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Abstract

We analyse how the project of evolving `neural' network controllers for autonomous

visually guided robots is signi�cantly di�erent from the usual function optimisation

problems standard genetic algorithms are asked to tackle. The need to have open-

ended increase in complexity of the controllers, to allow for an inde�nite number of

new tasks to be incrementally added to the robot's capabilities in the long term, means

that genotypes of arbitrary length need to be allowed.

This results in populations being genetically converged as new tasks are added,

and needs a change to usual genetic algorithm practices. Results of successful runs are

shown, and the population is analysed in terms of genetic convergence and movement

in time across sequence space.

1 Introduction

In the context of our ongoing project to evolve `neural' networks which act as controllers for

visually guided autonomous robots, some basic questions as to the nature of evolution have

to be faced. Can such a project be treated as a function optimisation problem, for which

standard genetic algorithms (GAs) have been designed? If, as will be argued below, there is

a signi�cant di�erence between evolution and optimisation, then what changes in GAs are

needed to deal with this?

In answering these questions, particular attention will be paid in this paper to issues of

genetic convergence, which in standard GAs is usually taken to signal the end of the road.

Brief details of the networks which act as controllers, and of the robots themselves which

are required to perform simple navigational tasks using vision and touch-sensors, will be

given here; for fuller information see the papers cited below. A particular run which results

in successful behaviour will be analysed in terms of the movement of the population across

sequence space.
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2 Evolution versus Optimisation

Genetic Algorithms have been focused in such a concentrated fashion on function optimisa-

tion problems that, for instance, when De Jong presented a paper [4] bringing to peoples'

attention the fact that Holland's motivation for his initial GA work was the design and

implementation of robust adaptive systems, a much broader context, this was greeted with

some surprise and scepticism by the audience. De Jong stressed that it was a fallacy to

equate GAs with function optimisation.

The generic GA was not designed to solve any particular problem, but was rather a high

level simulation of a biological adaptive system, Darwinian evolution. One (of many) ways

to think of evolution is as a strategy for exploration and traversal of complex, time-varying,

�tness landscapes. In natural evolution, making the rather large assumption that `�tness' can

be unproblematically de�ned, there remains the question of what are to be the `horizontal'

dimensions of such a landscape. They may be phenotypic characteristics, or genotypic ones;

whichever they are, they can only be treated as well-speci�ed and meaningful dimensions

in the short term, for just so long as changes in the population treated as moving across

this landscape are not too radical. There is no sensible single �tness landscape which can

simultaneously cater for apes, jelly�sh, bacteria and self-reproducing RNA molecules at the

very origin of life, although individual landscapes may be usefully posited for each one of

these.

Function optimisation can, of course, use �tness-landscape language. But the landscape

is always fully speci�ed by the speci�c function being optimised, and the problem is usually to

�nd the global optimum, or some near-optima, of the whole landscape. In contrast, a �tness

landscape in evolution can only be speci�ed with reference to some current population, and

their genetic or phenotypic characteristics, and such a population will inevitably be already

situated in some con�ned region of this landscape. Hence, in so far as any question is being

asked in evolution, it is not `what is best?', but rather `where shall we go to from here?'.

In the context of robotics, it has been suggested [10] that the design by hand of the

control systems for autonomous robots is reaching the limits of feasibility; and that the only

hope of future progress is through some evolutionary process. Although current practice in

GAs is an obvious starting place for establishing some such evolutionary process, it is indeed

evolution and not optimisation that is required. It is proposed that a (or several) `species'

of robots | or robot control architectures | should be evolved in an incremental fashion.

As each new task is added to the speci�cation, the starting place should be the current

converged population, rather than a fresh initial random spread.

3 SAGA principles

Initial tasks for an autonomous robot, whose architecture is genetically determined, may

be rigorously speci�ed; but it is not possible to specify in advance what future tasks may

be inde�nitely added. Since there must be some at least loose correlation between the

complexity of such an architecture, and the length of a genotype which determines it, then

an evolutionary algorithm must be able to deal with genotypes of arbitrary lengths. This

lead to the development of SAGA (Species Adaptation Genetic Algorithms) principles in [8],
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Hamming distance d

Figure 1: Mutation allows a population

to explore along ridges towards potentially

higher hills in the �tness landscape. This

picture is potentially misleading in high-

dimensional landscapes : : :

A

B

Figure 2: : : : as there is not just a sin-

gle shortest distance between two points

Hamming distance d apart in binary geno-

type sequence space, there are d! shortest

routes, and far more than this that are

nearly as short.

brie
y introduced and summarised below.

The immediate questions which raise themselves are:

� How, if at all, can Holland's Schema Theorem be accommodated?

� How should genetic operators which allow change in genotype length be handled?

� And how should recombination be done between genotypes of di�erent lengths?

If a coding from genotype to phenotype is chosen which allows inde�nite increase in the

length of the former, associated with inde�nite increase in complexity of the latter, then

the notions of schemata needed for Holland's Schema Theorem do not work. Since the class

of all genotypes with speci�ed �xed values for particular alleles is now in�nite in size |

whereas normally with �xed-length genotypes it is of large but �nite size | the concept of

an average �tness for the members of this class becomes highly questionable. The following

route to partially reconciling the Schema Theorem with arbitrary-length genotypes is rather

devious, and starts with a detour.

As discussed more fully in [8], for all practical purposes evolution requires the �tness

landscape to be `not too rugged'; for an explanation of the ultimately dead-end nature of

adaptation on fully rugged landscapes see [12]. For a landscape to be fairly smooth, this

implies that points close together in `horizontal' distance should in general be reasonably

correlated in `vertical' distance, i.e. �tness. If the `horizontal' dimensions refer to genotype

space, then immediate neighbours are those that can be reached in a single genetic operation

such as mutation of a single bit. If one also includes as neighbours those that can be reached

by application of a genetic operator that changes genotype length, then one will need to

restrict those changes to ones that do not (very often) change �tness by an arbitrarily large

amount; the landscape should not contain too many `precipices'. As explained at the end

of the next section, this virtually eliminates the chance of being trapped on some local

optimum. If one can characterise the �tness of the whole as composed of the sum of �tness

contributions determined by separate parts of the genotype (`genes', if you like), with a

reasonable degree of epistatic interaction between these parts, this smoothness requirement

translates into one that the genotype length should not change by an enormous amount in
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any one genetic operation. That is, any change of length should only be slight, the �rst

SAGA principle

1

.

Of course small changes in the short term can build up to arbitrarily large changes in the

arbitrarily long term. But if in the long term the maximum genotype length of a population

increases, say from g to G, then all the members of the later population will be descended

from some of the earlier population, despite the g-dimensional earlier `search-space' being

minute in comparison to the later G-dimensional one. It follows that all, bar perhaps the

very original, populations over evolutionary time-scales must be genetically converged. Not

only must any changes in length be gradual, but all the lengths within a population will be

very similar, and will be genetically converged at corresponding loci | a species.

This has consequences for allowable genetic operators for recombination, primarily that

such an operator must produce o�spring with genotypes of similar (not necessarily identical)

lengths to their parents; and homologous segments must be swapped [7].

Returning from this detour to see how the Schema Theorem is rescued, it turns out that

in these particular circumstances of only gradual change, small �nite bounds can in practice

be put on genotype lengths in the short term, and hence the class of all members of any

given schema is now �nite in size.

4 Convergence and Mutation

The most visible di�erence between genotypes under evolution, and those in a standard GA

for function optimisation, is that at all times (bar perhaps the very start) the population is

virtually genetically converged. In a standard GA this is usually considered the end of the

story. The received folklore is that recombination is the driving force for genetic search, and

mutation is only a background operator. To quote from [13]:

\Clearly the O(n

3

) estimate [for implicit parallelism] is based on a diverse popu-

lation, where many schemata are represented. However, as exponential allocation

of observed-best schemata accrues, one can expect that the number of building

blocks processed will decrease. This is an inevitable consequence of convergence

in the [vanilla-
avour] GA outlined above. After convergence, the GA popula-

tion will be composed primarily of copies of one individual. The only diversity

maintained in the population after convergence is a result of mutation. Note that

mutation is a completely random operator that is unguided by the algorithm's

observations of �tness values over time."

Now whereas it is undisputed that mutation within an individual is completely random,

it does not follow that random mutation on the individuals within a converged population

under selection results in random undirected movements of the population across the �tness

landscape. Treating the converged population as being currently centred around some local

hilltop, then mutations can be thought of as explorations away from the peak; with long

genotypes the chance of a back-mutation is insigni�cant. But successive rounds of the

1

How big a change in length can be while remaining `slight' depends on how rugged the �tness landscape

is; it must be related to the correlation length of the space [11].
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Chromosome for complete ‘neural network’ or ‘nervous system’

Input nodes (fixed no.) Internal nodes (indefinite no.) Output nodes (fixed no.)

Chromosome section for single node

Y

Node marker Node specification Link specifications

X, Y or Z Fixed no. of chars for

node threshold, etc.

Indefinite no. of links

specified.

Section for single link

A V 7

A,B,C or D

Link addressing fwds or 
bkwds, relative address

or absolute address.

N or V

Normal link

or Veto link

0 - 7

Size of jump of link to a connected node,

2 bits. 1 bit 3 bits
addressing specified by the ABC or D.

the direction of jump and form of

X X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z Z Z

S T B N 0 A V 5 ...   ...   ...   ... D N 3A V 7

...    ...   ...

Figure 3: The genetic encoding scheme

mutation-selection cycle do not explore further away in an undirected fashion, but rather

seek out any ridges of relatively high �tness in the landscape that may lead to even higher

peaks (Fig. 1). To quote from a similar context in [5]:

\In conventional natural selection theory, advantageous mutations drove the evo-

lutionary process. The neutral theory introduced selectively neutral mutants, in

addition to the advantageous ones, which contribute to evolution through ran-

dom drift. The concept of quasi-species shows that much weight is attributed to

those slightly deleterious mutants that are situated along high ridges in the value

landscape. They guide populations toward the peaks of high selective values."

The �tness landscape metaphor is potentially misleading, in that high-dimensional spaces

have properties very di�erent from our intuitions about 2-D or 3-D spaces. Whereas in a

normal 3-D landscape there can at best be a single ridge between two hills taking the direct

shortest route, this is no longer the case in sequence space, which can be thought of as having

n dimensions where n is the genotype length. As indicated in Figure 2, between two points

Hamming distance d apart in binary genotype sequence space, there are d! shortest paths,

and far more slightly longer ones. This is why, in any high-dimensional landscape that is

smooth enough for there to be some correlation in height or �tness between neighbouring

points, any local optimum (other than the global one) is almost inevitably connected by

short paths, without any intermediate points of much lower �tness, to other better regions

| hyper-spatial bypasses.

In the n-dimensional sequence space, de�ned by binary genotypes of length n where

Hamming-neighbours are connected, suppose that through mutation points up to Hamming-

distance d from the current position can be sampled. There areM(d; n) =

P

d

i=1

n!=i!(n� i)!

of these. For the current position to be e�ectively a local optimum from which escape is

impossible, all of these points must be less �t. But with increase in n, increase in M(d; n)

is roughly O(n

d

); the higher the dimension, the more hyper-spatial bypasses there are.
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Figure 4: Typical path of a successfully

evolved robot, which heads fairly directly

for the centre of the room and circles

there, using input from 2 photoreceptors.

The direction the robot is facing is indi-

cated by arrows for each time step, largely

superimposed.
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Excitatory Connection
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Sensor/Actuator Connection

Figure 5: The network diagram for the

robot that produces the behaviour shown in

the previous �gure.

5 Evolving Robots

Our aim is to evolve the control systems for autonomous mobile robots, initially in simulation

but soon to be transferred to physical robots nearing completion. The robot, on which the

simulation is based, is circular, with two independent drive wheels and a trailing rear castor.

It has front and back bumpers, and four whiskers each at 45

o

to the midline of the robot. In

the experiments considered here, it has also two photoreceptors, symmetrically placed each

side of the direction the robot faces, with the angle of acceptance of each photoreceptor,

and the angle of eccentricity away from the forward direction, genetically determined by a

`vision chromosome'. The control system is a recurrent dynamical neural network, genetically

speci�ed by the main `chromosome'. Eight of the nodes in the network are designated as

inputs, activated by the 8 sensors | bumbers, whiskers, photoreceptors. Four are designated

as outputs, controlling the left and right motors, which each can go full-speed or half-speed,

forwards or backwards, or stop. The genotype can also specify an arbitrary number of

internal, or `hidden' nodes in the network.

For reasons given in [6] we advocate continuous real-valued networks with unrestricted

connectivity and time delays between units (i.e., nothing like back-propagation!). To date,

all weights in the networks have been �xed, at a value of 1. The nodes themselves act as

noisy linear threshold devices. Two types of links between nodes are allowed: normal and

veto. The latter is an in�nitely inhibitory connection subject to its own threshold; if this is

exceeded, then all the normal output of the vetoed node is turned o�.

The genetic encoding used is illustrated in Figure 3. The genotype is interpreted as a
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sequential description of the properties of each node, �rst input nodes, then an arbitrary

number of internal nodes, and then outputs; each preceded by a marker. For each node, an

initial part speci�es properties such as threshold values; then a variable number of groups

each describe individual links from that node. Each group speci�es whether it is a normal

or veto link, and then the address of its target node is speci�ed in either an absolute fashion

(by distance from the �rst or last in genotype order) or in a relative fashion (by distance

along the genotype from the current node). Although the genotype is in e�ect a direct

description of the network, the phenotype which is evaluated is the behaviour of the robot in

which the network is instantiated, and there is no direct relationship between the genotype

and the behaviour. At some time in the future, we propose to change to a di�erent form of

encoding on the genotype, such that it constrains a developmental process which results in a

network; in this way it is hoped that open-ended evolution, instead of being con�ned to just

a lengthening list of units, will be able to build for itself a higher-level, perhaps hierarchical,

system, reusing parts of the genotype many times just as a program calls procedures many

times. For details of the genetic coding for vision, and of how the input visual signals are

calculated in simulation by ray-tracing, see [2].

The task set in these trials is navigating within a simple closed cylindrical room, with

black walls, and white 
oor and ceiling. Apart from the bumpers and whiskers on collision

with the walls, the only inputs available to the robot for navigation are the two visual

inputs, varying according to position and orientation w.r.t. the wall. On each trial the robot

is started at a random orientation, and randomly placed near to the wall. The evaluation

function is the sum over the limited time of the trial of a gaussian function G based on the

distance d from the centre of the room at each time-step:

G = exp(�d

2

=c)

where the constant c ensures that G is near-zero towards the walls. Implicitly this sets the

goal of heading for the centre of the room as quickly as possible and then staying there. As

well as noise in the internal nodes of the network, noise is included in the simulation of the

physics of the world, including any collisions with the walls.

To induce robustness in the presence of noise | which it is hoped will be carried over into

the real physical implementations, absorbing discrepancies between simulation and reality

| each control network was evaluated over a number of trials, and the worst score achieved

was used as the �nal score. Typically behaviour interpretable as `sensible' appeared in less

than 100 generations, using a population of size 60; a high-scoring trajectory is shown in

Fig. 4, and the network that produced this behaviour in Fig. 5. For further analysis of such

networks, and how they produce the behaviour, see [3]. The present paper concentrates on

the issues of genetic convergence.

The evolutionary principles on which these experiments are based allow for incremental

adding of tasks, requiring additional new behaviours or changes in old ones. The present

analysis, however, is restricted to just a �rst task.
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Genetic Convergence
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Convergence

Generation
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Figure 6: Genetic convergence against

generations, calculated as the percent-

age agreement between pairs of genotypes

taken from the population. For details see

text.

Scores of best in generation

Lowest score

Average score

Scores x 10-3

Generation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

0.00 20.00 40.00 60.00 80.00

Figure 7: The scores of the best member

of each generation. Shown are the average

score that the best member achieved over

8 (noisy) trials; and the lowest score of its

8 trials | it is this �gure that is used as

the evaluation.

6 Genetic Analysis

A particular run of some 77 generations with a population of 60 is analysed here. The starting

population was randomly initialised, and only the single task was used for evaluation; so there

has not yet been any attempt to increase the complexity of the task over time. Selection

was rank-based, with a quadratic used to convert ranking into expected contribution to

the next generation. The �rst i members of a population size n have between them a

quota proportional to

p

i. When n = 60, this means that the the �rst 16 all have above

average quotas, and the very �rst contributes an expected

p

60 ' 7:75 to the pool for the

next generation. This is, compared to standard GAs, abnormally high selection which the

rank-based method maintains inde�nitely. The mutation rate was set at an expected 0.9

bits 
ipped per genotype. There was 100% recombination, with the single crossover point

arranged so that, despite the possible variations in lengths between recombining genotypes,

there was minimal change in length in the o�spring.

Measuring genetic convergence in a population with varying lengths is non-trivial, even

though the lengths in general remain nearly equal. A number (here 8) of pairs of genotypes

were selected at random, and for each pair the longest common subsequence (LCSS) was

calculated [9]. Convergence for this pair was taken to be the length of the LCSS divided

by the average length of the pair; population convergence was taken to be the average

convergence of those pairs sampled.

The population converged to around 95% after only some 20 generations (Fig. 6), driven

by the strong selection, even though absolute scores were low. The sharp rise in �tness

around 30 generations, followed by a prolonged gradual improvement, occurred after this
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Figure 8: All 60 genotypes in the 76th generation are listed according to their di�erences from

the consensus sequence. Those 224 loci on the genotype with 100% agreement are ignored,

the others displayed as `-' where they agree with the consensus, `*' where they di�er. They

are ordered in terms of Hamming distance from the consensus, distances shown on left.

degree of convergence had already been reached (Fig. 7). The evaluation based on the worst

of a number of noisy trials can be seen to be tracking the average scores closely, indicating

the robustness of the networks. Other studies have shown that when the noise is increased

to levels higher than those used during evolution, degradation in performance is `graceful'

[1].

The run was stopped arbitrarily after 77 generations. At this stage, all the genotypes

were the same length except for one minimally shorter and one minimally longer. These two

were `edited' to conform in length, and the whole population converted into binary format,

which was then 330 bits long. In 224 of these places there was 100% convergence. These

identical values were discounted, the consensus sequence calculated (a sequence with the

most popular value for each position), and the population of genotypes displayed in terms of

their di�erence from the consensus sequence (Fig. 8). In this �gure they are listed in order

of Hamming distance from the consensus sequence, these distances ranging from 0 to 19. In

fact the consensus sequence itself was present in this particular population, though in the

general case this need not be so. The �rst 21 so listed are at a maximumHamming distance

of 2 from the consensus, indicating a tight cluster.

Some correlation is distinguishable by eye amongst those further from the consensus.

A principal components analysis (PCA), of the �rst and second components, is shown in

Fig. 9, con�rming the presence of a strong correlation. The central cluster is shown in more

detail in Fig. 10, and includes those nearest the consensus. The PCA is here used as a

convenient tool to give a 2-dimensional snapshot of what here is a 106-dimensional space.

For the �rst component, a vector is chosen though the consensus sequence in the direction

such as to maximise the variation in the projections of all the points onto this vector; the
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Figure 9: A principal components analy-

sis of all 60 members of the population in

the 76th generation. The numbering here

is in order of distance from the consensus

sequence, itself numbered 0, hidden in the

cluster at the origin, (0,0).
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Figure 14: The same top scorers are
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The �gure shows what could, if the �tnesses were relatively high, be considered as a `ridge'

to the north-north-east of the centre of this graph.

By numbering the individuals within the population according to their ranking, it can

be seen that the current winner is in fact within this `ridge', and hence will be contributing

to a larger cluster around there when it is preferentially copied in large numbers in the next

generation.

Looking at the history from once the population had converged up until the 76th gener-

ation, the Hamming distances of the best in every 5th generation, from 36 to 76, from the

consensus sequence of this last generation, is shown in Fig. 14. Again, a PCA of these best-

of-generations, Fig. 13, shows a continuous trajectory. By looking at the distances moved

by the best-of-generation every 5 generations (Fig. 14), and comparing with distances to the

consensus of the last generation, it can be seen that relatively large distances can be tra-

versed across the sequence space, despite the high degree of convergence. It should be borne

in mind that at this stage, with genotypes of around 330 bits, no two points in the sequence

space are further apart than 330. Thus it can be seen that the early genetic convergence is

no barrier to movement across sequence space, and possible continued improvement.

7 Conclusions

A distinction has been drawn between evolution, which does not have its ultimate goals

fully speci�ed from the start, and function optimisation which necessarily does. For the very

practical job of producing controllers for autonomous robots, it is the former that we must

use. The SAGA principles presented cover some of the necessary changes in standard GA
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practice.

Firstly, although genotypes need to be of arbitrary length, any changes in length which the

genetic operators allow should be restricted to very gradual ones. Secondly, the population

should be expected to be genetically converged, both in genotype lengths and in the alleles

at each locus. Thirdly, in view of this convergence, mutation is promoted from its normal

background role to one of greater importance in allowing continued improvement.

Examples have been given from successful runs of simulated robots with vision, using

these principles. Principal components analysis has been introduced as a useful visual tool for

analysing the movement of populations across sequence space. It has been shown that despite

the genetic convergence, mutation is a su�ciently powerful force for genetic movement along

`ridges' to potentially �tter regions.
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