
Evaluation in DATR is co-NP-hard

Lionel Moser

School of Cognitive & Computing Sciences

University of Sussex

Brighton, U.K.

June 1992

Abstract

Lower bounds of NP-hard and co-NP-hard for the time complexity of DATR query evalu-

ation are established by showing that an NP-complete language can be recognized in DATR,

and that its complement can be as well.

Contents

1 Introduction 1

2 NP-Hardness: Boolean satis�ability 2

2.1 The generator : 3

3 Query evaluation is co-NP-hard 5

A The stack evaluator 7

B DATR �les 9

B.1 stackeval.dtr - A stack evaluator for boolean expressions : : : : : : : : : : : : : 9

B.2 satisfy-u.dtr - Find solutions to propositional calculus formulae : : : : : : : : : 11

B.3 Primitives used by satisfy-u.dtr and stackeval.dtr : : : : : : : : : : : : : : : 21

1 Introduction

In this paper we show that the complexity of DATR (Evans and Gazdar (1989a, 1989b, 1990))

query evaluation is at least NP-hard by presenting a DATR theory which determines satis�ability

of an arbitrary well-formed formula (w�) of the propositional calculus by �nding an assignment

of truth values to variables under which it is true, if such an assignment exists. This is the

well-known boolean satis�ability problem, which is known to be NP-complete. (Aho et al. 1974,

377-383)

Moser (1992a, 1992b) illustrated techniques for interpreting DATR paths as argument lists

and presented a series methods for specifying algorithms in that framework. First we develop an

extension of those techniques which determines satis�ability for arbitrary w�s, thus establishing

NP-hardness for DATR query evaluation. We then de�ne a theory which recognizes the com-

plement of satis�able boolean formulae, which establishes a co-NP-hard lower bound on query

evaluation.

1

2 NP-Hardness: Boolean satis�ability

Here we show that DATR is NP-hard by providing a theory which recognizes boolean formulae

which are satis�able. In the path notation we adopt, w�s are represented in Reverse Polish

notation (`RPN' or `post�x'), and variables are represented by strings over the alphabet 0, : : :, 9,

enclosed in square brackets. As an example, the formula (1) could be represented by the path (2):

(1) (v

1

_ v

2

) ^ (v

3

^ :v

2

)

(2) <[1] [2] | [3] [2] ~ & &>

A formula such as (2), read left to right, is a program for a stack evaluator, but the stack machine

we have in mind processes only constants, and not variables. We replace the variable references

by applying an assignment function. An assignment function is a mapping which assigns a value

of 0 or 1 to every variable in the formula, denoting its truth value. An assignment function can

be represented as a binary sequence of the same length as the number of variable occurrences in

the w�. An assignment is `valid' (i.e., a valid substitution) if it assigns the same value to each

occurrence of a given variable. Here are examples of two value assignments for formula (2), the

second of which is invalid because v

2

is not uniquely mapped to a truth value:

w� <[1] [2] | [3] [2] ~ & &>

valid assignment < 0 1 0 1 >

invalid assignment < 0 0 0 1 >

We say that an assignment function satis�es a formula i�.:

(a) it is valid; and

(b) the result of executing the formula instantiated by the assignment function on a stack

machine is 1.

The set of assignment functions for a particular formula with n variable occurrences are the binary

strings of length n; there are 2

n

such assignment functions. The ones we are interested in, the

solutions, are those which satisfy a formula by the above de�nition.

The algorithm we present for testing satis�ability of a w� can be broadly broken down into

two components: generating an enumeration of possible assignment functions; and testing each

for satisfaction against the two conditions given above. By expressing this computation as the

result of a DATR query, we show that the time complexity of DATR query evaluation is at least

NP-hard. We will de�ne a node Satisfy at which the value of a path representing a w� is an

assignment function which satis�es the w�, and the empty list if no such assignment exists. Thus

the type of theorems we wish to derive are illustrated by:

Satisfy: <[1 2 3 4] ~ ;> = 0

<[3] [3] & ;> = 1 1

<[3] [3] ~ & ;> = ()

<[3] ~ [3] ~ [2] & | ;> = 0 0 0.

The �rst w� is satis�ed by the assignment fv

1234

= 0g; the second by fv

3

= 1g, the third is not

satis�able; and the last by fv

3

= 0, v

2

= 0g. The symbol ; is an argument terminator.

A recognizer for the language of satis�able w�s is node Satisfiable, de�ned in terms of Satisfy

as follows:

Satisfiable:

<> == <if Satisfy ;>

<if ;> == false

<if> == true.

2

Theorems of Satisfiable are of the following form:

Satisfiable: <[1] [1] | ;> = true

<[1] [1] ~ & ;> = false.

As we use the primitives de�ned in args.dtr and arglogic.dtr (developed in Moser (1992a)),

we �rst de�ne a preamble of symbols which will be recognized by the path-as-argument manipu-

lation primitives. (A concise listing of the node de�nitions is given in Appendix B.3.) The DATR

variable $varletter denotes the alphabet for propositional variable names. The complete reper-

toire of terminals ($terminal) are the boolean values 0, and 1, the variable name alphabet, logical

operators & and |, and the negation symbol ~, as well as the square brackets used to delimit

propositional variables and the letter a, the (singleton) alphabet over which we will represent

distance lists (see below):

#vars $operator: & | ~.

#vars $varletter: 0 1 2 3 4 5 6 7 8 9.

#vars $terminal: a 0 1 2 3 4 5 6 7 8 9 & | ~ [].

We also require declarations of the symbols we use to represent the argument terminator and

argument list terminator, respectively:

#vars $;: ;.

#vars $!: !.

2.1 The generator

Moser (1992a) illustrated methods for performing depth-�rst left-to-right traversal and searching

these data structures (in nodes Powerset and Powertest, respectively); here we are interested in

testing the labels on terminals nodes as possible assignment functions satisfying to the formula

in question. The powerset tree of order three is shown below:

<aaa; ;>

_________0__________|__________0_________

| |

<aa; 0;> <aa; 1;>

| |

____0_____|____1_____ _____0____|____1_____

| | | |

<a; 00;> <a; 01;> <a; 10;> <a; 11;>

| | | |

__0__|__1__ __0__|__1__ __0__|__1__ __0__|__1__

| | | | | | | |

<; 000;> <; 001;> <; 010;> <; 011;> <; 100;> <; 101;> <; 110;> <; 111;>

A node in the tree is represented by a two-argument list of the form <distance list ; label ;>, where

the distance list is a sequence of a's whose length is the distance to a terminal node, and the label

on the node is the concatenation of the edge labels up to the root. Left branches are labelled with

0, right branches with 1.

For the satis�ability problem we represent nodes in the powerset tree (the search tree) by

queries of the form: Generate:<Length ; Formula ; Assn fn ;>. Here we have added a third

argument (in second position), the formula, which is passed down unmodi�ed. For labels at the

terminal nodes to be interpreted as assignment functions for the formula, the initial distance list is

equal in length to the number of variables in the formula. The root of the search tree for formula

:v

3

^ v

4

(or <[3] ~ [4] &> in our representation) is the path:

Generate:<a a ; [3] ~ [4] & ; ; >

3

The de�nition of Generate is as follows:

Length:<> == Arg1.

Formula:<> == Arg2.

Assn_fn:<> == Arg3.

Left_branch_result:<> == Arg1.

Generate:

<;> == Test:< Formula ; Assn_fn ; !>

<a> == <if Generate:<Length:<> ; Formula ; Assn_fn 0 ; !> ;>

<if ;> == Generate:<Length:<> ; Formula:<> ; Assn_fn:<> 1 ; !>

<if> == Left_branch_result:<>.

The key to understanding Generate is to see what these statements entail when the query path is

of the form

<a

n

; formula ; assn fn ;>

The �rst statement of node Generate de�nes its value at terminal nodes, where the distance list

is nil (n = 0). In this case,

Generate:<; formula ; assn fn ;> = Test:<formula ; assn fn ;>

and Test returns the assignment function if it is a solution, or the empty list () if it is not.

The second statement pre�x (<a>) is matched when n > 0, which are non-terminal nodes in

the search tree. Here

Generate:<a a

n�1

; formula ; assn fn ;>

= Generate:<if Generate:<a

n�1

; formula ; assn fn 0 ;> ; a

n�1

; formula ; assn fn ; >

Note that the argument list is carried forward as a default extension, and the matched pre�x

<a> is chopped, thus e�ectively decrementing the distance by one. It is chopped explicitly in the

embedded inheritance (Length:<>), and implicitely when appended as a default extension.

The Generate query embedded in the evaluable path evaluates the left branch (a 0 is appended

to the assignment function) and evaluates to either () or an assignment function.

� If it evaluates to (), the substitution yields

= Generate:<if () ; a

n�1

; formula ; assn fn ;>

= Generate:<if ; a

n�1

; formula ; assn fn ;>

This matches the pre�x of the third statement, which evaluates the right branch (appending

a 1 to the assignment function):

Generate:<if ; a

n�1

; formula ; assn fn ;>

= Generate:<a

n�1

; formula ; assn fn 1 ;>

� On the other hand, if the embedded call evaluates to a satisfying assignment function, say

solution, then the evaluable path extends pre�x <if> (and not pre�x <if ;>) yielding

Generate:<if solution ; a

n�1

; formula ; assn fn ;>

= Left branch result:<solution ; a

n�1

; formula ; assn fn 1 ;>

= solution.

A query of the form Satisfy:<Formula ;> evaluates to either an assignment function or the

empty list. In order for Satisfy to form the query to Generate, a distance list must be constructed.

This is done by node Distance list, which takes a formula as input and returns a sequence of a's

whose length is the number of variable occurences in the formula. It is de�ned as follows:

4

Distance_list:

<$operator> == <>

<[> == <scan>

<scan $varletter> == <scan>

<scan]> == (a <>)

<;> == ().

Distance list simply scans along an argument outputting an a for each] encountered. The

de�nition of Satisfy is:

Satisfy:<> == Generate:<Distance_list:<Arg1 ; !> ; Arg1 ; ; ! >.

Satisfy takes a single argument and calls Generate on a 3-argument list, the distance list, the

formula, and the label on the root of the search tree { which is nil. If Generate evaluates to either

an empty list or a satisfying label on a terminal node, we will have theorems such as

Satisfy: <[3] ~ [3] ~ [2] & | ;> = 0 0 0.

to indicate that the formula :v

3

_ (:v

3

^ :v

2

) is satis�ed by the assignment fv

3

= 0; v

2

= 0g.

Assuming that the intermediate nodes are appropriately de�ned (the reader is welcome to

work through the de�nitions in Appendix B), we now have a test for boolean satis�ability, and

conclude that DATR query evaluation is at least NP-hard { that is, the time complexity of query

evaluation is as high as that for any problem in NP.

3 Query evaluation is co-NP-hard

To prove that evaluation is co-NP-hard we need only show that the complement of an NP-

hard language can be recognized by a DATR theory. The node Not satisfiable recognizes the

complements of the set of satis�able boolean w�s:

Not_Satisfiable: <> == Not:<Satisfiable>.

Theorems of this node are the negation of theorems of Satisfiable:

Not_Satisfiable: <v1 v1 | ;> = false

<v1 v1 ~ & ;> = true.

We have thus derived two lower bounds, NP-hard and co-NP-hard. The question of whether

one is `worse' than the other (i.e., whether NP � co-NP) is an open question in complexity theory.

While we have established a lower bound, we cannot derive an upper bound on the complexity of

DATR query evaluation from further study of this particular problem. If this particular theory

could be evaluated in nondeterministic polynomial time, we could only conclude that this problem

is in NP, not that an arbitrary DATR theory is necessarily in NP. The fact that an NP-complete

problem can be solved in DATR does not guarantee that problems with a higher order complexity

could not also be solved in DATR.

We conjecture that further work will show that DATR query evaluation is in fact undecidable,

and than DATR theories which recognize any recursively enumerable language can be de�ned.

References

[Aho et al. 1974] Alfred Aho, John Hopcroft, and Je�rey Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[Evans and Gazdar 1989a] Roger Evans and Gerald Gazdar. Inference in DATR. In ACL Pro-

ceedings, 4th European Conference, pages 1{9, Manchester, 1989.

5

[Evans and Gazdar 1989b] Roger Evans and Gerald Gazdar. The semantics of DATR. In An-

thony G. Cohn, editor, Proceedings of the Seventh Conference of the Society for Arti�cial

Intelligence and the Simulation of Behaviour, pages 79{87, Brighton, UK, 1989.

[Evans and Gazdar 1990] Roger Evans and Gerald Gazdar, editors. The DATR Papers, Volume

I. CSRP 139. School of Cognitive and Computing Sciences, University of Sussex, Brighton,

UK, 1990.

[Gazdar 1990] Gerald Gazdar. quanti�.dtr. The DATR Papers, Volume I, pages 131{132, 1990.

Formal DATR example �le illustrating �rst order quanti�cation over attributes.

[Gibbon 1990] Dafydd Gibbon. register.dtr. The DATR Papers, Volume I, pages 133{134, 1990.

Formal DATR example �le illustrating binary shift operations.

[Moser 1992a] Lionel Moser. DATR paths as arguments. Technical Report CSRP 215, School of

Cognitive & Computing Sciences, University of Sussex, Brighton, UK, 1992.

[Moser 1992b] Lionel Moser. Lexical constraints in DATR. Technical Report CSRP 216, School

of Cognitive & Computing Sciences, University of Sussex, Brighton, UK, 1992.

6

A The stack evaluator

We begin the node de�nitions by de�ning a `bit logic', followingGazdar (1990) and Moser (1992b):

AND: <0 0> == 0

<0 1> == 0

<1 0> == 0

<1 1> == 1.

OR: <0 0> == 0

<0 1> == 1

<1 0> == 1

<1 1> == 1.

NOT: <0> == 1

<1> == 0.

Next we de�ne the stack evaluator. Node Eval takes two arguments, a fully instantiated

formula, and a stack, initially empty.

1

Eval:<formula ; stack ;> evaluates the formula (or `runs

the program') and returns the resulting top of the stack upon termination.

In the de�nition of Eval we make use of two new primitives, Top and Second. Top is just a new

name for First (the �rst atom in an argument), while Second is the second atom in an argument.

They could be de�ned as follows:

Top:<> == First.

Second:<> == First:<Rest>.

The de�nition of Eval is:

2

% Argument names

Formula:<> == Arg1.

Stack:<> == Arg2.

Eval: <;> == Top:<> % return top of stack.

<1> == Eval:< Formula:<> ; 1 Stack:<> ; ! > % Push 1 on stack

<0> == Eval:< Formula:<> ; 0 Stack:<> ; !> % Push 0 on stack

<&> == Eval:< Formula:<> % Push AND of top 2 items

;

AND:< Top:<Stack:<>>

Second:<Stack:<>> >

Pop:< Pop:< Stack:<> ; > ; > ; !

>

<|> == Eval:< Formula:<> % Push OR of top 2 items

;

OR:< Top:<Stack:<> ; >

Second:<Stack:<> ; > >

Pop:<Pop:<Stack:<> ;> ; > ; !

>

<~> == Eval:< Formula:<> % Push NOT of top item

;

NOT:< Top:<Stack:<> ;> >

Pop:<Stack:<> ;> ; !

>.

Note that the arguments are `named' basically by renaming the appropriate argument extraction

primitive. The �rst statement in Eval returns the �rst atom in the second argument (the �rst

argument is nil and the terminator ; is chopped). The remaining statements are recursive calls.

They construct a new argument list, the �rst argument of which is the formula, chopped to remove

the instruction being performed, followed by a terminating ;. The second argument is the stack,

1

The initial stack is really arbitrary { a well formed program will leave its result on top of whatever contents

the stack initially had, without accessing or modifying them.

2

See also Gibbon (1990) for an implementation of binary shift register operations in DATR. He interprets

the path as a register and implements a repertoire of similar operations on it. But his register `device' is non-

programmable { lacking a second argument in which to store a program.

7

also followed by a terminating ;. The argument list terminator is appended to separate the two-

argument list from the default extension. The logical operators also have the default extension

added to their query paths, but their behaviour depends only upon the �rst two atoms' values.

An example theorem is Eval:<1 1 & 1 0 & & ; ;> = 0. That is, the following program leaves

a 0 on top of the stack:

Push 1

Push 1

And

Push 1

Push 0

And

And

Some other theorems of Eval are:

Eval: <1 ; ;> = 1

<0 ; ;> = 0

<0 ~ ; ;> = 1

<1 0 | ; ;> = 1

<1 1 & 1 0 & & ; ;> = 0

<1 1 & 0 1 ~ & | ; ;> = 0.

8

B DATR �les

B.1 stackeval.dtr - A stack evaluator for boolean expressions

% %

% %

% File: stackeval.dtr %

% Purpose: A stack evaluator for boolean expressions. %

% Authors: Lionel Moser, September 1991. %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr %

% Version: 4.00 %

% Copyright (c) University of Sussex 1991. All rights reserved. %

% %

% %

% Need these for stand-alone; otherwise, assume application has done them.

%#vars $terminal: 0 1 & | ~.

%#vars $;: ;.

%#vars $!: !.

%#load '../ARGS.v5/args.dtr'.

% Bit Logic.

AND:<> == '**** Error: (AND) invalid arg'

<0 0> == 0

<0 1> == 0

<1 0> == 0

<1 1> == 1.

OR: <> == '**** Error: (OR) invalid arg'

<0 0> == 0

<0 1> == 1

<1 0> == 1

<1 1> == 1.

NOT:<> == '**** Error: (NOT) invalid arg'

<0> == 1

<1> == 0.

9

% Eval:<formula ; stack ;> = 0 or 1 (false or true)

% where

% formula: is a boolean expression consisting of a sequence of symbols

% over $terminal. The formula is in Reverse Polish Notation

% (RPN). To evaluate the expression

% (1 & 1) | (0 | ~1)

% the RPN formula would be

% 1 1 & 0 1 ~ | |

% stack: is a stack with the bottom at right and top at left.

% It must be initially empty.

%

% Sample theorem:

% Eval: <1 1 & 0 1 ~ | | ; ;> = 1.

%

% Argument names:

Formula1:<> == Arg1.

Stack1:<> == Arg2.

Eval: <;> == Top:<> % return top of stack.

<1> == Eval:< Formula1:<> ; 1 Stack1:<> ; ! > % Push 1 on stack

<0> == Eval:< Formula1:<> ; 0 Stack1:<> ; !> % Push 0 on stack

<&> == Eval:< Formula1:<> % Push AND of top 2 items

;

AND:< Top:<Stack1:<>>

Second:<Stack1:<>> >

Pop:< Pop:< Stack1:<> ; > ; > ; !

>

<|> == Eval:< Formula1:<> % Push OR of top 2 items

;

OR:< Top:<Stack1:<> ; >

Second:<Stack1:<> ; > >

Pop:<Pop:<Stack1:<> ;> ; > ; !

>

<~> == Eval:< Formula1:<> % Push NOT of top item

;

NOT:< Top:<Stack1:<> ;> >

Pop:<Stack1:<> ;> ; !

>.

% --- Some theorems ------------

%

% Eval: <1 ; ;> = 1

% <0 ; ;> = 0

% <0 ~ ; ;> = 1

% <1 0 | ; ;> = 1

% <1 1 & 1 0 & & ; ;> = 0

% <1 1 & 0 1 ~ & | ; ;> = 1.

10

B.2 satisfy-u.dtr - Find solutions to propositional calculus formulae

% %

% %

% File: satisfy-u.dtr %

% Purpose: Boolean satisfiability with an unlimited supply %

% of propositional variables. %

% Authors: Lionel Moser, January 1992. %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr; arglogic.dtr; stackeval.dtr %

% Version: 1.00 %

% Copyright (c) University of Sussex 1992. All rights reserved. %

% %

% %

% This theory recognises membership in boolean formulas in the set of

% satisfiable formulas. Variables are represented as sequences over alphabet

% 0, ..., 9, enclosed in square brackets, and the formula must be in

% postfix notation. e.g.,

% formula (v13 & v12) would be represented by <[1 3] [1 2] &>.

% The variables are simply distinct sequences, not arithmetic values.

% This provides the unlimited supply of variables.

%

% Assignment functions do not assign values to operators, only

% variables. Thus (0 0 0) would be an assignment function for

% formula ([3] ~ [2] ~ [3] &). An assignment function is `valid'

% if it assigns each variable uniquely.

%

% The formulas and assignment functions look like this:

%

% wff <[1 2] [3 2] & [3 4] [3 2] ~ & |>

% assn_fn < 0 1 0 1> valid

% assn_fn < 0 0 0 1> invalid: [3 2]

% is not uniquely mapped

%

% An assignment function satisfies a formula if it is valid and the formula

% under that substitution evaluates to 1, which we check be evaluating it

% on the stack evaluator (stackeval.dtr).

% terminals are the alphabet we use:

% a - used for distance list

% 0,1 - boolean values

% 0-9 - alphabet for variable names

% [] - variable name delimiters

% & | ~ - logical operators AND, OR, and NOT.

#vars $operator: & | ~. % logical operators.

#vars $varletter: 0 1 2 3 4 5 6 7 8 9. % variable alphabet

#vars $terminal: a 0 1 2 3 4 5 6 7 8 9 & | ~ [].

11

#vars $!: !.

#vars $;: ;.

#load '../ARGS.v5/args.dtr'. % tools for argument manipulation.

#load '../ARGS.v5/arglogic.dtr'. % simple logic

#load 'stackeval.dtr'. % boolean logic stack evaluator

%%%%%% Primitives to deal with propositional variables of the form

%%%%%% [x1 x2 x3 ... xn]

% Variable extractor

% Varbl:<[x1 ... xn]> == [x1 ... xn].

Varbl:<> == '**** ERROR: (Varbl) Invalid symbol.'

<$varletter> == ($varletter <>)

<[> == ([<>)

<]> ==].

% Extract variable or operator.

% Varbl_or_op returns the first item in the list, whether it's a

% variable or operator.

Varbl_or_op: <> == '**** ERROR: (Varbl_or_op) Invalid symbol.'

<[> == Varbl

<$operator>== $operator.

% Like Rest, removes one item, which is either a variable or operator.

% Pop_varbl_or_op:<[1 2 3] & | ;> = (& |).

Pop_varbl_or_op: <> == '**** ERROR: (Pop_varbl_or_op) unexpected symbol'

<[> == Pop_varbl

<$operator> == Arg1:<>.

% Like Rest, where first `item' is a variable.

% Pop_varbl:<[1 2 3] & | ;> = (& |).

Pop_varbl: <> == '**** ERROR: (Pop_varbl) unexpected symbol'

<[> == <>

<$varletter> == <>

<]> == Arg1:<>.

% Typeof returns the type of its operand, either var or op.

Typeof: <> == '**** ERROR: (Typeof) Invalid symbol'

<$operator> == op

<[> == var.

% Distance_list takes a formula and returns a sequence of a's of

% the same length; a variable has length 1.

Distance_list: <> == '**** ERROR: (Distance_list) Invalid symbol'

<$operator> == <>

<[> == <scan>

<scan $varletter> == <scan>

<scan]> == (a <>)

<;> == ().

12

%%%

% Satisfy:<Formula ;> = () or an assn_fn.

%

Satisfy:<> == Generate:<Distance_list:<Arg1 ; !> ; Arg1 ; ; ! >.

% Some theorems:

% Satisfy: <[1 2 3 4] ~ ;> = (0)

% <[1 2 3 4] [1 2 3 4] | ;> = (1 1)

% <[1 2 3 4 5] [1 2 3 4] | ;> = (0 1)

% <[3] [3] | ;> = (1 1)

% <[3] [3] & ;> = (1 1)

% <[3] [3] ~ & ;> = ()

% <[3] ~ [3] ~ [2] & | ;> = (0 0 0)

% <[3] [3] [3] & & ;> = (1 1 1).

%%%

% Generate: generates and tests possible solutions.

%

% Generate:<Length ; Formula ; Assn_fn ;> = some Assn_fn or () if none exists.

% where

% Length - <Sn Sn-1 ... S0> (Si is any terminal symbol);

% Formula - a wff over variables and operators;

% Assn_fn - a partial assignment function.

% satisfying

% length(Length) + length(Assn_fn) = length(Formula).

% Length is a distance list, used to measure the length (n) of the assignment

% function needed. Any sequence of terminal symbols of length n will do;

% Satisfy passes a copy of the formula itself. Generate recurses to the bottom

% left of the powerset tree, and at leaf nodes it passes the assignment

% function of length n and the formula to Test, which returns the empty list

% "()" if it is not a solution, or returns the assignment function itself if

% it is. If Test returns a non-nil list, then the assignment function

% satisfied the formula, and this is returned. Otherwise, the right branch is

% descended. Negative path extension is used to determine what result was

% returned from Test.

% Left branches have label zero (ie, 0 is appended to the assignment function)

% and right branches have label one (ie, 1 is appended to the assignment

% function).

%

% The initial call must provide a nil list as Assn_fn, which will be appended

% to as Generate recurses down to terminal nodes of the search tree.

%

% A simple version of this algorithm is illustrated in file `powertest.dtr'.

% Argument names: we name the arguments as this makes it easier to read the

% main node definitions. Argument names must be unique in the theory. The

% integer at the end is arbitrary (but unique).

13

% Generate:<Length ; Formula ; Assn_fn ;>

LengthG:<> == Arg1.

FormulaG:<> == Arg2.

Assn_fnG:<> == Arg3.

Left_branch_result:<> == Arg1.

Generate:

<;> == % Length = nil (leaf node);

Test:< FormulaG ; Assn_fnG ; !>

<a > == <if Generate:<LengthG:<> ; FormulaG ; Assn_fnG 0 ; !> ;>

<if ;> == Generate:<LengthG:<> ; FormulaG:<> ; Assn_fnG:<> 1 ; !>

<if> == Left_branch_result:<>.

% - Some theorems used in the derivation of theorem

% Satisfy: <[3] [4] [3] ~ & | ;> = (0 1 0).

%

% (root)

% Generate:<a a a ; [3] [4] [3] ~ & | ; ;> = (0 1 0).

% (descending left branch)

% Generate:<a a ; [3] [4] [3] ~ & | ; 0 ;> = (0 1 0)

% <a ; [3] [4] [3] ~ & | ; 0 0 ;> = ()

% <; [3] [4] [3] ~ & | ; 0 0 0 ;> = ().

% (back up)

% Generate:<if ; ; [3] [4] [3] ~ & | ; 0 0 ;> = ().

% (descend right branch)

% Generate:<; [3] [4] [3] ~ & | ; 0 0 1 ;> = ().

% (back up)

% Generate:<if ; a ; [3] [4] [3] ~ & | ; 0 ;> = (0 1 0).

% (descend right branch)

% Generate:<a ; [3] [4] [3] ~ & | ; 0 1 ;> = (0 1 0).

% (descend left branch)

% Generate:<; [3] [4] [3] ~ & | ; 0 1 0 ;> = (0 1 0).

% (back up)

% Generate:<if 0 1 0 ; ; [3] [4] [3] ~ & | ; 0 1 ;> = (0 1 0).

% (back up)

% Generate:<if 0 1 0 ; a a ; [3] [4] [3] ~ & | ; ;> = (0 1 0).

14

%%%

% Test:<Formula ; Assn_fn ;> == Assn_fn or ()

%

% Test returns nil if the assignment function is not a solution, and returns

% the assignment function if it is a solution. Test first calls Assn_fn_valid to

% determine whether the assignment function is a valid substitution (ie,

% whether it assigns the same value to each occurrence of each variable). If

% not, it returns a nil list. Otherwise, it instantiates the formula using the

% assignment function (ie, substitutes each variable with the value it is

% assigned by the assignment function), evaluates the instantiated formula on

% the stack evaluator (see `stackeval.dtr'). If this result is 0 it returns ();

% if it is 1 it returns Assn_fn.

% Test:<Formula ; Assn_fn ;> == Assn_fn or ()

% argument names

FormulaT:<>==Arg1.

Assn_fnT:<>==Arg2.

Test:

<> == <If:<Assn_fn_valid:<FormulaT ; Assn_fnT ; !>>>

<then> == <result Eval:< Instantiate:<FormulaT:<> ;

Assn_fnT:<> ; ; !>

; ; !

>

;

Assn_fnT:<> ; !>

<result 0> == ()

<result 1> == Assn_fnT:<>

<else> == ().

% Sample theorems:

% (1) Initial call

% Test:<[3] [4] [3] ~ & | ; 0 1 0 ;> = (0 1 0).

% (2) Assn_fn is valid and satisfies the formula:

% Test:<then [3] [4] [3] ~ & | ; 0 1 0 ;> = (0 1 0)

% <result 1 ; 0 1 0 ;> = (0 1 0).

15

%%%

% Instantiate:< Formula ; Assn_fn ; Inst_formula ; > == Instantiated_formula

% where

% Formula - is a sequence of variables and operators

% Assn_fn - is a sequence of bits (same length as Formula)

% Inst_formula - is the part of the Formula which has already

% been instantiated.

%

% Note: Inst_formula must be initially nil.

%

% Instantiate takes a formula (a sequence of variables and operators) and an

% assignment function (a binary string of the same length). It returns the

% instantiation of the formula under the assignment function. Operators, which

% have assignments, are not mapped, since when we evaluate the instantiated

% formula we won't care about the value of any operator. Inst_formula (the

% instantiated formula so far) must be initially nil.

%

% e.g. Instantiate:<[3] [4] [3] ~ & | ; 0 1 0 ; ;>= (0 1 0 ~ & |).

% Instantiate:< Formula ; Assn_fn ; Inst_formula ; > == Instantiated_formula

% Argument names

FormulaI:<> == Arg1.

Assn_fnI:<> == Arg2.

Inst_formulaI:<> == Arg3.

Instantiate: <> == '**** ERROR: (Instantiate) Invalid argument'

<; ;> == Inst_formulaI % Formula & Assn_fn exhausted.

<;> == '**** ERROR: (Instantiate) Assignment function too short' % NPE

% Remove var from Formula and its mapping from Assn_fn,

% append the mapping of the var to the assn_fn, and recurse.

<[> == Instantiate:< Pop_varbl:<FormulaI ;> ;

Rest:<Assn_fnI ;> ;

Inst_formulaI First:<Assn_fnI ;> ; !

>

% Remove op from Formula and its mapping from Assn_fn,

% append the op to the assn_fn, and recurse.

<$operator> == Instantiate:< Rest:<FormulaI ;> ;

Assn_fnI ;

Inst_formulaI $operator ; !

>.

% Sample theorems:

% (1) Initial call:

% Instantiate:<[3] [4] [3] ~ & | ; 0 1 0 ; ;>= (0 1 0 ~ & |).

% (2) During recursion:

% Instantiate:<~ & | ; ; 0 1 0 ;> = (0 1 0 ~ & |).

% (3) Recursion termination:

% Instantiate:<; ; 0 1 0 ~ & | ;> = (0 1 0 ~ & |).

16

%%%

% Assn_fn_valid:<Formula ; Assn_fn ;> =

% true - if Assn_fn is valid;

% false - if Assn_fn is invalid.

%

% An assignment function is valid if it assigns the same value to each

% occurrence of each variable in the formula, operators excepted. Operators are

% ignored. The technique is rather inefficient: Assn_fn is valid if it assigns

% the first symbol correctly and is valid on the rest of the formula. If the

% first symbol is a variable, we test its mapping in the rest of the list,

% remove the first symbol from both the assignment function and the formula,

% and recurse. So every occurrence of a variable is checked against the rest of

% the list.

% Assn_fn_valid:<Formula ; Assn_fn ;>

% argument names

FormA:<> == Arg1.

Assn_fnA:<> == Arg2.

Assn_fn_valid: <> == '**** ERROR: (Assn_fn_valid) Invalid symbol'

<; ;> == true % Formula and Assn_fn exhausted

<;> == true

<[> == <If:< Var_map_ok:< First:<Assn_fnA ;> ; % First symbol in

FormA ; % Formula is var;

Varbl ; % check its assn

Assn_fnA ; ! % for consistency

> % var is prefixed to default extn so

> [> % that entire formula is preserved.

<$operator> == Assn_fn_valid:< FormA:<> ; % ditto for op;

Assn_fnA:<> ; !> % no check.

<then> == % mapping of first symbol is okay. Check rest.

Assn_fn_valid:< Pop_varbl_or_op:<FormA:<> ;> ;

Rest:<Assn_fnA:<> ;> ; !>

<else> == false.

% Sample theorems:

% (1) Initial call

% Assn_fn_valid:<[3] [4] [3] ~ & | ; 0 1 0 ;> = true.

% (2) During recursion

% Assn_fn_valid:<then [4] [3] ~ & | ; 1 0 ;> = true.

% (3) During recursion

% Assn_fn_valid:<~ & | ; ;> = true.

% (4) Recursion termination

% Assn_fn_valid:<; ;> = true.

17

%%%

% Var_map_ok: <Val ; Form ; Var ; Assn_fn ;> = true/false

% where

% Val: is either 0 or 1

% Form: is the formula being tested.

% Var: is the name of the variable

% Assn_fn: is as assignment function, a la Montague, i.e., assn_fn

% is a model for the formula.

%

% Var_map_ok tests whether all occurrences of variable Var in formula Form

% are assigned the value Val by the assignment function Assn_fn.

% For example,

% Var_map_ok: <0 ; [2] [1] [2] ; [2] ; 0 0 0 ;> = true

% as assignment function (0 0 0) applied to the formula assigns

% every occurrence of variable [2] the value 0. However,

% Var_map_ok: <0 ; [2] [1] [2] ; [2] ; 0 1 1 ;> = false

% because not every occurrence of variable [2] is assigned value 0

% (the second % occurrence is assigned value 1).

%

18

% Var_map_ok: <Val ; Form ; Var ; Assn_fn ;>

% Argument names

ValV:<> == Arg1.

FormV:<> == Arg2.

VarV:<> == Arg3.

AssnV:<> == Arg3:<Pop_arg>. % args.dtr only defines up to 3.

Var_map_ok:

<0 ; ;> == true % Formula = nil

<1 ; ;> == true % ditto

% if assn_fn finished so are we.

<> == <done First:<AssnV> ; Arglist !>

<done 0 ;> == <more>

<done 1 ;> == <more>

<done ;> == true

% Is first symbol of Formula the Var we are checking?

<more> == <1 If:< Equal:< Varbl_or_op:<FormV:<> ; > ; VarV:<> ;> > >

<1 then> == % Yes. Is it assigned the right value?

<2 If:< Equal:<ValV:<> ; First:<AssnV:<>> ; > > >

<2 then> == <reduce var>

<2 else> == false

<1 else> == <reduce Typeof:<FormV:<> ;> >

<reduce op> == Var_map_ok:< ValV:<> ;

Rest:<FormV:<> ; ! > ;

VarV:<> ;

AssnV:<> ;

! >

<reduce var> == Var_map_ok:< ValV:<> ;

Pop_varbl:<FormV:<> ; ! > ;

VarV:<> ;

Rest:<AssnV:<> ;> ;

! >.

% Sample theorems:

%

% Var_map_ok: <Val ; Form ; Var ; Assn_fn ;>

% (1) Initial call

% Var_map_ok:<0 ; [3] ~ & | ; [3] ; 0 ;> = true.

% (2) During recursion

% Var_map_ok:<1 then 0 ; [3] ~ & | ; [3] ; 0 ;> = true.

% (3) during recursion

% Var_map_ok:<more 0 ; [3] ~ & | ; [3] ; 0 ;> = true.

% (5) during recursion

% Var_map_ok:<done 0 ; 0 ; [3] ~ & | ; [3] ; 0 ;> = true.

% (6) during recursion

% Var_map_ok:<reduce op 0 ; & | ; [3] ; ;> = true.

19

% (4) Recursion termination

% Var_map_ok:<0 ; ; [3] ; ;> = true.

20

B.3 Primitives used by satisfy-u.dtr and stackeval.dtr

To simplify the primitives we assume the argument terminator and argument list terminator are

; and !, respectively.

% Arg1 returns the first ;-delimited argument.

Arg1: <!> == () % discard default extension. Probably unnecessary.

<;> == ()

<$terminal> == ($terminal <>).

% Arg2 returns the second ;-delimited argument.

Arg2: <> == Arg1:<Pop_arg>.

% Arg3 returns the third ;-delimited argument.

Arg3: <> == Arg1:<Pop_arg:<Pop_arg>>.

% First returns the first symbol in the first argument.

First: <$terminal> == $terminal.

% Second returns the second symbol in the first argument.

Second: <$terminal> == First:<>.

% Top is the same as First.

Top: <$terminal> == $terminal.

% Pop_arg returns an argument list with the first argument removed.

Pop_arg: <!> == ()

<;> == Arglist:<>

<$terminal> == <>.

% Pv performs path-to-value conversion.

Pv: <> == ()

<!> == ()

<;> == (; <>)

<$terminal> == ($terminal <>).

% Arglist: better name for Pv when entire arg list is being converted.

Arglist:<> == Pv.

% Rest returns everything in the ;-delimited argument following

% the first symbol (a tail operator).

Rest: <;> == ()

<$terminal> == Pv_to_;:<>.

% Pop is the same as Rest.

Pop: <;> == ()

<$terminal> == Pv_to_;:<>.

21

% Pv_to_; returns a path-to-value conversion, stopping at the end of

% the first argument.

Pv_to_;: <;> == ()

<$terminal> == ($terminal <>).

% Reverse returns the ;-delimited argument reversed, minus the delimiter.

Reverse: <;> == ()

<$terminal> == (<> $terminal).

% Remove_last retruns first ;-delimited arg minus last symbol.

Remove_last: <> == Reverse:<Rest:<Reverse ;> ;>.

% Equal:<arg1 ; arg2 ;> == true/false

Equal:

<; ;> == true

<;> == false

<> == < If:< Tequal:<First First:<Arg2 ;>>> >

<then> == Equal:<Rest:<Arg1:<> ;> ; Rest:<Arg2:<> ;> ; !>

<else> == false.

% Tequal:<atom atom> == true/false (terminals equal)

Tequal:

<$terminal $terminal> == true

<$terminal> == false.

% If:<condition> == then/else

If: <true> == then

<false> == else.

Not: <true> == false

<false> == true.

22

