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Abstract

This paper describes aspects of our ongoing work in evolving recurrent dynamical

arti�cial neural networks which act as sensory-motor controllers, generating adaptive

behaviour in arti�cial agents. We start with a discussion of the rationale for our

approach. Our approach involves the use of recurrent networks of arti�cial neurons

with rich dynamics, resilience to noise (both internal and external); and separate

excitation and inhibition channels. The networks allow arti�cial agents (simulated or

robotic) to exhibit adaptive behaviour. The complexity of designing networks built

from such units leads us to use our own extended form of genetic algorithm, which

allows for incremental automatic evolution of controller-networks. Finally, we review

some of our recent results, applying our methods to work with simple visually-guided

robots. The genetic algorithm generates useful network architectures from an initial

set of randomly-connected networks. During evolution, uniform noise was added to

the activation of each neuron. After evolution, we studied two evolved networks, to

see how their performance varied when the noise range was altered. Signi�cantly,

we discovered that when the noise was eliminated, the performance of the networks

degraded: the networks use noise to operate e�ciently.

1 Introduction and Rationale

Increasingly, practitioners of arti�cial neural network research are realising that both the

complexity of model neurons, and also the styles of network architecture, need to be

extended beyond those employed in the much-cited work of the early 1980's. Certainly,

models such as Hop�eld networks, or back-propagating multi-layer perceptrons, played an

important historical role in making parallel distributed processing an acceptable paradigm

of study; but if we are to succeed in either understanding biological nervous systems, or

in building arti�cial neural networks which exhibit intelligent behaviour, it is likely that

we will have to move to more complex models.

But what form should this complexity take? The notion of `complexity' is often highly

subjective, and hence problematic. We should de�nitely avoid introducing unnecessary

complications, but (more importantly) we should not be deceived by our own simpli�ca-

tions. In arti�cial neural network (ann) modelling, simpli�cations are made for various

reasons. Often, there are issues of mathematical tractability: certain model neurons or

network architectures are easier to formally analyse than others. In other cases, the ease
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with which the models can be simulated or built in available hardware is an important

factor, and appropriate simpli�cations are made. In either case, it is important to note

that the `simpli�cation' is made for our convenience: the ann is easier to construct or

understand. The problem with this approach is that in using simpli�ed models, we may

actually be making life harder for ourselves as scientists; because the tasks we try to

make our models perform may, by their very nature, require greater complexity than is

possible without using clever `trick' techniques, or large and unwieldy modular assemblies

of simple networks.

There are two simpli�cations which are very common in ann models: most models in

the literature have very simple (or non-existent) dynamics; and arbitrary connectivity is

often avoided. It is manifestly clear that networks with many feedback connections and

delays between units are much more challenging to either analyse, simulate, or design,

than are networks such as the common three-layer back-propagation network. Yet for

many interesting and important problems, feedback and intrinsic dynamics are almost

de�nitely what is required. Furthermore, there is ample evidence in the neuroscience

literature from most branches of the animal kingdom, that biological neural networks

exhibit rich dynamical behaviour and exploit feed-back connections to great e�ect.

Additionally, many ann's are developed purely to transform between representations

or encodings which have been formulated by their designers. Such networks may be

worthwhile engineering artefacts, performing useful computations; but it is important

to remember that the primary evolutionary pressure on the development of biological

nervous systems (which we seek to understand or draw inspiration from) was whether a

particular nervous system helped an animal survive in environments which were dynamic,

uncertain, and often hostile. That is to say, nervous systems evolved where they generated

adaptive behaviours (i.e. behaviours which are likely to increase the chances that the

individual animal survives to reproduce). We, in common with a growing number of

other researchers, believe that the generation of adaptive behaviours should form the

primary focus for research into cognitive systems, and that issues of purely transforming

between representations or encodings are, at best, secondary.

It is the above factors that have inuenced our recent work, discussed in the remainder

of this paper. We have created ann's which generate adaptive behaviours in arti�cial

\animals" (i.e. robotic or simulated agents). Our agents have tactile sensors and minimal

visual systems (two oriented photoreceptors). The ann's use highly recurrent networks

of arti�cial neurons (called \units"), with propagation delays as signals pass across links

between units. The units have separate excitation and inhibition channels, and operate in

the presence of noise introduced both internally (i.e. within each unit) and also externally

(i.e. in sensory-motor transduction). The transfer functions for excitation and inhibition

in each unit are nonlinear with discontinuities in the �rst derivative.

Naturally, either analysing or designing networks composed of such units is a chal-

lenging and di�cult task. Nevertheless, we believe that units of the sort used in our work

are closer to the minimum complexity acceptable for generating adaptive behaviours than

are the simpler units of prior work. For this reason, the problems of design and analysis

have to be tackled, rather than avoided by introducing simpli�cations. Our approach has

been to, as far as is possible, automate the design of the networks by employing our own
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extended form of genetic algorithm, known as saga. Whereas most genetic algorithms

are essentially performing optimisation in a �xed parameter space, saga allows for the

dimensionality of the parameter space to be under evolutionary control, by employing

variable-length genotypes. In terms of the networks, this means we are able to start with

a population of agents each of which has a minimal number of units: extra units may

be introduced by mutation, and will only be retained if they increase the evolutionary

success of the mutated agent: our automatic network generation is truly incremental.

The rest of this paper discusses the neuron model and network simulations in more

detail. Following this, details of the how the networks are encoded as genes suitable

for use with saga are given. Next, we discuss the adaptive behaviour evolved in our

simulated agents, and present brief analysis of how the performance of the �nal evolved

networks alters as the internal noise level is varied. For further details of our rationale,

see [2, 9], and for full details of the visual sensing employed, see [4].

2 The Model Networks

Because our networks are recurrent, there is no clear divide between di�erent `layers' (c.f.

input, hidden, and output layers found in back-propagation networks). Nevertheless, for

the purposes of generating adaptive behaviour, it is necessary to designate some units

as receiving input from sensors, and others as producing outputs to actuators (such as

motors). As is discussed in [3], this designation may be distorted by the evolutionary

processes. The remainder of this section discusses details of the neuron model, and how

the networks architectures are encoded as `genes' which can be operated on by the saga

genetic algorithm.

2.1 The Neuron Model

The neuron model we have employed in our work to date has separate channels for

excitation and inhibition. Values propagate along links between units, and are all real

numbers in the range [0; 1]. All links are subject to a delay �t. Figure 1 shows a

schematic block diagram of the operations within a single model neuron. Unusually, the

inhibition channels operate as a `veto' or `grounding' mechanism: if a unit receives any

inhibitory input, its excitatory output is reduced to zero (but it can still inhibit other

units). Excitatory input from sensors or other units is summed: if this sum exceeds a

speci�ed veto threshold t

v

, the unit produces an inhibitory output. Independently, the

sum of excitatory inputs has uniform noise (distribution: [�n;+n] 2 R) added internally,

and is then passed through an excitation transfer function, the result of which forms the

excitatory output for that unit, so long as the unit has not been inhibited.

More formally, the excitation transfer function T takes the form:

T (x) =

8

>

<

>

:

1 if x � t

u

0 if x � t

l

(x=(t

u

� t

l

))� (t

l

=(t

u

� tl)) otherwise

where t

l

and t

u

are lower and upper threshold levels. The veto output function U takes
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Figure 1: Schematic block diagram showing operations within a single model neuron. See text for

further explanation.

the form:

U(x) =

(

1 if x � t

v

0 otherwise

where t

v

denotes the veto threshold, and the veto input function V is:

V(x) =

(

0 if x > 0

1 otherwise

Because there are separate excitation and inhibition channels, two connectivity ma-

trices are required: a veto matrix V (where each element v

i;j

indicates whether unit i

vetoes units j), and an excitatory matrix W , with elements w

ij

. Then, if o

ej

(t) and o

vj

(t)

respectively denote the excitatory output and veto output from unit j at time t, and

N

j

(t) denotes the internal noise injected to unit j at time t, the output channels from

unit j can be expressed as:

o

vj

(t) = U(

X

8i

w

ij

e

vi

(t ��t))

o

ej

(t) = V(

X

8i

v

ij

o

vi

(t��t)) � T (N

j

(t) +

X

8i

w

ij

o

ei

(t��t))

In most of our work, we have used: t

l

= 0:0; t

u

= 2:0; t

io

= 0:75; and noise n = 0:1;

for all units. The dynamic properties of these units are simulated using asynchrous �ne

time-slice approximation techniques, with random variations in time-cycling to counter-

act periodic e�ects. Signi�cantly, we have found that this neuron model is su�ciently

sophisticated that there has been no need to introduce variable weights on the links be-

tween units, or variable delays: in all our work, weights and delays are all set at one,

for all links in the network. Nevertheless, we are actively investigating the use of placing

such parameters within evolutionary control.
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2.2 The Genetic Encoding

To enable the use of saga, the network architecture has to be encoded as a `gene'. In

our work to date, we have used a genetic encoding scheme which stores the \wiring

diagram" (connectivity data) for the network as a string of alphanumeric characters. For

further details of the encoding, see [9]. The encoding has been developed to be robust

with respect to the mutation and crossover operators, where `robustness' indicates that

if a new gene is formed via crossover and mutation from two \parent" genes, and the

parent genes encode valid networks, then the resultant new network will also be valid. A

network is valid insofar as all the links in the network connect one unit to another: for

each individual agent, the control network is initially randomly connected (but valid). It

is our evolutionary learning algorithm, saga that develops these random networks into

useful control architectures.

Briey, saga di�ers from other genetic algorithms in that it allows for variable-length

genotypes, which allow for the dimensionality of the search space to be varied under evo-

lutionary control. Other authors have explored the use of genetic algorithms in creating

sensory-motor controllers for adaptive behaviour (e.g. [1, 5]), but (as far as we are aware)

all such work has involved using genetic search in a parameter space of �xed dimension-

ality: a relatively constrained optimisation task. For example, in [1], Beer and Gallagher

use a genetic algorithm to �nd parameter values for a dynamical neural network control-

ling hexapod (six-legged) locomotion. For the subnetwork controlling each leg, there are

40 free parameters (thresholds, time constants, and weights) [1, p.107], the values of which

are found by genetic search. Constraints are introduced so that, for the full six-legged

network, only 50 free parameters need be searched, rather than the 990 that would be

required if the six leg-controller subnetworks were fully interconnected with each other [1,

pp.107{108]. The important factor here is that the researchers have introduced a priori

constraints to reduce the size of the �xed space searched by their genetic algorithm. In

contrast, we use saga to search a parameter space whose dimensionality is, for practical

purposes, not prede�ned : the number of connections and internal \hidden" units in a net-

work speci�es a search-space of a particular number of free parameters, but by allowing

variable-length genotypes, extra connections or hidden units may be introduced, which

has the e�ect of increasing the dimensionality of the search space. However, search will

only be maintained in the higher-dimensional space if it leads to �tter network archi-

tectures: it is perfectly feasible that, under particular �tness evaluation functions, �tter

solutions may lie in lower-dimensioned search spaces. Thus, we can start with relatively

minimal randomly-speci�ed valid network architectures, and rely on the use of saga to

establish whether larger networks with more free parameters are required. It is in this

sense that we refer to saga as truly incremental.

One notable feature of the saga approach is that the initially random population of

individual genotypes converges, over evolutionary time, to a situation where the popula-

tion is evolving as a species. See [8, 6, 7] for full details.
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3 Evolving a Visually Guided Robot

Here we briey present some recent results. We attempted to evolve networks for a simple

adaptive behaviour, which was for a simulated

1

visually guided robot to spend as much

time as possible in the centre of a circular arena. The robots have two independent

drive-wheels and a third free-wheel. The drive wheels may go at either full or half speed,

either forwards or reverse, so the robot is capable of rotating on the spot, or travelling in

wider-radius circles, or in straight lines, or stopping still.

Each robot had six tactile sensors: two `bumpers' (at front and back), and four

radially symmetric wire `whiskers'. The tactile sensors are primarily of use in detecting

collisions with walls of the arena, and appropriately reorienting. The robot also has two

directionally-sensitive photoreceptors, which allowed it to visually sense its environment

(the walls of the simulated arena are dark, while the oor and ceiling are light).

Each individual robot was positioned at a randomly chosen point near the edge of the

arena, in a random orientation. The robot then had a �xed �nite `lifetime', in which it

had to get as close to the centre of the arena as it could, and then stay there. The robot's

performance was evaluated by taking the gaussian function of a discrete temporal integral

of its distance from the arena-centre during its lifetime: the higher the evaluation function,

the more time the robot spent at or near the centre. As is demonstrated in [4], this is

su�cient to evolve controllers for visually-guided behaviours: no explicit speci�cation of

visual processing is required.

We created a population of 60 robots with initially random genes, and evaluated each

one over eight `lifetimes'. At the end of the evaluation, we took the robot's worst score

as a measure of its performance (best and average scores are too often deceptively high).

When all 60 robots had been evaluated 8 times, the genes of the higher-scoring robots

were `inter-bred' using saga principles to create a new generation of 60 individuals. We

repeated this process for 100 generations.

The typical behaviour of a robot controlled by an evolved network is that it �nds its

way to the centre of the circular arena, and then stays there by spinning on the spot. This

is a perfectly acceptable strategy, given that the robots were evaluated only on the basis

of how much time they spent at the centre, and not on the basis of how much energy they

used. In this paper, we will consider two of the best evolved robot controller networks,

referred to as C1 and C2. The architectures of the two networks are shown in Figures 2

and 3. Typical behaviours exhibited by the robots controlled by these networks are shown

in Figures 4, 5, and corresponding time-plots of sensor inputs, internal activations, and

motor outputs, are shown in Figures 6 and 7.

As can be seen, the networks do not resemble the sort of networks which are tradi-

tionally published in the literature, but then this network was not designed by a human:

it evolved according to Darwinian principles. Yet the plots of the activity of the networks

clearly indicate that the robot is approaching the centre of the arena and staying there:

they achieve their speci�ed task. For further analysis of these networks, see [3]. The next

1

The simulations involve accurate physical and kinematic models of a real robot constructed at Sussex.

Vision was simulated using ray-tracing with anti-aliasing via 16-fold super-sampling. See [4] for further

details.
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section discusses our �ndings from studies of varying the amount of internal noise in the

neuron model.
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Figure 4: Typical behaviours of the robot controlled by evolved networks. The �gure shows a top-down

view of the circular arena; the robot's position is marked by an arrow: the length of the arrow-shaft

represents the diameter of the robot; the direction of the arrow shows the orientation of the robot (not

necessarily the same as the direction of travel).

Figure 5: Behaviour of the C2 controller; note that C2 drives the robot backwards (i.e. in reverse).
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Figure 6: Time-plots of sensor, motor, and internal activation values for the C1 behaviour plotted in

Figure 4. From top, graphs show: robot's velocity; distance of robot from centre of arena; visual input

to left eye; visual input to right eye; output of motor for left wheel; output of motor for right wheel;

excitatory output of the model neurons (\units") in the network.
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Figure 7: Time-plots of sensor, motor, and internal activation values for the C2 behaviour plotted in

Figure 5. Display format as for Figure 6.
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4 Varying the Noise

As was mentioned above, each robot is monitored for the same �xed amount of time,

during which its �tness value is calculated. For further details of this process, see [3].

For the purposes of this discussion, it is su�cient to note that, if the robot spent all its

time at the centre, it would receive a score of 100. But, because each robot's randomly

chosen initial position is always some distance from the centre, this maximum score can

never be reached: an optimum controller would score about 85 points. A robot which

never moved would score less than one.

For the C1 and C2 controllers, after 100 generations of evolution, both networks

managed an average score of around 65 (peak scores were nearer 80). These are the

scores obtained with internal noise n = 0:1 injected in the model neurons. Both networks

were then tested with di�erent values of n, varying from n = 0 (i.e. no noise) to n = 1:0

(i.e. noise uniformly distributed in the range [�1:0; 1:0]). For each value of n, the network

was evaluated 80 times, and the average score taken. Results from these tests are shown

in Figure 8.
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Figure 8: Results from testing with varying noise distributions. Left graph is for the C1 network; right

graph is for the C2 network. Ordinate is average performance score over 80 trials. See text for discussion.

As can be seen from the graphs, both controllers show their peak performance close

to n = 0:1, which was the value used in evolution. The performance of C1 degrades fairly

gracefully as n increases, whereas C2 rapidly fails. Figure 9 gives a qualitative impression

of C1's responses as noise is varied. However, a much more signi�cant observation is the

fact that both controllers exhibit a signi�cant loss of performance when n = 0; this is

discussed further below.
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Figure 9: Typical behaviour resulting from using C1 with varying levels of internal noise. Display

format as for Figure 4. At the top, on the left noise �0:2, on the right �0:4. Below, on left �0:6, on right

�0:8.

4.1 Discussion

Further examination of the results indicates that the drop in performance when noise

is eliminated is due to the recurrent dynamical nature of the networks: the recurrency

implies that the network architectures contain feedback loops at a number of levels. That

is, it is common to see a unit with connection(s) to itself, or two mutually excitatory units,

or cycles of excitatory links incorporating several units. In such cases, low levels of internal

noise may build up over time by a process of accumulation through feedback loops.

However, because the noise distribution is centred on zero, it is also possible that these

high levels of activity could then be driven downwards by injections of negative noise:

therefore, when noise is injected into networks of the type we use, so-called \drunkard's

walk" phenomena emerge; where activation values `wander' between upper and lower

bounds; and in certain feedback con�gurations, circuits with quasi-periodic oscillatory

activity can be seen to evolve. For supporting theoretical analysis, see [10].

So, when the noise is eliminated, any parts of the neural circuitry which act as ac-

cumulators or oscillators in the presence of noise will be rendered ine�ective, and the

performance of the controllers is consequently impaired. In both the C1 and C2 net-
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works, the drop in average performance was due to an increase in the number of near-

zero scores: peak scores were still high, but under certain conditions the absence of noise

allowed the activity in the network to fall to such an extent that the robot was rendered

immobile. Put more formally, the noise helps the state trajectory of the controller system

from becoming trapped on attractors which correspond to inactivity or unproductive be-

haviours. In this sense, it is realistic to describe the networks as using noise to produce

useful behaviours.

This is a signi�cant issue: if networks evolve to take advantage of internal noise, then

it is important to ensure that the internal noise used in simulation (i.e. during evolution)

closely matches the true noise levels that will be found when the evolved controller is put

into use. In our current work, this is something of a non-issue because the real robot

can be controlled by evolved networks simulated in the same manner as was employed

in evolution, using the robot's on-board microcomputer. However, if our methods are

used to develop control networks which will be realised in hardware, with each model

neuron implemented as an electronic circuit, then it is essential that a fairly precise

characterisation of the tolerances and internal noise distributions of the model neuron

circuit should be incorporated in the evolution simulation.

5 Conclusion

Our work is motivated by concerns that prior network models may have been over-

simplistic, and have not paid su�cient attention to the generation of adaptive behaviour.

We have demonstrated that, using a neuron model with elementary dynamics, recurrent

networks can exhibit rich dynamical activity that is not unduly hampered by noise,

and can be used for evolving controller networks that generate adaptive behaviour. We

have presented results which indicate that the networks use noise to avoid the e�ects

`unproductive' attractors can have on the state trajectory of the controller network. The

evolved networks have a distinctive appearance, in that they do not resemble networks

designed by humans. As far as we know, we are the only research group who have

successfully employed truly incremental evolution in creating dynamic recurrent networks

for the generation of adaptive behaviour. We expect that our techniques will, as time

progresses, become standard practice.
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