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Abstract

We present results from the concurrent evolution of visual sensing morpholo-

gies and sensory-motor controller-networks for visually guided robots. In this paper

we analyse two (of many) networks which result from using incremental evolution

with variable-length genotypes. The two networks come from separate populations,

evolved using a common�tness function. The observable behaviours of the two robots

are very similar, and close to the optimal behaviour. However, the underlying sensing

morphologies and sensory-motor controllers are strikingly di�erent. This is a case of

convergent evolution at the behavioural level, coupled with divergent evolution at

the morphological level.

The action of the evolved networks is described. We discuss the process of

analysing evolved arti�cial networks, a process which bears many similarities to

analysing biological nervous systems in the �eld of neuroethology.

1 Introduction

As part of our ongoing work in using genetic algorithms to develop `neural' networks

which act as controllers for visually guided robots, we have analysed the �nal evolved

networks in order to identify how they work. This is an essential step in moving away

from the treatment of arti�cially evolved neural networks as magical black boxes.

The mathematics of our particular style of network are such that it would be di�-

cult or impossible to derive closed-form equations describing the action of the networks.

1

Instead, we analyse our networks using techniques analogous to those used in the study

of biological sensory-motor neural systems. In trying to understand how our arti�cially

evolved networks generate behaviours in the robot, we are performing a task directly

analogous to the task faced by biological scientists in the �eld of neuroethology. (Neu-

roethology is the study of the neural mechanisms underlying the generation of a creature's

behaviour; see e.g. [7].) For further details of the link between neuroethology and arti�cial

neural network research, see [8, 2].

We view the networks we evolve as continuous dynamical systems, rather than as

computational devices transforming between representations: inputs to the system might

perturb the trajectory of the network in state space, so it enters a di�erent state which

1

For example, the transfer functions used in our model neurons are all nonlinear with discontinuities

in the �rst derivative, and non-Gaussian noise is introduced at a number of points in the sensory-motor

system.
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might be interpreted by an external observer as a new behaviour. We �nd this perspective

less encumbering than the traditional computational perspective, and also less amenable

to the use of potentially misleading intentional language (see e.g. [3, 19, 17] for further

discussion of the bene�ts of adopting a dynamical systems perspective).

Most of this paper deals with analysing two networks from separate populations, each

evolved to perform the same task. We demonstrate that although the �nal observed

behaviour from the two networks is very similar, the underlying mechanisms are remark-

ably distinct: the two populations converged at the behavioural level, while maintaining

distinct sensory-motor morphologies.

The primary focus of this paper is on analysing networks resulting from the evolution-

ary processes. The text refers the readers to past papers for further details of the genetic

encoding, the genetic algorithm employed, and description of the vision system. Never-

theless, Section 2 o�ers a brief overview of most of the important details. Following that,

Section 3 describes our experimental regime, and provides analysis the two networks.

Finally, Section 3.3 discusses the implications of our work.

2 Background

2.1 Rationale

The rationale for our work, and some early results, have been discussed elsewhere [16,

15, 11, 10]. The notes below present a brief summary of the important concepts.

In common with a growing number of other researchers, we believe that the generation

of adaptive behaviour should form the primary focus for research into cognitive systems.

By `adaptive behaviour', we mean behaviour which is selected to increase the chances

that a situated agent can survive in an environment which is noisy, dynamic, hostile,

and uncertain. Almost all animals in the natural world exhibit some form of adaptive

behaviour, and there is increasing interest in the creation of arti�cial systems which are

capable of acting in an adaptive manner. The arti�cial systems are commonly either

simulated `virtual agents', or real robots.

Our work to date has involved using arti�cial evolution on populations of simulated

robots. The simulations involve a model of a real robot built at Sussex, and the simulated

vision employs advanced computer graphics techniques.

2

Work is currently underway on

the construction of specialised robotic equipment which eliminates the need for simulating

perception and action, while still allowing the use of arti�cial evolution: see [11] for further

details.

For reasons given in [15], we are approaching the task of creating arti�cial agents that

exhibit adaptive behaviour in accordance with the following set of beliefs:

� `Neural'-network processors are likely to be most useful in building controllers for

agents that exhibit adaptive behaviour.

2

Namely, ray-tracing with antialiasing via sixteen-fold supersampling (see e.g. [13] for details of such

techniques).
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� Manual design of such networks is likely to become prohibitively di�cult as in-

creasingly complex or sophisticated behaviours are required. Rather than design-

by-hand, we are employing arti�cial evolution techniques, based on Harvey's saga

variable-length genotype methods [14].

� Almost all adaptive behaviours bene�t from distal (i.e. long-range) sensory infor-

mation. While there is an established body of successful work studying robots

with only tactile sensing (i.e. mechanical whiskers), the proximal nature and low

dimensionality of the robot's sensors constrain it to relatively primitive \bumping

and feeling" behaviours, such as wall-following. For demonstration of our methods

working with only proximal sensors, see [16, 15]. A primary means of gathering

distal sensory information is by use of visual sensing, so we believe visually-guided

agents should be studied from as early a stage as possible.

� While we could impose on our robot some visual sensors with �xed properties, we

advocate (in common with Brooks [6]) the concurrent evolution of visual sensor

morphology and the control networks: separating morphology from control is a

measure which is di�cult to justify from an evolutionary perspective, and poten-

tially misleading.

� For reasons of parsimony, studies of visually guided agents should commence by

examining minimal systems. The work reported on here involves robots using very

simple low-resolution devices coupled to small networks. It is our intention to work

towards more complex (i.e. higher resolution) systems. Furthermore, because we

intend to transfer our results from simulated robots to the real robot on which

the simulation is based, we constrain evolution such that the evolved designs could

realistically be built from discrete components and operate in real time. In e�ect,

our intention is to evolve a speci�cation for a robot with electronic compound eyes

(c.f. [12]).

2.2 Details

In accordance with the last item in the above list, our current studies have addressed

evolving visually guided robots with just two photoreceptors (i.e. two `pixels' in the input

images). The direction of view of the photoreceptors, and their acceptance angles, are

under evolutionary control: it in this sense that the visual morphology is concurrently

evolved along with the controller network. For full details of the genetic encoding for

both the control networks and the visual system, see [15, 11]. Because there are only

two photoreceptors, we can only expect to evolve robots which exhibit relatively simple

behaviours. Nevertheless, we have concentrated on evolving robots which perform tasks

that would be di�cult or impossible using only tactile information.

Physically, the Sussex robot is cylindrical: it has a circular bottom-plate on which

the motors and wheels are mounted, and a circular top-plate where a notebook computer

is situated (the computer simulates the control networks). The robot has three wheels

arranged to give tripod stability. At the front are two independent drive wheels, each

capable of rotating at one of �ve speeds: full on, half on, o�, half reverse, full reverse.
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The rear wheel is a large ball-bearing freewheel castor. The robot is equipped with tactile

sensors giving a six-bit input vector: it has four radially oriented binary `whiskers', and

binary `bumper-bars' at front and rear. For illustration, see [11]. The simulated robots

are accurate models of such a vehicle, with the addition of visual sensors.

While our early tactile-only work involved the robot roving around cluttered o�ce-like

environments, all the visually-guided tasks have been set in a closed circular arena. The

arena has black walls, while the 
oor and ceiling are white. There are no obstacles: the

arena contains only the robot.

The visual input from each of the robot's photoreceptors at any particular moment in

time depends on the robot's visual morphology, and the position and orientation of the

robot in the arena. Essentially, the population of robots has to evolve to correlate the

visual input with its position in the world, so as to satisfy whatever �tness evaluation

we impose on the robot's behaviours. As was demonstrated in [11], visual guidance

emerges without explicit reference to vision in the evaluation process. In the early stages

of evolution, the tactile sensors can be useful in helping correlate visual input with the

robot's position. However, as will be demonstrated below, later generations typically

tend to rely only on visual information.

2.3 Networks and the `Neuron' Model

The controller networks are continuous dynamical systems, built from model `neurons'

(i.e. processing units), which can have asymmetric and recurrent connectivities. Acti-

vation values (all real numbers in the range [0; 1]) are transmitted between units along

the connections, all of which have a weight of one, and impose a unit time delay in

transmission. Fully asynchronous processing is simulated by �ne-time-slice approxima-

tion techniques with random variation in time-cycling on each unit to counter periodic

e�ects.

The neuron model has separate channels for excitation and inhibition. A schematic

of the operations for one unit is shown in Figure 1. The inhibition channels operate

as a `veto' or `grounding' mechanism: if a unit receives any inhibitory input, its exci-

tatory output is reduced to zero (but it can still inhibit other units). Excitatory input

from sensors or other units is summed: if this sum exceeds a speci�ed inhibitory output

threshold, the unit produces an inhibitory output. Independently, the sum of excitatory

inputs has uniform noise (distribution: �n, where n is a real number) added, and is then

passed through an excitation transfer function, the result of which forms the excitatory

output for that unit, so long as the unit has not been inhibited. For further details of the

excitation transfer function, see [10].

We have found that this neuron model is su�ciently sophisticated that there has been

no need to introduce variable connection weights or variable delays for controllers based

on the minimal visual systems studied so far. Nevertheless, we are actively investigating

the use of placing such parameters within evolutionary control.
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Figure 1: Schematic block diagram showing operations within a single model neuron. See text for

further explanation.

3 Evolving Network Controllers

The evolutionary process starts with a population of genotypes; in the work reported here,

we have used populations of size 60. Each genotype consists of two chromosomes: one is

an encoding of the control network, the other encodes parameters governing the visual

morphology [15, 11]. Initially, all the genotypes in the population are random. On every

generation, each genotype is evaluated, and assigned a �tness score. The genotypes are

then `interbred', with mutation and crossover according to saga principles [14], thereby

creating a new population. This process continues for a speci�ed number of generations

(in the work discussed here, genotypes were evolved over 100 generations).

The evaluation of each genotype involves decoding the chromosomes to create a sim-

ulated robot, then testing the robot a number of times (we use eight tests per genotype).

On each test, the robot is positioned at a random orientation and position in the arena

(with a bias towards positions near to the wall), and then it is allowed a �xed amount of

simulated time, during which its behaviour is rated according to an evaluation function

E . E varies according to the behaviour we want the population of robots to exhibit.

At the end of the eight tests, the lowest value of E scored on the tests is used as the

robot's �tness value in the reproductive phase: this ensures robust solutions (if the best

or average E-value is used, it can be deceptively high).

It was our intention to impose as little structure as possible on the control networks,

but it is necessary to designate some units as `input' units (receiving activity from the

robot's tactile or visual sensors), and some as `output' units (the activity level of which

determines the output of the two drive motors). Units which are neither `input' or `output'

are referred to as `hidden'. As will be seen later, the evolutionary process can blur these

distinctions.
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The initial random genotypes are created to encode for networks with all the necessary

input and output units, and either one or two hidden units. Because we use Harvey's

saga genetic algorithm, the genotypes can vary in length: longer genotypes can arise,

where the increase in length corresponds to more connections or extra hidden units;

but such increases in the size of the network will only be carried forward to subsequent

generations if they achieve higher �tness ratings in the evaluation process. In this sense,

more complex networks will develop in an incremental fashion.

For each E we have studied, we set up eight separate random populations, and allowed

them each to evolve for 100 generations.

3

When this was complete, we took the genotype

with the highest �tness from each population, and analysed its performance. Typically,

in each batch of eight populations, 3{5 of them had only improved moderately on the

performance of the initial random genotypes, while the remainder were scoring close

to maximum �tness. In sections 3.1 and 3.2 we illustrate the analysis process on two

genotypes taken from separate populations. Both genotypes were the most-�t in their

population after 100 generations, and they come from the two highest-scoring populations

evolved according to the evaluation function:

E =

X

8t

exp(�sjr(t)j

2

)

Where r(t) is the 2-D vector from the robot's position to the centre of the 
oor of the

circular arena at time t, and 8t denotes the duration of the evaluation test (the sum is

essentially a discrete approximation to a temporal integral). Put most simply, the more

time the robots spend at or near the centre of the arena, the higher they are rated. The

value s is a scale factor which ensures that the robots collect no score if they are near the

walls of the arena.

Under this evaluation function, the optimal behaviour is, from a random initial start-

ing position, to move towards the centre of the arena as fast as possible, and then at

the centre, stay there. As will be seen, such behaviours were exhibited by both the con-

trollers examined below. Controller 1 produced the best behaviour; Controller 2 is the

second-best. For brevity, they are referred to as C1 and C2 respectively.

3.1 Controller 1

Typical behaviour for C1 is shown in Figure 2. As can be seen, the robot starts at the edge,

moves to the centre, and then stays there. It holds its position at the centre by spinning

on the spot; this is acceptable behaviour insofar as E does not impose any penalties for

energy expenditure. The genotype for C1 speci�es that the two photoreceptors should

have 45

�

acceptance angles, and be placed 6

�

either side of the robot's centre-line. The

network for C1 is shown in Figure 3.

As is clear from Figure 3, the C1 network is unlike networks designed by humans:

the way in which it works is not at all clear from examination of the diagram. However,

we can identify redundant units and connections (e.g. unit 0 has no outputs, so it { and

3

Typically, it takes approximately 24 hours on a Sun SPARC workstation to evolve one population;

we evolved the eight populations in parallel, on eight separate workstations.
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Figure 2: Typical behaviour of the C1 controller. The robot's position at each timestep is shown by an

arrow; the midpoint of the arrow `shaft' is the centre of the robot, and the length of the shaft is the same

as the robot's diameter. The robot starts near the edge of the arena, moves to the centre, and then spins

on the spot. The `tip' of the arrow shows the `front' of the robot, which is not necessarily the direction

of travel: although in this case the robot is moving forwards, it can travel in reverse.

any connections to it { can be eliminated from consideration). Many of the redundant

units or connections are likely to be \evolutionary sca�olding": i.e. vestigial parts of the

network which served a purpose in earlier generations but are now no longer useful cf. [18].

Furthermore, we can attempt to identify di�erent sensory-motor pathways. For example,

some of the units and connections may be involved purely in dealing with e�ciently

turning away from the wall if a whisker or bumper is triggered by a collision, while other

parts of the network may be dedicated to generating the visually-guided behaviour of

moving to the centre and staying there. For this reason, the rest of the analysis concerns

the identi�cation of only those sensory-motor pathways involved in visual guidance.

Furthermore, while the control network is operating, we can record inputs, outputs,

and activity levels for later analysis, along with important measures of the robot's be-

haviour (such as its velocity, orientation, or distance from the centre). Figure 4 shows

such a record for the behaviour sequence illustrated in Figure 2. As can be seen, some

of the units are largely inactive for the duration of the sequence, and (if consistently

inactive) can be eliminated from consideration in the visual pathway. The results of

eliminating redundant and tactile-only units are shown in Figure 5.

From Figure 5, it becomes clear that the initial categorisation of units into `input',

`hidden', and `output' is no longer sensible: the opportunistic nature of evolution is such

that some of the tactile input units have been taken over to act as virtual hidden units;

to use the language of neuroscience, they have become higher-order interneurons.

7



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FB

BB

FRW

BRW

BLW

FLW

Left Eye

Right Eye

Left Motor

Right Motor

+VE

-VE

-VE

+VE

Excitatory Connection

Inhibitory Connection

Sensor/Actuator Connection

Figure 3: C1 control network. The left-hand column are units originally designated as input units:

FB=Front Bumper; BB=Back Bumper; FRW=Front Right Whisker; BRW=Back Right Whisker;

BLW=Back Left Whisker; FLW=Front Left Whisker. Right-hand column shows output units, which

are paired and di�erenced to give two motor signals in the range [-1,1] from four `neuron' outputs in the

range [0,1]. Centre column shows `hidden units'.

To further elucidate what is occurring, we have one more tactic at our disposal: cor-

relations in activity levels are not particularly clear in Figure 4, because of the disruptive

e�ect of internal noise; but we can switch o� the internal noise and observe the controller

functioning as a `perfect' system (external noise, e.g. in the kinematics model, is not

disabled). This is a great advantage in analysing simulated systems, and one which is

not available to neuroethologists. The performance of the robot does not degrade sig-

ni�cantly when the noise is eliminated, although there are notable di�erences: Figure 6

shows typical behaviour in the absence of noise. As can be seen, the approach to the cen-

tre appears to occur in two phases: an initial low-radius turn followed by a higher-radius

turn in the opposite direction, which ends in the spin phase. These phases are marked

on the �gure as \A1" and \A2" for Approach-1 and Approach-2; and \S" for spin. The

corresponding activity-trace is shown in Figure 7.

Analysis of noise-free results such as those illustrated �nally allows us to explain

the activity of the network. The explanation is made easier by redrawing the network,

abandoning our prior categorization of unit-types where appropriate. The redrawn C1

network is shown in Figure 8. As can be seen, unit 2 (initially categorized as an input
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Figure 4: Record of observables and activity levels for the activity illustrated in Figure 2. Horizontal

axis is time. From top: robot's velocity; robot's orientation; visual input to left photoreceptor; visual

input to right photoreceptor; output of left wheel; output of right wheel; activity levels in the control

network units 0 to 14.

unit) is now acting as a second-order `interneuron'.
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Figure 5: Network with redundant and non-visual units deleted: see text for further details.
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Figure 6: Typical behaviour of the C1 controller in the absence of noise. See text for details.
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Figure 7: Record of observables and activity levels for the noise-free activity illustrated in Figure 6.
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Figure 8: Final C1 network.
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There follows a short explanation of the action of the network, with reference to

Figures 6 to 8. All units initially have zero activity. The units active in each phase are

illustrated in Figures 9 to 12.

A1 Initially, relatively high visual input to unit 6 excites unit 2, which inhibits unit 12,

so units 12 and 13 stay inactive. Meanwhile, the e�ects of visual input arriving at

unit 11 gives a low-radius turn. Eventually, the robot turns towards the (dark) wall

and the visual input falls, so unit 2 no longer inhibits unit 12.

11

12

Left Motor
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+VE

7

6

Left Eye

Right Eye

2

1

4

13

14

Right Motor

+VE

-VE

0.5

0.0

0.0
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Figure 9: Primary active connections in phase

A1. Units and connections not directly involved

in producing behaviour in phase A1 have been

deleted for clarity (cf. Figure 3). Motor output

values are indicated. See text for further details.
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Figure 10: Primary active connections in the

momentary transition between phases A1 and A2.

Transition: A1 to A2 Momentarily, unit 12 becomes active and excites units 13 and 14.

This initiates a low-radius turn in the opposite direction, turning the robot away

from the wall. Therefore the visual input rises again, re-activating unit 2, which

re-inhibits unit 12. As a consequence, unit 14 goes inactive, but unit 13 stays active

by self-excitation.

A2 Combined activity in units 11 and 13 give a high-radius turn, which takes the robot

toward the centre of the arena. Once at the centre, the visual input drops,

4

and

unit 2 no longer inhibits unit 12.

S Unit 12 becomes active, and excites unit 14. Units 11 and 13 are still active from the

A2 phase. The combined activity in units 11 to 14 makes the robot spin on the spot,

in the same direction as the A2 phase. During the spin, the interactions between

units 1, 8, 10, and 11 can intermittently cause unit 11 to go brie
y inactive, which

has the e�ect of making the spin-position drift slightly. This is useful, in that there

is a fairly large isoluminance zone near the centre (i.e. for practical purposes, the

visual input is identical at the centre and also at positions slightly o�-centre). The

slight drift while spinning increases the chances of the robot moving over the exact

centre of the arena, where E is highest, which is a better policy than �xing the

4

The visual input drops because, at the centre, the two photoreceptors (as speci�ed by the C1 vision

chromosome) `see' more of the (dark) walls than the (light) 
oor or ceiling { visual input is maximal for

C1 when the robot is against a wall, oriented towards the centre: in this case it `sees' mainly the 
oor

and ceiling, with the distant far wall taking up little of the visual �eld.
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Figure 11: Active connections in phase A2.
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Figure 12: Active connections in phase S.

spin just inside the border of the isoluminance zone. If the robot spins outside the

centre-zone, it will revert to phase A2 (this can be seen in Figures 6 and 7).

The above explanation appears to account for all of the observed behaviour of the

C1 controller in the absence of noise. It is clear that unit 2 is very important, acting as

a switch between approach and spin phases (the A1{A2 transition, initiated by unit 2

going inactive, may be viewed as a very brief `spin'). The same behaviour phases can also

be witnessed in the with-noise behaviour, although when noise is present it is possible

for unit 13 to become either active or inactive via internal noise and its self-excitatory

connections: the random noise induces a \drunkard's walk"-style drift in the excitation

of unit 13, which means that in the approach to the centre the C1 controller may switch

between A1 and A2 approach modes a number of times. Nevertheless, the central role of

unit 2 in switching between `approach' and `spin' is maintained.

3.2 Controller 2

As with C1, the behaviour of the robots controlled by C2 is close to the best behaviour:

the C2 robots make a smooth approach towards the centre, and then stay there. At

the behavioural level, the performance of C2 di�ers from C1 in the �nal phase: instead

of spinning on the spot, the robot makes low-radius cycling movements which hold its

position near the centre. Typical behaviour of C2 (with noise) is shown in Figure 13.

However, despite these behavioural similarities, the C2 morphology and controller

di�er signi�cantly from the C1 controller. First, the C2 visual morphology speci�es 45

�

photoreceptors (as with C1), but they are placed 60

�

either side of the robot's centre-line

(cf 6

�

speci�ed for C1). Furthermore, the control network bears very little resemblance to

the C1 network. Figure 14 shows the full network, while Figure 15 shows the �nal visual-

guidance pathways in the network, revealed using the same analysis techniques as for C1:

the activity trace for the behaviour of Figure 13 is shown in Figure 16; while a noise-free

behaviour sequence and activity trace are shown in Figures 17 and 18 respectively.
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Figure 13: Typical behaviour of the C2 controller, with noise. Display format as for Figure 2. The

robot starts near the edge of the arena, moves to the centre, and then spins on the spot. As can be seen,

the C2 controller drives the robot in reverse (backwards).
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Figure 15: C2 visual guidance pathways. Note

that, for the sake of clarity, the positions of the left

and right motor outputs have been interchanged.
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Figure 16: Record of observables and activity levels for the (with-noise) activity illustrated in Figure 13.

Examination of the activity traces (both with and without noise) allow the analysis

of C2 to be taken further. First, unit 6 provides only veto outputs to other units, and

it is clear from Figures 16 and 18 that the total input to unit 6 is never su�ciently high

to go over the veto-output threshold, so unit 6 is e�ectively redundant in the context

of producing the behaviours illustrated in the �gures. For this reason, unit 6 can be

eliminated and the C2 network re-drawn accordingly: see Figure 19. This implies that C2

is employing `monocular' vision, using just the input from the right-hand photoreceptor

to perform visual guidance.

To further elucidate how C2 operates, one more analysis technique can be used to

improve the legibility of the network diagrams: it can be seen in Figure 19 that some

units recieve activation from only one unit, pass that activation through the excitation

transfer function, and then provide excitatory input to other units. We refer to such units

as distributor units. For example, in Figure 19, unit 9 is a distributor for unit 11.

If, for ease of analysis, we ignore the internal noise in distributor units, then if unit i

connects to unit k via a distributor unit j, the only e�ects of the distributor j are to act

as a weight on the connection strength between i and k, and to double the time-delay

on activity passing from i to k: the nature of the weight is determined by the excitation

transfer function. Given that in the current system all units have the same excitatory

transfer function, with a �xed gradient of 0.5 on the linear ramp between the lower and

upper thresholds (cf. Figure 1 and [10]), distributor units are acting as doubly-delayed

connections with weight 0.5. In Section 2.3 it was stated that all links have a weight
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Figure 17: Typical noise-free behaviour of the C2 controller. Display format as for Figure 2.

of one and impose a unit time delay: the use of distributor units allows for \virtual

connections" to evolve which have di�erent weights or delays. Similarly, if there are N

excitatory links from unit n to unit m, then they can together be considered as a single

\virtual connection" with weight N and unity delay: for example, in Figure 19, the two

connections from unit 10 to unit 1 form a virtual connection of weight 2.0.

Thus, distributor units and multiple connections between units can be eliminated

from the network diagrams, and the network re-drawn with the various weights indicated:

the �nal \weighted" version of C2 is shown in Figure 20. The \weighted" forms of the

networks are useful analytic tools: from Figure 20 it is fairly clear that the operation of C2

depends crucially on unit 1: if there is su�cient visual input to the right photoreceptor

(through unit 7), unit 1 inhibits unit 15, and the robot enters a low-radius turn: the

turn is only sustainable when the robot is within the central isoluminance zone; at other

locations the turn will reduce visual input, thereby preventing continued inhibition of

unit 15, so the robot's path to the centre is a straight line punctuated by brief bursts of

low-radius turns as unit 15 is intermittently inhibited.

From the above analysis, it is clear that while C2 produces similar observable be-

haviour to C1, the internal mechanisms responsible for generating these behaviours op-

erate on markedly di�erent principles. This is discussed further below.

3.3 Discussion

The primary factor of note in comparing controllers C1 and C2 is that, although they were

evolved separately, they had indistinguishable initial populations (i.e. both populations
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Figure 18: Record of observables and activity levels for the noise-free activity illustrated in Figure 17.
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Figure 19: C2 as a `monocular' network.
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Figure 20: C2 as a `weighted' network: see text

for further details.

were composed entirely of random genotypes). After 100 generations, both populations

show a high degree of convergence, in that the genomes for all individuals in the popula-

tion are fairly similar. Also, both populations perform approximately similar behaviours.

Yet, as was made clear above, there are signi�cant di�erences between C1 and C2 in both

visual morphology and control networks. The two populations therefore show a form of

speciation, in that the two populations can be considered as di�erent species, performing
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the same task. This is an accordance with the principles underlying the saga genetic

algorithm we used [14].

Such networks exhibited graceful degradation in the presence of increased noise. Dur-

ing evolution, an internal noise distribution of �0:1 was used; we found the robots could

still approach the centre with noise distributions as high as (in the case of C1) �0:8: see

[10].

In almost all of the networks we have analysed, there has been no clearly identi�able

structure. C2 is a clear example. Nevertheless, we �nd the structure of C1 intriguing:

the role of unit 2, which can disable unit 12 (and, in doing so, also disables unit 14) seems

vaguely reminiscent of a two-layer subsumption architecture, in that units 12 and 14 are

responsible for generating the `spin' behaviour; a behaviour `subsumed' by the approach-

ing behaviour. See [4, 5] for details of subsumption architectures, and e.g. [12] for an

example of a two-layer subsumption visually guided robot. Clearly, it is too early to

make strong claims, but we suspect that it is not infeasible that subsumption-style ar-

chitectures could evolve within our scheme: because we use truly incremental evolution,

it is possible that mechanisms generating elementary low-level behaviours evolve �rst,

with structures responsible for generating higher-level behaviours coming later. Such

an evolutionary trajectory would make sense, given the need for satisfying intermediate

viability (i.e. good controllers have to be built from minor changes to earlier slightly-

less-good controllers { there is no opportunity for a total re-design from scratch). This

may go some way toward explaining why subsumption-style controllers (i.e. behavioural

decomposition) have been identi�ed in biological creatures [1, 9].

It is important to note that both the C1 and C2 controllers were evolved in a �xed-

size arena, and hence are dependent on the ratio of the height of the arena's walls to

the diameter of the 
oor. It is this ratio, combined with the controller's particular

visual morphology, that determines the brightness values in the central isoluminance zone

discussed in Section 3.1. Work is currently underway on varying the arena dimensions on

each evaluation, in order to evolve truly general-purpose controllers which should operate

in any circular arena.

3.4 Conclusion

We have examined two controller networks evolved using incremental genetic algorithms,

and found a form of speciation, in that two controllers evolved in separate populations pro-

duce convergent behaviours while employing divergent mechanisms for generating those

behaviours. Nevertheless, both controllers perform in a close-to-optimal manner, and

are robust in the presence of noise. While both the robot's world and behaviours are

relatively trivial, we can see no reason why our methods, suitable extended beyond the

speci�cs described here, should not prove successful in increasingly complex domains.

The important achievement in this paper is not that we got a simulated robot to

perform a particular visually guided behaviour, nor that the behaviours were generated

by evolved neural networks. What matters is that we haven't treated the evolved networks

as magic black boxes. We speci�ed what the robots should do, but not how the controllers

work. Nevertheless, analysis lets us know what's going on inside the box. And, for the

record, we don't think that it's computation (at least, not in the conventional sense).
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