A Marquardt algorithm for choosing the step-size in
backpropagation learning with conjugate gradients

Peter M. Williams
School of Cognitive and Computing Sciences
University of Sussex

13 February 1991

Standard learning in feed-forward networks uses simple gradient descent, sometimes
with a “momentum” term. Gradient descent is very inefficient. The momentum method
is an improvement though it is ad hoc and shares with the steepest descent method the
disadvantage of requiring an arbitrary choice of parameter.

Let E(w) be the error function of the network where w is the weight vector (all the
weights and “biases” in the network in some order or other). The aim is assumed to be
that of unconstrained minimisation of E.

Suppose that w, is the weight vector at the n’th iteration. The next iteration involves
choosing a suitable non-zero search direction s, and step length «,. The weight vector is
then updated by the rule

Wpt1 = Wp + QpSp. (1)
Simple gradient descent uses

Sn = —8n

where g, = VE(w,) with a fixed step size a,, = a.

The momentum term method also uses a fixed step size « but chooses, as search direc-
tion, a linear combination of the current direction of steepest descent and the preceding
search direction

Sp = —8n + Bsn_1

where [is some fixed constant. The algorithm is started in the direction of steepest
descent: sg = —gp-

The strategy of choosing a linear combination of —g, and s, 1 is a good one. The
disadvantage of the method, however, is that both « and 8 remain fixed throughout and
there is no theoretical basis for choosing their values. Standard optimisation techniques,
however, can be used to remedy this by varying o and S adaptively at each iteration.

Choosing the search direction

Many methods for unconstrained minimization are based on quadratic models of the ob-
jective function. These work well, or even exactly, for quadratic functions with positive

definite Hessian. Nonetheless they can be applied to minimize general functions.! Mini-
mization of a quadratic function of N variables can be achieved in at most N steps if an
exact line search is used and successive search directions are conjugate with respect to the
Hessian.? Assuming the update rule

Sn+l1 = —8n+1 + ,ann
the simplest prescription for conjugate gradient directions is the Fletcher-Reeves formula

n+1 - 8n+1
Bn="".
8n " 8n
There are several alternatives for /3,, that are equivalent for quadratic functions with exact
line search. The Polak-Ribiere formula, for instance, employs

By = (8n+1 — 8n) - 8nt1
" gn - 8n

where g, - gn41 vanishes for exact line searches but can be helpful when searching is
done only approximately. In particular, if the algorithm is making poor progress, then
8n+1 = gy so that B, = 0 and the search restarts close to the direction of steepest descent.

Another possibility is to replace the denominator g, - g, in the Polak-Ribiere formula
by —sp - g,. This is also equivalent to the Fletcher-Reeves formula, assuming exact line
searches, but has advantages for non-quadratic functions. This gives the Hestenes-Stiefel
formula

(gﬂ B gn+1) *8n+1
Sp * 8n

IBn:

which will be used in the algorithm presented below.

Choosing the step size

Assuming a current weight vector w, and a search vector s,, the ideal is to choose «;, so
as to minimise

fla) = E(w, + asy)

with respect to a. The weight vector is then updated by the rule (1). This reduces the
problem to a single dimension.

An exact line search involving several, possibly many, function evaluations is compu-
tationally expensive. An alternative is to fit a quadratic f to £(0), f/(0), f”(0) and to
choose «a;, as the minimum of f giving

o)
"SI P0)

1'(0) is the directional derivative of E(wy,) along s, calculated by

: (2)

f'(0) = sn - VE(wy). (3)

!See [2, p.24] for a more general discussion of quadratic models.
*For details of the method of conjugate gradients see [2, Ch.4], [3, Sec.4.8.3] and[4, passim].

Estimating the curvature f”(0) by differencing first derivatives gives

£1(0) ~ s, VE(w, +o0s,) — VE(w,) (4)

2

for sufficiently small o. Choice of ¢ is discussed in the next section.

Unfortunately f(a) may be only poorly approximated by a quadratic for a > 0. Fur-
thermore, assuming that f'(0) < 0, the method breaks down altogether, as a method for
finding a minimum of f(«), unless f”(0) > 0 . One remedy is to use a restricted-step
method in which the step size is restricted by the region of validity of the second-order
Taylor series expansion. Mgller [5] proposes adding a positive scalar multiple of the iden-
tity A\, to the Hessian as in Levenberg-Marquardt algorithms.? In general the parameter
An is chosen sufficiently large to make the Hessian positive definite. For the present one-
dimensional approach, A, is chosen to make the curvature f”(0) positive. The step size
ay is then given by
B f'(0)

F"(0) + An [|snll?
where), is assumed to have been chosen so that the denominator is strictly positive.

An can be changed adaptively to reflect how well f is approximated by the current
quadratic model

fla) = F(0) + af'(0) + 5 & (f"(0) + An [Isall?) -

If oy, is the step-size used on the n’th iteration, the actual reduction in error is
Af = f(0) - f(an)

while the predicted reduction according to the quadratic model is
Af = f(0) = f(om).

The ratio

(Isnll* = 50 - 80) (5)

oy =

_Af _ flan) — £(0)
- P !
Af an f'(0)
provides a measure of accuracy of the current approximation. Ideally p, = 1. Following
Fletcher [2, p.96], \,, can be adapted by the rule

Pn

if p, < 0.25, set Apy1 =4\,
if pp, > 0.75, set A1 = Ap/2

otherwise, set A\, 11 = \y.

Thus)\, is increased if the approximation is poor and decreased if it is good. Notice that,
according to (5), an increase in A\, means a decrease in the step size or “trust-region”. A
decrease in \,, when the approximation is good, means an increase in the trust-region.*
Successively increasing A\, by a multiplicative factor can also be used to ensure that
the modified curvature f”(0) + \, ||s,||? is positive. However this can be done in a single

step without further gradient evaluations. A simple rule is

3Gee [2, Ch.5] and [3, p.113] for discussion of restricted-step or “trust-region” methods.

“Fletcher [1] suggests a more sophisticated adaptation of), in the case where p, < 0.25. The multi-
plicative factor is then chosen in the range [2,10] on the basis the location of the minimum of a quadratic
fitted to £(0), f'(0) and f(«). This factor is then 2 — p, provided it lies in the interval [2,10], otherwise
the nearest endpoint. However, this appears to have only a marginal effect. An alternative and improved
rule is given in step 6 of the algorithm presented below.

if f"(0) + Aletd) Isn||? <0, reset

y(ew) _ (i) _ S"(0)

" " Isn1?

following which
F1(0) + AT s 1* = AP [l |1* > 0.

Approximating the second derivative

The simplest way of determining o in (4) is to choose a small constant € > 0 and set

_ €
Isnl

on the n’th iteration. The renormalization ensures uniform scaling for varying directions
and gradients. If f were in fact quadratic the exact choice of o would be unimportant and
there would be no need for small e. Figure 1, however, shows that there is no particular
advantage in having 0, < 1 even when f is not quadratic. When A, ~ 0 the method
proposed by (2), (3), (4) is equivalent to fitting a straight line to f'(0) and f'(o,) to give
ay, as the estimated zero crossing of f’. The ideal o, would be one for which o, = a;,. A

On

On oe.n//
I —
| ~
! —
! —~
}/
~ o)
-
» In
—~
£'(0)

Figure 1: The extrapolation used to determine a,.

rough equality between o, and «, is also appropriate for A > 0. This suggests a way of
adapting € and hence o, from cycle to cycle.

Let €y be chosen initially, say g = 1073, and let 7 be some number in the range
0 <7 < 1. Then ¢, is adapted by the rule

anp\”
€nt+1 = €n | —
On

where o, is given on the n’th iteration by

€n

on = -
" lsal

Choosing m = 0 is equivalent to using the initial value ¢; throughout. Non-zero values of
m adapt €, so that, on average, the values of «;, and o, tend to be equalized. 7 = 0.05 or
m = 0.1 have been found satisfactory. Although this provides only a marginal improvement
over an optimally chosen but fixed value of ¢, it provides a stable and automatic way of
choosing a suitable € and hence o,.

The algorithm
The algorithm can be stated as follows:

0. choose weight vector wy, scalars ¢y > 0, Ay > 0, 7 > 0 and initialize search direction:
go = VE(wo)
Sp = —8o
success = true, S=0, n =0
1. if success = true calculate first and second order directional derivatives:
ln = Sp - 8n (directional gradient)

if py, >0, set s, = —8n, n =Sn Cn, S =0

€n

NG

E - VE
Yo = Sp - VE(Wn + onSn) = VE(Wn) (directional curvature)
On

Kn =8p *8p, Op =

2. increase the working curvature: &, = v, + A\pkn
3. if 0, < 0 make §, positive and increase A;:
On = Ankn

Ay = A, — 22

Kn

4. calculate step size and adapt e:

5. calculate the comparison ratio:

2[E(Wy + ansn) — E(w,)]

Ol lbn,

Pn =

success = pp >0

3n (1

6. if p, < 0.25, set Apyq = min{\, + L"”), Amax

if pp, > 0.75, set A1 = max {A\,/2, Amin}

otherwise, set A1 = Ay

7. if success = true then adjust weights:
Wpt1 = Wp + QpSp
8n+1 = VE(Wn1)
S=5+1
else leave weights unchanged:
Wnt1 = Wp
8n+1 = 8n

8. choose new search direction:

if S = Smax restart algorithm in direction of steepest descent:
Sp+1 = —8n+1
success = true, S =0

else
if success = true create new conjugate direction:
_ (8n —8n+1) " 8nt1
Bn =
Un
Snt1 = —8nt1 + BnSn

else use current direction again:

Sp4+1 = Sn

MUn4+1 = HUny Bn+1 = KBny Opntl = Ony Ynt+l = In

9. if ||gn+1|| < 7 return wy,41 as desired minimum, else go to 1 with n =n + 1.

Notes on the algorithm

0. ¢ = 1072 is satisfactory though not critical if # > 0. If a non-zero value of = is
chosen then m = 0.05 or 7 = 0.1 are recommended. The initial value of X is not
critical though Ao = 1 is a natural choice. The algorithm starts in the direction of
steepest descent.

1. Apart from the initial cycle, this step is only executed if the last cycle succeeded in
error reduction. Otherwise no change in the weight vector has been made and this
information is already known. Neither the Hestenes-Stiefel formula nor the Polak-
Ribiere formula guarantees that s, is a descent direction, though usually it is. If
tn > 0, a restart is made in the direction of steepest descent for which p, = —g, -gn
is negative, otherwise the algorithm would have terminated at the last step of the
previous cycle, assuming the two-norm is used.

3. After this step, d, = v + Ankn as before, but with the new value of A,,.

5. Remember that u, < 0. The choice of p, > 0 rather than p, > 0 is deliberate.
It safeguards against the algorithm getting stuck owing to limited floating-point
precision. An alternative is to restart in the direction of steepest descent after a
given number, 10 say, of consecutive failures.

6. A, must stay in the range 0 < A, < oo, otherwise no further rescaling is possible.
Amin and Amax can be of the order of the smallest and largest positive floating point
numbers provided by the implementation. When p, < 0.25, the proposed rule
increases A\, by more than a factor 4, the intention being to avoid the possibility of
more than 2 or 3 successive failures.

8. S is the total number of successes since the last restart in the direction of steepest
descent. By default Spax is the dimension of the weight vector (the total number
of weights and biases). For large scale problems more frequent restarts may be
advisable. Powell [6] suggests setting 3, = 0 when 3, < 0 when using the Polak-
Ribiére formula. This is not recommended for the present algorithm.

9. For the two-norm ||gn11|| = «/8nt1 - 8nt1 - Gill et al (1981, p.307), however, recom-
mend using the infinity-norm if the number of variables is large. The choice of 7 is
up to the user.

Notes on complexity

Time The algorithm requires both function values E(w) and gradients VE(w). For
feed-forward networks a function evaluation requires a forward pass for each pattern in
the batch. A gradient evaluation requires both a forward and a backward pass for each
pattern. In fact a gradient evaluation provides the function value at no significant extra
cost. On the other hand, if we first calculate E(w) and then subsequently calculate
VE(w), the former work will have to be redone unless the output of each unit for each
pattern in the batch has been stored, which is often impractical.

Each cycle of the algorithm involves at most two gradient evaluations, assuming these
also give the function value. Suppose that initially, or after a previous cycle, both E(w,)
and VE(w,) are known at the beginning of step 1. Step 1 requires an evaluation of
VE(w, + o,8,), depending on whether or not success = true. Step 5 requires a single

function evaluation F(w,~+ay,s,) though it is worth performing the full gradient evaluation
VE(w, + a,s,) at this stage. If an error reduction results, w,, + a,s, will become the
new weight vector w1 in step 7 and VE(w,, 1) will then already be known. If no error
reduction occurs, the extra computation will have been wasted. On the other hand, if
an error reduction does occur, the work involved in calculating only the function value
E(wy, + aysy) in step 5 will have to be redone. Assuming that successes are more common
than failures, it is better on average to calculate the gradient in step 5. Note that at the
end of the cycle both E(wj,11) and VE(w,1) are known.

All other significant calculations in a cycle are inner products. Each requires N mul-
tiplications and additions, where N is the number of weights. This is comparable to a
forward pass of a single pattern. If P > 1, where P is the number of patterns in a batch,
the cost of the inner product calculations is not significant.

Space Memory must be allocated for storing “current” and “alternative” weight and
gradient arrays. “Alternative” refers to w,,+o,s, in step 1 and to w,,+«,,s,, in step 5. The
first need not stored beyond step 1. If a successful error reduction is made, “alternative”
is made “current” at a suitable stage in steps 7 and 8.

Storage is also required for the current search direction, on top of whatever is required
for implementing back-propagation.

The scalars u, k,0,7v need to be stored between cycles since, if success = true, they
will not be recalculated in step 1.

References

[1] R. Fletcher. A modified Marquardt subroutine for nonlinear least squares. Report
R6799, Atomic Energy Research Establishment, Harwell, England, 1971.

[2] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, second edition,
1987.

(3] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization. Aca-
demic Press, 1981.

[4] Magnus R. Hestenes. Conjugate Direction Methods in Optimization. Springer-Verlag,
1980.

[5] Martin F. Mgller. A scaled conjugate gradient algorithm for fast supervised learning.
Report DAIMI PB-339, Aarhus University, July 1990.

[6] M. J. D. Powell. Nonconvex minimization calculations and the conjugate gradient
method. In D. F. Griffiths, editor, Numerical Analysis Proceedings, Dundee 1983,
Berlin, 1984. Springer Verlag.

