
A Marquardt algorithm for 
hoosing the step-size in

ba
kpropagation learning with 
onjugate gradients

Peter M. Williams

S
hool of Cognitive and Computing S
ien
es

University of Sussex

13 February 1991

Standard learning in feed-forward networks uses simple gradient des
ent, sometimes

with a \momentum" term. Gradient des
ent is very ineÆ
ient. The momentum method

is an improvement though it is ad ho
 and shares with the steepest des
ent method the

disadvantage of requiring an arbitrary 
hoi
e of parameter.

Let E(w) be the error fun
tion of the network where w is the weight ve
tor (all the

weights and \biases" in the network in some order or other). The aim is assumed to be

that of un
onstrained minimisation of E.

Suppose that w

n

is the weight ve
tor at the n'th iteration. The next iteration involves


hoosing a suitable non-zero sear
h dire
tion s

n

and step length �

n

. The weight ve
tor is

then updated by the rule

w

n+1

= w

n

+ �

n

s

n

: (1)

Simple gradient des
ent uses

s

n

= �g

n

where g

n

= rE(w

n

) with a �xed step size �

n

= �.

The momentum term method also uses a �xed step size � but 
hooses, as sear
h dire
-

tion, a linear 
ombination of the 
urrent dire
tion of steepest des
ent and the pre
eding

sear
h dire
tion

s

n

= �g

n

+ �s

n�1

where � is some �xed 
onstant. The algorithm is started in the dire
tion of steepest

des
ent: s

0

= �g

0

.

The strategy of 
hoosing a linear 
ombination of �g

n

and s

n�1

is a good one. The

disadvantage of the method, however, is that both � and � remain �xed throughout and

there is no theoreti
al basis for 
hoosing their values. Standard optimisation te
hniques,

however, 
an be used to remedy this by varying � and � adaptively at ea
h iteration.

Choosing the sear
h dire
tion

Many methods for un
onstrained minimization are based on quadrati
 models of the ob-

je
tive fun
tion. These work well, or even exa
tly, for quadrati
 fun
tions with positive
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de�nite Hessian. Nonetheless they 
an be applied to minimize general fun
tions.

1

Mini-

mization of a quadrati
 fun
tion of N variables 
an be a
hieved in at most N steps if an

exa
t line sear
h is used and su

essive sear
h dire
tions are 
onjugate with respe
t to the

Hessian.

2

Assuming the update rule

s

n+1

= �g

n+1

+ �

n

s

n

the simplest pres
ription for 
onjugate gradient dire
tions is the Flet
her-Reeves formula

�

n

=

g

n+1

� g

n+1

g

n

� g

n

:

There are several alternatives for �

n

that are equivalent for quadrati
 fun
tions with exa
t

line sear
h. The Polak-Ribi�ere formula, for instan
e, employs

�

n

=

(g

n+1

� g

n

) � g

n+1

g

n

� g

n

where g

n

� g

n+1

vanishes for exa
t line sear
hes but 
an be helpful when sear
hing is

done only approximately. In parti
ular, if the algorithm is making poor progress, then

g

n+1

� g

n

so that �

n

� 0 and the sear
h restarts 
lose to the dire
tion of steepest des
ent.

Another possibility is to repla
e the denominator g

n

� g

n

in the Polak-Ribi�ere formula

by �s

n

� g

n

. This is also equivalent to the Flet
her-Reeves formula, assuming exa
t line

sear
hes, but has advantages for non-quadrati
 fun
tions. This gives theHestenes-Stiefel

formula

�

n

=

(g

n

� g

n+1

) � g

n+1

s

n

� g

n

:

whi
h will be used in the algorithm presented below.

Choosing the step size

Assuming a 
urrent weight ve
tor w

n

and a sear
h ve
tor s

n

, the ideal is to 
hoose �

n

so

as to minimise

f(�) = E(w

n

+ �s

n

)

with respe
t to �. The weight ve
tor is then updated by the rule (1). This redu
es the

problem to a single dimension.

An exa
t line sear
h involving several, possibly many, fun
tion evaluations is 
ompu-

tationally expensive. An alternative is to �t a quadrati


^

f to f(0), f

0

(0), f

00

(0) and to


hoose �

n

as the minimum of

^

f giving

�

n

= �

f

0

(0)

f

00

(0)

: (2)

f

0

(0) is the dire
tional derivative of E(w

n

) along s

n


al
ulated by

f

0

(0) = s

n

� rE(w

n

): (3)

1

See [2, p.24℄ for a more general dis
ussion of quadrati
 models.

2

For details of the method of 
onjugate gradients see [2, Ch.4℄, [3, Se
.4.8.3℄ and[4, passim℄.
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Estimating the 
urvature f

00

(0) by di�eren
ing �rst derivatives gives

f

00

(0) � s

n

�

rE(w

n

+ �s

n

)�rE(w

n

)

�

(4)

for suÆ
iently small �. Choi
e of � is dis
ussed in the next se
tion.

Unfortunately f(�) may be only poorly approximated by a quadrati
 for � > 0. Fur-

thermore, assuming that f

0

(0) < 0, the method breaks down altogether, as a method for

�nding a minimum of f(�), unless f

00

(0) > 0 . One remedy is to use a restri
ted-step

method in whi
h the step size is restri
ted by the region of validity of the se
ond-order

Taylor series expansion. M�ller [5℄ proposes adding a positive s
alar multiple of the iden-

tity �

n

I to the Hessian as in Levenberg-Marquardt algorithms.

3

In general the parameter

�

n

is 
hosen suÆ
iently large to make the Hessian positive de�nite. For the present one-

dimensional approa
h, �

n

is 
hosen to make the 
urvature f

00

(0) positive. The step size

�

n

is then given by

�

n

= �

f

0

(0)

f

00

(0) + �

n

ks

n

k

2

(ks

n

k

2

= s

n

� s

n

) (5)

where �

n

is assumed to have been 
hosen so that the denominator is stri
tly positive.

�

n


an be 
hanged adaptively to re
e
t how well f is approximated by the 
urrent

quadrati
 model

^

f(�) = f(0) + �f

0

(0) +

1

2

�

2

�

f

00

(0) + �

n

ks

n

k

2

�

:

If �

n

is the step-size used on the n'th iteration, the a
tual redu
tion in error is

�f = f(0)� f(�

n

)

while the predi
ted redu
tion a

ording to the quadrati
 model is

�

^

f =

^

f(0)�

^

f(�

n

):

The ratio

�

n

=

�f

�

^

f

= 2

f(�

n

)� f(0)

�

n

f

0

(0)

provides a measure of a

ura
y of the 
urrent approximation. Ideally �

n

= 1. Following

Flet
her [2, p.96℄, �

n


an be adapted by the rule

if �

n

< 0:25, set �

n+1

= 4�

n

if �

n

> 0:75, set �

n+1

= �

n

=2

otherwise, set �

n+1

= �

n

:

Thus �

n

is in
reased if the approximation is poor and de
reased if it is good. Noti
e that,

a

ording to (5), an in
rease in �

n

means a de
rease in the step size or \trust-region". A

de
rease in �

n

, when the approximation is good, means an in
rease in the trust-region.

4

Su

essively in
reasing �

n

by a multipli
ative fa
tor 
an also be used to ensure that

the modi�ed 
urvature f

00

(0) + �

n

ks

n

k

2

is positive. However this 
an be done in a single

step without further gradient evaluations. A simple rule is

3

See [2, Ch.5℄ and [3, p.113℄ for dis
ussion of restri
ted-step or \trust-region" methods.

4

Flet
her [1℄ suggests a more sophisti
ated adaptation of �

n

in the 
ase where �

n

< 0:25. The multi-

pli
ative fa
tor is then 
hosen in the range [2,10℄ on the basis the lo
ation of the minimum of a quadrati


�tted to f(0), f

0

(0) and f(�). This fa
tor is then 2 � �

n

provided it lies in the interval [2,10℄, otherwise

the nearest endpoint. However, this appears to have only a marginal e�e
t. An alternative and improved

rule is given in step 6 of the algorithm presented below.
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if f

00

(0) + �

(old)

n

ks

n

k

2

� 0, reset

�

(new)

n

= �

(old)

n

�

f

00

(0)

ks

n

k

2

following whi
h

f

00

(0) + �

(new)

n

ks

n

k

2

= �

(old)

n

ks

n

k

2

> 0:

Approximating the se
ond derivative

The simplest way of determining � in (4) is to 
hoose a small 
onstant � > 0 and set

�

n

=

�

ks

n

k

on the n'th iteration. The renormalization ensures uniform s
aling for varying dire
tions

and gradients. If f were in fa
t quadrati
 the exa
t 
hoi
e of � would be unimportant and

there would be no need for small �. Figure 1, however, shows that there is no parti
ular

advantage in having �

n

� 1 even when f is not quadrati
. When �

n

� 0 the method

proposed by (2), (3), (4) is equivalent to �tting a straight line to f

0

(0) and f

0

(�

n

) to give

�

n

as the estimated zero 
rossing of f

0

. The ideal �

n

would be one for whi
h �

n

= �

n

. A

�

�

�

�

�

�

�

�

�

�

�

�

s

H

HY

f

0

(0)

s

H

HY

f

0

(�

n

)

�

n

s

�

n

Figure 1: The extrapolation used to determine �

n

.

rough equality between �

n

and �

n

is also appropriate for � > 0. This suggests a way of

adapting � and hen
e �

n

from 
y
le to 
y
le.

Let �

0

be 
hosen initially, say �

0

= 10

�3

, and let � be some number in the range

0 � � � 1. Then �

n

is adapted by the rule

�

n+1

= �

n

�

�

n

�

n

�

�

where �

n

is given on the n'th iteration by

�

n

=

�

n

ks

n

k

:

Choosing � = 0 is equivalent to using the initial value �

0

throughout. Non-zero values of

� adapt �

n

so that, on average, the values of �

n

and �

n

tend to be equalized. � = 0:05 or

� = 0:1 have been found satisfa
tory. Although this provides only a marginal improvement

over an optimally 
hosen but �xed value of �, it provides a stable and automati
 way of


hoosing a suitable � and hen
e �

n

.
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The algorithm

The algorithm 
an be stated as follows:

0. 
hoose weight ve
tor w

0

, s
alars �

0

> 0, �

0

> 0, � � 0 and initialize sear
h dire
tion:

g

0

= rE(w

0

)

s

0

= �g

0

su

ess = true; S = 0; n = 0

1. if su

ess = true 
al
ulate �rst and se
ond order dire
tional derivatives:

�

n

= s

n

� g

n

(dire
tional gradient)

if �

n

� 0, set s

n

= �g

n

; �

n

= s

n

� g

n

; S = 0

�

n

= s

n

� s

n

; �

n

=

�

n

p

�

n




n

= s

n

�

rE(w

n

+ �

n

s

n

)�rE(w

n

)

�

n

(dire
tional 
urvature)

2. in
rease the working 
urvature: Æ

n

= 


n

+ �

n

�

n

3. if Æ

n

� 0 make Æ

n

positive and in
rease �

n

:

Æ

n

= �

n

�

n

�

n

= �

n

�




n

�

n

4. 
al
ulate step size and adapt �:

�

n

= �

�

n

Æ

n

�

n+1

= �

n

�

�

n

�

n

�

�

5. 
al
ulate the 
omparison ratio:

�

n

=

2[E(w

n

+ �

n

s

n

)�E(w

n

)℄

�

n

�

n

su

ess = �

n

� 0
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6. if �

n

< 0:25, set �

n+1

= minf�

n

+

Æ

n

(1� �

n

)

�

n

; �

max

g

if �

n

> 0:75, set �

n+1

= max f�

n

=2; �

min

g

otherwise, set �

n+1

= �

n

7. if su

ess = true then adjust weights:

w

n+1

= w

n

+ �

n

s

n

g

n+1

= rE(w

n+1

)

S = S + 1

else leave weights un
hanged:

w

n+1

= w

n

g

n+1

= g

n

8. 
hoose new sear
h dire
tion:

if S = S

max

restart algorithm in dire
tion of steepest des
ent:

s

n+1

= �g

n+1

su

ess = true; S = 0

else

if su

ess = true 
reate new 
onjugate dire
tion:

�

n

=

(g

n

� g

n+1

) � g

n+1

�

n

s

n+1

= �g

n+1

+ �

n

s

n

else use 
urrent dire
tion again:

s

n+1

= s

n

�

n+1

= �

n

; �

n+1

= �

n

; �

n+1

= �

n

; 


n+1

= 


n

9. if kg

n+1

k < � return w

n+1

as desired minimum, else go to 1 with n = n+ 1.
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Notes on the algorithm

0. �

0

= 10

�3

is satisfa
tory though not 
riti
al if � > 0. If a non-zero value of � is


hosen then � = 0:05 or � = 0:1 are re
ommended. The initial value of � is not


riti
al though �

0

= 1 is a natural 
hoi
e. The algorithm starts in the dire
tion of

steepest des
ent.

1. Apart from the initial 
y
le, this step is only exe
uted if the last 
y
le su

eeded in

error redu
tion. Otherwise no 
hange in the weight ve
tor has been made and this

information is already known. Neither the Hestenes-Stiefel formula nor the Polak-

Ribi�ere formula guarantees that s

n

is a des
ent dire
tion, though usually it is. If

�

n

� 0, a restart is made in the dire
tion of steepest des
ent for whi
h �

n

= �g

n

�g

n

is negative, otherwise the algorithm would have terminated at the last step of the

previous 
y
le, assuming the two-norm is used.

3. After this step, Æ

n

= 


n

+ �

n

�

n

as before, but with the new value of �

n

.

5. Remember that �

n

< 0. The 
hoi
e of �

n

� 0 rather than �

n

> 0 is deliberate.

It safeguards against the algorithm getting stu
k owing to limited 
oating-point

pre
ision. An alternative is to restart in the dire
tion of steepest des
ent after a

given number, 10 say, of 
onse
utive failures.

6. �

n

must stay in the range 0 < �

n

< 1, otherwise no further res
aling is possible.

�

min

and �

max


an be of the order of the smallest and largest positive 
oating point

numbers provided by the implementation. When �

n

< 0:25, the proposed rule

in
reases �

n

by more than a fa
tor 4, the intention being to avoid the possibility of

more than 2 or 3 su

essive failures.

8. S is the total number of su

esses sin
e the last restart in the dire
tion of steepest

des
ent. By default S

max

is the dimension of the weight ve
tor (the total number

of weights and biases). For large s
ale problems more frequent restarts may be

advisable. Powell [6℄ suggests setting �

n

= 0 when �

n

< 0 when using the Polak-

Ribi�ere formula. This is not re
ommended for the present algorithm.

9. For the two-norm kg

n+1

k =

p

g

n+1

� g

n+1

. Gill et al (1981, p.307), however, re
om-

mend using the in�nity-norm if the number of variables is large. The 
hoi
e of � is

up to the user.

Notes on 
omplexity

Time The algorithm requires both fun
tion values E(w) and gradients rE(w). For

feed-forward networks a fun
tion evaluation requires a forward pass for ea
h pattern in

the bat
h. A gradient evaluation requires both a forward and a ba
kward pass for ea
h

pattern. In fa
t a gradient evaluation provides the fun
tion value at no signi�
ant extra


ost. On the other hand, if we �rst 
al
ulate E(w) and then subsequently 
al
ulate

rE(w), the former work will have to be redone unless the output of ea
h unit for ea
h

pattern in the bat
h has been stored, whi
h is often impra
ti
al.

Ea
h 
y
le of the algorithm involves at most two gradient evaluations, assuming these

also give the fun
tion value. Suppose that initially, or after a previous 
y
le, both E(w

n

)

and rE(w

n

) are known at the beginning of step 1. Step 1 requires an evaluation of

rE(w

n

+ �

n

s

n

), depending on whether or not su

ess = true. Step 5 requires a single
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fun
tion evaluationE(w

n

+�

n

s

n

) though it is worth performing the full gradient evaluation

rE(w

n

+ �

n

s

n

) at this stage. If an error redu
tion results, w

n

+ �

n

s

n

will be
ome the

new weight ve
tor w

n+1

in step 7 and rE(w

n+1

) will then already be known. If no error

redu
tion o

urs, the extra 
omputation will have been wasted. On the other hand, if

an error redu
tion does o

ur, the work involved in 
al
ulating only the fun
tion value

E(w

n

+�

n

s

n

) in step 5 will have to be redone. Assuming that su

esses are more 
ommon

than failures, it is better on average to 
al
ulate the gradient in step 5. Note that at the

end of the 
y
le both E(w

n+1

) and rE(w

n+1

) are known.

All other signi�
ant 
al
ulations in a 
y
le are inner produ
ts. Ea
h requires N mul-

tipli
ations and additions, where N is the number of weights. This is 
omparable to a

forward pass of a single pattern. If P � 1, where P is the number of patterns in a bat
h,

the 
ost of the inner produ
t 
al
ulations is not signi�
ant.

Spa
e Memory must be allo
ated for storing \
urrent" and \alternative" weight and

gradient arrays. \Alternative" refers tow

n

+�

n

s

n

in step 1 and to w

n

+�

n

s

n

in step 5. The

�rst need not stored beyond step 1. If a su

essful error redu
tion is made, \alternative"

is made \
urrent" at a suitable stage in steps 7 and 8.

Storage is also required for the 
urrent sear
h dire
tion, on top of whatever is required

for implementing ba
k-propagation.

The s
alars �; �; �; 
 need to be stored between 
y
les sin
e, if su

ess = true, they

will not be re
al
ulated in step 1.
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