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Abstract

This paper shows how a mixture of qualitative and quantitative analysis can be used

to understand a particular brand of arbitrarily recurrent continuous dynamical neural

network used to generate robust behaviours in autonomousmobile robots. These networks

have been evolved in an open-ended way using an extended form of genetic algorithm.

After brie
y covering the background to our research, properties of special frequently

occurring subnetworks are analysed mathematically. Networks evolved to control simple

robots with low resolution sensing are then analysed using a combination of knowledge of

these mathematical properties and careful interpretation of time plots of sensor, neuron

and motor activities.

1 Introduction

We have argued elsewhere (Husbands and Harvey (1), Harvey et al (2)), that continuous

real-valued arti�cial neural networks with time delays between units and with unrestricted

topologies are a powerful material for building autonomous mobile robot control systems.

But their usefulness carries a high price tag: extreme design complexity. In (1) and (2)

we explain the reasons behind our belief that the design by hand of such control systems

becomes prohibitively di�cult as increasingly complex or sophisticated robot behaviours are

required, especially in complex, uncertain and dynamic environments. When dealing with such

environments, visual sensing is likely to be highly advantageous, but adding visual guidance

mechanisms compounds the design problem.

We have attempted to address these issues by developing a new methodology whereby robot

network controllers are evolved rather than designed. An extended form of genetic algorithm

(GA), as described in Harvey (3), allows a genuine form of arti�cial evolution, where new

capabilities are built on older ones and there is a gradual increase in complexity of the con-

trol networks as the robot tasks are made incrementally more di�cult. This open ended
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approach requires dynamic length `genotypes' instead of the usual GA practice of working in

predetermined �xed dimension search spaces.

This paper concentrates on qualitative and quantitative analyses of non-standard control net-

works developed by this method. The networks dealt with are more complex than those

generally studied in the ann community, but a detailed understanding of how they generate

robust behaviours is important in the further development of our research. Later it is demon-

strated that such an understanding can be provided by a mixture of mathematical analysis

and careful interpretation of time plots of sensor, neuron and motor activities. First the

evolutionary mechanisms and neuron model must be described.

2 Evolutionary Mechanisms

The arti�cial evolution approach maintains a population of viable genotypes (chromosomes),

coding for control networks, which inter-breeds and mutates according to a selection pressure.

This is controlled by a task-oriented evaluation function: the better the robot performs its

task the more evolutionarily favoured is its control network. Rather than attempting to

hand-design a system to perform a particular task or range of tasks well, the evolutionary

approach allows their gradual emergence. There is no need for any assumptions about means

to achieve a particular kind of behaviour, as long as this behaviour is directly or implicitly

included in the evaluation function. The genotypes are strings of characters coding for neuron

properties, the size and topology of the network (neither is restricted), and the properties

of inter-neuron connections. The encoding has been designed so that genetic operations

(crossover and mutation) on `parents' always create `children' coding for legal networks.

All experiments to date have been based on careful simulations of a physical robot constructed

at Sussex. The robot is cylindrical in shape with two wheels towards the front and a trailing

rear castor. It has front and back bumpers and four whiskers | two front and two back, each

at 45

o

to the central axis of the robot, these tactile sensors give binary on/o� signals. Primitive

visual sensors were added for some simulation experiments, using ray-tracing techniques to

accurately emulate the physics of real vision. The wheels have independent drives allowing

turning on the spot and fairly unrestricted movement across a 
at 
oor. The signals to the

motor can be represented as a real value in the range [�1:0; 1:0]. This range is divided up into

�ve more or less equal segments, and depending on which segment the signal falls into, the

wheel will either remain stationary or rotate half/full speed forwards/backwards. The motor

signal range is achieved by using two output neurons per motor, and subtracting one's output

from the other's. An input unit is assigned to each sensor, but the number of hidden units is

not speci�ed. Starting from randomly wired networks, the evolutionary algorithm gradually

produces robust noise tolerant controllers. For full details of all the above see (2).
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3 Neuron Model

The neuron model employed to date has been designed for its usefulness in control applications

rather than for biological plausibility or ease of analysis. Figure 1 represents the operation

of a neuron. There are separate channels for excitation and inhibition. Real values in the

range [0,1] propagate along excitatory links subject to delays associated with the links. The

inhibitory (or veto) channel mechanism works as follows. If the sum of excitatory inputs

exceeds a threshold, T

v

, the value 1.0 is propagated along any inhibitory output links the unit

may have, otherwise a value of 0.0 is propagated. Veto links also have associated delays. Any

unit that receives a non zero inhibitory input has its excitatory output reduced to zero (i.e.

is vetoed). In the absence of inhibitory input, excitatory outputs are produced by summing

all excitatory inputs, adding a quantity of noise, and passing the resulting sum through a

simple linear threshold function, F (x), given below. Noise was added to provide further

potentially interesting and useful dynamics and to give an indication of the properties of a

physical implementation of a unit which would be likely to include naturally occurring noise.

The noise was uniformly distributed in the real range [-N,+N].

F (x) =

8

>

<

>

:

0; if x � T

1

x�T

1

T

2

�T

1

; if T

1

< x < T

2

1; if x � T

2

:

(1)

In all our work to date the networks have been simulated in software. Their continuous nature

is modelled by using a very �ne time slice approach. At each time step of the robot kinematics

simulation sensor readings are fed into the network, the network is run through a number of

cycles (with a variance to counter distorting periodic e�ects), and then the network outputs

are converted into motor signals which allows the calculation of the new position of the robot.

Time delays on the connections refer to network cycles, hence a unit delay is much smaller

than the duration of a single robot step. In the work described in this paper unit delays

are used throughout, although we have also evolved networks where much longer time delays

(under genetic control) were possible, Cli� et al (7). The values of the other parameters

mentioned above used in our experiments were N=0.1, T

v

=0.75, T

1

=0.0 and T

2

=2.0, giving

a slope of 0.5 to F .

4 Generator Units

Before going on to analyse particular controller networks, a commonly occurring subnetwork

con�guration will be looked at in detail. This will enable a deeper understanding of the full

networks described later.

Nearly all the successful evolved networks we have studied involve one or more neurons with

three or more excitatory feedback loops. This arrangement allows internal noise to rapidly

build up the output from the unit to the upper threshold level without requiring any external

input to the network. The unit then acts as a source of constant high output (unless vetoed)

which typically contributes to the motor signals giving the basic behaviour of the robot. We
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Figure 1: Block diagram of neuron operation.
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Figure 2: Generator feedback loops.

will refer to such neurons as generator units and will now analyse their properties in detail.

These are not entirely obvious since internal noise is uniformly distributed with mean zero. In

the following all connections have unit time delays, which is the case for all the experiments

described in this paper.

Consider the single neuron feeding back onto itself as shown in Figure 2(i). The input at

time t, I

t

, is related to the output at time t � 1, O

t�1

, by I

t

= F (O

t�1

+ n

t

), where F is the

transfer function of equation 1 and n

t

is the noise injected by the unit at time t. Ignoring the

threshold terms for the moment, and concentrating on the linear part of the function, we can

write:

O

t

= k(O

t�1

+ n

t

) (2)

where k is the slope of the linear part of F . Hence,

O

0

= kn

0

(3)

O

1

= k(kn

0

+ n

1

) (4)

� � �O

t

= k

t+1

n

0

+ k

t

n

1

+ � � �+ kn

t

(5)

=

t

X

i=0

k

t+1�i

n

i

=

t

X

i=0

a

i

(6)

Now the noise terms, n

i

, can be considered as independent random variables uniformly dis-

tributed over the real range [-N,+N], giving them probability distribution function P (x) =
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1=2N . Using elementary probability theory, it can be shown that they each have mean �

n

i

= 0

and variance �

2

n

i

= N

2

=3 (Meyer (4)). The linear relationships between the a

i

s and n

i

s means

that the a

i

s can be regarded as independent random variables with mean �

a

i

= 0 and variance

�

2

a

i

= k

t+1�i

N

2

=3. In other words the output of the unit can be regarded as the sum of a series

of independent random variables. To return to the temporarily ignored threshold conditions

of F , because O

t

can never become negative (lower threshold condition), we can use a version

of the central limit theorem to guarantee that the distribution of the random variable Z given

below,

Z =

O

t

�

P

t

i=0

�

a

i

q

P

t

i=0

�

2

a

i

(7)

is closely approximated by the positive half of the standardized normal distribution N (0; 1).

Now,

P

t

i=0

�

a

i

= 0 and

P

t

i=0

�

2

a

i

=

P

t

i=0

k

t+1�i
N

2

3

=

N

2

3

�

k�k

t+2

1�k

, hence:

Z =

O

t

N

p

3

�

q

k�k

t+2

1�k

(8)

This result can be used to estimate the expected time for O

t

to reach the upper threshold

value of 1.0. Clearly this depends on the value of k. The larger k, the shorter the time. From

Equation 2 and using the fact that the maximum negative amount of noise is -N, once the

upper threshold has been reached it can only be maintained if k(1�N) > 1, i.e. k > 1=(1�N).

Setting N=0.1, the value used in all our experiments to date, then k > 1:11. Given that we

have used a �xed slope of 0.5 for the neuron transfer function, k can be e�ectively altered by

changing the number of feedback loops. With three loops k = 1:5, and the probability of O

t

reaching 1.0 by t = 40 is given by 2(1� �(0:0025)), from the formula for Z, and where � is

the cumulative distribution function of N (0; 1). The value of this expression is greater than

0.999.

Hence we can conclude that with three feedback loops, and in the absence of other inputs,

a neuron will easily reach the saturation condition within 40 network cycles, the minimum

possible per single robot step, and therefore will act as a generator unit. This is exactly what

is observed as will be seen in the next section.

Surprisingly, the two unit mutual feedback loop shown in Figure 2(ii) has properties equivalent

to the single unit loop. Using the same notation as above, O

1

t

= k(O

2

t�1

+ n

1

t

), with a

symmetric expression holding for O

2

t

. Hence,

O

1

t

= k

t+1

n

1

0

+ k

t

n

2

1

+ � � �+ k

2

n

2

t�1

+ kn

1

t

(9)

Since n

1

and n

2

have exactly the same distribution this expression is identical to that in

Equation 5 and the same analysis holds. Indeed, the interplay between the delays on the

connections and the noise injected at each unit, means that a loop containing any number of

units will have the same behaviour; any of its neurons can act as generator units.
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5 Experimental Setup

We started our research program by successfully evolving networks to generate obstacle avoid-

ance behaviours in cluttered environments (1), but recently we have concentrated on unclut-

tered minimalist environments to allow a very close focus on the neural basis of simple robot

behaviours. However, these environments are still noisy as are the (realistically) simulated

robot kinematics. The results included in this paper are derived from experiments in which

the robot moves in a cylindrical arena (see Figure 4). Populations of size 100 were evolved

for 100 generations under the following evaluation function:

E =

X

8t

exp(�sjr(t)j

2

) (10)

Where r(t) is the 2D vector from the robot's position at time t to the centre of the arena,

and 8t denotes the duration of the evaluation run. E drops o� very rapidly the more time

the robots spend near the walls. On each evaluation run the robot was started in a random

position close to the wall. This implicit evaluation function was chosen to study, with di�erent

sensor con�gurations, how well arti�cial evolution produced networks to keep the robots as

far away from the walls as possible for as long as possible.

6 Network Controller Analysis

Figure 3 shows a typical network controller that evolved after about 20 generations under

�tness function E , and with unit time delays on all links. In this case the robot only had the

tactile sensors mentioned earlier. Figure 4 shows the behaviour generated by this network.

After eliminating those units with no output links and by using time plots of sensor, neuron

and motor activities to further eliminate units which play no role in this behaviour, it is a

straightforward matter to arrive at the reduced network shown in Figure 5 as the essential

behaviour generator. Its operation can be readily understood. In the absence of sensory input

the right motor is jammed on full forwards due to high activity in unit 12 which is a generator

unit as explained above. The left motor maintains half speed forwards by virtue of an input

of value 1.0 from unit 12. The neuron transfer function halves this signal, and noise can never

be su�cient to shift the signal out of the half forwards range. Hence the basic behaviour is to

move in a wide circle. This is a reasonable strategy to score on the E �tness function. It can

be seen that the robot moves sharply away from the wall on contact, which again is a useful

strategy given the �tness function. For the behaviour shown, triggering of the back bumper

or front right whisker produces the tight turn away from the wall. For the sake of simplicity

only those parts of the circuitry involving these sensors are shown; other similar circuits are

present for other sensors to handle collisions from di�erent angles. If either of the two sensors

mentioned are activated unit 1 inhibits unit 10 while activity is propagated to unit 11. Hence

the left motor switches from half forwards to full reverse. At the same time, input to unit 9

goes high causing the inhibition of unit 12. This switches the right motor o� and the tight

turn is executed. Once there is no further sensory input the network returns to its previous

mode with unit 12 acting as a generator and circling behaviour is resumed.

Figure 6 shows the behaviour generated by the �ttest network in the population after about
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Figure 3: Fittest network appearing in early generations. Dashed connections are veto, solid lines are

excitatory links. BB=back bumper, FRW=front right whisker and similar for other sensory inputs.

Figure 4: Behaviour generated over a �nite time by network controller shown in Figure 3. Arrows indicate

robot orientation. Arrow length = robot diameter. The inner circle indicates the higher scoring region under

E:
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Figure 5: Reduced network which is essentially responsible for generating the behaviour shown.

70 generations. It can be seen that the path is wider than for the earlier behaviours and is

able to reliably score higher on E . The path is achieved by oscillating between straight line

motion and the previous circling behaviour. This is caused by the oscillating right motor

signal as can be seen from the activity plots shown in Figure 7.

Analysis of the full network reveals that the circuits for turning away from the walls on contact

are still present but the reduced network responsible for the wide path behaviour is now as

shown in Figure 8. Unit 12 is no longer a generator unit but unit 8 essentially is, being

involved in two mutual feedback loops with unit 12 and one with unit 10, as well as having

inputs from other parts of the network.

High input from unit 8 keeps the output of unit 10 at about 0.5, clamping the left motor on

half speed forwards. Remembering that a signal is halved (modulo noise) each time it passes

through a unit, the input from 5 to 12 is about 0.25 and from 6 about 0.1. Add these to the

input of 1.0 from 8, and the output from unit 12 should be about 0.67 with �nite amounts of

noise keeping the the value on a random walk between strict upper and lower limits of 0.79

and 0.55 (it does not have su�cient feedback to overcome these). The motor signal boundary

value between half and full forwards is 0.67. Hence evolution has produced a tightly tuned

oscillator by making use of internal noise. Quite a remarkable result and a di�cult design to

have achieved by hand.

6.1 Evolving visually guided robots

Cli� et al (5) describes in detail experiments in which primitive visual sensors were concur-

rently evolved with the control networks. Figure 9 shows the behaviour of a robot with two

very simple `eyes' evolved under the same evaluation function E . As well as the network, the

position and angle of acceptance of the eyes is under evolutionary control. The walls of the

arena are black while the 
oor and ceiling are both white. This results in di�erent visual in-
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Figure 6: Fittest behaviour found in later generations. Display format same as in Figure 4

puts for di�erent positions in the arena. Clearly the control system has evolved to make use of

regularities in the environment to score very highly on the di�cult implicit �tness function E .

This is a signi�cant result: even though E does not explicitly involve monitoring visual input,

the robot evolves to perform visually guided behaviours. The robot starts o� near the wall

where visual input is very low, motor signals are then controlled by visual input to move the

robot in an almost straight line to the centre where it circles for the rest of the evaluation run.

This is almost optimal behaviour and is possible because there is a correlation between visual

input and position that evolution has been able to exploit. A detailed analysis of networks

with visual input can be found in Cli� et al (6).

As the complexity of the environment increases, accurately simulating even low-resolution

vision requires su�ciently large computational resources that, eventually, simulation has to

be abandoned in favour of using real robots. We are currently constructing specialised visuo-

robotic equipment which entirely eliminates the need for simulation: see (5) for further details.

7 Conclusions

This paper has outlined a framework in which we are using arti�cial evolution to develop

arbitrarily recurrent continuous dynamical neural networks to generate robust behaviour in

autonomous mobile robots. It has been shown how evolved networks, although at �rst sight

rather complex, can be understood with a mixture of qualitative and quantitative analysis.
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Figure 7: Activity plots for behaviour shown in �gure 6
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Figure 8: Reduced network responsible for generating behaviour shown in Figure 6

Figure 9: Evolved behaviour for robot with visual input under evaluation function E.
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