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Abstract

In this paper we show how an arbitrary Turing machine can be simulated in DATR,
and show that the computational complexity of DATR is Turing equivalent — and hence
termination of query evaluation is undecidable.
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1 Introduction

(Moser 1992b) proved a lower bound of co-NP-hard for the computational complexity of DATR
(Evans and Gazdar 1989a, Evans and Gazdar 1989b, Evans and Gazdar 1990) query evaluation,
first by showing how an NP-complete problem — determining satisfiability of an arbitrary boolean
formula — could be solved in DATR. It then showed that the complement of the set of satisfiable
boolean formulas of propositional calculus, those which are unsatisfiable, can also be recognised
by a DATR. theory.

To say that the computational complexity is undecidable means that it is impossible to estab-
lish a lower bound on the time taken for a well-formed, functional theory to evaluate a query. Such
a theory may recognise a language for which there is no effective algorithm (one which halts) for
recognising non-membership in the language. Recognising membership of a string in the language
will halt, but one cannot predict in general whether the string being tested 1s in the language or
not.



2 The Hopcroft & Ullman Turing machine

Following Hopcroft & Ullman (1979, pp. 147-150) we define a Turing machine as an ordered tuple
M= (QaEaFaéaQOaBaF)
where

() is the finite set of states,

I is the finite set of allowable tape symbols,

B, a symbol of I, is the blank,

3, a subset of I not including B, is the set of input symbols,

8 is the next move function, a partial function § : @ x I' — @ x T' x {L, R}
qo € @ is the start state,

I C @ is the set of final states.

An instantaneous description (ID) of the Turing machine M is denoted by ajqas, where ¢ is
the current state, and a9, a string in I'* is the current content of the tape up to the rightmost
nonblank symbol. The tape is bounded on the left (at the leftmost symbol of 1) and is unbounded
on the right, all cells to the right of as having value B. The tape head is scanning the leftmost
symbol of as, unless ay is the empty string, in which case the head is scanning a blank.

A Turing machine which recognises the language L = {0”1™ | n > 1} is given in Hopcroft &
Ullman. The TM M is defined by:

Q@ = {q0, q1, 92, 43, ¢4},

Y ={0,1},
= {Oa 1aXaYaB}a
F:{Q4}a

and the transition function é is as defined in Figure 1.

Symbol
State 0 1 X Y B
q0 (Qth R) - - (q3aYa R) -
q1 (qlaOaR) (anYa L) - (q3aYa R) -
q2 (QOaOaL) - (QOaXa R) (anYa L) -
q3 - - - (q3a Ya R) (q4a Ba R)
¢ - - - - -
Figure 1: The function é
Figure 2 shows the computation of M accepting string 0011:
00011 + X¢,011 F X0q:11 F X¢0Y1 F
¢2X0Y1 F Xg0Y1 F XXqpYl F XXYq@l F
XXqgYY F X@pXYY F XXqYY F XXYq¢Y F
XXYYqs F XXYYBgy

Figure 2: A computation of M



3 A DATR representation

To simulate a Turing machine we require representations of an infinite tape, a finite-state control,
and each of the elements of the ordered tuple M. The simulated Turing machine uses the path
to represent the tape, or more precisely as a path prefix; and the control we represent as a
combination of a path prefix and an inheritance specification. An ID «jqas is represented as a
three-argument list:

<Xp X1 X2 ... %1 5 d; X X411 ... Xn 3>

where oy = %0 X1 X2 ... X;_1, @2 = X; Xiy1 ... X, and x; is the current symbol. Using tech-
niques presented in Moser (1992a) to treat the path as an argument list, we will access the path
as a stack accessed from the left side. We define a main node, say M, such that the value of a
path (representing an ID) at that node is the value which Turing machine M would compute if
started from that ID. We do this using two mutually recursive nodes, M and Apply.delta. A step
of computation from ID; to ID;;1 requires two cycles through M and one through Apply.delta.
The first cycle through M computes the value of §(¢,7) (a triple) and pushes it (as a path prefix),
prefaced by the atom delta. The second cycle through M tests whether 6 returned a value or is
undefined. If it is not defined, then M evaluates to either accept or reject depending on whether
q is a final state. If §(g¢,7) is defined, then M inherits from Apply._delta, which pops 8(¢,7) (as
a matched prefix), applies it to the current ID;, and inherits from M:<ID;;1>. Figure 3 outlines
the mutual recursion through which the computation of M is simulated, where the last step of
computation could be either accept, as shown, or reject.

M:<ID;>

M:<delta é(q,y) IDy>
Apply delta:<é(¢,y) ID;>
M:<IDo>

M:<delta 6(q,y) ID2>
Apply delta:<6(q,y) ID2>
M:<ID3>

M:<ID,>
M:<delta undef ID,>
accept

Figure 3: Computation via mutual recursion of M and Apply.delta

We now present the DATR translation of TM M = (@, X, T, 6, g0, B, I'). We represent states (Q)
and tape symbols (T') as atoms, and define DATR variables ranging over each of these sets.

% states
#vars $state: q0 ql q2 g3 qg4.

% tape symbols
#vars $gamma: 0 1 x y b.

The definition of node M will use argument manipulation primitives defined in Moser (1992a).
These primitives are parameterized over several variables, the most interesting being $terminal,
which enumerates the atoms over which arguments are constructed. The two separators ; and
I serve to terminate arguments and the argument list, repsectively. For a Turing machine, the
$terminals are the state and tape symbols, plus moves L and R:



#vars $terminal: q0 q1 q2 93 g4 0 1 x y b 1 r.

Under the path-as-argument-list interpretation, a1, ¢, and «as are the first, second and third
arguments, respectively, so we define several nodes which function as argument extractors:

Alphal:<> == Argl.
Curq:<> == Arg2.
Alpha2:<> == Arg3.

The transition function é is simply a table look-up. §(¢,7) = (¢’,7’, d), or in our DATR notation
Delta:<q g> == (q' ; g ; d), where q and g are the current state and tape symbol being
scanned, ¢, g’, and d are the new state, the symbol replacing g on the tape, and the direction
in which the head moves, respectively. Noting that this particular transition table is a sparse
matrix, we define a default of undef and the specify the value of § for the pairs for which it is

defined:

Delta: <> == undef
<q0 0> == (q1 ;
<q0 y> == (g3 ;
<q1 0> == (q1 ;
<q1l 1> == (g2 ;
<ql y> == (q1 ;
<q2 0> == (g2 ;
<g2 x> == (q0 ;
<q2 y> == (q2 ;
<g3 y> == (g3 ;
<g3 b> == (g4 ;

T KOS O K
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Testing membership in the set of final states requires one non-default statement for each node in
F, as shown in node Final:!

Final: <> == false
<q4> == true.

The current symbol scanned by the read/write head of M is the leftmost symbol of «s, unless
ay 18 nil, in which case the current symbol is the blank. Node Cursym evaluates to the current
symbol using negative path extension: the statement prefixed by <nil ;> will be matched when
the value of Alpha2 is the empty list; otherwise the statement prefixed by <nil> will be matched:

Cursym:<> == <nil Alpha2 ;>
<nil ;> == b
<nil> == First:<>.

The effect of evaluating an 1D at Cursym yields the first symbol of ay. In the second theorem
below, «s is the empty string:

1]
(@]

Cursym: <; g0 ; 0011 ;>
<XxXyvy; 93 ; ;>

1]
o

Before presenting the definition of M we first introduce a new primitive, Last, which evaluates
to the last atom in an argument, or the empty list if the argument is nil. This will be used to
simulate moving the read/write head to the left; the rightmost symbol of o1 needs to be removed
from ay and inserted to the right of the current state q.

I Moser (1992c) discusses the representation of disjunction in DATR at length.

4



Last:<$terminal ;> == $terminal
<> == 0
<$terminal> == <>.

We now present the definition of M such that M:<ID> = accept, or M:<ID> = reject, where ID

is of the form <xp %1 X2 ... X;-1 ; 9 ; X; Xig1 ... X ;>0
M:<> == <delta Delta:<Curq Cursym>>
<delta undef> == <If:<Final:<Curq:<>> > >
<then> == accept
<else> == reject

<delta> == Apply_delta:<>.

The first statement of M indicates that

M:<ID;> = M:<delta 6(q,7) ID;>
and from the last statement of M we see that

M:<delta 6(q,v) ID;> = Apply.delta:<§(q,vy) ID;>
and we require that

Apply delta:<6(q,y) ID;> = M:<ID;;1>

For each triple (¢’,7,d) in the range of é, node Apply delta has a path definition which con-
structs ID; 41 from the ID; suffixed to the triple. Node Apply_delta has two forms of statement,
corresponding to transitions which move the read/write head left and right. For example, for
(41, X, R) (= 8(q0,0)) Apply._delta has the following statement:

Apply_delta: <q1 ; x ; r ;> == M:<Alphal:<> x ; ql ; Rest:<Alpha2:<> ;> ; !>,
From this statement (and the definitions of the nodes on which it depends), it follows that:
Applydelta:<ql ; x ; ¥ ; Zo X1 T2 ... Ti—1 q0 ; Xy Tigl ... Ty 3>

= M:<xg 1 o2 ... T;_1 X ql ; Tig1 .. Xy 5 1>
When the read/write head moves left, as in (¢2,Y, L) (= 8(¢2,Y)) Apply_-delta has the following
statement:
Apply_delta: <q2 ; y ; 1 ;> == M:< Remove_last:<Alphal:<> ;> ;

q2 ;
Last:<Alphal:<> ;> y Rest:<Alpha2:<> ;> ;
1>,

From this statement (and the definitions of the nodes on which it depends), it follows that:
Apply delta:<q2 ; y ; 1 ; xo 1 @3 ... ;=1 ; 40 ; ¥, ®ig1 ... Xy ;>
= M:i<xg @1 @2 ... Xi—2 3 42 5 Xi—1 Y Tig1 ... Tp o5 >

Although Apply_delta need have only the same number of statements as there are triples mapped
onto by é (in this case 10), it is simpler and clearer to define a statement for every triple in
Q) x T x {L, R}, as illustrated below using the DATR, variables defined previously:

Apply_delta:
<$state ; $gamma ; r ;> == M:< Alphal:<> $gamma ;

$state ;
Rest:<Alpha2:<> ;> ;
>
<$state ; $gamma ; 1 ;> == M:< Remove_last:<Alphal:<> ;> ;
$state ;
Last:<Alphal:<> ;> $gamma Rest:<Alpha2:<> ;> ;
>,



The number of statements comprising node Apply_deltais |@|x |T'| x [{L, R}|, since the variables
get expanded out to one statement for each atom in their respective ranges.

The first four IDs in the computation of M:<; q0 ; 0 0 1 1 ;> are shown in Figure 4, along
with the intermediate stages. A comparison with Figure 2 shows that the sequence of IDs is
identical to those progressed through by Turing machine M.

M:<; 90 ; 0011 ;>

= M:<deltaql ; x 3 r; 5 q0 ; 00 1 1 ;>

= Applydelta:<ql ; x ; r; ; q0 ; 00 1 1 ;>

=M:i<kx ;q1;011;! ;q90; 0011 ;>

= M:<deltaql ; x 3 r; 5 q0 ; 00 1 1 ;>

= Applydelta:<ql ; 0 ; r ; x ; q1 ;01 1; ! 5 q0; 0011 ;>
=M:<x0;qgq1;11;! x;q1;011; ! ;q90; 0011 ;>

= M:<deltaqgq2 ; y ;1;x0;q9q1;11;! x;q1;011; ! 5q0; 0011 ;>

= Applydelta:<q2 ; y ;1 ;x0;q1;11; ! x;q1;011;! ;q90; 0011 ;>
=M:i<x ;9q2; 0y1;! x0;q1;11;! x;q9q1;011;"!' ;q0; 0011 ;>

Figure 4: The first few steps of computation

When Apply_delta inherits from M, the default extension which is appended to the constructed
path is the previous sequence of IDs. After n steps of computation the path looks like:

[<ID, ! ... 'ID3 ' IDy ' ID; > |

To prevent the trailing sequence of IDs from ‘interfering’ with the simulated computation, the
contructed path is terminated with !, a symbol which the argument extractors (Argl, Arg2, etc.)
never look beyond.

The last computation of M occurs when 6 is undefined. In this case the prefix inserted on the
first cycle is delta undef and on the second cycle evaluation terminates. Figure 5 (page 7) shows
the last step of computation for the sequence begun in Figure 4 case where ¥ accepts. Theorems
of this theory conform to the results computed by the equivalent Turing machine. By starting
compution at the initial ID we have:

M: <; g0 ; O ;> = reject
<; g0 ; 1 ;> = reject
<; q0 ; 01 ;> = accept
<; g0 ; 001 ;> = reject
<; g0 ; 011 ;> = reject
<; g0 ; 0011 ;> = accept
<; g0 ; 00011 ;> =reject
<; 0 ; 000111 ;> = accept.

4 Conclusion

The mapping from the statement of the Turing machine M to a DATR theory which executes
it 1s straightforward. The size of the DATR theory is linear with respect to the size of the
Turing machine. The language accepted by the DATR, theory is identical to that accepted by the
Turing machine, and the abstract steps of computation are identical. In practice, however, the



=M:<xxyyb;qd; ;!
Xxyys; 3!t xxys3 935yt xx5905yy 5!
XXyy393; ;' xxy;93; vy ! xx;5;q90; vy ;!
X392 xyy ;Y xx3;923 9y ;Y xxy;ql 1!
xxj;ql;y1l; ! x3;905;0y1 ;5! 592;x0y1 ;5!
x;92;0y1; ! x0;ql;11;! x;ql;011;"!
;0 ; 00 1 1 ;5>

= M:< delta undef x x y yb ; q4 ; ; !
xxyy;qd3;5 ;5! xxys; ¥y ! xx;39 59y ;!
x392;xyy ;! xx3;4925yy; ! xxyj;ql;1!
xx;ql;y1;!' x;q0;0y1;!' ;q92;x0y 1 ;!
x;92;0y1; ! x0;ql;11;! x;ql;011;"!
;0 ; 00 1 1 ;5>

=M:< thenxxyyb;qd; ;!
xxyy;qd3;5 ;5! xxys; ¥y ! xx;39 59y ;!
X392 ; xyy ;! xx;92;yy ;! xxy;ql; 1!
xx;ql;y1; "' x;q0;0y1; ! ;92 ; x0y 1 ;!
x;92;0y1; ! x0;ql;11;! x;ql;011;"!
;0 ; 00 1 1 ;5>

= accept.

Figure 5: The final step of computation by node ¥

DATR theory does more work in the parameter passing, as the default extension consisting of
the sequence of IDs comprising the computation is appended repeatedly to the path passed from
Apply._delta to M.
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Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% File: turing.dtr %
% Purpose: Simulate a Turing machine. %
% Author: Lionel Moser, June 1992 %
% Documentation: HELP *datr %
% Related Files: 1lib datr; args.dtr; arglogic.dtr; %
% Version: 2.00 %
% Copyright (c) University of Sussex 1992. All rights reserved. %

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% This theory simulates a Turing machine which recognises the language
% L={0"n 1"n | n >= 1}, taken from Hopcroft & Ullman (1979:147-150).

% The DATR theory simultates a TM defined by the ordered tuple

% M=(Q,Sigma,Gamma,Delta,q0,B,F).

#vars $state: q0 ql q2 g3 qg4. % Q
#vars $move: 1 r. % {L,R}

% Tape symbols: 0, 1, x, y, b % B="»

#vars $gamma: 0 1 x y b. % Gamma
#vars $sigma: 0 1. % Sigma
#vars $final: g4. % F

#vars $terminal: q0 q1 q2 93 g4 1 r 0 1 x y b.

#load ’args.dtr’. % The required extract of these
#load ’arglogic.dtr’. % files follows in primitives.dtr

% An instantaneous description (ID) is a string

% <Alphal q Alpha2>

% where Alphal and Alpha2 are strings over the tape alphabet.
% We represent this as a 3-argument list:

% <X0 X1 X2 ... Xi-1; q; Xi ... Xn ;>
Alphal:<> == Argil. % X0 X1 ... Xi-1
Curq:<> == Arg2. % current state g
Alpha2:<> == Arg3. % Xi Xi+1 ... Xn

% Current symbol is Xi, or b (blank) if Alpha2 is the empty string.
Cursym:<> == <nil Alpha2 ;>

<nil ;> == b

<nil> == First:<>.



% Final states (= {q4} in this example)

Final: <> == false
<$final> == true.

% The Delta function (a partial function) is stored as a look-up table.

% Delta:<q a> == (q’ ; a’
Delta:
<> == undef

<q0 0> == (g1 ; x ; r ;)
<q0 y> == (g3 ; y 5 T ;)

<q1 0> == (q1 ; 0 ; r ;)
<q1 1> == (g2 ; vy ; 1 ;)
<ql y>==(q1 ; y ; £ ;)

<q2 0> == (g2 ; 0 ; 1 ;)
<q2 x> == (q0 ; x ; r ;)
<q2 y> ==(q2 ; ¥y ; 13;)

<3 y>==(g3 ; y ;1 ;)

<g3 b> == (g4 ; b ; r ;).

s {x/1} ;)

% Last is the last symbol in an argument, or nil if the arg is nil.

Last:<$terminal ;> == $terminal
<> == 0
<$terminal> == <>.
% M:<ID>
% M:<X0 ... Xi-1 ; q ; Xi Xi+1 ... Xn ;>
M:<> == <delta Delta:<Curq Cursym>>
<delta undef> == <If:<Final:<Curq:<>> > >
<then> == accept
<else> == reject

<delta> == Apply_delta:<>.

% Apply_delta:<Delta(IDi) IDi> == M:<IDi+1>

% Apply_delta<ql ; X ; R ; X0

Apply_delta:

% M:<X0 ... Xi-1 Xi’ ; q’

<$state ; $gamma ; r ;> ==

% M:<X0 ...

Xi-2 ; q’ ; Xi
<$state ; $gamma ; 1 ;> ==

. Xi-1 ; gq ; Xi Xi+il

; Xi+l . Xn ;>
M:< Alphal:<> $gamma ;
$state ;
Rest:<Alpha2:<> ;> ;
1>

Xi’ Xi+1 . Xn ;>

. Xn ;>

M:< Remove_last:<Alphal:<> ;> ;

$state ;

Last:<Alphal:<> ;> $gamma Rest:<Alpha2:<> ;> ;

>,



% Some theorems ——————————————————————

% M: <; q0 ; 0 ;> = reject

% <; g0 ; 1 ;> = reject

% <; g0 ; 01 ;> = accept

% <; 90 ; 0 01 ;> = reject

% <; 90 ; 011 ;> = reject

% <; 90 ; 0011 ;> = accept

% <; g0 ; 00011 ;> = reject

% <; g0 ; 000111 ;> = accept

% <;; g0 ; 0001111 ;> =reject.



Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% File: primitives.dtr

% Purpose: Primitives used by Turing.dtr
% Authors: Lionel Moser, June 1992.

% Version: 5.00

% Copyright (c) University of Sussex 1992.

A1l rights reserved.

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

Argl: <!> == ()

<> == 0

<$terminal> == ($terminal <>).
Arg2: <> == Argl:<Pop_arg>.
Arg3: <> == Argl:<Pop_arg:<Pop_arg>>.
First: <$terminal> == $terminal.

Second: <$terminal> == First:<>.

Pop_arg: <!> == ()

<;> == Arglist:<>
<$terminal> == <>.
Pv: <> == ()
<I1> == ()
<G> == (G <)
<$terminal> == ($terminal <>).

Arglist:<> == Pv.

Rest: <;> == ()
<$terminal> == Pv_to_;:<>.

Pv_to_;: <;> == ()

<$terminal> == ($terminal <>).
Remove_last: <> == Reverse:<Rest:<Reverse ;> ;>.
Reverse: <;> == ()

<$terminal> == (<> $terminal).
If: <true> == then

<false> == else.
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