
The SAGA Cross:

The Mechanics of Recombination for

Species with Variable-length Genotypes

Inman Harvey

CSRP 223, 1992

Cognitive Science Research Paper

Serial No. CSRP 223

The University of Sussex

School of Cognitive and Computing Sciences

Falmer

Brighton BN1 9QH

England, U.K.

This paper appears in:

R. M�anner and B. Manderick, editors,

Parallel Problem Solving from Nature 2, pages 269{278.

North-Holland, 1992

The SAGA Cross: The Mechanics of Recombination

for Species with Variable-length Genotypes

Inman Harvey

a

a

School of Cognitive and Computing Sciences, University of Sussex, Brighton U.K.

inmanh@cogs.susx.ac.uk

1. Introduction

Genetic Algorithms (GAs) have traditionally tended to use genotypes of a predeter-

mined �xed length. The designer of a particular GA, for use as an optimisation technique

within a given search space, decides which parameters are to be represented on the geno-

type, how they are to be coded, and hence the genotype length. For each parameter there

is a given position or set of positions on the genotype which unambiguously code for it.

This can be loosely translated as: the allele (parameter or feature value) for a particular

gene (parameter or feature) is coded for at a particular locus (genotype position). This

makes it simple for a recombination genetic operator, therefore, to take the same crossover

point in each parent genotype, and exchange homologous segments.

When variable-length genotypes (VLGs) are used, absolute position of some symbols

on the genotype can usually no longer be used to decide what feature those symbols relate

to. Some examples of ways around this problem are given in the next section. A related

problem is, how can one organise a recombination operator so that the resulting o�spring

genotypes are, �rstly, sensibly interpretable, and secondly, have inherited meaningful

`building blocks' from both parents.

VLG GAs have been proposed in various domains where they seem to allow a natural

genetic representation for the problem under consideration, and the variety of domains

is re
ected in the variety of representations suggested. In this paper the motivation for

needing VLGs is that of wanting to extend GAs so as to allow for open-ended evolution.

Although GAs have borrowed ideas from natural evolution to use in function optimisation,

what they have ignored is perhaps the most impressive feature of natural evolution: how

over aeons organisms have evolved from simple organisms to ever more complex ones, with

associated increase in genotype lengths. It has been suggested elsewhere that this feature

of evolution will need to be used in the only practical way of developing autonomous robots

[6, 10], and more generally this is an obvious approach to incremental design by evolution

of engineering systems. The SAGA framework was introduced in [7] to incorporate the

necessary extensions to standard GAs, and the present paper looks at the consequences

for a recombination operator.

It will be suggested that in this context the identi�cation of the locus of a `gene', or

that section of a genotype which codes for some particular feature, will necessarily be by

use of an identifying template. The problem for recombination becomes then, given a

randomly selected crossover point in one parent genotype, how to identify an appropriate

OVERCROSS OFFSPRINGPARENTS

round head

square head long legs short arms

short legs long arms

square head

round head

PARENTS OFFSPRINGCROSS OVER

Walkman long legs short arms

short legs long arms

Figure 1. A crossover operator which works well with �xed lengths may have sad conse-

quences when unthinkingly applied to variable length genotypes.

place to break the other parent genotype so as to exchange homologous sections as far

as is possible. In this we will be aided by the fact that within the SAGA framework the

genetic pool of a population will be largely converged to form a species or quasi-species;

as shown in [7] and brie
y summarised below.

As a matter of practical concern, therefore, an algorithm needs to be developed which

can determine on `syntactic' grounds rather than `semantic' ones how to exchange ho-

mologous segments. This can be quanti�ed as maximising the similarity (under some

appropriate measure) of the segments exchanged. This is of course a problem which

nature, at the level of molecular biology, has found its own method of tackling, so an

investigation of the relevant literature is suggested. It turns out that molecular biologists

have developed algorithms for their own rather di�erent, but related purposes. They are

interested in quantifying on `syntactic' grounds the similarities between two given nu-

cleotide or amino-acid sequences, and doing so with computational e�ciency, and it turns

out that their algorithms can be adapted and extended for our present purposes. The

method of doing so will be here presented; C code for implementing this is available from

the author.

2. Examples of Variable-length systems

VLGs have been proposed for a number of purposes, e.g. Smith's LS-1 classi�ers [16],

Koza's Genetic Programming [12], Goldberg's Messy GAs [2], Harp and Samad's genetic

synthesis of neural network architectures [4]. Care needs to be taken that a crossover

operation exchanges meaningful building blocks. In the case of LS-1 this is relatively

simple, as a genotype is e�ectively a list of rules each coded as a �xed-length string.

The number of such rules is not �xed, and the ordering of them on the genotype has

no signi�cance; hence provided that a crossover exchanges homologous sections of an

individual rule, the resulting o�spring genotype can still be interpreted sensibly. If speci�c

rules needed to be individuated, however, this method would not work.

In Koza's work, the genotype is interpreted as LISP S-expressions, which can be de-

picted as rooted point-labelled trees with ordered branches. This allows a recombination

operator to swap complete sub-trees between parents. The result is syntactically sensible,

and preserves and transmits the building blocks that the sub-trees e�ectively constitute.

2

This solution relies on the hierarchical tree-decomposition of the genotype, and would

not extend to genotype representations where the interactions between `building blocks'

cannot be so decomposed.

In Goldberg's Messy GAs, each locus on the genotype in e�ect carries its identi�cation

tag around with it. Instead of a crossover operator, cut and splice operators are used,

which allow genotypes of any length to develop over time. But the number of loci is �xed

at the start, and everything is in e�ect based on an underlying �xed-length representation,

which may be underspeci�ed or over-speci�ed. In the former case, where a genotype does

not contain an allele for every locus, the de�ciencies are made up by a `competitive

template' scheme. In the latter case, con
icts can arise where the identity tag for a

speci�c locus occurs more than once with di�erent associated values; in this case an

arbitrary rule is used, such as choosing the one nearest a speci�ed end of the genotype. It

should be noted that the solution to the under-speci�cation problem relies on there being

a predetermined number of loci, and cannot be extended to arbitrary numbers of loci.

Harp and Samad use a linear genotype to code for a neural network by having building

blocks of a �xed length on the genotype code for the speci�cation of an individual layer

in the network, including the connectivity from that layer to other layers. The format for

each block is the same, but the number of them is not �xed. A crossover operator can

therefore be used which, when a crossover point in one parent genotype occurs inside a

block, ensures that the crossover in the other parent genotype occurs in the same position

within a block, thus exchanging homologous segments. But unlike Koza's system, the

interactions between layers in the network, represented by blocks on the genotype, are

not restricted to a hierarchical organisation. So a method must be found for coding

within each block so as to identify the other blocks representing network layers projected

onto. The solution is adopted of giving each block an ID code, and having two forms of

addressing. The �rst is by absolute address, where the ID (for the block being projected

to) is explicitly listed on the genotype; the alternative is by relative addressing, where a

relative address is indicated which speci�es a block by its position relative to the block

being projected from.

The explicit purpose of these alternative forms of addressing is to allow relationships

between blocks (and hence projections between layers in the neural network) to develop

and be sustained and generalised across generations. Absolute addressing allows a target

block to be identi�ed no matter where it �nishes up in a genotype in later generations;

relative addressing allows groups of blocks close together on the genotype to maintain

their mutual interactions.

It can be seen that Harp and Samad's approach avoids the restrictions inherent in

Smith's, Koza's and Messy GAs. Nevertheless there remains one restriction which pre-

vents it being satisfactorily used as it is for genotypes of completely unlimited length. The

number of bits on the genotype that code for the IDs, and for either absolute or relative

addresses being referred to, must be pre-speci�ed. Whereas for instance 4 bits might seem

adequate (and 8 bits more than adequate) for genotypes coding for networks with less

than 10 layers, for eventually 500 layers or more it would become inadequate. This will

of course seem a practically irrelevant restriction to those who know the computational

requirements of a network with many layers.

Nevertheless, both from a purist perspective, and from a practical perspective when

3

the building blocks are not layers in a network but some smaller design primitives for a

system being constructed, there are reasons for wanting to solve this addressing problem

satisfactorily for arbitrary numbers of addresses. In particular this is so in the SAGA

framework outlined in a later section.

3. Template Addressing

Harp and Samad's addressing system was limited to addresses of �xed size. The obvious

extension is to allow addresses of unlimited length. Assume that any building block

on the genotype has an ID string at one end to identify it; and where within another

block reference needs to be made to the �rst ID string (so as to identify a projection

or interaction between the two features or modules coded for by the two blocks) this

reference is coded for by a reference string. Both ID string and reference string can be

of any length, and it no longer is necessary to think of them as ID numbers, but instead

as strings that need to be somehow matched. In molecular biology such matching of

nucleotide strings can be done through the physical interactions between them.

An initial solution would be to use the identical string for both the address marker and

the reference marker:

ID1 code1 ID2 code2 ref-ID1 ID3 code3 ref-ID1

But here the string for ID1 appears three times, and when a call is made to ID1 a

simple string search for the string will not know which of the three to �nd; unless some

additional code, or some transformation of the ID, is used to distinguish the two uses.

In binary code a simple transformation would be to use the inverse as a template. Ray

was probably the �rst to propose using template matching as a system of addressing,

based on molecular biology, in the context of a synthetic evolutionary system [14]. Other

equivalent methods can be devised to tackle the problem.

Thus we could implement absolute addressing by means of ID strings, or templates,

of any size; indeed some system equivalent to this is necessary. Relative addressing for

relative jumps coded by a string of arbitrary length is also easy to implement, but is no

longer necessary. A form of template addressing is both necessary and su�cient to have

the addressing power of Harp and Samad's system extended to genotypes of arbitrary

length.

4. Outline of SAGA

In this section we digress brie
y to give the context for desiring open-ended evolution,

and hence VLGs.

Some hints from natural evolution have been used by the GA community to produce

e�ective search techniques for complex multi-dimensional search spaces. But this use

of GAs for function optimisation is problem-solving in what is, although enormous, a

pre-de�ned space of possibilities of known size | this size being a maximum of a

l

when

genotypes are of length l with a possible alleles at each position. But the most impres-

sive feature of natural evolution is how over aeons organisms have evolved from simple

organisms to ever more complex ones, with associated increase in genotype lengths. This

4

Search Space Goal

Figure 2. The evolution of a standard GA

in a �xed-dimensional search space

"Evolution"

21
N dimensionsN dimensions

no. of dimensions / time in aeonsSaga Space

Figure 3. The progress of the always com-

pact course of a species in a SAGA space.

aspect of evolution has been completely ignored in the standard GA literature. GAs have

been adapted to problem-solving, and the problem-solving metaphor or frame of mind

is, I believe, much of the time inappropriate for considering both natural evolution and

potential evolution of control systems for ill-de�ned domains; such as autonomous robots.

The theoretical underpinning for GAs, Holland's Schema Theorem [9, 3] is no longer

valid when the genotypes within a population vary in length. Where an analysis for VLGs

has been o�ered, as in Smith's LS-1 classi�ers [16] and Koza's genetic programming [12],

the analyses o�ered have not satisfactorily extended the notion of a schema such that

schemata are preserved by the genetic operators [5, 7].

The conceptual framework of SAGA was introduced in 1991 in order to try to under-

stand the dynamics of a GA when genotype lengths are allowed to increase [7]. Working

with a �nite population, a standard GA often starts with a random distribution that

spans the whole search space; the genetic operators, particularly recombination, shift the

population over successive generations until hopefully it converges around some optimum

(see �gure 2). If genotype lengths are going to be allowed to increase inde�nitely, then

there is no �nite search space of pre-determined size, and this picture can no longer be

valid. In [7] it is shown, using concepts of epistasis and �tness landscapes drawn from

theoretical biology [11], that progress through such a genotype space will only be fea-

sible through relatively gradual increases in genotype length. A general trend towards

increase in length turns out to be associated with the evolution of a species rather than

global search. The word species I use to refer to a �t population of relative genotypic

homogeneity.

1

In contrast to the goal-seeking metaphor of �gure 2, a journey through SAGA space

can be characterised in the form of �gure 4. The conclusion of [7], that only gradual

increases in genotype length are likely to be viable, means that the �nite resources of

the population in searching around its current focus should be concentrated on just such

gradual increases. The analysis given was supplemented by experimentation using an NK

model [11].

In general, the `problem-solving', or `goal-seeking' metaphor for evolution is misleading.

Within a SAGA space, however, it can still be useful to use this metaphor in the restricted

1

This is only indirectly related to a biological de�nition of the word. However it follows frommy de�nition

that crosses between members of the same species have a good chance of being another �t member of the

same species; whereas crosses between di�erent species will almost certainly be un�t.

5

sense of searching around the current focus of a species for neighbouring regions which

are �tter, or in the case of neutral drift, not less �t. Such a search takes place through

application of genetic operators such as crossover, mutation or change-length. The latter

two operators are discussed in [6]. In this paper we concentrate on crossover.

5. Where to cross

When evolving systems of arbitrary increasing complexity within the SAGA framework,

it will be assumed that there are building blocks coded for along a linear genotype, and

that interactions between such building blocks are mediated by some addressing system,

as discussed earlier. For recombination it will be relevant that the population will be

largely converged; any two parent genotypes will be broadly similar.

The SAGA cross has therefore the requirements that, given any chosen crossover point

in one parent genotype, a crossover point in the other parent genotype needs to be chosen

so as to minimise the di�erences between the swapped segments. This can be rephrased

as: we should maximise the similarities between the two left segments that are swapped,

and between the two right segments that are swapped. Please note that the VLG crossover

problem that the SAGA cross handles only refers to the choice of the second complemen-

tary crossover.

The similarity has to be based on `syntactic' measures rather than `semantic', so can

only be based on equality of symbols, where the genotype is considered as a string of

symbols. The ordering of symbols is also relevant. This leads to the use as a measure of

similarity of the longest common subsequence (LCSS).

Algorithms for e�ciently computing this have been developed for quantifying similar-

ities between two given nucleotide sequences, starting with the Needleman and Wunsch

algorithm [13, 15]; and for the problem of how many editing operations are needed to

change one string to another [17]. In the present paper a method will be presented of

using the algorithm to solve the VLG crossover problem. The starting place will be

Hirschberg's exposition [8].

Hirschberg de�nes an `Algorithm B' which accepts as input strings A

1m

and B

1n

of

lengths m and n; and produces as output vector L

0n

of length (n + 1). L

j

will contain

the length of the LCSS of string A

1m

and substring B

1j

. An array of size 2(n+1) is used

for intermediate calculations, K

01;0n

.

ALGB(m,n,A,B,L)

1. Initialisation: K(1; j) 0 [j = 0 � � � n];

2. for i 1 to m do

begin

3. K(0; j) K(1; j) [j = 0 � � � n];

4. for j 1 to n do

if A(i) = B(j) then

K(1; j) K(0; j � 1) + 1

else

K(1; j) maxfK(1; j � 1);K(0; j)g;

end

5. L(j) K(1; j) [j = 0 � � � n]

6

The rationale behind this algorithm is as follows: The length of the longest common

subsequence of two strings A

1i

and B

1j

is to be written into L(i; j). If L(i � 1; j � 1),

L(i; j � 1) and L(i � 1; j) are known, then L(i; j) can be derived from them, the value

depending also on whether or not the i

th

symbol of A and the j

th

symbol of B match.

L(i; j) must be at least equal to the best of L(i�1; j) and L(i; j�1); and if the symbols

do match, then L(i; j) will be one better than L(i� 1; j � 1). Algorithm B keeps track of

the necessary amounts, and updates them within the j and i loops.

In Hirschberg's development, a further algorithm C is used to recursively use Algorithm

B, by dividing a given problem into two smaller problems, bottoming out of the recursion

when there are trivial subproblems. This is used to output the sequence which is the

LCSS of A and B. The purposes of the present paper are rather di�erent, and I have

developed an algorithm D to solve the VLG crossover problem.

The initial step is to add a feature to algorithm B so that it will work with substrings,

and equally well when comparing two strings enumerated from one end or from the other

end. For this it is necessary to explicitly pass as inputs the initial and �nal indices for

the substrings of A and B.

Algorithm D accepts input strings A

1m

and B

1n

of lengths m and n, and an integer

c which represents the crossover point in A. As output it returns a vector M which

keeps track of the current best-so-far candidates for a crossover point in B (which may

be one point or a sequence of them). For intermediate calculations two vectors L1(n+1),

L2(n + 1) are used, which contain the outputs from two separate calls to algorithm B.

Internal integer variables r, s and t are used respectively as the current best score, the

number currently equal to the best-so-far, and a temporary store.

ALGD(m,n,A,B,c,M)

1. ALGB(1; c; 1; n;A;B;L1)

2. ALGB(m; c� 1; n; 1; A;B;L2)

3. r 0; s 0;

4. for i 1 to n + 1 do

begin

5. t L1(i) + L2(n � i)

6. if t > r then

s 0; r t;

7. if t = r then

M(s) i; s s+ 1;

8. end

The rationale behind this algorithm is:

In line 1, algorithm B is applied to the `left-hand' substring of A, from the start up to

the crossover point, and to the whole of string B. The result is output in L1.

In line 2, algorithm B is applied to the right-hand substring of A, and to the whole of

B, but treating each string in reverse order, starting from the right-hand ends. The result

is output in L2. Since increasing the length of one of a pair of strings can only either

retain or increase the length of the LCSS, both L1 and L2 have this property.

The loop started in line 4 places, for each possible cross point i in B, the sum of LCSSs

for left and right segments into a variable t. As i increases the value of t will each time

either increase or remain steady, until it reaches a peak value or a plateau; thereafter t

7

B-E-C-D-C-D-F

ABC-DCEF

2

3

4

4

5

4

4

3 3 2 2 1

3

3

3 2 2 1

2 1 1

2 1 1

2 2 1 1

2 1 1 1

1 1 1 1

0 0 0 0210

210

210

210

210

110

110

000

BECDCDF

BECDCD

BECDC

BECD

BEC

BE

B

-

-

F

DF

CDF

DCDF

CDCDF

ECDCDF

BECDCDF

FECDCBA

Figure 4. Algorithm D on ABC-DCEF (cross between C and D) and BECDCDF (best

cross to be determined). On left, algorithm B gives in column C best scores matching

substrings against ABC. On right, working backwards, best scores in column D. Central

column shows best total (5 matches) given by splitting BEC-DCDF.

will decrease with occasional level stretches.

The purpose of lines 6 and 7 is to monitor this, and to store in M the values of i for

the current best, or several best-equal, values of t. Hence when the loop �nishes, the �rst

s values in M contain the proposed crossover positions for maximising t, the sum of left

and right LCSSs.

It is then possible to select at random one of the optimal positions, and return this as

the proposed crossover point. The C code, available from the author, also economises on

memory; rather than using a separate array M , there is enough space to keep track of

the optima as we go in array L1, since we will never overtake what we are reading from

L1 with what we are writing into it.

6. Two Point Crossover

Only one-point crossover has been considered here. This has the feature that building

blocks near each end of one genotype are much more likely to get separated than ones

nearer the middle. For some purposes it may be better to use a two point crossover which

avoids this bias. Two crossover points are chosen at random in one parent genotype, and

two complementary points need to be selected in the other parent genotype; the o�spring

are made by swapping the middle sections of each parent.

The present algorithm can be extended to handle this, or indeedmultiple-point crossovers,

by adding further outer loops.

8

7. Computational requirements

This algorithm requires for one-point crossover memory space of order (m + n) where

m and n are the lengths of the two genotypes. The main loops are in algorithm B,

and the time requirements are of order (mn). The time taken is independent of the

similarity or otherwise of the two genotypes. The only test on symbols on the genotype

is for equality, so whether the genotype uses a binary alphabet or any larger one makes

no di�erence. On a reasonably loaded Sun4 using two genotypes each of length 1000

characters, approximately one second is needed.

In GAs the computational requirements for �tness-evaluation generally far outweigh

those for genetic operations, and this could also be expected for any system which needed

genotypes of this length.

8. Conclusions

Both biological evolutionary theory, and GA theory, rely on the notion of genes or build-

ing blocks being expressed in compact sections on the genotype. For inter-relationships

between such building blocks to be incorporated, a method of identi�cation is needed, and

this issue comes particularly to the fore when crossover is considered. For �xed length

GAs the issue can be solved by identi�cation being implicit in position on the genotype,

but not in general when genotype lengths are variable.

Addressing methods for several variable length genotype GAs have been surveyed, and

their restrictions noted. Harp and Samad's approach avoids many of these restrictions,

but nevertheless does not extend immediately to genotypes of completely arbitrary length.

It has been suggested that for present purposes some form of template addressing will be

both necessary and su�cient.

A recombination operator needs to be designed that, given any crossover point on

one parent genotype, can choose a complementary crossover on the other parent, when

the genotypes are of arbitrary, di�ering, length. The choice must be made on purely

`syntactic' grounds; i.e. through operations solely on the symbols of the genotype, not on

their interpretation. Nevertheless the crossover must exchange homologous segments as

far as is possible. The fact that in a SAGA system, of gradually increasing complexity and

gradually increasing genotype lengths, the population will be largely converged, means

that there will be a high degree of similarity between two parent genotypes.

It should be emphasised here that this crossover operator is completely impartial as to

where the initial choice of a cross on the �rst parent genotype is; it merely then selects

where to cross on the second parent genotype. The �rst cross may, for instance, be

deliberately chosen for di�erent reasons to be more or less disruptive of schemata [1].

The SAGA cross is only concerned with the complementary crossover; this is a problem

which conventional GA practice never has to face, as with �xed-length genotypes the

complementary position is trivially obvious.

Building on algorithms developed for the Longest Common Subsequence problem, a

novel algorithm has been presented which allows a random crossover point in one parent

genotype to be optimally matched by a speci�ed crossover point (if relevant, a restricted

range of possible points) in the other parent genotype. The criterion for optimality is

9

well-de�ned in syntactic terms, being that of maximising the sum of the length of the

LCSS in the left-hand segments and the length of the LCSS in the right-hand segments.

The algorithm is computationally e�cient.

Acknowledgment

This work was supported by a grant from the Science and Engineering Research Council.

References

1 K.A. De Jong and W.M. Spears. An Analysis of the Interacting Roles of Population

Size and Crossover in Genetic Algorithms. In H.-P. Schwefel and R. M�anner, editors,

Parallel Problem Solving from Nature, pages 38{47. Springer-Verlag, 1991.

2 David E. Goldberg, K. Deb, and B. Korb. An investigation of messy genetic algo-

rithms. Technical Report TCGA-90005, TCGA, The University of Alabama, 1990.

3 David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading, Massachusetts, USA, 1989.

4 S.A. Harp and T. Samad. Genetic synthesis of neural network architecture. In L. Davis,

editor, Handbook of Genetic Algorithms, pages 202{221. Van Nostrand Reinhold, 1992.

5 Inman Harvey. The arti�cial evolution of behaviour. In J.-A. Meyer and S.W. Wilson,

editors, From Animals to Animats: Proceedings of The First International Confer-

ence on Simulation of Adaptive Behavior, pages 400{408. MIT Press/Bradford Books,

Cambridge, MA, 1991.

6 Inman Harvey. Evolutionary robotics and SAGA: the case for hill crawling and tour-

nament selection. Technical Report CSRP 221, COGS, University of Sussex, 1992.

Also submitted to Arti�cial Life III, 1992.

7 Inman Harvey. Species Adaptation Genetic Algorithms: The basis for a continu-

ing SAGA. In Proceedings of the First European Conference on Arti�cial Life. MIT

Press/Bradford Books, Cambridge, MA, 1992.

8 D.S. Hirschberg. A linear space algorithm for computing maximal common subse-

quences. Commmunications of the A.C.M., 18(6):341{343, 1975.

9 John Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan

Press, Ann Arbor, USA, 1975.

10 P. Husbands and I. Harvey. Evolution versus design: Controlling autonomous robots.

In Integrating Perception, Planning and Action, Proceedings of 3rd Annual Conference

on Arti�cial Intelligence, Simulation and Planning. IEEE Press, forthcoming.

11 Stuart Kau�man. Adaptation on rugged �tness landscapes. In Daniel L. Stein, editor,

Lectures in the Sciences of Complexity, pages 527{618. Addison Wesley: Santa Fe

Institute Studies in the Sciences of Complexity, 1989.

12 John R. Koza. Genetic programming: A paradigm for genetically breeding popula-

tions of computer programs to solve problems. Technical Report STAN-CS-90-1314,

Department of Computer Science, Stanford University, 1990.

13 S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48:443{453, 1970.

10

14 Thomas S. Ray. An approach to the synthesis of life. In J.D. Farmer, C.G. Langton,

S. Rasmussen, and C. Taylor, editors, Arti�cial Life II. Addison-Wesley, 1992.

15 David Sanko�. Matching sequences under deletion/insertion constraints. Proceedings

of the National Academy of Science, USA, 69(1):4{6, 1972.

16 Stephen F. Smith. A Learning System based on Genetic Adaptive Algorithms. PhD

thesis, Department of Computer Science, University of Pittsburgh, USA, 1980.

17 R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal of

the A.C.M., 21(1):168{173, 1974.

Appendix

#include <stdio.h>

#include <string.h>

#define MAXLEN 1000 /* Max length of genes */

#define max(a,b) ((a)>(b) ? a : b)

/***********************************

A and B contain genes as char strings

as, ae are start and end of substring of A

lenb is the length of B

L is the output vector mentioned in text

***********************************/

algb(A,as,ae,B,lenb,L)

char *A,*B;

int *L;

int as,ae,lenb;

{

int this,last=0;

/* this/last alternate between 0 and 1 to

identify different rows in K[][] */

int fwd;

/* flag to identify whether we are running

forwards or backwards along string A */

int i,j;

int K[2][MAXLEN+1];

/* array described in text */

fwd=(ae>as ? 1 : -1);

/* set fwd flag */

for (j=0;j<lenb+1;j++)

K[1][j]=0; /* clear row of K */

for (i=as;i*fwd<ae*fwd;i+=fwd)

/* runs backwards if nec */

11

{

last=1-(this=last); /* flip this/last */

for (j=0;j<lenb;j++)

K[this][j+1]=

(A[i]==B[(fwd==1 ? j : lenb-j-1)] ?

/* are the chars matching ? */

K[last][j]+1 : /* yes or */

max(K[this][j],K[last][j+1]));

/* no */

}

/* internal calculations finished;

copy into output */

for (j=0;j<lenb+1;j++)

L[j]=K[this][j];

}

12

/***********************************

A and B are char strings for the genes,

of lengths lena and lenb.

cross1 is the selected crossover point in A.

algd will return the proposed position for

crossover point in B

***********************************/

int algd(A,B,lena,lenb,cross1)

char *A,*B;

int lena,lenb,cross1;

{

int L1[MAXLEN+1],L2[MAXLEN+1];

/* used by algb */

int best=0; /* keep track of best */

int numbest=0; /* and how many equal-best */

int temp,i;

algb(A,0,cross1,B,lenb,L1);

/* left part of A, and all B */

algb(A,lena-1,cross1-1,B,lenb,L2);

/* right part of A, all B, BOTH BKWDS */

/* Now go through keeping track of max of

L1[i]+L2[lenb-i]. */

for (i=0;i<=lenb;i++)

{

temp=L1[i]+L2[lenb-i];

if (temp>best)

{numbest=0; best=temp;}

if (temp==best)

L1[numbest++]=i;

}

/* Now choose at random from the best */

return L1[random() % numbest];

}

13

/***********************************

Test program to read in file containing 2

gene strings, choose a random crossover point

in first, and select appropriate crossover

point in second.

***********************************/

main()

{

FILE *fp;

char gene1[MAXLEN]; /* strings for genes */

char gene2[MAXLEN];

int len1,len2; /* lengths of genes */

int i,j,k,displace1,displace2;

int cross1,cross2; /* crossover points */

fp=fopen("genefile","r");

fscanf(fp,"%s",gene1);

fscanf(fp,"%s",gene2);

fclose(fp);

len1=strlen(gene1);

len2=strlen(gene2);

/* make sure cross1 is within gene1 */

cross1=1+(random()%(len1-1));

cross2=algd(gene1,gene2,len1,len2,cross1);

printf("\n%d %d\n",cross1,cross2);

}

14

