphical Constraints............ccccocoviiiiiiiiiiininice, 46
24 NODES AS 15t CLASS DATAteteeeintteeessssssesnsssssessssssssens 47
24.1 Self Replicating NOdeScocoveveieiiiiiiiniiii e, 47
242 Placeholder nodes..........ccoooiviiiiiiiiiiiiiiiiiiiii s 48
24.3 Example Replicating Node.........ccccovuiiiiiiiiiiiniiiiiiiiiciccccce, 48
25 REFERENCEStcteteetntereesttssesessssssesesssssssssssssssssssssssssssssssns 50
26 SELECTED BIBLIOGRAPHYuuiirinirisisisnsisnsnsnsssssssssssssssssssssssssssssssnsns 52

LIST OF FIGURES

Part 2 - Sibal Semantics and Implementation 9
Figure 1: Behaviour Diagram notation............cccceevvviiiiiiniiicce, 10
Figure2: A hard-coded incrementorcccccoviciiiiniiiinciiciicccce, 13
Figure 3: Two linked incrementors...........cccooveveieininiiininininiiiccc, 14
Figure 4: Slider and Gauge user interface..........ccccooviviviviniiinininniiinnniie, 15
Figure 5: Slider and Gauge network..........ccooeoiviiiiiiiniiniiiiiiicccce, 15
Figure 6: Meaningful linksccccoovviiiiiiiiiniiii, 17
Figure 7: -maplist- Behaviour Diagram...........cccccooniiiiiiniiiice, 26
Figure 8: “incrementor” Behaviour Diagram..........ccccoceviviiiiniininiincinicnnee, 28
Figure 9: Example Encapsulated Sibal ..o, 29

Part 3 - The Behaviour Editor.........eeeenenneneeieencnnennee. 31
Figure 10 : Behaviour Diagram notation............cccoeeveiiiiiiiiiice, 32
Figure 11 : Meaningful linkscccccooiiiiiiiiiiiiiiicce, 33
Figure 12 : The Behaviour Diagram Editor..........ccccoooiiiiiiiiiiie, 34
Figure 13 : Editing a network with no parents.............ccooooviiiiiiniiiie, 35
Figure 14 : Editing a third layer sub-networkccccccoiiiiiiiiiniie, 36
Figure 15: The GUI and standard palettes..........c.ccooiiiiiiiniiiiiiiie, 38
Figure 16 : The Userview. A Ul generated by figure 13...........ccooevvvivinninnninnnn. 40

Part 4 - Future Research and Development..................cucueuneee. 44
Figure 17 : Type propagation..........ccccceeiiiiiiiiiiiieiiice s 45
Figure 18 : Adding a “near” constraintccceeviviiiiniiiniiiniiniiicce, 46
Figure 19 : A network with a Replicator and a Placeholder............c.ccccccoevnnnnnnnn. 47

Part 1 - Preface

1 INTRODUCTION

This paper describes work in progress in the UIDE! project, due for completion in
August 1993.

1.1 Objective and Significance

The project is attempting to provide a toolset (UIDE-2) that aids the User Interface (UI)
design process by supporting the opportunistic design patterns exhibited by expert
designers[12].

A number of tools are available that allow a designer to specify the look of the UI by
demonstration: X-Designer, DevGuide[18], FaceMaker etc. But this type of tool provides
little or no help in designing the behaviour of the Ul Also, despite their claims for ease
of use, they are extremely viscous [5] in that high level design decisions are not
supported. They are very good at allowing the designer to make small, cosmetic
changes, but it is not easy for the designer to make large changes while retaining the
overall feel of the UL

A number of other tools approach the problem of UI design from the “opposite”
direction, that of the behaviour or “feel” of the Ul: Garnet [14], Fabrik [9], Authorware
etc. This type of system extracts the essence of Ul behaviour programming into a visual
language or a form-filling style of programming, but they provide little, or no, support
for rapid exploration of different designs for the look of the interface.

There are systems that are having some success in trying to integrate these two aspects of
Ul design. E.g. the ACE system provides a set of pre-coded C++ “Selectors”. The
designer decides which type of data the user of the Ul should provide, and the system
chooses an appropriate selector. But this type of system still does not directly support
high-level design decisions, or automate the Ul layout based on machine readable style
guidelines.

The UIDE-2 system attempts to support both these aspects of UI design through two
integrated tools. One is a fluid, Object Oriented notation that supports rapid
experimentation. The other is a constraint reasoner which automates the mundane
aspects of laying out a Ul

1.2 Methods

In the UIDE-2 system the designs are as abstract, or as concrete, as the designer wishes.
The Object Oriented aspects of the notation allow the designer to encapsulate designs

1. DTI/SERC Project: IED 4/1/1577

into a higher level class, to expand and re-implement part of a class, or to make a class
more specific for a particular implementation.

A visual language is used to specify the behaviour of the interface. The language
represents a stylised form of Object Oriented programming, appearing much like a
dataflow language. Each node corresponds to an instance of a class, and the links denote
messages that can be sent between them. Some nodes represent graphical Ul
components while others represent computational or control structures.

The Ul nodes represent a Ul component with as much abstraction as possible. An
integrated constraint reasoner (based on an Assumption-based Truth Maintenance
System) [13, 22] automatically decides which UI component, or components, to use and
lays them out, as an interface, in accordance with style guidelines.

A librarian mechanism is supported which allows a designer to search for existing
behaviour classes. Also, designers are encouraged to add their own classes to the library
(which can be partitioned into public and private areas). In this way code re-use and
collaborative work are supported by different team members working on different parts
of the project, or by some team members providing low-level utilities for the high-level
designers.

The cognitive load on the designer is greatly reduced by being able to rapidly scan a
library and experiment with any suitable classes that are found. The automatic Ul layout
tool means that adding nodes to, or removing nodes from, the behaviour diagram is very
easy.

1.3 Current Status

This particular graphical notation is still very new. Therefore the library is fairly empty
of high-level, abstract behaviour classes.

1.4 Acknowledgments

The partners on the UIDE project are: Birmingham University, British Maritime
Technology Ltd., Integral Solutions Ltd. and Sussex University.

Jonathan Cunningham of BMT was a major source of ideas on the Sibal implementation
and comments on later revisions. All partners in the project produced comments on the
working documents that produced this paper, but particular thanks are due to Aaron
Sloman of Birmingham University and Alan Montgomery of ISL. Ben Rabau of ISL
produced the GO (Graphics Objects) library which made the Behaviour Editor possible.

1.5 Intended Audience

This document discusses how OO behaviour notation has been implemented. The reader
should have a knowledge of object-oriented programming, and Pop11 features such as:
procedure composition (pdcomp), closures, processes, and the open stack.

The “objectclass” OOP system is used to provide classes, inheritance and methods.

1.6 Document Organisation

The next 2 parts of this document were originally internal design documents of the UIDE
project. They reflect the working-design of UIDE-2 and as such may not correspond
exactly with the final implementation of UIDE-2.

Part 2 concerns the semantics and implementation of the Sibal architecture.

Part 3 describes the visual notation for Sibal, called Behaviour Diagrams, and a design
for an editor to support the notation.

It should be possible to read the two parts separately if desired.

Part 4 describes areas of the Behaviour editor that could provide the basis for future
research.

Part 2 - Sibal Semantics and
Implementation

2 INTRODUCTION

Sibal stands for “Specifying Interface Behaviour And Layout”. It forms the underlying
architecture to support a visual programming language, called Behaviour Diagrams. It is
hoped that UI designers using UIDE-2 will use behaviour diagrams for most of the Ul
programming task.

This part of the paper describes the Sibal architecture, semantics and implementation.

The behaviour of a Ul is defined by a network of Sibal objects. The behaviour of the
network is defined by the ports on the objects, the links between them. The network acts
much like a dataflow diagram in that behaviour is composed of events in which an item,
or collection of items, is transmitted along a link. It is also possible to pass “control”
along a link without passing any data items.

There are four types of ports:

Ask
Answer
Receive
Transmit

There are two types of links:

. Fetch
° Pass

Example network diagrams will be shown in order to illustrate implementation issues.
In these cases the notation of Figure 1will be used. Part 3 of this paper describes the
visual notation fully. The arrows indicate the direction of data-flow. If the arrow is
outside the box then it is an “instigator” of control. If the arrow is inside the box then it
passively responds to control.

As indicated in Figure 1, Answer and Transmit ports are “source” ports (relative to a
link) and Ask and Receive ports are destination ports. For a given link between objects
O1 and O2 one port must be a source port and the other a destination port. The objects

containing those ports are source and destination objects, for that link. A link can use
the same object as source and destination.

Akl Sibal Object Answer
Receive Transmit
Fetch Link
Pass Link

Figure 1: Behaviour Diagram notation

Ask and Answer ports are linked by Fetch links. Transmit and Receive ports are linked
by Pass links. Ports and links can have an “arity”, an integer representing the number of
items transmitted at each behaviour event (Pop11 also supports variadic ports and
links). The number of values transmitted can be one or more for fetch links, and zero or
more for pass links. Ask ports and Transmit ports are “active” and can initiate behaviour.
Answer ports and Receive ports are passive, but they must respond to a request by an
“active” port. Constraints on types of links and ports are mentioned below.

Buffered links are also supported, and can be used to support explicit concurrency in
simulations, etc.

This paper lists the kinds of Sibal objects that already exist or are planned. The purpose
of the paper is to define the functionality of the objects that will be provided, at a fairly
abstract level, and to define the input and output ports for each class of object. Behaviour
diagrams specifying these objects with pass and fetch links can determine the behaviour
of a particular interface. For interfaces permitting dynamic creation and linking of
objects additional notation is required (described in chapter 24).

2.1 Related work

[16] discusses optimising compiler techniques using a “dual graph” notation. The two
types of links are control and data which correspond fairly closely to pass and fetch links
respectively. The objects in these dual graphs are very primitive, sometimes representing
a single machine code instruction. The links are also very simple. The data links
correspond to a single data item; often a single word of store in memory. The control
links represent pure “flow of control” information, and carry no data.

This makes dual graphs very amenable to code optimisation (the thrust of his thesis), but
the graphs are very unwieldy.

The design of Sibal concentrates on providing very high-level control structures and
primitives. This should enable the programmer to easily write powerful programs.

[8] gives a survey of a large number of visual languages, but does not discuss their
implementation.

10

Statecharts [7] represent behaviour in terms of state transitions for a total system. Sibal
Behaviour Diagrams correspond more closely to an architectural specification for a
system. Side-effects of Sibal events can be thought of as state transitions. Thus Sibal
Behaviour Diagrams and Statecharts complement each other by providing different
views of a system.

3 FETCH LINKS

A fetch link can be made between an answer port on its source object, to an ask port on
its destination object. The link corresponds to an “if-needed” call by the destination
object to the passive source object. A fetch link always transfers at least one value (which
may be a complicated structure, nested list etc.) or a tuple of objects.

3.1 Answer

An answer port corresponds to a value in an object. For example, a slider object has a
value (set by moving the slider “thumb”). In some cases, the answer port corresponds to
a tuple of values.

Implementation note: an answer port name is the name of a method, which, when
applied to an instance of the appropriate class, returns the value or values

The simplest examples of answer port values are provided by instance variables (which
behave like methods). In this case the name of the port is the name of the instance
variable (because in objectclass, the name of an instance variable has as its value the
accessor method for that slot). Note that the definition of an answer port value does not
imply that there must be a corresponding instance variable. For example, the value of a
slider may be computed, by a method, e.g. by interpolating between low and high
instance variables using the position of the thumb.

3.2 Ask

Perhaps surprisingly, an ask port does not correspond to the updater of a value. Instead,
it corresponds to the place where the information as to how to get the required value is
stored. For example, suppose we have a fetch link from a slider to an object containing a
gauge. We may wish the value of the gauge to be set from the value of the slider. Since
fetch links are passive - they fetch values when needed - we need some method in the
gauge that will access the slider value. This is achieved by storing in the gauge object a
procedure of no arguments, which when called will return the answer value.

Implementation note: Storing the answer method may use an instance variable, and it is
the name of this instance variable which is the name of the ask port. Note that whilst
answer ports may use an instance variable this is not necessary, but ask ports are always
associated with a corresponding instance variable (there are exceptions to this, described
in section 4.5).

11

3.3 Fetch links

The construction of a fetch link can be summarised by the following implementation
hint. This is intended to be suggestive rather than prescriptive. In the example, we
assume that the name of a port is actually the method itself, rather than a word naming
the method (this is to avoid problems with pop11 sections).

Implementation hint:

define:method make_fetch_link(
ans_obj:sibal_object, ans_slot:sibal_port,
ask_obj:sibal_object, ask_slot:sibal_port
)i
ans_slot (% ans_obj %) —-> ask_obj.ask_slot;
enddefine;

The answering (responding) method is closed on the answering instance to form a
procedure. This procedure is then stored in the ask slot of the asking (initiating) instance.

Note: an Ask port can be connected to several answer ports. This poses no problem, the
answer method is simply stored in many places (i.e. in each of the ask slots).

4 PASS LINKS

Pass links are used for forward chaining links, ie they correspond to data driven (or
event driven!) computation. They have a more active kind of “feel” to them. Most
existing visual programming languages are mainly based around this kind of dataflow.
(Although there are sometimes differences that add a hint of “fetch” to the links.) Pass
links pass flow of control, in that if A links to B links to C, then activating A will cause
control to be passed to B. The receive method in B will then, typically, pass control to C.

A stack tuple of zero or more data items is also passed with the control event. The data
items correspond to input arguments of the receive method.

4.1 Receive

A receive port is the complement of an answer port. Like an answer port it is the name of
a method - the method that is to receive control as the control flow is passed forward. It
is this method which receives the value passed forward (data flow) by transmitting
objects.

Implementation note: A receive port is the name of a method, which should do whatever
is appropriate when control is transferred to it. The data items passed along the link are
taken as input arguments to the method (as well as the destination object itself). A zero
arity input port takes no arguments (apart from the destination object itself). The method
is also responsible for passing on control to the transmit ports of the object. There is an
example in section 4.4.

12

4.2 Transmit

A transmit port is the complement of an ask port. It is the place where the information as
to how to pass on control is stored. As such, like an ask port, it requires an instance
variable.

Implementation note: The name of the receive port is the name of an instance variable.
The value of this instance variable is a procedure that will receive control when a pass
event occurs.

We now give an example of how an “incrementor object” might have its behaviour
defined. Its semantics is to receive an integer, increment it, and then pass it along
immediately. We assume it has two “pass/1” ports: an input port and an output port.
(These are parts of two different pass/1 links - if they were the same link, then the
incrementor would go into an infinite recursion.)

mnput } incrementor }Omp“t

Figure 2 : A hard-coded incrementor

In Figure 2, the receive/1 port is called input and the transmit/1 port is called output.
This is both arbitrary and unimaginative. Other names could be used. This is the Pop11
code that could implement the incrementor:

define:objectclass incrementor;
output = erase; ;;; default for pass/0 output is identfn
enddefine;

define:method input (value, obj :incrementor);
(obj.output) (value + 1);
enddefine;

The default value of the output port is the procedure erase. This procedure consumes
one item off the stack and then returns. It is useful in that it allows the incrementor to
work before it has been connected to anything.

The incrementor object is an example of a Sibal behaviour object that has no
representation in a User Interface (unlike the slider or gauge described below).

13

4.3 Pass links

We link objects with pass links in a very similar way to fetch links - but the other way
around! As for fetch links, this is best explained by the implementation hint:

Implementation hint:

define:method make_pass_link (
tran_obj:sibal_object, tran_slot:sibal_port,
recv_obj:sibal object, recv_slot:sibal_port
)i
recv_slot (% recv_obj %) —-> tran_obj.tran_slot;
enddefine;
The receive procedure, of the appropriate number of arguments, is constructed by
forming a closure of the receive method on the receiving object. This procedure is then
stored in the transmit slot of the transmitting object.

4.4 Example Pass Link

The following example, shown in Figure 3 shows two objects linked by a pass link.

3 input * incrementor }output input } incrementor *output % 5

Figure 3 : Two linked incrementors

In raw Pop11 this is implemented as follows:

newincrementor () —-> il;
newincrementor () —-> i2;
make_pass_link(il, output, i2, input);

Now if we pass a number into i1, the code increments it twice and eventually calls the
output method of i2. This can be seen replacing the erase in i2.

sysprarrow (% false %) —> i2.output;
Now we call the input method of il.

input (3, il); ;;; send il an event with value 3.
Which prints the value.

**5

Note that the same linking mechanism can be used for pass links of any arity. It is also
possible to link a transmit port to a receive port of lower arity, but in this case it is
necessary to use pdcomp with erase, or something similar, in order to erase the
unneeded value from the stack. This is discussed further in section 6.4. It is not
meaningful to connect a transmit port to a receive port of higher arity.

14

A transmit port can be connected to several receive ports. This requires the use of a
procedure composition mechanism, as described in section 6.1.

4.5 Instance variables

Actually, neither receive ports nor ask ports need to correspond to instance variables. All
that is really necessary is that they have methods and updaters for those methods. The
updaters should expect to be used by the linking mechanism, described above, to store
the pass/fetch procedures respectively.

5 GUI objects

Primitive GUI objects will be implemented (initially) as raw Sibal objects. Ie. either as
objectclass objects, or objectclass wrappers around other types of code.

The following diagram shows a simple user interface. It contains a slider and a gauge.
When the slider is moved, the pointer on the gauge changes to reflect the value of the
slider.

Figure 4 : Slider and Gauge user interface

This could be implemented by the following Sibal network, given the appropriate Sibal
primitive objects.

slider value data gauge

Figure 5 : Slider and Gauge network

15

A collection of GUI Sibal objects, and their associated links, can implement a whole user
interface. Chapter 11 contains a description of how these user interface descriptions
would be stored off-line.

Not every object in a Sibal behaviour diagram need correspond to a screen object. Some
objects may represent applications that generate or request data for, or from, the
interface. Some objects may represent transformation functions, buffers, integrators,
logging mechanisms, error monitors etc.

Although a Sibal behaviour diagram specifies all the objects that compose the interface,
it does not specify the appearance of the interface (ie. the layout on the screen).

One module of the UIDE2 architecture is a layout-constraint reasoner. It is this module
that constructs a default layout of all the objects in the Ul It contains a set of heuristics,
derived from style guides, which are used to generate a default layout of the interface.
The designer can specify constraints that may override the defaults. In the example
above, the designer may have specified that the slider should be “to the left of” the

gauge.

16

6 MEANINGFUL LINKS

It is not possible to connect two ports of the same behaviour type (e.g. ask

to ask).

It is not possible to connect a transmit port to a receive port of higher arity.
It is not possible to connect an ask port to an answer port of lower arity.

The following four sections describe the labels shown in the table below.

* Transmit

Yes

wReceive

update-
No demon wAnswer
buffer No Yes 4} Ask
No Yes No buffer <j' Multiple Transmit
update- . .
pdcomp No demon No pdcomp 4} Multiple Receive
update- update- .
No demon No No No demon w Multiple Answer
pdcomp
pdcomp pdcomp)
buffer No Yes No buffer No No <« Multiple Ask
Figure 6 : Meaningful links
6.1 pdcomp

As described in section 4.3, when a transmit port is connected to a receive port (a Pass
link) the receiving object supplies a method that the transmitting object stores, and uses,
to pass on the event. If the transmit port is connected to multiple receive ports, then
many methods have to be stored in the transmitting object and applied in turn. A
mechanism like pdcomp is needed concatenate the methods. For links of arity greater

17

than 0, a mechanism is also needed to push copies of the arguments onto the stack before
each receive method is called.

6.2 buffer

If a connection is attempted between a transmit port and an ask port, a buffer is
automatically created. The transmit port places data into the buffer at will. The ask port
fetches data from the buffer independently of the behaviour of the transmit port. When a
new piece of data is transmitted to the buffer, it overwrites the item that is already there.
If a fetch is attempted before any data has been placed in the buffer, the buffer is at
liberty to return an undefined data item. Each data type has a notion of its “default
value”. The default value of the buffer will be the default value of the data type of the
linked-to object.

6.3 update demon

It is conceivable that an answer port could be turned into a transmit port if the port refers
to a simple value slot in the object. If an “update demon” was placed on the slot, an
event could be generated, and transmitted, whenever the slot was updated. Initial
versions of Sibal may not support promoting answer ports in this way.

6.4 Arity Differences

A source port must have a equal or greater arity than the destination port it is connected
to. That is:

. It is not possible to connect a transmit port to a receive port of higher arity.
d It is not possible to connect an ask port to an answer port of lower arity.

If these restrictions were not followed, then Sibal would have to “invent” data items to
satisfy the demands of the destination (receive or ask) port.

The question that remains is what to do with superfluous values. The convention in
Pop11 is that the right-most arguments correspond with the right-most parameters (cf.
closures binding the right-most formal parameters). The solution to superfluous values
is to simply delete the values that correspond to the left-most arguments. This ensures
that right-most common arguments always map to each other using the Pop11 stack
mechanism for passing arguments.

Implementation hint:

The following procedure takes three argument: the arity of the source and destination
ports respectively, and the “responding” method (this corresponds to a receive or
answer method)
define make_handler (src, dst, meth);
lvars src, dst, meth,
if src == dst then
meth

18

else
procedure (kill_num, save, numsave);
lvars kill_num, save, numsave;

fill (save) -> ; ;77 save rightmost args
erasenum(kill_num);;;; lose unneeded args
explode (save) -> ; ;;; replace rightmost

;57 and so that args can be garbaged
set_subvector (0, 1, save, numsave);

endprocedure (% src - dst, initv(dst), dst %)
<> meth
endif;
enddefine;

7 EXECUTION SEMANTICS

A sibal graph has no execution semantics of its own. The behaviour of the network is
dependent wholly on the methods that define each object. These methods can contain
arbitrary code and may therefore produce arbitrary side-effects, including switching to a
new context, or re-configuring the current interface.

7.1 Control of Control

At the implementation level, there is no way to prevent misuses of the fetch and pass
linking mechanisms to implement other weird and wonderful control flows. Arbitrary
procedures can be stored in a transmit port or an ask port. For example, a fetch “if-
needed” method could treat the access of a value as an “event” and send activation
down a pass link.

However, if only the linking mechanisms outlined are used, and if all objects with
“ports” are written according to these conventions, (such as that “fetch” links should not
cause side effects) then the control mechanisms will work cleanly as intended. Control
will forward chain along pass links, and may backward chain along fetch links. By
convention, control should not pass from fetch links to pass links.

See section 21.1 for further thoughts on extending control of control.

19

8 PORT NOTATION
Port titles consist of
° A name

and three pieces of type information

o Behaviour type (ask, answer, transmit, or receive)
d Data type (integer, list, pop11 etc.)
. Arity

The following is a grammar for the port titles.

Round brackets are literals and are part of the port notation. Square brackets denote
optional segments. Bar means a choice. Curly brackets are a grouping notation for the
BNE. All whitespace is removed from the final port title.

Port :== Name [Type]

Name :== <any Pop1l word>

Type :== ([Behaviour-Type /] Arity [- Data-Type])
| ([Pass-Behaviour /]0)

Behaviour-Type :== Pass-Behaviour | Fetch-Behaviour

Pass-Behaviour :== transmit | receive

Fetch-Behaviour :== ask | answer

Arity ;== <positive, non zero integer>

Data-Type == <Popll type> | <Popll type> * Data-Type

If a port doesn't have a Behaviour-Type, it is presumed to be both a receive and answer
port. Ie. the receive port is implemented by the updater of the answer port

If a port doesn't have a Data-Type it is presumed to be the unifying type “pop11”

Some ports can have an arity higher than 1. This is represented by a sequence of data
types separated by an asterisk (e.g. int*string). These “compound” data items are
implemented by stack tuples, effectively putting more than one item on the stack at a
time.

E.g.
/***

passive buffer - wvalue(l-Popll)
***/
define:objectclass passive_buffer;
value = undef;
enddefine;

1. This part of the type notation is borrowed from the ML tuple notation [21]

20

/***
passive queue - value (1l-Popll)
***/
define:objectclass passive_qgueue;
queue = [];
enddefine

define:method value (g:passive_qgueue) ;
if g.queue == [] then
undef
else
dest (g.queue) —-> g.queue ;;; the value is on the stack

endif
enddefine;

define:method updaterof value(val, g:passive_queue);
lvars Q = g.queue;
;;; add -val- to the end of the queue
if Q == [] then
["val] -> g.queue;
else
;77 g.queue already holds the 1list,
;77 so no need to put it back into queue.
["val] -> fast_back (lastpair((Q));
endif;
enddefine;

8.1 Port Signatures

The port signature of an object consists of the class name and a list of port titles. For
example:

multiplex - value(receive/1-Pop11), list(transmit/1-list),
no_more(receive/0)

See chapter 9 for an explanation of this signature, and for further examples.

9 EXAMPLES

9.1 Control Objects

Here's an initial list of “control” objects that could be predefined primitives in Sibal.
Experience will determine which subset is actually useful.

Each definition consists of the object’s port signature, followed by a brief description of
the semantics.

21

buffer - value(1-Pop1l), got_one(transmit/0)

Receives a pass event on the value(receive/1-Pop1l) port, and then splits the data from
the control event (the value is buffered in the object, and a pass/0 event is sent out of the
got_one(transmit/0) port). Values are not queued. Whenever a pass/1 is received the old
value is over-written.

gather - value(ask/1-Pop1l), propagate(receive/0),
value(transmit/1-Pop11)

Gathers together a pass/0 control event and a data item (gained through the value(ask/
1) port) and sends them off together from the value(transmit/1) port.

queue - value(1-Pop1l)

Receives pass/1 events, and keeps the value in a queue that can be accessed by the
value(answer/1) port. The values that are returned when the queue is empty, and the
initial value of the answer port, are undefined.

listify - value(receive/1-Pop1l), list(transmit/1-list),
no_more(receive/0)

Repeatedly receives items on the value(receive/1) port and collects them into a list.
When a pass/0 event is received on the no_more(receive/0) port, the list is sent out
through the list(transmit/1) port. The internal list is then reset to nil.

delistify - list(receive/1-list), value(transmit/1-Pop11),
no_more(transmit/0)

Receives a Popl11 list and transmits each item, in turn, through the value(transmit/1)
port. When the end of the list is reached, a pass/0 event is sent from the
no_more(transmit/0) port.

If a new list is presented on the receive port before a previous list is exhausted, the old
one is replaced by the new. Items are then transmitted from this new list, starting at the
beginning.

filter - value(receive/1-Pop1l), function(receive/1-procedure),
value(transmit/1-Pop11)

Receives an item through value(receive/1), applies a Pop11 function (gained through
function(receive/1-procedure)), and passes it out through value(transmit/1). Compare
switch-on-eq.

22

constant - value(answer/1-Pop1l)

Holds a constant value, which can be attained through the value(answer/1-Pop11) port.

switch-on-type - data(receive/N-Pop1l), data(transmit/N-T)*

This object has a arbitrary number of transmit ports. The types T on the transmit ports
have to be equal, or sub, classes of the type on the receive port. The data types of the
input data are analysed. The transmit ports are analysed in turn for a port whose data
types are all equal, or super, classes of the actual data. The data is sent out of the first port
that matches. As implied, transmit ports of the same type are redundant.

switch-on-bool - data(receive/N-Pop11), switch(ask/1-boolean)
true(transmit/N-Pop11), false(transmit/N-Pop11)

When a pass event is received by the data port, the switch port asks for a boolean. If the
boolean is false, then the data is sent out of the false port. If the boolean is non-false, the
data is sent out of the true port.

switch-on-eq - data(receive/N-Pop11), eqpdr(ask/1-procedure)
true(transmit/N-Pop11), false(transmit/N-Pop11)

This is a special case of switch-on-bool in that the data is first passed through the
procedure in eqpdr to get the boolean to determine the switch.

timer - usecs(ask/1-int), tick(transmit/0)
start(receive/0), stop(receive/0)

After the start event has been received, a system timer is started such that an event is
generated on the tick port every usecs microseconds until a stop event is received. Note
that, although the interval is specified in microseconds, the resolution of the timer is
dependant on hardware. Ie. the interval will be rounded to the nearest appropriate
interval according to the hardware (e.g. rounded up to 1/100th second on VAXen and
Sun-4 systems, 1/50th sec on MC68000 system:s, etc.)l.

delay - data(receive/N-Pop1l), data(transmit/N-Pop11),
usecs(ask/1-int)
When a pass event is received by the data port, a delay of usecs microseconds occurs

before the event is passed on via the transmit data port. The data is unchanged in any
way. The resolution of the delay suffers the same restrictions as the t imer object.

1. This information is taken from the Poplog reference entry: REF * SYS_TIMER

23

schedule - data(receive/N-Pop1l), data(transmit/N-Pop11),
scheduler(ask/1-scheduler)

When an event is received by the data(receive) port it is not sent out of the transmit
data(transmit) port immediately. Instead, a closure is made of the transmit method and
the data items. This closure is then placed, as a job, on the scheduler attached to the
scheduler port. It is then up to the scheduler to determine the appropriate time to
transmit the event (i.e. after other events on the scheduler have been dealt with, see
section 9.2). Normal usage is to connect many schedule objects to a single, or few,
schedulers.

scheduler - jobs_pending(answer/1-boolean), do_next_job(receive/0),
scheduler(answer/1-scheduler)

See section 9.2 for a description.

9.2 Scheduling and Parallelism

Scheduler objects are objectclass classes with the following characteristics:
. They must be a subclass of scheduler
o They must respond to, at least, the methods: jobs_pending,

do_next_job,add_job

add_job (job:procedure, priority:number, s:scheduler)

This is the only method actually required by the Sibal schedule object. It enables the Sibal
object to place a job onto the scheduler s.

jobs_pending (s:scheduler)
do_next_job(s:scheduler)

These are used by the Poplog top-level control loop to discover any jobs that are
pending, and to execute.

Possible schedulers include:

. First In First Out (fifo) - In this case the priority number is ignored. Each
new job is placed in a queue behind any others that might be waiting.

. prioritised fifo (p_fifo) - A priority number decides where in the queue a
job should go, but it still has to wait in line behind jobs of equal or higher
priority

d Pre-emptive Round Robin (perr) - A Poplog process is wrapped around

each job, which is then placed in a circular queue. Each job then gets a time

24

slice before being interrupted so that the next job gets a chance. The job is
only removed from the queue when the process terminates naturally.

J Time Delayed fifo (td_fifo), Time Delayed perr (td_perr) - With these
schedulers, the priority number is actually a time delay in microseconds.
The job is put on hold for this length time, and then it is put into the queue.
Unlike the delay Sibal object, this doesn’t block, thus allowing other
processes to execute.

. Multiple Agenda - several queues are maintained, one for each priority
level. Each queue is treated as fifo, but a policy procedure determines the
proportion of times or job slots to give to each queue. E.g. if there are 3
queues, then no. 1 might get 3 jobs in every six, no. 2 might get 2 jobs in
every six, and no. 3 might get 1 job in every six. The policy could be a
pattern-list e.g. [1 21 2 1 3] (this mechanism guarantees that nothing will
be stuck in a queue forever).

9.3 Example: fifo scheduler

Implementation hint:

define:objectclass fifo;
isa sibal_obiject;
isa scheduler;
job_queue == [];
enddefine;

define:method jobs_pending(f:fifo);
lvars £f;
not (f.job_queue == []);
enddefine;

define:method do_next_job(f:fifo);

lvars £f;
if jobs_pending(f) then
fast_chain (fast_destpair (f.job_gqueue) -> f.job_qgueue);
else
mishap(f, 1, ’'No jobs pending’);
endif;
enddefine;

define add_job(j, f:fifo);
lvars q, b, f, procedure j;
;77 typing j to be —-isprocedure- means that we
;5 can use —-fast_chain- elsewhere

f.job_queue -> g;

if g == [] then
[~J] —> f.job_qgueue;

25

else
;77 find the end of the list and add the new job.
;77 f.job_gueue already holds the list,
;77 so no need to put it back in.
[~J] —-> fast_back (lastpair ((q));

endif;
enddefine;
9.4 Example: Maplist

The following is a Behaviour Diagram for a “maplist” function. That is, a function that
applies a procedure, in turn, to each item in a list, and makes a new list out of the results.
The diagram has been defined using only the primitives given in section 9.1

function\ filter

value wal_ue

listh delistify value valuef listify list

no_more no_more

Figure 7 : -maplist- Behaviour Diagram

Encapsulating this network as a new class, called maplist, would produce the port
signature:

maplist - list(receive/1-list), function(receive/1-procedure),
list(transmit/ 1-list)

10 FOUR TYPES OF OBJECTS
There are four ways of implementing Sibal objects:

Raw Sibal

A Pop11 Function

Encapsulated Sibal

Constant object (a closure on ident fn)

26

10.1 Raw Sibal

“Raw” Sibal objects are those which are constructed by Objectclass classes and methods
(as has been described above).

10.2 A Pop11 Function

A sibal object that acts as a filter could easily be implemented by a pop11 function:
. Receive ports correspond to input parameters
° Transmit ports correspond to output parameters

E.g. the Pop1ll procedure rev, which reverses a list, has the signature:
rev - input(receive/1-list), output(transmit/1-list)
Connections to the underlying application could be made via this kind of Sibal object.

Procedures with more than one input parameter (e.g. the arithmetic operator “plus”)
pose a problem. The arguments could all be passed together as a stack tuple (ie. a port
with arity greater than one), but more interesting behaviour can be achieved if the input
parameters are given a port each.

The definition of Sibal given above shows that receive ports, on the same object, are
expected to operate independently. But the input arguments of a procedure (ie. the
receive ports) must, effectively, accept pass events simultaneously.

This can be handled by nominating one of the input arguments as “special”. A pass/1
event arriving at this port will cause the procedure to be executed. The other ports are
buffered. A question remains as to whether the buffered values should be queued, or
thrown away in the case where a new value arrives before the special port is fired. This
could be an option set by the programmer at design time.

The nomination of the special port could be done at design time (ie. when the pass link is
created).

Another possibility is that each of the receive ports would check to see if all the other
ports have received their data item, ie. all the parameters are satisfied. When all items are
received the procedure is fired and all the input ports are cleared ready for the next set of
arguments. Alternatively, the values could be left in the ports - the procedure would be
fired whenever a new piece of data arrived on any of the ports. This is similar to the
normal data-flow execution metaphor [20].

Sibal “constant” objects (described in section 10.4) could be used to supply the values of
some of the arguments. If all but one of the ports are bound to constant objects, then the
remaining port is automatically promoted to be the “special” port.

27

So, another way of implementing the “incrementor” object (described above) could be as
follows:

— arg@iprocedure

Constant argl * Sum
1

Figure 8 : “incrementor” Behaviour Diagram

If all the input ports are bound to constants, then the function is evaluated and the whole
sub-network is promoted to be a constant.

10.3 Encapsulated Sibal

Once a large network has been constructed, the designer may wish to capture the
network as a class (encapsulate it) for re-use at a later date. Encapsulated Sibal includes:

A list of Sibal objects

A table of port links

Network layout information

A table of graphical Ul constraints

A table of properties (e.g. does the network contain any GUI objects or
application functions etc.)

. A port signature including port renames.

An encapsulated object may have been taken from the UIDE-2 library. It is not
permissible for the designer to edit any of these class-tables as they stand (ie. in the
libraries). If the designer does attempt to edit them, the network is re-classed
automatically. Ie. the designer will then be editing a private copy of the library class.

See chapter 11 for a description of the off-line representation of sibal networks.

10.4 Constant Objects

Fetch links are normally implemented by placing an answer method into the ask port of
the destination object. Constant objects can be implemented more efficiently by placing a
closure of ident £n into the ask port instead. When the Sibal object wants the value, the
procedure in the ask port is run and the value is placed on the stack.

Implementation hint:

define:method make_fetch_link(
sobj:sibal_constant, value:procedure,
dobj:sibal_object, dprt:procedure
) i
src_obj.closure —-> dest_port (dest_obij);
enddefine;

28

11 ENCAPSULATED SIBAL NETWORKS

Implementation hint:

The following shows a possible example of an encapsulated Sibal network

uses slider_key

uses gauge_key /{ne twork name>

define:sibal_network thermostat;
objects = |
[s1l slider_key [x 100 y 100]]
[gl gauge_key [x 200 y100]]

] _ \<behaviour diag. data>
enddefaults

[pass sl value gl value]
exported-port
rename
signature

temperature (transmit-number) == sl.value;
endsignature
enddefine;

]
defaults
sl.value == 0;

Figure 9 : Example Encapsulated Sibal

This network is a possible encapsulation of Figure 5. The Ul in Figure 4 would have been
generated automatically by the constraint reasoner.

12 NON-OBJECTCLASS OBJECTS

It is possible to treat non-objectclass objects as Sibal objects. The main consideration is to
decide how the object can be described by a port signature, and to extend the linking
software to reflect this.

For example, it would be possible to treat X toolkit based widgets as Sibal objects if
Callback lists were treated as transmit ports. This would require an extension, to the
software that creates pass links, to coerce the receive method, of the destination object,
into something that could be used as a callback procedure.

29

Implementation hint:

define:method make_pass_link(
widget :XptDescriptor, callback:string,
dest_obj:sibal_object, dest_slot:procedure
) i
define lconstant drop3
= erasenum (% 3 %)
enddefine;

XtAddCallback (
widget, callback, drop3 <> dest_slot (% dest_obj %), false
)i
enddefine;
Of course this loses all the useful information that X provides a callback procedure. This
would be avoided if callback transmit ports were arity 2 (the third argument is the object
holding the receive port, and is supplied through the “client data” argument).

Implementation hint:

define:method make_pass_link(
widget :XptDescriptor, callback:string,
dest_obj:sibal_object, dest_slot:procedure
) i
XtAddCallback (widget, callback, dest_slot, dest_obj);
enddefine;

30

Part 3 - The Behaviour Editor

13 TERMS

This part of the paper will use some terms taken from the OpenLook document style
guide [19]'. The following terms describe actions performed with the mouse:

d Press a mouse button and hold it

. Release a mouse button to initiate the action

. Click a mouse button by pressing and releasing it before you move the
pointer

. Double-click a mouse button by clicking twice quickly without moving
the pointer

. Move the pointer by sliding the mouse with no buttons pressed

. Drag the pointer by sliding the mouse with one or more buttons pressed

. Point to a control or an object by moving the pointer to the appropriate

place on the screen

14 INTRODUCTION

UIDE-2 contains three main tools (from the GUI designer’s point of view) which are
tightly coupled together:

. the Librarian
. the User View
. the Behaviour Editor

The Librarian is a suite of tools which store and maintain the various resources used by a
user of UIDE-2, e.g. bitmaps, programs, partially, or fully, completed GUI designs etc.

The User View shows a sketched view of the look of the final UI. The graphical objects in
the User View (e.g. buttons or sliders) may or may not look identical to their appearance
in the final delivery system, they also may or may not be as “active” as expected in the
tinal delivery system.

The Behaviour Editor provides a visual programming language to be used by the GUI
designer to specify the behaviour of the User Interface under design. Programs written
in this language are called Behaviour Diagrams.

This part of the paper concentrates on describing the Behaviour Editor.

1. page 343.

31

14.1 Intended Audience

Readers of this part of document are assumed to be familiar with some form of
graphical, computational notation, e.g. flowcharts, state charts, or Petri nets etc.

A limited grasp of Pop11 [1, 2] may be useful, but is not essential.

14.2 Overview
Behaviour diagrams manipulated by the behaviour editor use a box-line notation [8]:

. objects are boxes
. links are lines connecting ports on the objects
ports are arrowed line stubs

There are four types of port:

Transmit
Receive
Ask
Answer

They can be connected together to form a diagram very similar to a data-flow diagram:

d Transmit ports are connected to receive ports to form pass links
. Ask ports are connected to answer ports to form fetch links

The behaviour of a Ul is defined by a network of Sibal objects. The behaviour of the
network is defined by the ports on the objects and the links between them.

Askpl Sibal Object ~ pyAnswer
Receive Transmit
Fetch Link
Pass Link

Figure 10 : Behaviour Diagram notation

As indicated in Figure 1, Answer and Transmit ports are “source” ports (relative to a
link) and Ask and Receive ports are “destination” ports. For a given link between objects
O1 and O2 one port must be a source port and the other a destination port. The objects
containing those ports are source and destination objects, for that link. A link can use the
same object as source and destination.

Zero or more items of data may flow along a pass link. One or more data items must
flow along a fetch link. Chapter 6 gives a more detailed description of the semantics of
the links.

32

The following table summarises the links that are possible. Links that are not possible are
marked by a hyphen in the diagram. Some links require that a “buffer” object is
automatically placed on the link. This is indicated by the word buffer.

* Transmit

Yes

wReceive

wAnswer

buffer Yes <q' Ask
Yes buffer 4—* Multiple Transmit
Yes Yes 4—* Multiple Receive
4} Multiple Answer
buffer Yes buffer -a— Multiple Ask

Figure 11 : Meaningful links

Even though the set of rules for making links is quite large, the programmer does not
need to learn them. As will be seen later (in section 19.2), the behaviour editor only

allows the programmer to make legal connections.

33

15 MAIN EDITOR

= Behaviour Editor L
file edit nroperties nalette Qenerate refresh
Context Menu Bar
Column
Editing Window

| Zoom View

Figure 12 : The Behaviour Diagram Editor

The editor has three main areas:

J The main editing window (see section 15.1)
J A context column (see section 15.2)
J A menu bar (section 15.3)

The editing window is a window on to a (perhaps) much larger editing pane. The zoom
view shows a reduced view of the entire pane and is used to scroll the editing window. It
is this reduced view that is shown in the context column.

34

15.1 Editing Window (overview)

Figure 13 shows the editor being used to edit a network with no parents

= Eehaviour Editor i
fila adit nroperties nalette gqenerate refresh
button -
[
:i" BEK
<Limer >

button - ‘

—L1o

Figure 13 : Editing a network with no parents

See figure 16 (page 40) for the user-view of this network. Chapter 19 gives details of how
a designer manipulates a network.

35

15.2 Context Column

Figure 14 shows the editor being used on a sub-network that is at the third layer in the

hierarchy
= Eehaviour Editor K
file edit properties palette qenerate refresh
ZJ—E' button
[}
\ }f BEK
ctimer =
button , ‘

1o

Figure 14 : Editing a third layer sub-network

The left hand side of the Behaviour Editor consists of a Context Column. This is for
showing the context of network currently in the editing window. Each network in the
context column contains a highlighted node. The highlighted node is shown in its
expanded form either directly below in the context column or in the editor window (the
highlight doesn’t appear well in this screendump).

The implementation of the context column is not complete in this screendump.

36

15.3 Menu Bar

The following list indicates the structure of the menu bar (the items in italics have yet to
be implemented):

. tile
. new
. open...
. save
. save as...
d print...
. exit

d edit
. expand
. undo
. encapsulate
° cut
¢ copy
° paste
. properties
. delete
o restart

. view
. link types
. port titles
. data types
d arity

d palette
. glasi
. GUI

° generate
d User View
. ui...

. refresh

The menu items are always present in the menu bar, or sub-menus, but there are some
occasions when a particular option is not appropriate. Under these circumstances the
menu option will be greyed out.

Some of the menu options are explained below.

15.3.1 properties:diagram properties
These are properties used by the hint manager, and by the generate:UI option.

E.g one property could be “predominant target” which would be a choice of: openlook,
motif, mac, windows, sketch etc.

Hints are probably only useful for nodes with more than one implementation.

37

15.3.2 edit:expand

This option is only available if a node has been selected with the mouse. Puts the current
network on the history column. Opens, for editing, the network that implements the
currently selected node (see figure 14). See also section 19.1.2.

16 LIBRARIAN PALETTE

rLl Palette -
refrash restart Close
e Incrementaor ExECUte button
4 f:>‘ e }‘ P gather Pl ‘ :::;«‘
butte foo mak
B E:}‘ e ‘ B ‘ [
::iimer
Te] GUI Palette K
refresh restart Close

[Label Jl

Figure 15 : The GUI and standard palettes

The Palette is the programmer’s interface to the library. Behaviour classes are collected
onto separate pages depending on type. Each class is represented by an icon similar to
the icon used in the behaviour diagram. There is an integrated browser to explore the
properties of each class.

When a class is selected in the palette, the mouse pointer takes on a different shape in the
behaviour editor window. The shape of the pointer is dependent upon the icon used for
the class. When the mouse is clicked in the editor window an instance of the selected

38

class is placed at that position and the pointer returns to normal (and the item in the
palette is deselected).

Figure 15 also shows the GUI palette. This palette contains a visualisation of the
behaviour classes that represent GUI objects. If a GUI object is selected from either the
GUI palette or the normal palette, then the instance can be placed in either the userview
or the behaviour diagram. Whichever the designer chooses to do, the system will
complete the other option. Ie. if the designer selects the button class (from either of the
palettes), the cursor in the userview will change to a button and the cursor in the
behaviour editor will change to the appropriate behaviour node. Placing the button in
the userview will also place a “button” behaviour node in the behaviour diagram.

16.1 On-the-fly palettes

As the number of classes in the library is expected to be large, the palette should be split
into groups on separate palettes. Programmers could do this when they add a new class
to the library. Another possibility is to generate restricted palettes “on the fly” by using a
searching mechanism.

The designer constructs a new palette by selecting a node that is currently in the
behaviour diagram. A search tool is then selected from the “edit” menu. The search
window contains a copy of the selected node. The designer then selects the port of
current interest. In response to the “ok” button, the search tool then scans the library for
behaviour classes that contain a port that could make a legal connection. A new palette is
made of all these classes and presented to the designer.

The UIDE project is also investigating allowing designers to add stylised and machine
readable comments to new behaviour classes. This would make it easier for later
designers to search for an appropriate class.

Obviously, the searching mechanisms provided by the librarian play a key role in the
designer’s ability to re-use classes. No claims are made by this paper for the effectiveness
of the librarian used in UIDE-2. Code re-use is a difficult, and ongoing, area of research

[6].

17 DRAG AND DROP

The Behaviour Editor should support having objects dropped onto it. Ie a Sibal file could
be located by the OL file manager and dropped onto a Behaviour Editor, or an XVed
window etc. This would result in a node being added to the current diagram (in the
former case) or a new Behaviour Editor being launched for the network file (in the latter
case).

This implies that Sibal files must have a file extension, or magic number, that can be
recognised by Poplog.

39

18 USER VIEW

rlil Userview

edit live tools refresh close

(labsl)

(labsl)

Figure 16 : The Userview. A Ul generated by figure 13.

If the User View window is open, then any changes made to the GUI aspects of the
behaviour diagram are immediately reflected in the User View.

The designer may directly edit the User View. If this is done, the behaviour diagram is
updated in the appropriate way. E.g.:

. Graphical constraints will be added, updated, or deleted
. Sibal objects will be added to, or deleted from, the diagram.

19 EDITING A NETWORK (DETAIL)

Many functions are available from the Edit menu (section 15.3) in the menu bar, but the
most frequently needed facilities are available by manipulating the diagram directly.

19.1 Nodes

New nodes can be selected from the Librarian palette and added to the editor window. If
they are placed on another part of the behaviour editor they will be ignored.

19.1.1 Edit Menu

Clicking on a node selects it; options from the Edit menu are then available (deleting,
copying to the clipboard etc.). See section 15.3 above.

40

19.1.2 Expanding a node

Click middle button on node: The current behaviour diagram is moved to the context
column (see Figure 14). The sub-network that the clicked on node represents is then
“opened” in the editing window.

This is also available from the Edit:expand menu option (section 15.3.2) if a node has been
selected.

19.1.3 Editing node details

Click right button on node: a “properties sheet” or other appropriate dialogue box will
be opened. The details of the dialogue box are dependant on the type of the node.
Currently only nodes representing Ul objects are supported in this way. The dialogue
box gives a menu for setting various properties of the Ul object; e.g. colour, label text etc.

19.1.4 Moving a node

Pressing on, and dragging, a node allows the designer to drag the node around the
editor window. The links will automatically follow the node.

19.1.5 Making a constant node

Double click on ask arrow: a “constant” box, of the appropriate type, will be
automatically created. The type of constant will depend on the data type of the ask port.
E.g. if the constant box is being connected to a port that requires an integer, then the box
will contain a space for typing the number plus increment/decrement buttons.

Constant boxes will be available from the palette, but the designer should usually find it
easier to “open up” the ask port by double-clicking on it.

19.2 Links
19.2.1 Making a link

Click left button on port arrow: all legal links from the selected port are shown with a
“tentative” thin black line. The programmer then clicks on the required destination port
to specify a connection. The link then turns to a thick blue line. This is similar to the
behaviour exhibited by AVS [3 pp. 67 - 71]. The programmer can actually click anywhere
in the diagram to complete the link; the system will select the legal port which is
physically closest to the mouse click. If none of the tentative links are required, the
programmer clicks anywhere in the diagram and then selects the Edit:Undo menu option
Some links will require buffers. In this case the buffers will be created automatically.

This “tentative link” behaviour has two advantages:

. Only legal connections can be made. This means that a syntactically
incorrect network can never be constructed.
. The programmer does not need to know whether the link they are

constructing is a pass or a fetch link.

41

The current implementation of the behaviour editor uses “Manhattan” links'.
Possibilities that may appear in later versions include: allowing the designer to draw
curved, “free-hand” links.

19.3 Diagram Properties

Double clicking on the edit window background accesses the Diagram Properties
dialogue box. This option is also available on the Properties:diagram properties menu
option.

19.4 Grouping a Subnet

Press and drag on the background: will create a “rubber-band” bounding box that is
used to select a set of nodes. A number of options are then available from the Edit menu:

. Delete the group

. “Fold” the group into a single node.
. Create a new class (ie. available from the palette) out of the group. This will
also fold the group.

Chapter 20 describes how the last two options support bottom-up design.

20 NORMAL USAGE OF THE BEHAVIOUR EDITOR
Two typical design styles are supported by UIDE-2:

. Bottom-up
. Top-down

The bottom up approach corresponds closely to the GUI construction approach
supported by many available UIDEs (e.g. Fabrik [9], Garnet [14], X-Designer, TeleUse,
SUIT[15] Etc.)

Support for the top down approach is fairly rare in UIDEs. It aids the designer by
enabling step-wise refinement of a design.

20.1 Bottom Up

The bottom-up approach is likely to be the most familiar to a designer. It uses the User
View and the “GUI primitives” part of the Sibal Objects palette.

Within this style of GUI construction, the designer will typically drag low level GUI
objects from the palette directly onto the User View. It will then be possible to add
graphical constraints to those objects (e.g. alignment, nearness etc.). Behaviour (ie.
callbacks) can be added to the objects using a properties sheet.

1. Also known as “orthogonal” links, [11] page 173.

42

Any changes, or additions, to the User View are automatically reflected in the Behaviour
Diagram. This means that object behaviour, and graphical constraints, can be edited by
direct manipulation within the behaviour editor.

If the designer decides that a portion of the design would be useful as a new primitive
object, the behaviour editor can be used to group that section of the diagram. This group
can then be encapsulated into a new class (by selecting a menu option).

20.2 Top Down

The top-down approach is useful for exploratory design. With this method, the designer
creates a first draft of the GUI, that captures the overall behaviour of the whole interface,
using very abstract components. This design is then subsequently refined using more
concrete GUI primitives. It uses the Behaviour Editor and the “Functional Primitives”
part of the Palette.

The designer will typically drag some very abstract, functional components onto the
behaviour editor. Examples of these components are: “dialogue box”, Ul screen etc.

Even the most abstract, overview design of a Ul can be tested in the user view as even
the most abstract component has some form of default, sketch representation (e.g. a box
with a text label, an “Accept” button, or both)

Once the overall behaviour of the Ul is satisfactory, the designer can construct more
detailed implementations of the abstract nodes in the behaviour diagram. E.g. a very
abstract specification of an “obtain numeric value” dialogue (a text field) could be
replaced later by a slider. Further refinements or extensions could replace this with a
more complicated behaviour diagram containing many buttons and menus (e.g. for
specifying the units of the numeric value).

43

Part 4 - Future Research and
Development

21 TOWARDS A STRONGER EXECUTION MODEL

This design document, so far, has been quite lax in addressing issues like execution
semantics and type coherence etc. This has been intentional. Addressing these issues in a
rigorous manner is beyond the scope of the UIDE project. It could form a major part of
another project.

The next few sections give a rough discussion of the issues involved.

21.1 Consequences and Dependencies

The version of Sibal that has been described by this document, only allows for very
simple forms of consequence and dependency information. This information is implied
by pass and fetch links.

Pass links denote consequence information. The consequence of an object transmitting
an event along a pass link, is that the receive port at the other end of the link is obliged to
do something (anything) with the event.

Fetch links imply a very weak dependency relationship. An ask port is dependant on the
answer port, that it is connected to, having a viable piece of data. But there is no way for
the answer port to communicate its readiness to the ask port. This version of Sibal has
avoided problems by stating that an answer port is allowed to return any default data
item, if it is not ready, as long as it is of the correct type.

As can be seen, the information currently supplied is very weak. Consequence
information is useful in detecting areas of “dead” code, and infinite recursions etc.
Dependency information is useful in proving program correctness etc.

What is needed is an extension to the port signature. The extra information would
describe how the ports within an object relate to each other. For example, the answer
port of a buffer is not valid until at least one event has been received by the receive port.
This information should be supplied by a dependency relationship.

21.2 Type propagation

Another form of dependency information is to do with type propagation.

44

Consider the buffer shown below in Figure 17

A: popl1 buffer PP 1
B: number buffer number number {> 01
C: 02_ int number buffer number number {> 01

Figure 17 : Type propagation

Only the data-type part of the port labels is shown.

Part A shows the buffer on its own. The two ports have the data type pop11 which
corresponds to the unifying Pop11 type (ie. all Pop11 types are descendants of the type
popll).

Part B shows the output, answer, port connected to another object O1. The data type of
the ask port on O1 is number. This means that the type of the answer port of the buffer
should also be number. If the correct “type propagation” information was associated
with the buffer, the data type could be propagated to the receive port (causing it also to
be of type number).

This would then, correctly, restrict the type of objects that could be connected to the
input side of the buffer. Ie. the transmit port would have to be of type number or one of
its descendants.

The current definition of Sibal doesn’t encompass this at all.

22 DISTRIBUTED APPLICATIONS

221 Distributed Interfaces

Some windowing technologies (e.g. the X Window System [17]) allow applications to
utilise multiple displays in one application. This is done through a technique known as
“network transparency”. All drawing requests, made by Ul widgets, are done through a
simple, well defined protocol. This protocol is amenable to being transmitted over an
Inter Process Communication (IPC) socket. Each widget knows which channel it should
use to send requests and receive events. This is all transparent to the application, which
maintains a single set of widgets in its process memory.

45

Sibal will support this type of multiple display interface. Some Sibal objects “know” that
they are GUI objects. When constructing a behaviour network using these objects, the
designer could “annotate” them such that they will appear on separate screens when the
interface is built. There will only be a single process that controls them though.

22.2 Distributed Processes

Poplog supports the IPC and RPC (Remote Procedure Call) protocols [4]. This allows a
process to start a number of other processes on other machines (or on the same machine)
and to exchange data with them.

Special Sibal objects could be constructed to directly support this kind of spawning and
communication behaviour.

23 BEHAVIOUR EDITOR EXTENSIONS

23.1 Editing Graphical Constraints

Certain user interfaces require that graphical constraints are placed on the Ul objects
(e.g. “align bottom edge”). Normally, the built in style guides should be sufficient to
correctly lay out the UI But occasionally the designer may wish to override the defaults.
Figure 18 shows how a graphical constraint may be specified in a behaviour diagram.

near \
4

slider value data gauge

Figure 18 : Adding a “near” constraint

The Rockit system [10] uses an interesting technique of inferring graphical constraints
from the way the designer manipulates Ul objects in the “User View” (UIDE
terminology). The Rockit system only uses six constraints: Connector, Spacer, Attractor,
Repulser, Container, Aligner. Experience will show if any others are needed.

46

24 NODES AS 1st CLASS DATA

new
create_Lfoo (replicate)

destro self foo

store

Kill all shave

all round

self| foo (holder)

kill one destroy
shape

set shape

Figure 19 : A network with a Replicator and a Placeholder

Behaviour Diagrams are unusual in that it is possible to promote a node, normally
assumed to be a function, to be a first class data item. The node can be either a primitive
or an arbitrarily complex network.

To facilitate this there are two, complimentary, possible promotions:

. promotion to a “Self Replicating” node
. promotion to a “Place Holder” node
241 Self Replicating Nodes

Any node, or network, can be converted into a self replicating node. This enables the
extent, and behaviour, of the network to change dynamically at runtime.

The effect of promoting a node like this is to add three ports to its signature:
create(receive/0), self(transmit/1-sibal_net), destroy(receive/0)

When a trigger is received on the create port three things happen:

. a new instance of the net is created.

. Any other connections to the node which were specified in the behaviour
diagram are duplicated (apart from the create and self links).

. a sibal_net object is generated on the self port

If the network which implemented the node contained any GUI objects then these are,
naturally, duplicated as well. In this way the number of GUI objects appearing on the
screen can be altered at run time. The behaviour networks, associated with these new
screen objects, are also duplicated. This means that the new objects can behave as

47

autonomous agents, responding to the mouse or the application as required
independently of their “siblings”.

Because all the links to the node are duplicated as well, any answer ports on the node
must be unbound. Figure 11 (page 33) shows that it’s not possible to connect more than
one answer port to an ask port, which would be the effect of duplicating a node
containing a bound answer port.

Links to receive ports effectively become “broadcast” links. Because the link is
duplicated, all events transmitted along the link are sent to all instances of the node.

24.2 Placeholder nodes

These are the natural compliment of self replicating nodes.

The effect of promoting a node likes this is to add two ports to its signature:
self(receive/1-sibal_net), destroy(receive/0)

The node then becomes a place holder for a net-instance (as created by a self replicating
node). The links into the node only become valid when a net-instance of the appropriate
class has been received by the self port. An error is generated if any activity is attempted
on the links before a net-instance is received by the node.

Only one instance of a node can be resident in a placeholder at any one time. Therefore:

. pass-in links (receive ports) are not “broadcast” links
d answer ports may be bound
Nodes can also be stored in lists, and other such data structures, while they are not “in

4

use .

24.3 Example Replicating Node

In figure 19, the application procedures new, kill all,and all round are connected
to a self replicating node (of the class foo). The class foo normally has only one port:

foo - shape(answer/1-shape)

The port is an answer port of arity 1, of type shape. The value expected by the shape port

is one of “circle”, “triangle”, “square” etc. This class is, of course, entirely imaginary, but
plausible.

The application procedures kill all and all round are connected to the instance of
foo by broadcast links (by virtue of being connected to receive ports on a replicating
node).

Thus k111 all will destroy all instances of foo that were created by this node, and
all round will, similarly, set the shape of all instance of foo that were created by this
node.

The self portis connected to two objects: a node called st ore (which may well simply
keep the instances safe somewhere) and a placeholder version of the class foo.

48

The application functions ki1l one and set shape only ever affect the instance of
foo that is currently residing in the placeholder.

49

25

REFERENCES

1. Anderson, James, “Pop-11 Comes of Age”, 1989, Ellis Horwood

10.

11.
12.

13.

14.

15.

16.

Barrett, Ramsay and Sloman “POP-11: a Practical Language for Artificial
Intelligence”, 1985, Ellis Horwood

Earnshaw, R. A. and Wiseman, N. “An Introductory Guide to Scientific
Visualization”, 1992, Springer-Verlag

Gaizauskas, R. J. “Building a Distributed Poplog Application Using RPC”, 1992, in
Rogers I. and Goodlet J. Proceedings of Plug92, CSRP 271, School of Cognitive
Sciences, Sussex University, UK

Green, T. R. G. “The cognitive dimension of viscosity: a sticky problem for HCI” In
D. Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.) Human-Computer
Interaction - INTERACT’90. Elsevier

Green, T. R. G., Gilmore, D. J., Blumenthal, B. B., Davies, S. and Winder, R. “Towards
a cognitive browser for OOPS.”, 1992, Int.]. Human-Computer Interaction, 4(1), 1-
34

Harel, David et al “STATEMATE: A Working Environment for the Development of
Complex Reactive Systems”, 1990, IEEE Trans. Soft. Eng., Vol. 16, pp. 403-414

Hils, Daniel D. “Visual Languages and Computing Survey: Data Flow Visual
Programming”, 1992. Journal of Visual Languages and Computing - vol. 3 no. 1 pp.
69-101

Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, Ken Doyle “Fabrik: A
Visual Programming Environment”, 1988, OOPSLA’88 Proceedings

Solange Karsenty, James A. Landay, Chris Weikart “Inferring Graphical Constraints
with Rockit”, in A. Monk, D. Diaper, M. D. Harrison (Eds.) People and Computers
VII, Proceedings of HCI'92, York, September 1992

David Kirk (Ed.) “Graphics Gems 111”7, 1992, Academic Press

Koenemann, J. and Robertson, S. P. “Expert Problem Solving Strategies for Program
Comprehension”, in Proc. CHI'91, ACM Press, pp. 125-130

Mott, D.H., Cunningham, J., Kelleher, G. and Gadsden, J.A. “Constraint-based
reasoning for generating naval flying programmes”, in Expert System August 1988,
Vol. 5, No. 3, pp. 226 - 246

Brad Myers et al, “GARNET: Comprehensive support for graphical, highly
interactive user interfaces”, November 1990, IEEE Computer, pp. 71 - 85

Randy Pausch, Nathaniel R. Young II, and Robert DeLine “SUIT: The Pascal of User
Interface Toolkits” November 1991, Proc. User Interface Software and Technology,
ACM Press

Klaus Erik Schauser “Compiling dataflow into threads: efficient compiler-
controlled multithreading for lenient parallel languages”, July 1991. Report no.

50

17.

18.

19.

20.

21.
22.

UCB/CSD/91/644, Computer Science Division, University of California, Berkeley;,
CA 94720

R.W. Scheifler, J. Gettys “The X Window System”, October 1986. Report no. MIT/
LCS/TR-368, Al Lab., MIT, Cambridge, Mass.

Sun Microsystems Inc. “DevGUIDE, OpenWindows Developer’s Guide” 2550
Garcia Ave., Mtn. View, CA 94043

Sun Microsystems Inc. “OPEN LOOK Graphical User Interface Application Style
Guidelines”, Addison-Wesley

Craig Upson “Visual programming in data flow environments”, 1992, The
distinguished lecture series IV (Video), University Video Communications, Stanford
CA 94309

Ake Wikstrom “Functional Programming Using Standard ML”, 1987, Prentice Hall

Wilson, S., Markopoulos, P., Pycock, J., and Johnson, P. “Modelling Perspectives in
User Interface Design”, 1992, EWHCI'92 International Conference on Human-
Computer Interaction, pp. 210 - 217

51

26 SELECTED BIBLIOGRAPHY

The references in this bibliography, amongst many others, have a bearing on this project, but have
not been explicitly mentioned in this paper.

i. P T. Cox, E R. Giles and T. Pietrzykowski, “Prograph: a step towards liberating
programming from textual conditioning” 1989, IEEE Workshop on Visual
Languages, pp. 150 - 156

ii. Mark Green, “A Survey of Three Dialogue Models”, July 1986, ACM Transactions
on Graphics, Vol. 5, No. 3, pp. 244 - 275

iii. T.R.G. Green, M. Petre and R. K. E. Bellamy, “Comprehensibility of visual and
textual programs: a test of superlativism against the match-mismatch
conjecture”, Aug 1991, JCI summer school

iv. M. Helander (ed.), “Handbook of Human-Computer Interaction”, 1988, Elsevier

Science

v. Mainstay, “The V.I.P. Treatment”, June 1987, MacUser, pp. 132, 134, 136, 138 and
184

vi. DanR. Olsen, Jr. “User Interface Management Systems: Models and Algorithms”,
1992, Morgan Kaufmann

vii. M. Petre and T. R. G. Green, “Is graphical notation really superior to text, or just
different? Some claims by logic designers about graphics in notation”, July 1990,
CITE Report 113, Open University

viii. Ben Shneiderman, “Direct Manipulation: A Step Beyond Programming
Languages”, 1983, IEEE Computer, Vol. 16, No. 8, pp. 57 - 69

ix. Bruce Tognazzini, “TOG on Interface”, 1992, Addison-Wesley

52

