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Abstract

Enquiries into the possible nature and scope of innate knowledge never

proceed in an empirical vacuum. Instead, such conjectures are informed by a

theory (perhaps only tacitly endorsed) concerning probable representational

form.  Classical approaches to the nativism debate often assumes a quasi−

linguistic form of knowledge representation and delineate a space of options

(concerning the nature and extent of innate knowledge) accordingly.  Recent

connectionist theorizing posits a different kind of representational form, and

thus determines a different picture of the space of possible nativisms.  The

present paper displays this space and focuses on an especially interesting sub−

region labelled "Minimal Rationalism".  The philosophical significance of the

minimal rationalist option is explored.  Two consequences which emerge are first,

that the apparently clear distinction between innately specified knowledge and

innately specified structure is shown to be unproductive; and second, that there

may exist tracts of innate knowledge whose content is not propositionally

specifiable.

0. Nativism. Why worry?

Sometimes trivial, usually fruitless, the Nativism/non−Nativism debate

generally ends not with a conclusion but with a whimper.  All parties agree

that something important is present in us without being the product of genuine

individual learning.  All that then remains is to determine what. And that, as

has been vigorously argued in the past (e.d. Fodor (1980)) is in the end an

empirical question whose detailed answer is not to be determined by armchair

philosophical speculation.  Most of the published debate thus consists in

arguing about whether some of our innate endowment is highly domain−specific

(e.g. Chomsky (1986)) or instead relates to basic, general−purpose problem

solving (e.g. Putnam (1981)). A second major strand of the published debate

relates specifically to concepts and revolves around the question  whether

anything genuinely worth calling concept learning actually takes place, or

whether all our conceptual repertoire must be in some non−trivial sense innate

(Fodor (1980) and papers in Piatelli−Palmarini (1980)).

The present treatment maintains a safe distance from these types of

question (a few asides notwithstanding). Instead, the focus is on the way in

which the possibility of innate knowledge is conceived.  I shall argue that

the received conception of the space of possible options is in fact a product

of the (often tacit) acceptance of a certain model of the probable form of

internal knowledge representation: a form whose clearest expression is found

in the hypothesis of an innate language−like representational system (a

Language of Thought).  Change the conception of the form of internal

presentation and you radically alter (or so I shall argue) the picture of the

space of possible options.

This potential alteration has not gone unnoticed in the recent

literature. Important treatments include Ramsey and Stich (1991), Narayanan

(1992) and Karmiloff−Smith (1992a). Several of the themes I develop in

sections 1−3  − where I discuss the impact of connectionism on the nativism

debate, in the broadest terms, are rooted in these exploratory forays.  The
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remainder of the paper, however, tries to push the new debate a little

further.  Thus section 4 introduces (with some simulation results) a largely

unnoticed (but see Karmiloff− Smith (1992a)(1992b)) yet potentially highly

significant possibility which I term ’Minimal Rationalism’. A minimally

rationalist innate endowment involves the (domain−specific) pre−setting of

tiny but vital information−processing parameters which, in a delicate

co−operation with predictable environmental inputs, result in the acquisition

of specific items of knowledge.  To understand the nature of such minimal

endowments we need to use a new set of tools.  Instead of conceptualizing any

genuine innate knowledge as consisting in familiar kinds of conceptual or

propositional content, we need to move towards a more ’geometric’

understanding.  In particular, we need to exploit the idea of an error surface

determined by the setting of numerical parameters in a high−dimensional space.

The specification of innate knowledge, I shall argue, will often consist

(necessarily!) in the fixation of a favourable position on such an error

surface. Once we thus expand our notion of innate information beyond the

realms of what is in−principle propositionally specifiable, it becomes

increasingly difficult (section 5) to separate questions concerning the innate

structure (e.g. the local architecture (of layers, modules etc.)) of a

computational subsystem from questions concerning innate knowledge. Classical

treatments of the nativism debate could support such a separation since they

allowed a sharp distinction between computational profile (algorithm and data)

and implementation (the underlying physical device).  Connectionist approaches

erode that distinction and hence blunt the difference between structure,

algorithm and information.

1. Nativism and Representational Form

It is no accident that much of the historical debate concerning the pros

and cons of nativism revolved around the notion of an innate idea. For talk of

ideas, vague thought was (and is) nonetheless reflected the best available

theory of that in which our mature knowledge might consist. And our conception

of the potential nature of any innate endowment was, by default, modelled on

our conception of the nature of the mature product.

In talking of innate ideas in the mind, we are not yet forced to

consider questions concerning any possible physical vehicles for those ideas.

In these more rampantly physicalist times, however, questions concerning the

possible contents of tracts of innate knowledge have been inspired not just by

a vision of the contents of the mature product but also by a vision of the

form of their inner vehicles. The clearest example of this line of influence

is seen in the works of Jerry Fodor.

Fodor subscribes to what I shall call ’Bipartite Nativism’. Such a

nativism ascribes two types of innate endowment to the human neonates. These

are:

1.    An innate (but peripheral) system of processing modules which are

significantly structured so as to promote the acquisition of specific

skills (e.g. grammar acquisition).

(see Fodor (1983)).

2.    An innate (and central) corpus of representational atoms (which includes

atomic items corresponding to most lexical concepts and which merely

require triggering by exposure to appropriate environmental stimuli).

(see Fodor (1975), (1980), (1987)).

Fodor thus subscribes to both a kind of ’gross architectural’ nativism

(for the modules) and a ’symbolic nativism’ (for central processing).

In the following sections I shall try to articulate a very different

picture. It is a picture in which the image of the form of representation of

mature knowledge (of the kind which Fodor would ascribe to ’central

processing’) is very different.  This difference, I shall argue, leads us to
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reconceive the notion of innate knowledge in important ways and eventually

blurs the architecture/representation distinction itself.

2. Connectionism: The Bare Essentials

The broad lines of the Connectionist Cognitive Paradigm are by now

familiar to most philosophers (for introductory treatments see Clark (1989),

Bechtel and Abrahamson (1991) and the essays collected in McClelland,

Rumelhart and the PDP Research Group (1988) vols. I and II)) and I shall risk

only a summary introduction here.  It is in any case the specific vision of

the form of any innate endowment which is going to do most of the work in what

follows. Still, a few words are in order.

The connectionist approach, insofar as it presents itself as a genuine

alternative to classical ’rule and symbol’ systems, relies on (i) an

alternative form of knowledge representation, (ii) an alternative type of

basic processing operation and (iii) a set of powerful learning algorithms.

Regarding knowledge representation, the radical connectionist eschews

representations which consist of symbolic atoms concatenatively combined to

form symbolic expressions. (For a good discussion, see Van Gelder (1990)).

Instead, connectionism exploits activation patterns among large numbers of

idealised ’neurons’ (small processing units) to encode specific contents.  The

resulting scheme turns out to resemble prototype based encoding insofar as

similar contents tend to be represented by similar patterns of activation

(hence the inner ’symbols’ are in a sense non−arbitrary: if content A is

represented as pattern of activation P, it will be semantically significant if

a content B is assigned a closely related pattern  (see Clark (forthcoming a)

Chapter 2 for a full discussion). All the semantically significant items in

such an encoding can thus have significant internal structure.  In a very real

sense, there are no symbolic atoms here i.e. no items which are both clearly

representational and lack semantically significant inner structure. Moreover,

complex contents are not represented by concatenations of more basic

representations but by new activation patterns (ones which need not literally

embed the ’components’) created by processes involving mathematical operations

upon the numerical vectors which constitute the aforementioned ’activation

patterns’. Once again, the departure from the classical paradigm is quite

marked (see Smolensky (1909), Fodor and McLaughlin (1991)).

In such systems, the basic processing operations are defined over such

numerical vectors. Information retrieval consists in a process of vector

completion given a partial vector as a cue.  Generalization is achieved by the

superpositional storage of activation patterns in a single set of long term

weights. The weights consist of numerical values assigned to local links

between idealised neurons.  It is these weights which allow the system, given

a partial vector (pattern of activation across a set of input units) as a cue,

to complete the vector (by activating, courtesy of the connection weights, a

specific pattern of units). If several contents are stored superpositionally

in a single network of units and weights, an input cue which is appropriate to

several such patterns will induce an activation pattern which in a sense

averages the patterns of the individual contents which fit the cue. Hence

so−called ’free generalization’ (see Churchland (1989) ch.9).

Finally, and most significantly, such networks are heir to some powerful

learning algorithms. Starting with random weights on the connections a network

can automatically alter these random weights in a way which should lead it to

encode a desired input−output mapping.  This kind of learning is usually

driven by exposing the net to a set of inputs alongside a set of desired

outputs. The net uses the (initially random) weights to yield an (initially

hopeless) output. If the output is incorrect, an automatic procedure slightly

amends those weights most heavily implicated (along the path of activation

between input and output) in the mistake in whatever direction (increase or

decrease specific weights) will yield a reduction in the numerical error

measure.  Such a process (of ’gradient descent learning’ − see e.g.
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P.S.Churchland and T.Sejnowski (1992) pp.106−7) gently leads the network in

the direction of an assignment of weights which will support the target

input−output mapping and (usually) will generalize to deal with new cases of

the same type (e.g. a net trained to map coding for written text to coding for

phonemes will then perform the mapping for text on which it was not

specifically trained − see Sejnowski and Rosenberg 1986) (1987)).

Even such a summary sketch succeeds (I hope) in displaying the genuine

distance which separates these connectionist models from their classical

cousins. Where classicists were tempted (maybe even forced − see Fodor (1975))

to posit a system of innate symbolic atoms and significant innate

architectural structures (the modules of Fodor (1982)) the connectionist may

appear ready to reject both: to insist on a single network of units and

weights and to begin with random weights and hence no ready−made set of

symbolic atoms.  But this, as other commentators have rightly pointed out (see

e.g. Churchland (1989), Karmiloff− Smith (1992a), Narayanan (1992) would be

way too hasty.  The connectionist (like everyone else from behaviourists

upwards − see e.g. Quine (1969) p.96) must often be a nativist too. But the

empirical details of the connectionist approach determine a space of nativist

options which is importantly different to the classical space.  I shall sketch

that space, and then proceed to a thorough investigation of my favoured corner

of it; a subspace I term ’minimal rationalism’.

3. The Space of Connectionist Nativisms.

The space of possible connectionist nativisms is bounded by two

extremes. One extreme is the Connectionist Tabula Rasa: a single, big

undifferentiated network which begins with a random assignment of weights.

The other extreme is the Connectionist Classical Device: a units−and−weights

style implementation of the full bipartite classical story, with innately

specified modules and a central system which uses connectionist resources to

implement a full classical symbol system. (For a sketch, see Touretsky and

Hinton (1985), Touretsky (1989).) The Connectionist Classical device we put

aside. It is of little philosophical interest in the present context.  The

Connectionist Tabula Rasa, although it is shortly to be rejected (on empirical

grounds) merits a few initial comments.

First, and most obviously, the connectionist Tabula rasa (like its

associationist ancestors) is not a totally blank system after all. For it

comes equipped with both a structure ( a specific number of units and weights,

and a specific configuration into input layers, output layers and intervening

layers) and a learning rule.  This is unsurprising. As Samet (1986) comments

"Even tabulas have some innate structure" (p.575). The Connectionist Tabula

Rasa is not, anyway, to be taken seriously as a model of the human neonate’s

cognitive state.  A wealth of results in psychology and neuroscience attests

to the significant amounts of additional innate structure upon which human

cognition relies (see e.g. Churchland and Sejnowski (1992)). And working

connectionists have come to appreciate more and more the need to pre−structure

networks to perform complex tasks −see e.g. Plunkett and Sinha (1992),

McClelland, J.L. (1989), Le Cun et al. (1989). All that said, there is still

an important existence proof embodied in the Connectionist Tabula Rasa viz.

that something at least closely akin to rational/causal concept learning is,

pac− Fodor (1975) (1980), quite definitely  possible without the aid of a

ready−made set of symbolic atoms with which to formulate explicit hypotheses

concerning the meaning of public language terms.

It is easy to see why this is so.  Fodor’s image of cognitive change

distinguishes sharply between true learning (a rational process in which what

is learned depends systematically on the contents of inputs to the system) and

other kinds of change. A Latin pill, or a bang on the head, might induce new

cognitive skills in us: but the process is not (see e.g. Fodor (1980) p.275) a

rational one, hence not a true case of learning.  Famously, Fodor depicts the

basic representational resources of a system as a set of symbolic atoms −

items which bear specific contents and need only to be triggered  by a minimal

environmental input (think of the way a specific stimulus, like a red dot on a
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beak, can trigger an entire complex behavioural pattern in an animal − the

pattern is not plausibly viewed as learnt by some rational means involving

reflection on the stimulus −an extreme case of the ’poverty of the stimulus

argument’!). Real learning for Fodor, occurs only later, when a system can use

existing representational resources to formulate a hypothesis (e.g. about the

meaning of a lexical item) and test it against future experience.

A connectionist network which begins life with a random set of weights

(and no−task−specific fancy architecture, see section 5 below) and learns a

generalizable mapping by exposure to a set of training cases, amounts, I

claim, to a case in which we have genuine learning without innate symbolic

atoms.  It is genuine learning because the acquired mapping is specified in

and acquired in virtue of, the specific inputs to which the net is exposed.

It is not like merely triggering a knowledge representation already present in

the net.  And the learning is achieved without relying on the ’contents’ of

whatever random motivation patterns the net was initially disposed to produce

in its efforts to acquire the target mapping.  To establish this last point

reflect (1) that the initial weight assignments, being random, may embody no

usable knowledge at all and (2) that the process of weight change is not a

process in which existing representational elements are concatenated to

express putative target knowledge items.

It is easy to miss this powerful result.  It escapes notice if we adopt

a common misreading of Fodor’s claim.  The misreading depicts Fodor as

claiming only that representational potential cannot increase (which is surely

true) and that learning involves the testing of hypotheses.  It is then all

too easy to visualise the network as performing a kind of numerical

’hypothesis generation and test’ in which

the test is the measure of network performance (such a s sum−

squared error) and the procedure for generating new hypotheses,

given the successes or failures of past hypotheses, is given by the

learning algorithm.

Christiansen and Chater (1992) p.42.

The point to notice, though, is that the network’s early ’hypotheses’ are not

framed using a set of symbolic atoms nor (a fortiori) is the potential

representational scope of the network bounded by the representational power

(under processes of expressive recombination) of such a set of initial

representational atoms.

To repeat then, the Tabula Rasa case provides a genuine existence proof

of the ability of some systems to engage in rational knowledge acquisition

without an innate representational base. Yet they do not acquire knowledge by

accident, or by simple triggering. For they learn what they learn as a

consequence of the specific contents of the training set.  in passing, note

that the connectionist is thus able to offer a genuinely empiricist vision of

learning which is nonetheless not (pac− Fodor (1980) p.279) committed to the

use of hypothesis generation and test defined over a set of antecedent (hence

unlearned) symbolic atoms.

The existence proof of rational knowledge acquisition without any innate

representational base in place, we move on to probe the more empirically

plausible regions in the space of connectionist nativisms. This subspace

(between the Tabula Rasa and the Connectionist Classical Device) has recently

been divided (Narayanan (1922)) into two parts.  One part encompasses various

forms of what Narayanan (after Fodor (1983)) calls ’Architectural Nativism’

viz. the innate specification of gross structural properties such as division

into modules etc.  The other part encompasses what Narayanan (op.cit.p.80)

calls "Representational Nativism’ viz. a nativism of contents or methods of

representation. The basic idea is that the stored connection weights

constitute the knowledge of a network and hence that pre−setting these amounts

to building in real knowledge.  Whereas the gross arrangement of units and

weights (numbers of units, of layers, modules etc.) constitutes the form of

the processing device. Pre−setting these amounts to building in real

knowledge. Whereas the gross arrangement of units and weights (numbers of
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units, of layers, modules etc.) constitutes the form of the processing device.

 Pre−setting these latter parameters may help solve certain problems but falls

short of building in real knowledge.  I suspect, however, that the

architectural/representational distinction is not, in fact, a reliable

taxonomic device, as we shall now see.

Thus suppose a connectionist wishes to escape the paradigm of ’tabula

rasa’ learning and give her network a helping hand because the target mapping

is too hard, or because the training data is too skimpy, or because the net

needs to solve the problem without an extended period of training). There are

various options. The most important of these being:

1.    Hand−coding of weights

2.    Choice of local or global architecture

3.    Data manipulation.

Hand−coding of weights is the most obvious, but probably least practical

solution. Thus for small problems, it is possible to pre−set connection

weights either (a) to solve the problem or (b) to speed up the process of

learning to solve it (much more on which later). More usual is the practice of

shooing a gross architecture (e.g. a division into modules (see e.g. Norris

(1990)) or the arrangements of layers and units within a module (see e.g.

McClelland (1989)) which is in some way suited to the target task.  Thus

Norris (1990) describes an arrangement of three distinct subnetworks which

together neatly solve a problem (idiot savant data calculation) which visibly

decomposes into three parts. A single, undifferentiated net, presented with

identical data, was unable to solve the problem.

A final, and less widely noticed alternative is to manipulate the

training data.  Thus it can be demonstrated that the kind of result Norris

achieves by pre−structuring the net can also be achieved by a careful

structuring of the training data. Elman (1991) describes a grammar acquisition

problem which defeats a single network until the training data is divided into

several distinct batches, each batch prompting the net to solve a sub−problem

whose solution reduces the complexity of solving the sub−problem presented by

the next batch. Manipulating the training data thus effectively decomposes the

single intractable problem (learn mapping X) into a sequence of tractable

subproblems (learn mapping P, then Q, then R) whose cumulative effect is to

solve X. (I discuss the above cases in detail in Clark (forthcoming − a)

Chapter 7).

It is not immediately obvious, however, that this last case (data

manipulation) represents a plausible variety of innate knowledge.  In fact, it

does, since the data manipulation (which effectively alters the statistical

distribution of input data over time) can be achieved automatically! This

involves allowing the net to see fully mixed (i.e. unbatched) data but

providing it with a kind of selective filter in the form of a short−term

memory which gradually expands over time.  The limited window on the data

which the initial (most restrictive) memory allocation provides results in

only the short, simple grammatical structures being actually available to

power learning.  As the window expands, more complex structures become

’visible’ to the net. The overall effect is just as if the data had been

carefully divided into batches!

A detailed discussion of this is given in Clark (forthcoming−a) Chapter

7, but the immediate point to notice is that there is an important sense in

which all the above means of ’helping’ a network are functionally equivalent.

Thus the beneficial effect of a piece of hand coding of weights may lie in the

way those weightings effectively modularize the network, channelling certain

inputs to one group of hidden units and others to a different group.  (For a

working example, see the discussion of the balance beam example in Plunkett

and Sinha (1992).) Similarly the result of Norris’ architectural
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pre−structuring is to promote a certain problem decomposition: an effect which

can also be obtained by manipulating training data or short−term memory.  It

can also (see section 4) be obtained by evolving weights which enable the net

to reorganize the training data for itself!

In and of themselves, these functional equivalences, though initially

surprising, are not evidence of anything genuinely unfamiliar.  It is a

commonplace of the classical paradigm that a given input−output behaviour may

be achieved either by ’hard−wiring’ the system (directly manipulating the

processor) or by creating a program (manipulating the representations). It is

therefore important to see that the connectionist equivalences just sketched

flow from a different, and deeper source. For what underlies these

equivalences is, I believe the profound interpenetration of representation and

processing with the connectionist paradigm. It is worth pausing to clarify

this.

The fundamental root of the equivalences (between hand−coding, data

manipulation and gross structural pre−organization) lies in the fact that

connectionist models do not embody a firm distinction between representation

and processor.  Processing in these systems involves the use of connection

weights to create or re−create patterns of activation yielding desired

outputs. But these weights, as we saw, just are the network’s store of

knowledge. Changes to the knowledge base and to the processing device (the web

of units and weights) thus go hand in hand. As McClelland, Rumelhart and

Hinton put it:

The representation of the knowledge is set up in such a way that

the knowledge necessarily influences the course of processing.

Using knowledge in processing is no longer a matter of finding the

relevant information in memory and bringing it to bear: it is part

and parcel of the processing itself.

McClelland, Rumelhart and Hinton (1986) p.32.

Thus whereas, from a classical perspective, it makes perfect sense to

clearly distinguish between innate architectural facts and innate

representational facts, it is by no means clear that the distinction can bear

much weight (pac− Narayanan’s taxonomy) in a discussion of connectionist

nativisms. All there is to manipulate are unit and weight arrangements, and

unit and weight parameters. Since these just are the system’s encoding of

knowledge, it makes little sense to treat them as ’mere architecture’. On the

other hand, since there is no separate processing device apart from these unit

and weight settings, it makes little sense to treat them as purely

representational either. Nor will an appeal to transient versus fixed

structure solve the problem.  It is true that it is common to keep an

arrangement of units, layers etc. fixed and allow only the weights to change.

But it is not necessary. Learning can and does often involve processes which

add or delete connections (see e.g. Mozer and Smolensky’s (1989) discussion of

’skeletonization’) and we know that real synaptic growth and loss is sometimes

a feature of learning in the brain.  In fact, the difficulty of drawing a firm

distinction between architecture and representation becomes quickly apparent

when we turn to real brains (see e.g. Churchland and Sejnowski’s (1992) p.177)

discussion of the difficulty of distinguishing between information and the

channel which ’carries’ the information in real brains). It is the influence

of the classical computational paradigm, with its (generally) neat divisions

between program and stored data (and between algorithmically important detail

and ’mere implementation detail’ −

 see Fodor and Pylyshyn (1988)) which leads us, mistakenly I think, to try to

conceive of knowledge representation in connectionist systems in the same way.

In reality connectionist approaches erode the structure/knowledge divide and

make it an unhelpful instrument with which to orchestrate the debates.

The best we can do, I suspect, is to treat each case individually and

ask ourselves whether this specific pre−setting of weights or pre−structuring
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of gross architecture is best thought of as building in some item of knowledge

or not. In general, the difference between hand−coding of weights and pre−

structuring of gross architecture reflects if anything a difference in the

generality of the ’innate’ knowledge. Thus provision of a tripartite modular

architecture may effectively build in some very general knowledge about the

domain e.g. that it presents a problem whose decomposition has three distinct

parts.  Whereas hand−coding of weights can build in much more specific items

of knowledge (e.g. how to compute exclusive−or).

Having now sketched the most obvious (and, as it happens, pretty much

equivalent) says in which a connectionist may go ’nativist’, the next step is

to explore in detail one specific option which (I suggest) constitutes the

most novel and interesting region of the new space.

4. Minimal Rationalism

It is the rationalist who, somewhat paradoxically, (see Fodor

(1980)p.273) posits the greatest non−rational element in human cognitive

development.  For whereas the empiricist believes that cognitive development

relies largely on intelligent procedures whose aim is to make sense of

perceptual inputs, the rationalist depicts a large chunk of cognitive

development as turning on non− rational ’brute−causal’ processes.  The

clearest case of such a process involves the triggering of a complex

behavioural repertoire by a simple stimulus e.g. the sighting of a red dot

causing feeding behaviour. The gap between the stimulus and the response is

such that no conceivable process of ratiocination could extract the plan for

the behaviour out of the stimulus alone. It is not given in the stimulus −

merely triggered by the stimulus. Contrast, for example, NETtalk’s acquisition

of knowledge about text −−> phoneme mapping (Rosenberg and Sejnowski (1987)).

This knowledge can sensibly be depicted as given in the training data ( a

corpus of correct sample text −−> phoneme mappings. Hence NETtalk falls on the

empiricist side of the divide.

The rationalist thus posits innate endowments which enable us to go way

beyond what is (in some elusive but intuitive sense) available in the data

alone. In practice, this trick is always domain−specific e.g. Chomsky’s

rationalist model of grammar acquisition, Fodor’s of concept−acquisition etc.

The reason is interesting and merits a momentary detour.

Imagine if you can a domain−general rationalism! It would have to

involve strategies which successfully go beyond the data in any domain. But

that would just be magic. For to go beyond the data means to reach conclusions

not reachable without specific pre−information. Any principles which

successfully apply to any domain must therefore be exploiting information

implicit in the data and/or relying on completely general facts about the

structure of our universe. Mechanisms exploiting these kinds of regularity

seem to me to fall clearly into the empiricist camp. So rationalism is by

definition domain−specific: it is the claim that a being is innately appraised

of specific items of information which contribute to its success in specific

domains.

Rationalist approaches have in the past been characterized not just by

domain−specificity but also by a richness of domain−specific information.  But

such richness, unlike domain−specificity, seems in no way conceptually

essential. It is perfectly possible for a being to go beyond the data, in

vital ways, courtesy of what I shall call a Minimal Rationalist innate

endowment.  It is this option which, I claim, connectionism offers us a

currently unique opportunity to explore. In its more general form, Minimal

Rationalism is characterized as follows:

Minimal Rationalism
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Instead of building in large amounts of innate knowledge and

structure, build in whatever minimal set of biases and structure will

ensure the emergence, under realistic environmental conditions, of

the basic knowledge necessary for early success and subsequent

learning.

Two comments before proceeding to examples and discussion. First, I here

use the term ’Minimal Rationalism’ for the doctrine labelled ’minimal

nativism’ in Clark (forthcoming−a). The reason is simple: minimal rationalism

better captures (for reasons just developed ) the detailed flavour of the

proposal. And it distinguishes the position form the one marked by Ramsey and

Stich’s (1991) use of ’minimal nativism’ as a label for a very different

doctrine.  Second, the kind of possibility I have in mind is already remarked

by e.g. Carey (1990) who notes that one alternative to e.g. the suggestion

that knowledge of persons is innate is to assume innate knowledge of something

more minimal which will, int he child’s real environment, rapidly lead to the

development of the target concept. Such a minimal endowment might consist in a

special interest in events which involve a contingent reaction to the child’s

own actions. Since other people are the main source of such contingent

reactions, this would in effect direct the child to attend preferentially to

interactions with persons (see Carey (1990) p.166).

Connectionism’s special contribution to understanding the space of

minimal rationalism lies in its easy ability to combine data−driven induction

and tiny domain−specific biases which help drive the inductive process in a

desired direction. A clear example of this, which also introduces the

important notion of an error surface, is the famous problem of exclusive−or

(XOR).

The exclusive−or problem is simply this: find a network which, if

trained on a database of cases in which the input−output mapping is given by

the truth table for exclusive−or, will learn to compute that function, i.e. to

output true if and only if at least and at most one of the disjuncts is true.

The famous complication here is that no simple two−layer net (comprising two

input units and one output unit corresponding to the inputs and outputs

specified by the truth table) can learn to solve this problem.  This is n

marked contrast to other functions ( like ’and’ and ’inclusive−or’) which can

be learned by simple two layer nets. The reason is simple enough. It is that

the XOR problem is in an important sense ’higher order’ − it involves an

operation performed on the output of an inclusive−or function, viz. the net

must solve for inclusive−or and then check to see if both disjuncts are true

(in which case the output must code for the false). This can be accomplished

by e.g. adding two hidden units (i.e. a two−unit layer intervening between

input and output) one of which acts as a feature detector for conjunction

(both input values coding for true) and can inhibit the output coding for true

in such cases.  All this is in no doubt boringly familiar (see P.S.Churchland

and T.Sejnowski (1992) pp.107−11 for a full discussion). But we are not home

yet.

So far, the XOR example illustrates the need for a certain

configuration of units and connections if the problem is to be soluble. But in

practice, we need a little more.  This is where the notion of an error surface

becomes important.

Recall that connectionist devices learn by adjusting the connection

weights most responsible for each incorrect output.  We picture the achieved

state of knowledge of such a system as a point in a space which has one

dimension for each connection weight.  The learning task is to move to a

location in weight space which will determine the desired input−output

mapping.  Change the position in weight space and (ceteris paribus) you change

the system’s knowledge, for better or worse. Learning thus consists in a

gradual movement within weight space with each step designed to reduce the

error signal. It is helpful to picture this process as motion relative to an

ERROR SURFACE. Thus imagine a high dimensional space in which one axis (the
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vertical, say) represents amount of error. the other axes (the horizontals,

one per connection) represent the weights.  The values of all the weights at a

given time determine a specific overall error and hence a specific point

relative to this error landscape.  When the weights change, the location of

this point changes. The goal is to move the point to a location at which the

error is as small as possible.

For some problems, such an error surface has a simple, basin−like shape

with a single minima.  In these cases an error minimization procedure, such as

that provided by back propagation, is guaranteed to find the best solution as

it will drive the point (defined by the weights) downhill, reducing error at

each step and hence bringing the net ever closer to the bottom of the basin.

Other problems, however, define rather different and more problematic

surfaces.  Thus imagine an error surface whose shape is not a concave basin

but instead is more like a mountain range with several peaks and intervening

troughs of varying depths.  The minimal possible error corresponds to the

deepest trough. But a particular set of initial weights may determine a point

in weight space which is separated from that deepest trough by one or more

intervening (less deep) troughs. To reach the target, these troughs and the

uphill slopes which follow them, need to be traversed.  But a weight change

procedure which seeks always to move ahead by reducing the error signal will

clearly not get beyond the first intervening valley.  To move on would

necessitate going uphill and hence briefly increasing the error signal. In

such cases things have to get worse before getting better.

The important fact, for our purposes, is that the error surface for the

XOR net described earlier is of the ’difficult’ stripe involving what

P.S.Churchland and T.Sejnowski aptly describe as ’ravines and assorted

potholes’ (op.cit.p.111). Suppose, then, that a great selective advantage will

accrue to any net which solves XOR: how are we to promote success? Otherwise

put, how might evolution ’fix’ things so that a network embedded in a given

organism gains the posited selective advantage?

One brutal and maximal option is to hand−code the solution. The

absolutely minimal option is to provide the necessary architecture (i.e.

include hidden units) and hope for the best (i.e. hope that the network is not

led into a local minimum). Alternatively, we might include some general

procedure to escape local minima, e.g. allowing much larger weight changes:

but such solutions impose other costs (e.g. missing the right solution by

oscillating between two points in weight space when the solution lies smack in

between).  In practice, connectionists opt neither for the absolutely minimal

(and failure−prone) option nor for the domain−general (and also failure−prone)

option. Instead, they act as Minimal Rationalists and indulge in a small

amount of weight fixing whose effect (given that problem and that error

surface) is to ensure successful learning given the training data.  As it

happens, the solution in this case is to avoid large initial weights. As long

as the initial weights are small, any random distribution of such weights

turns out to determine a position on the error surface from which a solution

is safely reachable (see P.S. Churchland and T.Sejnowski (1992) p.111). (As an

aside, it seems likely that similar effects, for other problems, could be

achieved by constraining specific weights to be positive and others to be

negative − a type of innate structuring known to be present in the brain.)

Here, then, is a maximally simple case of what I shall later call

Minimal Nativism in action: pre−set some of the initial weights so as to

determine not a solution to a specific problem but a location (on the error

surface defined by a problem/data pairing) from which a solution can be

reached, given realistic input data, by an error minimization procedure. Such

a location may be specified in detail (if we fix a specific set of weights) or

in general (if we simply fix the parameters within which ’random’ weightings

are to be assigned).

If we now pause to ask after the precise content of the innate knowledge

contained in, say, a specific assignment of weights supposed to determine a
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favourable point on an error surface we are in for a surprise. For so far as I

can see, such an assignment of weights will not in general encode any

knowledge at all at least, not of a familiar, propositionally specifiable

kind.  For we cannot specify the content of the position in weight space by

reference to a mapping which involves real or imaginary objects and relations

(such as tables, charts, unicorns, loving etc.). And this in contrast to the

many cases of trained up networks whose acquired knowledge we can at least

gesture at using familiar propositional resources (e.g. the XOR net knows

about exclusive−or, NETtalk knows something about graphemes and phonetics, the

net described in P.M.Churchland (1987)Chapter ? knows about rocks and mines

etc. etc.). Nonetheless, it is clear that the advantage which the favourable

located net enjoys is in a real sense informational. It ’knows’ things which

stop it from inducing certain conclusions (corresponding to dangerous local

minima) from the training data.  The effect is not unlike the building−in of

specific heuristics to govern induction in a domain (as in e.g. the BACON

models of scientific discovery − see Langley et al. (1987) ?). Except that

(unlike the BACON heuristics) the contents in the net case are not obviously

specifiable using the resources of English or any other natural language.

The question also arises whether a net which starts in a minimally

favourable location on the error surface (i.e. far from the solution but

without intervening local minima) should best be counted as an exemplar of

empiricist or of rationalist cognitive development. If we follow Fodor’s idea

that the better the inductive basis the less rationalist the procedure (Fodor

(1980) p.280) we must count the case in hand as perilously close to

empiricism! After all, the training provides a firm inductive basis for any

net which avoids the minima. On the other hand, the type of initial weight

manipulation needed to avoid the minima is problem specific − and problem

specific innate endowments move us into the familiar space of rationalisms.

The case described is interesting just because it so neatly straddles our

accepted categories − hence the label of ’Minimal Rationalism’.

Phylogenetic fixing of a minimally favourable location on an error

surface does not, however, exhaust the minimal rationalist arsenal.  For a

principal device has yet to be introduced.  This involves the possibility of

complex interactions between small initial biases and received environmental

inputs to yield specific cognitive competencies.  A nice example of such

potential for cooperation is given in Karmiloff−Smith (1992−a). It concerns

the well−established and presumably innate tendency of the human neonate to

attend to face−like stimuli (see Johnson and Morton (1991)). In what might

such an innate tendency consist? Are the details of the human face already

encoded in the weights of some sub−network at birth? Not necessarily. A more

minimal possibility is that what is innate is just a mechanism which detects

the presence of ’three high− contrast blobs in the position of the eyes and

the mouth’ (Karmiloff−Smith (1992− a) p. 256). The provision of such a

mechanism at a point upstream (close to the sensory inputs) on a certain

neural pathway will have dramatic effects on the development of resources

downstream (deeper in the brain) from such a ’gate’. For the provision of the

minimal gateway sets the scene for the subsequent data−driven development of a

module specialised for face recognition.  The innate tendency to selectively

filter−in ’three blob’ style stimuli will cause the cortical circuits

downstream from the gate to receive training inputs which (given the child’s

actual environment) are heavily dominated by human faces. Such circuits will

then learn to become specialised for human face recognition. Such solutions

will surely appeal to evolution, which is known to be the laziest of designers

(see e.g. Jacob (1977), Clark (1989) Ch.4). For once provided with an innate

mechanism which acts as a three−blob gateway, evolution can sit back and let

the data carry the rest of the burden.  Notice also that the provision of such

a gateway effectively reconfigures the statistical profile of the input data.

Thus suppose faces in fact comprise just 10% of a child’s visual input.

Ordinary connectionist learning could easily fail, under such conditions, to

yield sophisticated face−recognition strategies.  But now consider not the

gross inputs (to the system/child) but the effective inputs to a specific

downstream neural network.  If the net is downstream from the three−blob
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gateway, the inputs here are likely to be 99% dominated by human faces.  A

network subject to such a barrage will quickly and efficiently learn to become

a face−recognition device.

Minimal rationalism thus places much faith in the gentle manipulation

(by small initial biases) of the way incoming data is taken by an organism

(i.e. the way it is selectively filtered and sent to various locations in the

brain). The complex interaction between small innate tendencies and external

inputs thus posited is most reminiscent (as Karmiloff−Smith notes) of Piaget’s

(1955) notion of an ’epigenetic’ interaction, between training and innate

tendencies except that it allows for domain−specific innate biases of a kind

inimical to Piaget’s ideas about general purpose learning (see Karmiloff−Smith

(1992−b ch.7).

A final example should establish the full potential of the minimal

rationalist option.  It involves the combination of the ’error−surface’

manoeuvres and the idea of innately specified reconfigurations of the input

data.  The examples is drawn from a simulation due to Nolfi and Paresi (1991).

The task is to ’evolve’ an artificial organism which will be capable of

learning to find food in a simulated world. The ’organism’ (a computer

simulation) receives ’sensory’ input which specifies the location of nearby

food.  It must learn to take this information and use it to generate motion

commands which will move it to where the food is located, so it must learn a

general ’sensory−input −−−> motion towards food’ mapping.

One solution would be to use ordinary connectionist ’tabula rasa’

learning. This works here.  But a drawback of such learning is its supervised

nature: the error signal is driven by knowledge of what the right answer would

be.  This kind of supervision is often biologically unattractive.  All too

often we don’t know what the right answer would be until we’ve found it!

An alternative is to use so−called ’genetic algorithms’ techniques to

evolve a solution.  In this approach, a multitude of different networks (ones

with different, but random weights) are tried out.  The most successful are

allowed to reproduce (with minor weight variations) to form a new generation.

And this process is repeated until good eating is achieved.  Such a technique

would also succeed (see papers in Meyer and Wilson (eds) 1991). But it, too,

has a cost viz. that evolution is required to ’hard−wire’ the solution to the

problem.  If a cheaper (lazier) solution were available, there is reason, as

we remarked earlier, to suppose it would be preferred.

Nolfi and Paresi found just such a solution.  Instead of having the

evolutionary process operate directly on a set of units and weights leading to

motion commands, they allowed evolution to operate on a different set of units

and weights whose task was not to give motion commands but to train a net

which does.  The organism thus comprised two sub−nets, called the Standard

(motor control) net and the teaching net.  The teaching net and the standard

net received the same inputs (’sensory’ data). The standard net was allowed to

learn in the usual, supervised way.  But instead of depending on prior

knowledge of the right answers to generate the target output relative to which

the error signals are computed, it received target outputs from the teaching

net.  The genetic algorithms approach was then taken.  This allowed the

evolutionary process to progressively select in favour of organisms whose

internal teaching nets did the best job of generating training signals which

would lead the overall organism to ingestive success.  The process succeeded.

After about twenty generations, each comprising a hundred organisms, ingestive

success was achieved.  A reasonable fear, at this point, might be that nothing

much has been achieved by the evolutionary detour involved in the selection of

an auto−teaching capacity.  Perhaps all that has happened is that the teach

net has evolved so as to solve the ’ingestion maximization’ problem and the

standard net then copies this evolved solution. In which case there is no real

gain over the straightforward method of general evolution.

Two results, however, suggest that the actual situation is much more
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complex and interesting.  First, the final degree of success achieved by the

complex auto−teaching organisms was markedly greater than that achieved, over

the same period of evolutionary time by a control simulation in which only the

standard net is used and no individual learning occurs.  Second, it turns out

that the problem solution finally learnt by the standard net is actually

better than the one evolved in its associated teach−net! To show this, Nolfi

and Paresi allowed successful organisms to move directly in accord with the

target outputs generated by the teaching net instead of with the outputs

produced by the standard net.  They found that the eating behaviour coded for

by the teach net alone was less successful, by a fair margin (about 150 items

per lifetime) than that achieved by the standard net if it (the teach net) is

allowed to train it! The explanation of this seems to be that there is some

difference between what constitutes a good teaching input at a given moment

and what would actually constitute the best action; i.e. the best target, for

teaching purposes, is not always the best action. But we are not home yet.

Before the full picture can emerge, one more piece of the puzzle needs to be

laid out.

The piece in question concerns the role of the initial weights of the

standard network in promoting successful learning. One clear possibility was

that evolution might have selected the right weights directly in the standard

net, despite the teaching net’s presence in the set−up.  But this was easily

seen not to be the case, as the standard net (of a 200th generation organism)

frozen at birth and allowed to generate the usual lifetime of actions,

performed abysmally: it clearly did not encode any solution to the ingestion

problem at birth. It might seem, then, that the initial weights of the

standard net played no special role.  If so, then the randomization of those

weights at birth ought not to matter just so long as the resulting standard

net was then recipient to the teaching inputs of the evolved teach−net.

Probably the single most striking and (I shall argue) revealing of Nolfi and

Paresi’s findings was that this was not so.  Far, far from it.  In fact, the

randomization of the standard weights at birth completely wiped out the

ability of the complex organism to learn to approach food.  The conclusion

follows that:

the standard weights are not selected for directly incorporating

good eating behaviours ... but they are accurately selected for their

ability to let such a behaviour emerge by life learning.

Nolfi and Paresi (1991) p.10

Now things fall into place.  The initial weights of an evolved standard

net are important in two ways.  First, they matter in the way that initial

weights always matter i.e. bad random weight assignments can block successful

learning by quickly leading the net into local minima. But second, the matter

insofar as the teach−net has co−evolved, in the succession of individual

organisms, with a fixed (subject to minor mutation) initial standard et.  The

teach net will thus have learnt to give training inputs appropriate to that

initial position in weight space.  This would go some way towards explaining

the discrepancy between the success achieved by the teach nets alone and the

successes achieved by the correct pairings of teach−net and standard net.  For

some of the teach−net’s outputs may be geared not (directly) to coding the

best immediate behaviour but instead to pushing a specific standard net( i.e.

one whose initial position in weight space is ’known’ to the teacher) towards

a good solution to the problem. In this way the initial weights on the

standard net, though they encode no useful knowledge about the domain, are

still essential to the overall system’s ability to learn about that specific

domain.  The two sub−nets will have co− evolved so as to encode between them a

solution to the problem of how to learn about a given domain given the usual

types of input and given an initial location in weight space.

A final twist to Nolfi and Paresi’s investigations concerned the

introduction of individual learning for the teaching network as well. Thus

recall that in the simulation just described the teach net was amended only by

genetic evolution.  As a result, its behaviour was static within each
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individual lifetime. in the sense that if sensory input PQ caused it to issue

a teaching signal RT at time T, then the same input would have the same effect

at all other times were it to be received again. But as we saw earlier it is

often beneficial for networks to receive different kinds of training at

different temporal stages of learning. In an attempt to begin to model such

further complexities, Nolfi and Paresi studied a population of organisms

(teach net/standard net pairings) in which each sub−net passed target outputs

to the other, and the back propagation algorithm was this time allowed to work

on each. A channel was thus opened up between the standard net and its

’teacher’ such that the teacher could change its output (for a given input) as

a result of weight changes determined by the output of the standard net.  The

output of each sub−net contributes to changes in the weights within the other

during the lifetime of the organism.  There is thus space for the teaching

outputs of the teach net to alter during the organism’s lifetime.

The performance of the ’reciprocal teaching’ net was perhaps

disappointing. It did not exceed (did not even quite match) that of its

predecessor. What is of interest, however, is the fact that in this case

neither sub−net, when tested at birth, encoded anything like an acceptable

solution to the problem (unlike the previous case in which the evolved teach

net constituted a good solution, though not as good a solution as the one its

attendant standard net would come to learn). Yet working together, they

achieved a good degree of success. Here, then, we find an even more subtle

kind of innate knowledge, in which what has evolved in the two sub−nets is the

capacity to co−operate so as to learn (and to learn to teach) useful food

approaching strategies. But neither net is now clearly marked as the student

or the teacher in this endeavour. Instead, the two nets, in the context of the

training environment, present a delicately harmonised overall system selected

to facilitate just the kind and sequence of learning necessary to meet the

specified evolutionary pressures.

The crucial moral of the above discussion is that the space of possible

ways in which knowledge might be innate in a system is very large and includes

some very subtle cases. The key to these cases is the simple idea that the

training data seen by various subnetworks engaged informs of associative

learning need not correspond to the gross environmental inputs to the system.

There is plenty of room for a transformation factor of some kind (or kinds) to

intervene.  Once we see that the way such a transformation factor (the teach

net in Nolfi and Paresi’s simulations) works can itself be the product of

evolutionary pressure, we begin to see how nature might contrive to insulate

its connectionist engines from some of the vagaries of the environment. In so

doing, we need not (and typically will not) return to a position in which the

actual environmental inputs are barely relevant (as in a triggering scenario).

Instead we face a rich continuum of possible degrees of innate specification

corresponding to the extend to which a transformation factor moulds the actual

inputs in a certain direction. In addition to this, it is clearly possible

that the initial weights in the learning network (the standard net, in Nolfi

and Paresi) may themselves have been selected so as to facilitate the

acquisition of knowledge in a given domain. And more subtly still, they may

have been selected so as to facilitate the acquisition of that knowledge given

a co−evolving transformation function (such as the teach net) and vice versa

(i.e. the transformation function may be geared to the specific position on an

error surface occupied by the standard net to which it is attached). The

overall picture of ways in which various tendencies to acquire knowledge may

be innately specified is thus already enormously complex. It gets more complex

still once we notice that evolution could select a transformation function

which itself changes over time.  And more complex again if that ’temporally

loaded’ transformation function is evolved to respond to feedback from the net

it is serving. And the space of possible kinds of transformation function is

itself large. Nolfi and Paresi investigate one kind in the auto−teaching

paradigm.  But it includes any case where the training input to one net is the

output of another rather than direct environmental simulation, i.e. it applies

to all cases in which we confront a cascade of networks passing signals to

each other.  In all such cases, we are still depicting the mind (pac− Fodor)
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as fundamentally a connectionist engine, and we may stop far short of

providing it with any set of innate representational atoms.  Nonetheless, we

depict it as a highly structured system, bearing significant innate biases,

and delicately coupled to the environment in which learning will take place.

5. Conclusions. The Opacity of Innate Content.

Minimal rationalism presents a peculiarly opaque kind of nativist

picture. It is a picture in which evolution manipulates the internal resources

(weights) used to encode knowledge.  Yet the content of such native endowments

is often not easily specifiable.  What does a minimally favourable on an error

surface represent? what is represented in the initial weights of an evolved

teaching network − la Nolfi and Paresi? the only case where we seem to have

gotten a grip on the actual contents involved is in the case of the 3−blob

detector. And this is, I think, revealing.

The reason we are able to subsume the 3−blob case under a reasonably

familiar kind of content−specification is that it involves an externally

specifiable content.  In this case (but not the others) we can specify the

content by reference to what, in the external world, it is about. What the

other minimal rationalist options show us, however, is that very often the

informational benefits of an innate endowment may be much more inward looking.

 They have to do with what some parts of the brain communicate to other parts

of the brain (as in the auto−teaching case) or with the representational

significance of the internal dynamics associated with a particular type of

learning algorithm (as in the ’location−on−an error surface’). In these cases,

our usual mode of content− ascription seems bound to break down.  There is

nothing remotely familiar for these states to be about.

One option, of course, is to conclude that they are not

representational. but this is perverse.  The evolutionary benefits of the

innate endowments in question are clearly informational, and the resources

manipulated (weights) fall clearly on the knowledge side of any intuitive

knowledge/structure divide defined for connectionist systems.

A better option, I think, is to allow that such endowments may be

genuinely representational but to not that their contents need not be

expressible using the familiar resources of our public language.  Such

endowments do embody a kind of wisdom or knowledge.  But not the kind which

yields to the expressive resources of daily language.

The first moral, then, is that the investigation of the nature of innate

knowledge should not be tied to any folk−vocabulary oriented conception of

what such knowledge might concern.  Instead, it may concern facts whose best

expression is geometrical (as in the weight space examples) or in some other

way alien. The contents of such endowments are not always to be given by

familiar world−referring propositional constructions.

The second moral, already touched on earlier, is that even the intuitive

division between innate representational endowments and innate structural

facts is likely to be unproductive here.  As we saw, the manipulation of

intuitively structural elements is often equivalent to the manipulation of

intuitively representational ones. Nor is evolution likely to much care (if

you will allow the anthropomorphism) which route it uses. Moreover, the fact

that certain structural pre−settings (e.g. providing 4 layers of units in a

given sub−net) do not yield benefits immediately describable in familiar

representational terms cannot now be relied on to distinguish the two cases.

In these circumstances, it seems best to allow that the understanding of

structure, representation and learning go hand in hand. Any attempted divorce

between representational and structural issues will only obscure the delicate

interplay between architecture and weights upon which much successful learning

depends.  In addition, we cannot afford (unlike ’maximal’ rationalists such as
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Fodor) to in any way marginalize the role of the environment in presenting a

rich inductive basis to the evolved organism.  A ’lazy’ evolution will have

fixed on minimal innate endowments which make the most of whatever information

is out there for the taking.

A final disclaimer. In arguing for a partially non−propositional

(geometric, mathematical) specification of some of our innate representational

repertoire I do not mean to endorse any form of eliminativism with respect to

propositional content−specification schemes.  Unlike e.g. P.M.Churchland

(1989), I believe that a great deal of our knowledge (and the knowledge of

artificial neural nets) can be usefully specified propositionally. It is not

false to say that NETtalk knows something about phonemes, or that a

face−recognition net knows that such and such a face is associated with a

particular name. (or at least, it is not false because of the non−classical

mode of internal representation!) The fact that a particular form of internal

representation is itself non−propositional (or non− sentential) does not show

(see Clark (forthcoming −b)) that it does not encode contents apt for report

using propositional resources (public language). In some cases , however, the

representational state of a non−sentential encoding device may indeed resist

even propositional specification.  On a minimal rationalist model, much of

what we innately know will be like this: it will be knowledge about the shape

of error surfaces, or knowledge about how best to filter input signals

downstream, or about how to actively transform environmental inputs into

useful teaching signals. In all these cases, the knowledge concerned will

resist informative specification in familiar terms. But this need not surprise

us. What evolution ’told’ the brain to encode as an aid to learning need have

little in common with the eventual product of that learning: knowledge of

others, of ourselves and of the external world.

To end on a traditional note, it may be worth reflecting that the story

I have told amounts to this: that the brain’s innate endowment may be best

conceived as involving, at times, a kind of ’knowing that’ (see Ryle (1949)).

But even this ’knowing how’ is elusive, for we cannot specify what it concerns

by reference to some external event (compare knowing how to juggle). Instead

it is a know−how operation of a certain class of (gradient descent) learning

algorithms? If such know−how looks alien to us, it is because we merely reap

the rewards of our brain’s success.

Andy Clark, 1993.

Note. Part of the discussion of the Nolfi and Paresi network in section 4 above

is taken from Clark, A. (forthcoming)  ASSOCIATIVE ENGINES:

CONNECTIONISM, CONCEPTS AND REPRESENTATIONAL CHANGE.

(MIT/Bradford Books) Thanks to the Press for permission to use that

material here.



May 6 12:20 csrp270 17

B I B L I O G R A P H Y

Bechtel, W. and Abrahamsen, A. (1991)  Connectionism and the Mind, Oxford: Basil

Blackwell.

Carey, S. (1990) "Cognitive Development" in D.Osherson and E.Smith eds.

Thinking: an invitation to cognitive science, vol.3, pp.147−172. Cambridge,

MA: MIT Press.

Chomsky, Noam (1986)  Knowledge of Language: Its Nature Origin and Use,

Connecticut: Praeger Publishers.

Christiansen, M. and Chater, N. forthcoming) "Connectionism, Learning and

Meaning,"Connection Science, special issue on Philosophical Issues in

Connectionist Science.

Churchland, P.M. (1989) The Neurocomputational Perspective, Cambridge, MA:

MIT/Bradford Books.

Churchland, P.S. and Sejnowski, T. (1992). The Computational Brain. Cambridge

Ma: MIT/Bradford Books)

Clark, A.(1989−a)  Microcognition: Philosophy, Cognitive Science and Parallel

Distributed Processing, Cambridge, MA: M.I.T Press/ Bradford Books.

Clark, A. (forthcoming−a) Associative Engines: Connectionism, Concepts and

Representational Change. Cambridge, MA: MIT/Bradford Books.

Clark, A. (forthcoming−b) The varieties of eliminativism: sentential, intentional

and catastrophic. Mind and Language.

Elman, J.(1991) "Incremental learning or the importance of starting  small,"

Technical   Report 9101, Center for Research in Language, University of

California, San Diego.

Fodor, J.(1975)  The Language of Thought, New York: Crowell.

Fodor, J.(1981) "The present status of the Innateness Controversy," in  Representations:philosophical essays on the foundations of cognitive science, ed. J. Fodor, pp.

257−316, Brighton, Sussex: Harvester Press.

Fodor, J.(1983)  The Modularity of Mind: an Essay on Faculty Psychology,

Cambridge   MA: MIT/Bradford Books.

Fodor, J. (1987)  Psychosemantics: The Problem of Meaning in the Philosophy of

Mind, Cambridge MA: M.I.T.Press.

Fodor, J. and Pylyshyn, Z. (1988)" Connectionism and cognitive architecture. A

critical    analysis.,"  Cognition, no. 28, pp. 3−71.

Fodor, J. and McLaughlin, B. (1991) "What is wrong with tensor product

connectionism," in  Connectionism and the Philosophy of Mind, ed.

T.Horgan and J.Tienson, Cambridge MA: MIT Press.

Jacob, F. (1977) "Evolution and tinkering, " in Science 196 no.4295, pp.1161−

1166.

Johnson, M. and Morton , J. (1991) Biology and cognitive development: the case

of face recognition. Oxford: Blackwell.

Karmiloff−Smith, A. (1992) Beyond modularity: a developmental perspective on

cognitive science. Cambridge, MA: MIT Press/Bradford Books.

Karmiloff−Smith, A. (forthcoming) "Nature, nurture and PDP: Preposterous

Development Postulates?," in  Guest editor: A.Clark,  Connection Science,



May 6 12:20 csrp270 18

special issue on Philosophical Issues in Connectionist Modelling.

Langley, P., Simon, H., Bradshaw, G. and Zytkow, J. (1987) Scientific Discovery:

Computational Explorations of the creative Process. Cambridge, MA: MIT

Press.

Le Cun, Y., Boser, B., Denker, J. Henderson, D. Howard, R., Hubbard, W. Jacket,

L. (1989) Back propagation applied to handwritten ZIP code recognition.

Neural Computation  1, no.4, pp.541−551.

McClelland, J., D. Rumelhart, and G. Hinton (1986) "The appeal of Parallel

Distributed Processing," in McClelland, Rumelhart and PDP Research

Group, eds. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition,  , vol. II, pp.3−44, Cambridge MA:

MIT/Bradford Press.

McClelland, J., D. Rumelhart, and PDP Research Group, eds. (1986) Parallel

Distributed Processing: Explorations in the Microstructure of Cognition,

vols I & II, Cambridge MA: MIT/Bradford Press.

McClelland, J.L. (1989) "Parallel Distributed Processing − Implications for

Cognition and Development" in R.Morris ed., Parallel Distributed

Processing − Implications for Psychology and Neurobiology, Oxford:

Clarendon Press.

Meyer, J. and Wilson, S. (1991)  From animals to animats, Cambridge MA: MIT

Press/Bradford Books.

Mozer, M. and Smolensky, P. (1989) "Using relevance to reduce network size

automatically,"  Connection science, vol. 1, no. 1 , pp.3−17.

Narayanan, A. (1992). "Is connectionism compatible with rationalism?" in

Connection Science Vol.4, n;os. 3 and 4 pp.271−292.

Nolfi, S. and Paresi, D.(1991) "Auto−teaching: networks that develop their own

teaching    input". Institute of Psychology, C.N.R. Rome, Technical Report

PCIA91−03.

Norris, D. (1990) "How to build a connectionist idiot (savant)", Cognition, 35,

pp.277−     291.

Paitelli−Palmerini, M.(ed) (1980) Language and Learning: The Debate between

Jean Piaget and Noam Chomsky. London: Routledge and Kegan Paul.

Piaget, J. (1955)  The Child’s Construction of Reality, Routledge and

Kegan Paul, London.

Plunkett, K. and C. Sinha (1992) "Connectionism and developmental theory,"

British Journal of Developmental Psychology, 10, pp.209−254.

Putnam, H. (1981) "What is innate and why". in N.Block (ed),Readings in

Philosophy of Psychology, Vol.2. London: Methuen. pp. 339−348.

Quine, W.V. (1969) "Linguistics and philosophy", in S. Hoor (ed) Language and

Philosophy, New York.

Ramsey, W. and Stich S., (1991) "Connectionism and three levels of nativism" in

W.Ramsey, S.Stich and D.Rumelhart eds. Philosophy and Connectionist

Theory, pp.287−310, Hillsdale, NJ: Erlbaum.

Ryle, G. (1949) The concept of Mind, London: Hutchinson.

Samet, J. (1986) "Troubles with Fodor’s nativism". Midwest Studies in

Philosophy, vol.X pp.575−594.



May 6 12:20 csrp270 19

Sejnowski, T. and  Rosenberg, C. (1986) "NETtalk: a parallel network that learns

to read aloud," Johns Hopkins University Technical Report JHU/EEC−86/01.

Sejnowski, T. and  Rosenberg, C. (1987−a), "Parallel networks that learn to

pronounce   English text,"  Complex Systems, no. 1, pp. 145−168.

Smolensky, P. (1988) "On the proper treatment of connectionism," in Behavioral

and Brain Sciences, vol.II.

Touretsky, D. and Hinton, G. (1985) "Symbols among the neurons: details of a

connectionist inference architecture", Proceedings of 9th IJCAI, Los

Angeles, CA. pp.236−243.

Touretsky, D. (1989) "BoltzCONS: Dynamic symbol structures in a connectionist

network", Carnegie Mellon Computer Science Research Paper CMU−CS−

89−182.

van Gelder, T. (1990) "Compositionality: a Connectionist Variation on a Classical

Theme,"  Cognitive Science, no. 14, pp.355−384.


