
To appear in Proceedings, First IEEE International Symposium on Requirements Engineering, San

Diego, California, 4-6 January 1993

Domain Modelling with Hierarchies of Alternative Viewpoints

Steve Easterbrook

School of Cognitive and Computing Sciences, University of Sussex,
Falmer, Brighton, BN1 9QH, UK. <e-mail: Easterbrook@cogs.susx.ac.uk>

Abstract
Domain modelling can be used within requirements

engineering to reveal the conceptual models used by the

participants, and relate these to one another. However,

existing elicitation techniques used in AI adopt a purely

cognitive stance, in that they model a single problem-

solving agent, and ignore the social and organisational

context. This paper describes a framework for representing

alternative, conflicting viewpoints in a single domain

model. The framework is based on the development of a

hierarchy of viewpoint descriptions, where lower levels of

the hierarchy contain the conflicts. The hierarchies can be

viewed in a number of ways, and hence allow the

participants to develop an understanding of one another’s

perspective. The framework is supported by a set of tools

for developing and manipulating these hierarchies.

1 Introduction

Domain modelling has an important role in require-

ments engineering. A domain model can form the basis

for developing a specification, but more importantly, it

provides a focus for the analysts’ understanding of the

design task. There are a number of techniques for eliciting

conceptual models of a domain, many of which were

developed in AI. However, it is not clear how these tech-

niques might be adapted for requirements engineering.

There is clearly a relationship between domain models

and specifications. For example, it is common to talk of a

"knowledge level" description of an AI system, to abstract

away from the implementation. However, it is not this

relationship in which we are interested. Rather, we regard

domain modelling as an exercise in externalising concep-

tual models of the domain used by participants in the

software design process. By externalising these models,

participants share them with one another, and develop an

understanding of each other’s perspectives. This provides a

basis for communication between disparate communities,

while reducing the chance of misunderstandings.

This paper presents an approach that allows many

different viewpoints to be combined into a single domain

model without necessarily resolving conflicts between

them. Conflicts are treated an important part of the

domain, and need to be represented and understood.

1.1 A socio-cognitive stance

For a software engineering team to work together

effectively, careful co-ordination is required. This implies

that members of the team must have a degree of shared

understanding of the task. Achieving and maintaining this

shared understanding can be difficult, given the complexity

of the task. To a certain extent a shared understanding is

established through the production of key documents

during the software process, which define the task through

a series of publicly examinable specifications.

However, misunderstandings, breakdowns of co-

ordination, and conflicts still occur in the software

process. Part of the problem is dealing with the sheer

amount of information involved, and the changeability of

that information. A recent field study of the behavioural

aspects of software design [1] identified three major

problem areas: the thin spread of application domain

knowledge; fluctuating and conflicting requirements; and

breakdowns in communication and co-ordination.

Abstractions help the software team to cope, but also

introduce new problems. An abstraction represents a

particular perspective, suppressing detail that is irrelevant

to that perspective. If the assumptions on which an

abstraction is based are not articulated, it may be difficult

to understand and evaluate the abstraction. Robinson &

Bannon [10] suggest that disparities between designers’

goals and the way systems are used are often due to

‘ontological drift’: as abstractions pass through the

different sub-groups of an organisation they are interpreted

in terms of that particular community’s set of meanings,

which frequently do not map onto other groups’ sets of

meanings. Consequently, as the design progresses through

the organisation, it is subjected to differing analyses and

interpretations.

We argue that problems of ontological drift can be

tackled using a process of collaborative domain modelling

to develop shared understanding between communities. In

particular, we wish to apply the techniques developed in

knowledge acquisition for eliciting conceptual models.

However, there are some important differences between the

concerns of requirements engineering and knowledge

acquisition. Current research in the latter focuses on

models of problem solving behaviour, with the goal of

implementing systems that demonstrate such behaviour.

Emphasis is placed on imitation of an expert’s perfor-

mance. No attempt is made to model the social and organ-

isational setting in which the behaviour is embedded, as is

consistent with a purely cognitive stance. On the other

hand, much of software engineering deals with systems

that support human activities, and hence an understanding

of the social and organisation setting is crucial.

We take a ‘socio-cognitive’ stance, by which we mean

we are interested in the interaction of cognitive and social

activities, including issues of shared understanding, and

the relationship of mental representations with their social

and cultural settings. Instead of modelling a single

problem solving agent, we are modelling an organisation.

Knowledge needs to be elicited from many different

sources, and hence we need to deal with many different

viewpoints, and the inevitable conflicts between them. In

effect, our domain model will encompass a number of

different conceptual models, representing different

viewpoints and different roles within an organisation.

2 Related Work

The need to deal with multiple views is central to

requirements engineering, and a number of approaches

have emerged. For example, CORE [13] introduced the

notion of viewpoints. These represent components of the

system and its environment, and can be organisational,

human, software, or hardware. Areas of authority for each

viewpoint are precisely defined. There is no redundancy,

and hence no overlaps between viewpoints. Differences

can remain in the expected interaction between view-

points, which are ironed out in later steps of the method.

Effectively, the viewpoints are not used to represent

different views of the world, but together represent a

single consistent view of the many agents in the world.

Our approach to requirements engineering demands that

we support alternative views, to be compared and merged

collaboratively. Fickas reviews some of the most promis-

ing approaches [5], including Gradual Elaboration [8], in

which a small number of types of step are available to

build a specification incrementally, Parallel Development

[4], in which partial specifications are developed separately

according to different development concerns, and merged at

a later stage, and Knowledge-Based Critiquing [6] in which

an intelligent model of the domain is used to debug a

specification. Of these, the parallel development approach

is the most successful at supporting collaboration, with

the merge process acting as a focus for conflict resolution,

forcing the analyst to document the interaction between

different aspects of the specification. However, it is not

clear how the merge operations should best be carried out.

One approach to easing the integration of separate

specification components is through tools that support

negotiation. Robinson [11] uses a single arbitrator to

evaluate preferences expressed by various perspectives, and

to guide the search for new solutions. A single domain

model is used, in which needs are expressed as goals, and

perspectives associate different values with these goals.

Integration involves searching for novel combinations of

proposals, which increase the satisfaction of all perspec-

tives. A joint outcome space is used to identify an ideal,

but probably unachievable combination of perspectives, to

stimulate consideration of other combinations that come

close to this ideal. By contrast, Easterbrook [3] presents a

domain-independent technique for resolving conflicts

through a process of finding and classifying correspon-

dences between alternative domain descriptions.

Finkelstein has formalised the notion of a viewpoint as

having the following components [7]:

– a style, which is the representation scheme used;

– an area of concern, or domain;

– a specification, which is the set of statements in the

viewpoint’s style describing the area of concern;

– a work plan, which describes how the specification

can be changed, and any constraints on it;

– a work record, which describes how the specification

developed, and its current status.

This definition abstracts away from the people involved,

allowing one person to have several viewpoints (i.e.

several areas of concern), and one viewpoint to represent

several people (i.e. where people share an area of concern).

These approaches all provide the ability to model

different viewpoints. Further work is needed to clarify how

conflicts can be represented. A major issue is the need to

establish common ground between viewpoints. The

participants must have enough common ground to

communicate; such common ground is needed before

conflict can be expressed and recognised. In many of the

above models, the common ground is assumed: in parallel

elaboration the common ground is the initial specification

from which the separate developments proceed; in

Robinson’s approach, it is the shared domain model. The

formalised viewpoints model makes no assumptions about

common ground, and even allows different representation

schemes to be used. However, it is not yet clear how

correspondences can be found between viewpoints.

3 Representing Multiple Viewpoints

In [2], we describe a model of requirements elicitation

from multiple viewpoints, where a viewpoint is a self-

consistent description of an area of knowledge with an

(a)

maximise(circulation)

maximise(circulation) -> lending_limits

lending_limits -> fines

(b)

maximise(circulation)

maximise(circulation) -> lending_limits

lending_limits -> fines

not(fines)

(c)

maximise(circulation)

maximise(circulation) -> lending_limits

lending_limits->fines not(fines)

Figure 1: Evolving viewpoints. (a) A view-
point representing a librarian. (b) The
librarian adds the assertion ‘not(fines)’. (c)
A family of viewpoints is created, to handle
the inconsistency.

identifiable originator. Here we concentrate on problems

of identifying and distinguishing separate viewpoints, and

building viewpoints to represent them. We present

Analyser, an object-oriented tool for manipulating

hierarchies of related viewpoints, where descendant view-

points represent areas of uncertainty and conflict.

Analyser does not provide a method for elicitation of

requirements, but simply provides an environment in

which the elicited knowledge can be represented and

manipulated. The viewpoints use any suitable formalism,

and have no internal structure other than that provided by

the formalism. As such, they capture partial descriptions

of the world (‘perspectives’), without prescribing the

components of those descriptions. The system makes no

prescription for the requirements specification, but

concentrates on the domain modelling aspects of

requirements engineering.

4 Identifying Viewpoints

Before the acquisition process begins, there is little

indication of what the relevant viewpoints are, and yet it

is desirable to know which viewpoint an item belongs to

when it is elicited. Most attempts to provide intelligent

support for requirements definition make use of a pre-

existing domain knowledge base (e.g. [9]). In general,

however, the prior existence of such a knowledge base

cannot be assumed: requirements elicitation is the initial

exploration of a new application. The knowledge needed to

distinguish viewpoints is unlikely to be available prior to

elicitation of the knowledge embodied in the viewpoints.

Furthermore, distinctions between viewpoints might

only become apparent in retrospect. Our viewpoints do

not correspond to people. We regard a viewpoint as a

description of the world from a particular angle. More

precisely, it represents the context in which a role is

performed. Not only is it not always clear which

viewpoint a person is using at any one time, but

viewpoints can be shared by groups of people or

organisations. This can make it difficult to identify an

appropriate viewpoint for any particular item.

4.1 Evolving Viewpoints

Rather than create an extensive set of viewpoints

beforehand, the analyst evolves them as distinctions

between them become clear. The support environment

must allow a degree of fluidity in the representation of

viewpoints, so that the descriptions can be re-organised

into new viewpoints when new distinctions are discovered.

As a starting point, an initial set of viewpoints corre-

sponding to the people with whom the analyst interacts is

used. All assertions that a particular person makes are

collected as a viewpoint, to represent that person’s

conceptual model. As an example, for a library system,

the analyst may initially talk to two people: a librarian

and a user. Two viewpoints would be created, to keep their

contributions apart. As the elicitation continues, other

people may need to be interviewed, and new viewpoints

are added to represent them.

We noted that viewpoints do not correspond to people.

If an inconsistency arises within a viewpoint, then either a

mistake has been made, or the originator has been using

several incompatible perspectives. In this case the view-

point is split into several viewpoints to represent these

separate perspectives, as our definition of a viewpoint

specified that it be a self-consistent description. There are

several situations in which the need for such a split

becomes clear; these are discussed in more detail below. In

general, a viewpoint will need to be split if it contains

conflicting knowledge, or if a different representation is

needed for some part of the knowledge.

The Analyser system copes with conflicts by creating

families of viewpoints to handle them. New viewpoints

are descendants of the original viewpoint, so that they

inherit the original description. Conflicting items are

placed in different descendants, so that individually, each

remains self-consistent. Any items that are consistent

with both descendants remain in the original viewpoint, to

be inherited. The process is illustrated in figure 1.

When choosing which items to move to the descen-

dants to isolate the conflict, there are often several combi-

nations to choose from. For example, in figure 1 it would

Viewpoint Splitting Algorithm
1) Test for inconsistencies if the new item (A) were added to
a viewpoint. However, A is not added to the viewpoint yet.
2) If there are no inconsistencies, add A to the viewpoint.
3) If there is an inconsistency, then:

i) Create a descendant, X , to contain A . A is the
motivating statement for X.

ii) Create another descendant, Y.
iii) If not(A) is in the original viewpoint, then move it

to Y . Record not(A) as the motivating statement for Y ,
whether or not Y contains it.

iv) If any items in the original viewpoint are inconsistent
with Y, move them to X.

v) If any items in the original viewpoint are inconsistent
with X, move them to Y.

Figure 2: The algorithm for splitting
viewpoints.

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc...

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc... borrowing
curtailed

borrowing
restricted

Figure 3: A possible hierarchy of librarian
viewpoints, concerning the question of
fines. The diagram shows two possible sets
of active viewpoints.

be sufficient to separate any pair of statements. As the

viewpoint was (by definition) consistent before the newest

item was added, the new item can be considered to have

caused the inconsistency. Hence the newest item is always

chosen for one descendant, and the system attempts to

identify the closest conflicting item for the other. In this

case it is the last step in the inference chain which

generated the inconsistency. The new item that caused the

inconsistency, and its negation, are the motivating

statements of the two descendants respectively. The

algorithm for splitting viewpoints is given in figure 2.

There are several ways of viewing the resulting family

of viewpoints. The original viewpoint still exists as far as

the analyst is concerned, and can be seen to contain

competing descriptions of some particular sub-topic. At

some later date, a choice might be made, and the

descendants merged into a single consistent description.

The remainder of the viewpoint remains consistent, and

can still be used for inference. An alternative interpretation

is that there are now two separate viewpoints that happen

to share some areas of description: each is composed of

the union of one descendant with the parent viewpoint.

The process of refinement will eventually turn the

original set of viewpoints based on people into a hierarchy

of viewpoints, where each inherits the contents of its

ancestors. In particular, all viewpoints can be regarded as

having a single global ancestor, which holds any

consensus information. This global viewpoint can be

regarded as shared knowledge.

4.2 Viewpoint Hierarchies

Given the procedure described above, hierarchies of

viewpoints will develop as the elicitation proceeds. These

hierarchies are unlimited in depth, as descendants them-

selves may contain conflicts. The process can be regarded

as exploration of possibilities: if each split represents a

conflict requiring a decision, then each choice can be

explored in more detail, uncovering further conflicts. For

example, consider the librarian viewpoint. There may be

disagreement over whether fines are needed, and so two

descendants are created to represent these positions. The

viewpoint that advocates fines might itself be divided over

the type of fine needed (e.g. fixed or incremental), and then

further divided when the actual level of fine is considered

(see figure 3). The discussion of these latter issues does

not pre-suppose a decision has been taken about whether

to have fines, and the viewpoint that excludes fines is still

part of the model.

This example also serves to illustrate that the set of

relevant viewpoints varies depending on how the system

is viewed, and the hierarchies can be used for information

hiding. In the above example, when concentrating on

another part of the domain, we may wish to ignore the

conflict over fines, and consider there to be a single

librarian viewpoint (i.e. the common ancestor in figure 3).

At some point, another part of the model may depend on

whether we have fines, and so it would be useful to

consider there to be two librarian viewpoints, one that

wants fines and one that doesn’t. At a greater level of

detail still, we might consider there to be several

viewpoints, representing the different types of fines.

Clearly the set of relevant viewpoints varies according to

the level of detail needed (Figure 3).

Analyser supports this process of information hiding

LibrarianÕs

Viewpoint

Description

Area of

dispute

Competing

alternatives

fines

¬ D

D

?fines?

D??
C??

C ¬ C

not
fines

Figure 4: A single viewpoint may contain
several areas of uncertainty. The alterna-
tives are the descendants of the viewpoint.

by keeping track of which set of viewpoints are active.

Active viewpoints are displayed in full. Inactive

viewpoints are not displayed, but their presence is

indicated by flagging the disputed part of their parent

viewpoint. By selecting this flagged part, the user can ask

to view the descendants, and add them to the list of active

viewpoints. Making descendants active in this way can be

regarded as instantiating what the entire viewpoint would

look like if each of the descendants were chosen to resolve

the conflict. This can be useful for exploring consequences

of decisions. When descendants become active, their

common parent is no longer considered as a single

viewpoint, and so is no longer active. Once active,

viewpoints can be de-activated in favour of their parent.

The inheritance structure implies that the higher an

item in the hierarchy, the more widely agreed it is.

However, the hierarchies are developed as distinctions

between viewpoints are discovered. There is no guarantee

that the more fundamental distinctions will be recognised

earlier than those concerned with detail, even though the

former ought to appear higher in the hierarchy. While

interviews with originators naturally tend to start with

general concepts, and gradually focus in on details, funda-

mental disagreements are often not discovered until the

details are explored. For example, in figure 3, the

hierarchy should probably be arranged with the question of

sanctions higher than the question of fines, as fines are a

form of sanction. However, the question of fines occurred

early in the discussions, and discussion about sanctions

only occurred when considering what would happen if

there were no fines. In fact, the hierarchy will not always

develop by expansion of the leaves; there may

occasionally be a need to rearrange things higher up. In

the next section we discuss how to determine at what level

in the hierarchy a split should occur.

There are many ways to structure the set of viewpoints

into hierarchies. The example in figure 1 illustrated that it

can be hard to determine which item(s) are in dispute. It is

correspondingly hard to determine how viewpoint splits

might interact. In many cases a split only affects a small

part of the viewpoint, so that the new descendants inherit

a large body of common material. A future split in a

different area of this common description might be

entirely independent of the first split. Hence, a viewpoint

may be split in several different places, and have several

different sets of descendants.

A viewpoint description with several different sets of

descendants can be regarded as a description containing

several areas of uncertainty. For each of those areas,

several options might exist (see figure 4). Furthermore,

some options might also contain areas of uncertainty.

This view of the situation applies when the original agent

is active. However, if we make some of its descendants

active, the case isn’t quite so simple. As each descendant

inherits the whole of the parent description, it inherits any

other areas of uncertainty within that description. Hence if

one set of descendants are activated, any other descendants

of the parent viewpoint appear to be descendants of each of

the newly activated viewpoints (figure 5).

4.3 Placing Items

Initially, when the viewpoints represent people, there

is no difficulty determining to which viewpoint each piece

of information belongs. However, as the viewpoint hierar-

chies develop, the simple relationship between people and

viewpoints breaks down. While each viewpoint has a

specific originator, an originator may be represented by

several viewpoints. When a person is describing some area

of knowledge, it may not be clear which perspective that

person is using, and hence which viewpoint to place the

description in.

All the viewpoints corresponding to a particular

originator will be in a single hierarchy, having a single

ancestor. The viewpoints in the hierarchy all inherit from

this ancestor, and so any new item by that originator

could be placed in this top-level viewpoint. If the new

item is consistent with all previous items from the same

originator, the new item does belong in this viewpoint.

Unfortunately, checking consistency with all the

descendant viewpoints is computationally expensive: one

of the aims of using viewpoints was to reduce the need for

consistency checks.

The problem can be solved by the observation that new

knowledge is rarely elicited in isolation. During

elicitation, most items will be related to their immediate

(a)
fines no fines

reserve
collection

no reserve
collection

librarian
viewpoint

(b)

¬ F

F

R ¬ R

¬ F ¬ F

F

FR R¬ R ¬ R

Figure 5: A descendant inherits from its
parent other (unrelated) conflicts in that
parent. If the parent is active, it appears to
have several sets of descendants (a). If
one pair of descendants is active, each
member will inherit the other pair (b). The
two hierarchies in (b) are equivalent, but
are displayed differently.

a)

No lending
restrictions

Lending
restrictions
with fines

Incremental
fines

librarian
viewpoint

fixed
fines

 b)

fixed
fines

No lending
restrictions

Lending
restrictions
with fines

librarian
viewpoint

Incremental
fines

No
fines

 c)

librarian
viewpoint

Incremental
fines

Fixed
fines

No lending
restrictions

Lending
restrictions

With
fines

Without
fines

Figure 6: Splitting viewpoints within a hierarchy. The originator was elaborating the shaded
viewpoint in (a) when she reflected “of course, we may not need fines”. This conflicts with
“incremental fines”. If the shaded viewpoint was split (b), there would still be a conflict with
“lending restrictions with fines” inherited from above. The system works up the hierarchy,
to isolate the conflict. In this case the “lending restrictions” viewpoint is split (c).

predecessors; during validation, new information is added

in reaction to an existing viewpoint. The system records,

for each originator, which viewpoint was last accessed,

and uses this as a default for any new items.

The new item is checked for conflicts with the view-

point to which it is added. If there is no conflict, it can be

added directly. However, it is possible that the new item

may conflict with one of the descendants, as the descen-

dants contain more detail. Rather than check all the

descendants immediately, checking is deferred. As the

viewpoint to which the item was added is active, none of

its descendants can be. Hence, the descendants are flagged

as possibly inconsistent, to be checked when (and if) they

are made active.

If the new item conflicts with the viewpoint to which

it is added, then the viewpoint needs to be split. In fact, it

may not be appropriate to split the current viewpoint, as

the conflict might occur higher up the hierarchy. The

viewpoints at each level in the hierarchy contain less

detail than the ones below, so the system moves up the

hierarchy. The highest viewpoint with which the item

conflicts is the one that is split. Figure 6 illustrates this

process. Figure 7 describes what happens to existing

descendants of the viewpoint to which the item is added.

We noted that the item that caused a viewpoint to be

split is recorded as the motivating statement for the new

descendant. If it is retracted or modified, it may remove the

conflict, making it possible to re-unite the descendants.

4.4 Functionality of Viewpoint Creation
Tools

Analyser is a menu-based system for the creation and

manipulation of a set of viewpoints. All viewpoints

within the system are either added directly by the analyst,

or created by the system to handle conflicts. Viewpoints

added by the analyst are usually identified either by the

originator’s name, or the name of a role played by the

originator. Viewpoints that are created automatically are

identified by their motivating statements. These

viewpoints can be renamed by the analyst, if they appear

to represent identifiable perspectives.

Commands are provided to create and rename

viewpoints, list the active viewpoints and to display the

contents of a particular viewpoint. Active viewpoints can

Inheritance Rules for New Descendants
1) If no previous descendants exist, the usual algorithm
(figure 2) is used (a, b).
2) If the item is inconsistent with the viewpoint, then it
follows that it is inconsistent with all descendants. In this
case, two new descendants, X and Y are created. X will
contain the new item, while Y represents the status quo. Any
previous descendants become descendants of Y (c).
3) If the item is consistent with the viewpoint, it might be
inconsistent with some existing descendants. For each
family, test whether the new item is consistent with each
descendant. The following situations are possible:

i) The new item is consistent for all existing
descendants. In this case it can be added directly to the
original viewpoint (d).

ii) The new item is inconsistent with all existing
descendants. In this case rule 2 above applies (c)

iii) The new item is consistent with some descendants
and not others. If only one descendant in each pair is
inconsistent with the new item, it is placed in the alternative
to this descendant (e, f). Otherwise, two new descendants, X

and Y are created, as in rule 2. Pairs that are consistent with
the new item become descendants of X ; any that are both
inconsistent become descendants of Y (g).

Figure 7: Rules for creating descendants.
(Letters refer to the examples in figure 8).

be selected to be de-activated, in favour of an ancestor. In

this case any siblings are also removed from the list (This

action is not available for top level viewpoints). When the

contents of an active viewpoint are displayed, any areas of

conflict are flagged with question marks. These can be

expanded by activating the descendant viewpoints. In this

case the original viewpoint is removed from the list of

active viewpoints. Note that when a viewpoint is

displayed, all the items inherited from ancestor viewpoints

are also shown.

5 Inference Rules and Conflict Detection

As the model makes no restrictions on the

representation schemes used for viewpoints, the type of

reasoning that can occur within the knowledge base can

vary. We assume that an inference engine is provided for

any representation languages used. Inference rules for each

representation are held as a separate viewpoint, from

which the viewpoints using that representation inherit.

This maintains the modularity of the environment, and

allows new representations to be introduced as necessary.

When we discussed splitting inconsistent viewpoints,

we didn’t clarify how conflicts are detected. A set of

routines to test for conflicts are needed for each

representation scheme, which are stored with the inference

rules. In this way, the kinds of conflict tested for in each

representation can be varied as desired. For example, the

rules for detection of conflict might be based on detection

of logical inconsistencies (as in the examples above),

a)

A

B

C

D

A

B

C assert(D)

b)

A

B

¬ D A

B

¬ DD

assert(D)

c)

A
B

¬ D

Z ¬ Z

A
B

¬ D D

Z ¬ Z

assert(D)

d)

A
B

Z ¬ Z

A
B

D

Z ¬ Z

assert(D)

e)

A

B

¬ D
¬ E E

A

B

¬ D
¬ E E

D

assert(D)

f)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D

A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D D

g)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D

¬ D

A

B

¬ C Z ¬ ZC

¬ D D

Figure 8: Examples of descendent
creation. Note that when a new item is
added to one descendant, all other families
automatically inherit the split that contains
the new addition, as shown in figure 5.

together with tests for clashes of terminology.

New representations can be added to the system by

adding a viewpoint containing inference rules, and a set of

rules for detection of conflicts. We have not attempted to

investigate the various mechanisms in detail, but assume

that inference rules have been developed elsewhere for each

representation scheme used. Currently Analyser supports

first order predicate calculus, dataflow diagrams, and state

transition diagrams. The predicate calculus is supported

with a simplified set of rules for detecting conflicts, by

generating contradictions through the application of rules

such as modus ponens. The graphical representations

include validity constraints in their conflict detection

rules. For example, in a state transition diagram, a state

with two identically labelled transitions from it is treated

as a conflict.

6 Discussion

We presented an approach to domain modelling which

facilitates the identification and elaboration of viewpoints,

and introduces a method of representing conflicting

knowledge explicitly, using hierarchies of viewpoints.

Each viewpoint contains a description in some suitable

representation, and has a unique originator. Each piece of

knowledge exists within the context of a viewpoint, and

this context provides extra information about the

reliability and applicability of the knowledge. Analyser

currently exists as a prototype implementation.

6.1 Remaining Problems

One problem we have not addressed is how to recognise

and handle the use of different terminology. This is a

difficult problem when combining contributions from

many people [12]. There are, however, some mitigating

factors in Analyser. For instance, we assume that to a

certain extent participants will recognise instances of

mismatching terminology, either during translation into a

structured representation, or when the viewpoints are

presented back to them. Other features could be added to

ease the problem, for example, allowing viewpoints to

define synonyms. However, these techniques do not

constitute a satisfactory solution.

The problem of differing terminologies raises another

question. Interpretation of natural language utterances into

formal or semi-formal representations involves the formu-

lation of a suitable ontology. Different viewpoints will

use different terms to build their description, and there

might not be a simple correspondence between the sets of

terms. Certainly there is unlikely to be any pre-existing

common ontology. However, the viewpoints must use the

same terms, for comparisons, and to allow communi-

cation between participants. In fact, there does not need to

be a shared ontology, as long as correspondences between

terms can be found. The conflict resolution model

described in [3] addresses these problems in more detail.

Finally, we have glossed over the relationship between

inconsistency and conflict. Conflicts are detected if the

rules of a representation scheme are broken, or an

inconsistency is generated. However, there are conflicts

which might not surface in this way. For example,

Analyser is unable to detect conflicts between a person’s

goals unless they generate contradictions. Detection of

conflict is a difficult problem, and it is likely that a

collection of heuristics is needed. We have not attempted

to develop such heuristics.

References

[1] Curtis, B., H. Krasner, & N. Iscoe (1988) A Field Study of
the Software Design Process for Large Systems.
Communications of the ACM, 31 (11).

[2] Easterbrook, S. M. (1991a) Elicitation of Requirements
from Multiple Perspectives. PhD Thesis, University of
London.

[3] Easterbrook, S. M. (1991b) Resolving Conflicts Between
Domain Descriptions with Computer-Supported
Negotiation. Knowledge Acquisition: An International
Journal, Vol 3, pp 255-289.

[4] Feather, M. S. (1987) The Evolution of Composite
System Specifications. Proceedings, Fourth IEEE
International Workshop on Software Specification and
Design, Monterey, CA., April 3-4,1987.

[5] Fickas, S., (1987) Automating the Specification Process.
Technical Report No. CIS-TR-87-05, Dept of Computer
and Information Science, University of Oregon, Eugene,
OR.

[6] Fickas, S., & P. Nagarajan (1988) Being Suspicious:
Critiquing Problem Specifications. Proceedings, Seventh
AAAI National Conference on AI, p19-24.

[7] Finkelstein, A. C. W., M. Goedicke, J. Kramer, & C.
Niskier (1989) ViewPoint Oriented Software
Development: Methods and Viewpoints in Requirements
Engineering. Proceedings, Second Meteor Workshop on
Methods for Formal Specification, Springer-Verlag.

[8] Goldman, N. (1982) Three Dimensions of Design.
Proceedings, Second AAAI National Conference on AI.

[9] Reubenstein, H. B. (1990) Automated Acquisition of
Evolving Informal Descriptions. Ph.D. Thesis, Tech.
Report No AI-TR 1205, MIT Artificial Intelligence
Laboratory, Cambridge, MA.

[10] Robinson, M. & L. Bannon (1991) Questioning
Representations. In L. Bannon, M. Robinson & K.
Schmidt (eds) Proceedings of the Second European
Conference on Computer-Supported Cooperative Work:
ECSCW-91. Dordrecht: Kluwer.

[11] Robinson, W. N. (1990) Negotiation Behaviour During
Multiple Agent Specification: A Need for Automated
Conflict Resolution. Proceedings, International
Conference on Software Engineering.

[12] Shaw, M. L. G., & B. R. Gaines (1988) A Methodology
for Recognising Consensus, Correspondence, Conflict,
and Contrast in a Knowledge Acquisition System.
Proceedings, Third Knowledge Acquisition Workshop,
Banff, November 1988.

[13] Systems Designers (1985) CORE: the Method. CORE
manual issue 1.0, Systems Designers Scientific, Pembroke
House, Camberley, Surrey, UK

