
A Marquardt algorithm for hoosing the step-size in

bakpropagation learning with onjugate gradients

Peter M. Williams

Shool of Cognitive and Computing Sienes

University of Sussex

13 February 1991

Standard learning in feed-forward networks uses simple gradient desent, sometimes

with a \momentum" term. Gradient desent is very ineÆient. The momentum method

is an improvement though it is ad ho and shares with the steepest desent method the

disadvantage of requiring an arbitrary hoie of parameter.

Let E(w) be the error funtion of the network where w is the weight vetor (all the

weights and \biases" in the network in some order or other). The aim is assumed to be

that of unonstrained minimisation of E.

Suppose that w

n

is the weight vetor at the n'th iteration. The next iteration involves

hoosing a suitable non-zero searh diretion s

n

and step length �

n

. The weight vetor is

then updated by the rule

w

n+1

= w

n

+ �

n

s

n

: (1)

Simple gradient desent uses

s

n

= �g

n

where g

n

= rE(w

n

) with a �xed step size �

n

= �.

The momentum term method also uses a �xed step size � but hooses, as searh dire-

tion, a linear ombination of the urrent diretion of steepest desent and the preeding

searh diretion

s

n

= �g

n

+ �s

n�1

where � is some �xed onstant. The algorithm is started in the diretion of steepest

desent: s

0

= �g

0

.

The strategy of hoosing a linear ombination of �g

n

and s

n�1

is a good one. The

disadvantage of the method, however, is that both � and � remain �xed throughout and

there is no theoretial basis for hoosing their values. Standard optimisation tehniques,

however, an be used to remedy this by varying � and � adaptively at eah iteration.

Choosing the searh diretion

Many methods for unonstrained minimization are based on quadrati models of the ob-

jetive funtion. These work well, or even exatly, for quadrati funtions with positive

1

de�nite Hessian. Nonetheless they an be applied to minimize general funtions.

1

Mini-

mization of a quadrati funtion of N variables an be ahieved in at most N steps if an

exat line searh is used and suessive searh diretions are onjugate with respet to the

Hessian.

2

Assuming the update rule

s

n+1

= �g

n+1

+ �

n

s

n

the simplest presription for onjugate gradient diretions is the Flether-Reeves formula

�

n

=

g

n+1

� g

n+1

g

n

� g

n

:

There are several alternatives for �

n

that are equivalent for quadrati funtions with exat

line searh. The Polak-Ribi�ere formula, for instane, employs

�

n

=

(g

n+1

� g

n

) � g

n+1

g

n

� g

n

where g

n

� g

n+1

vanishes for exat line searhes but an be helpful when searhing is

done only approximately. In partiular, if the algorithm is making poor progress, then

g

n+1

� g

n

so that �

n

� 0 and the searh restarts lose to the diretion of steepest desent.

Another possibility is to replae the denominator g

n

� g

n

in the Polak-Ribi�ere formula

by �s

n

� g

n

. This is also equivalent to the Flether-Reeves formula, assuming exat line

searhes, but has advantages for non-quadrati funtions. This gives theHestenes-Stiefel

formula

�

n

=

(g

n

� g

n+1

) � g

n+1

s

n

� g

n

:

whih will be used in the algorithm presented below.

Choosing the step size

Assuming a urrent weight vetor w

n

and a searh vetor s

n

, the ideal is to hoose �

n

so

as to minimise

f(�) = E(w

n

+ �s

n

)

with respet to �. The weight vetor is then updated by the rule (1). This redues the

problem to a single dimension.

An exat line searh involving several, possibly many, funtion evaluations is ompu-

tationally expensive. An alternative is to �t a quadrati

^

f to f(0), f

0

(0), f

00

(0) and to

hoose �

n

as the minimum of

^

f giving

�

n

= �

f

0

(0)

f

00

(0)

: (2)

f

0

(0) is the diretional derivative of E(w

n

) along s

n

alulated by

f

0

(0) = s

n

� rE(w

n

): (3)

1

See [2, p.24℄ for a more general disussion of quadrati models.

2

For details of the method of onjugate gradients see [2, Ch.4℄, [3, Se.4.8.3℄ and[4, passim℄.

2

Estimating the urvature f

00

(0) by di�erening �rst derivatives gives

f

00

(0) � s

n

�

rE(w

n

+ �s

n

)�rE(w

n

)

�

(4)

for suÆiently small �. Choie of � is disussed in the next setion.

Unfortunately f(�) may be only poorly approximated by a quadrati for � > 0. Fur-

thermore, assuming that f

0

(0) < 0, the method breaks down altogether, as a method for

�nding a minimum of f(�), unless f

00

(0) > 0 . One remedy is to use a restrited-step

method in whih the step size is restrited by the region of validity of the seond-order

Taylor series expansion. M�ller [5℄ proposes adding a positive salar multiple of the iden-

tity �

n

I to the Hessian as in Levenberg-Marquardt algorithms.

3

In general the parameter

�

n

is hosen suÆiently large to make the Hessian positive de�nite. For the present one-

dimensional approah, �

n

is hosen to make the urvature f

00

(0) positive. The step size

�

n

is then given by

�

n

= �

f

0

(0)

f

00

(0) + �

n

ks

n

k

2

(ks

n

k

2

= s

n

� s

n

) (5)

where �

n

is assumed to have been hosen so that the denominator is stritly positive.

�

n

an be hanged adaptively to reet how well f is approximated by the urrent

quadrati model

^

f(�) = f(0) + �f

0

(0) +

1

2

�

2

�

f

00

(0) + �

n

ks

n

k

2

�

:

If �

n

is the step-size used on the n'th iteration, the atual redution in error is

�f = f(0)� f(�

n

)

while the predited redution aording to the quadrati model is

�

^

f =

^

f(0)�

^

f(�

n

):

The ratio

�

n

=

�f

�

^

f

= 2

f(�

n

)� f(0)

�

n

f

0

(0)

provides a measure of auray of the urrent approximation. Ideally �

n

= 1. Following

Flether [2, p.96℄, �

n

an be adapted by the rule

if �

n

< 0:25, set �

n+1

= 4�

n

if �

n

> 0:75, set �

n+1

= �

n

=2

otherwise, set �

n+1

= �

n

:

Thus �

n

is inreased if the approximation is poor and dereased if it is good. Notie that,

aording to (5), an inrease in �

n

means a derease in the step size or \trust-region". A

derease in �

n

, when the approximation is good, means an inrease in the trust-region.

4

Suessively inreasing �

n

by a multipliative fator an also be used to ensure that

the modi�ed urvature f

00

(0) + �

n

ks

n

k

2

is positive. However this an be done in a single

step without further gradient evaluations. A simple rule is

3

See [2, Ch.5℄ and [3, p.113℄ for disussion of restrited-step or \trust-region" methods.

4

Flether [1℄ suggests a more sophistiated adaptation of �

n

in the ase where �

n

< 0:25. The multi-

pliative fator is then hosen in the range [2,10℄ on the basis the loation of the minimum of a quadrati

�tted to f(0), f

0

(0) and f(�). This fator is then 2 � �

n

provided it lies in the interval [2,10℄, otherwise

the nearest endpoint. However, this appears to have only a marginal e�et. An alternative and improved

rule is given in step 6 of the algorithm presented below.

3

if f

00

(0) + �

(old)

n

ks

n

k

2

� 0, reset

�

(new)

n

= �

(old)

n

�

f

00

(0)

ks

n

k

2

following whih

f

00

(0) + �

(new)

n

ks

n

k

2

= �

(old)

n

ks

n

k

2

> 0:

Approximating the seond derivative

The simplest way of determining � in (4) is to hoose a small onstant � > 0 and set

�

n

=

�

ks

n

k

on the n'th iteration. The renormalization ensures uniform saling for varying diretions

and gradients. If f were in fat quadrati the exat hoie of � would be unimportant and

there would be no need for small �. Figure 1, however, shows that there is no partiular

advantage in having �

n

� 1 even when f is not quadrati. When �

n

� 0 the method

proposed by (2), (3), (4) is equivalent to �tting a straight line to f

0

(0) and f

0

(�

n

) to give

�

n

as the estimated zero rossing of f

0

. The ideal �

n

would be one for whih �

n

= �

n

. A

�

�

�

�

�

�

�

�

�

�

�

�

s

H

HY

f

0

(0)

s

H

HY

f

0

(�

n

)

�

n

s

�

n

Figure 1: The extrapolation used to determine �

n

.

rough equality between �

n

and �

n

is also appropriate for � > 0. This suggests a way of

adapting � and hene �

n

from yle to yle.

Let �

0

be hosen initially, say �

0

= 10

�3

, and let � be some number in the range

0 � � � 1. Then �

n

is adapted by the rule

�

n+1

= �

n

�

�

n

�

n

�

�

where �

n

is given on the n'th iteration by

�

n

=

�

n

ks

n

k

:

Choosing � = 0 is equivalent to using the initial value �

0

throughout. Non-zero values of

� adapt �

n

so that, on average, the values of �

n

and �

n

tend to be equalized. � = 0:05 or

� = 0:1 have been found satisfatory. Although this provides only a marginal improvement

over an optimally hosen but �xed value of �, it provides a stable and automati way of

hoosing a suitable � and hene �

n

.

4

The algorithm

The algorithm an be stated as follows:

0. hoose weight vetor w

0

, salars �

0

> 0, �

0

> 0, � � 0 and initialize searh diretion:

g

0

= rE(w

0

)

s

0

= �g

0

suess = true; S = 0; n = 0

1. if suess = true alulate �rst and seond order diretional derivatives:

�

n

= s

n

� g

n

(diretional gradient)

if �

n

� 0, set s

n

= �g

n

; �

n

= s

n

� g

n

; S = 0

�

n

= s

n

� s

n

; �

n

=

�

n

p

�

n

n

= s

n

�

rE(w

n

+ �

n

s

n

)�rE(w

n

)

�

n

(diretional urvature)

2. inrease the working urvature: Æ

n

=

n

+ �

n

�

n

3. if Æ

n

� 0 make Æ

n

positive and inrease �

n

:

Æ

n

= �

n

�

n

�

n

= �

n

�

n

�

n

4. alulate step size and adapt �:

�

n

= �

�

n

Æ

n

�

n+1

= �

n

�

�

n

�

n

�

�

5. alulate the omparison ratio:

�

n

=

2[E(w

n

+ �

n

s

n

)�E(w

n

)℄

�

n

�

n

suess = �

n

� 0

5

6. if �

n

< 0:25, set �

n+1

= minf�

n

+

Æ

n

(1� �

n

)

�

n

; �

max

g

if �

n

> 0:75, set �

n+1

= max f�

n

=2; �

min

g

otherwise, set �

n+1

= �

n

7. if suess = true then adjust weights:

w

n+1

= w

n

+ �

n

s

n

g

n+1

= rE(w

n+1

)

S = S + 1

else leave weights unhanged:

w

n+1

= w

n

g

n+1

= g

n

8. hoose new searh diretion:

if S = S

max

restart algorithm in diretion of steepest desent:

s

n+1

= �g

n+1

suess = true; S = 0

else

if suess = true reate new onjugate diretion:

�

n

=

(g

n

� g

n+1

) � g

n+1

�

n

s

n+1

= �g

n+1

+ �

n

s

n

else use urrent diretion again:

s

n+1

= s

n

�

n+1

= �

n

; �

n+1

= �

n

; �

n+1

= �

n

;

n+1

=

n

9. if kg

n+1

k < � return w

n+1

as desired minimum, else go to 1 with n = n+ 1.

6

Notes on the algorithm

0. �

0

= 10

�3

is satisfatory though not ritial if � > 0. If a non-zero value of � is

hosen then � = 0:05 or � = 0:1 are reommended. The initial value of � is not

ritial though �

0

= 1 is a natural hoie. The algorithm starts in the diretion of

steepest desent.

1. Apart from the initial yle, this step is only exeuted if the last yle sueeded in

error redution. Otherwise no hange in the weight vetor has been made and this

information is already known. Neither the Hestenes-Stiefel formula nor the Polak-

Ribi�ere formula guarantees that s

n

is a desent diretion, though usually it is. If

�

n

� 0, a restart is made in the diretion of steepest desent for whih �

n

= �g

n

�g

n

is negative, otherwise the algorithm would have terminated at the last step of the

previous yle, assuming the two-norm is used.

3. After this step, Æ

n

=

n

+ �

n

�

n

as before, but with the new value of �

n

.

5. Remember that �

n

< 0. The hoie of �

n

� 0 rather than �

n

> 0 is deliberate.

It safeguards against the algorithm getting stuk owing to limited oating-point

preision. An alternative is to restart in the diretion of steepest desent after a

given number, 10 say, of onseutive failures.

6. �

n

must stay in the range 0 < �

n

< 1, otherwise no further resaling is possible.

�

min

and �

max

an be of the order of the smallest and largest positive oating point

numbers provided by the implementation. When �

n

< 0:25, the proposed rule

inreases �

n

by more than a fator 4, the intention being to avoid the possibility of

more than 2 or 3 suessive failures.

8. S is the total number of suesses sine the last restart in the diretion of steepest

desent. By default S

max

is the dimension of the weight vetor (the total number

of weights and biases). For large sale problems more frequent restarts may be

advisable. Powell [6℄ suggests setting �

n

= 0 when �

n

< 0 when using the Polak-

Ribi�ere formula. This is not reommended for the present algorithm.

9. For the two-norm kg

n+1

k =

p

g

n+1

� g

n+1

. Gill et al (1981, p.307), however, reom-

mend using the in�nity-norm if the number of variables is large. The hoie of � is

up to the user.

Notes on omplexity

Time The algorithm requires both funtion values E(w) and gradients rE(w). For

feed-forward networks a funtion evaluation requires a forward pass for eah pattern in

the bath. A gradient evaluation requires both a forward and a bakward pass for eah

pattern. In fat a gradient evaluation provides the funtion value at no signi�ant extra

ost. On the other hand, if we �rst alulate E(w) and then subsequently alulate

rE(w), the former work will have to be redone unless the output of eah unit for eah

pattern in the bath has been stored, whih is often impratial.

Eah yle of the algorithm involves at most two gradient evaluations, assuming these

also give the funtion value. Suppose that initially, or after a previous yle, both E(w

n

)

and rE(w

n

) are known at the beginning of step 1. Step 1 requires an evaluation of

rE(w

n

+ �

n

s

n

), depending on whether or not suess = true. Step 5 requires a single

7

funtion evaluationE(w

n

+�

n

s

n

) though it is worth performing the full gradient evaluation

rE(w

n

+ �

n

s

n

) at this stage. If an error redution results, w

n

+ �

n

s

n

will beome the

new weight vetor w

n+1

in step 7 and rE(w

n+1

) will then already be known. If no error

redution ours, the extra omputation will have been wasted. On the other hand, if

an error redution does our, the work involved in alulating only the funtion value

E(w

n

+�

n

s

n

) in step 5 will have to be redone. Assuming that suesses are more ommon

than failures, it is better on average to alulate the gradient in step 5. Note that at the

end of the yle both E(w

n+1

) and rE(w

n+1

) are known.

All other signi�ant alulations in a yle are inner produts. Eah requires N mul-

tipliations and additions, where N is the number of weights. This is omparable to a

forward pass of a single pattern. If P � 1, where P is the number of patterns in a bath,

the ost of the inner produt alulations is not signi�ant.

Spae Memory must be alloated for storing \urrent" and \alternative" weight and

gradient arrays. \Alternative" refers tow

n

+�

n

s

n

in step 1 and to w

n

+�

n

s

n

in step 5. The

�rst need not stored beyond step 1. If a suessful error redution is made, \alternative"

is made \urrent" at a suitable stage in steps 7 and 8.

Storage is also required for the urrent searh diretion, on top of whatever is required

for implementing bak-propagation.

The salars �; �; �; need to be stored between yles sine, if suess = true, they

will not be realulated in step 1.

Referenes

[1℄ R. Flether. A modi�ed Marquardt subroutine for nonlinear least squares. Report

R6799, Atomi Energy Researh Establishment, Harwell, England, 1971.

[2℄ R. Flether. Pratial Methods of Optimization. John Wiley & Sons, seond edition,

1987.

[3℄ Philip E. Gill, Walter Murray, and Margaret H. Wright. Pratial Optimization. Aa-

demi Press, 1981.

[4℄ Magnus R. Hestenes. Conjugate Diretion Methods in Optimization. Springer-Verlag,

1980.

[5℄ Martin F. M�ller. A saled onjugate gradient algorithm for fast supervised learning.

Report DAIMI PB-339, Aarhus University, July 1990.

[6℄ M. J. D. Powell. Nononvex minimization alulations and the onjugate gradient

method. In D. F. GriÆths, editor, Numerial Analysis Proeedings, Dundee 1983,

Berlin, 1984. Springer Verlag.

8

