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Abstract

This paper will look at an evolutionary ap-

proach to robotics; partly at pragmatic issues,

but primarily at theoretical issues associated

with the evolutionary algorithms which are ap-

propriate. Genetic Algorithms are not suitable

in their usual form for the evolution of cogni-

tive structures, which must be in an incremental

fashion. SAGA | Species Adaptation Genetic

Algorithms | is a conceptual framework for ex-

tending GAs to variable length genotypes, where

evolution allows a species of individuals to evolve

from simple to more complex.

In the context of species evolution the metaphor

of hill-crawling as opposed to hill-climbing is in-

troduced, and appropriate mutation rates dis-

cussed. On both pragmatic and theoretical

grounds, it will be suggested that there are good

reasons for using Tournament Selection in evolu-

tionary robotics.

1 Why Evolutionary Robotics?

Subsumption-style cognitive architecture for robots

(Brooks 1986, Brooks 1991) in theory analyses indepen-

dent behaviours of a robot, and `wires them in' largely

independently from sensor input to motor output. Later

`wired in' behaviours interact with earlier ones either

through the environment or by suppression or inhibi-

tion mechanisms.

As the number of layers or modules within such an

architecture increases, the number of potential interac-

tions increases much faster. The foresight needed to

design by hand will soon be outstripped by the expo-

nentially increasing complexity (Husbands and Harvey

1992). As with so many AI problems, progress beyond

relatively toy domains becomes infeasible. So the pos-

sibility of automatic evolution of the cognitive archi-

tecture without explicit design becomes very attractive.

Natural evolution is the existence proof for the viability

of this approach, given appropriate resources.

Genetic Algorithms (GAs) are a form of search tech-

nique, modelled on Darwinian evolution, primarily used

for function optimisation (Goldberg 1989). An evolu-

tionary approach to robotics necessarily means an incre-

mental approach, and yet this is something that stan-

dard GAs cannot handle; in fact standard GAs, though

borrowing ideas from natural evolution, are themselves

of no use for applied evolution. Below, I shall intro-

duce SAGA, which is a framework extending GAs for

applied evolution. This will demonstrate that necessar-

ily, in incremental evolution of, e.g., a robotic cognitive

system, the population will be genetically converged; in

other words the cognitive structures of all the robots will

be fairly similar, and the genotypes will be positioned

around some hill in a �tness/genotype landscape.

From this it will follow that the evolutionary search

process will involve hill-crawling as much as hill-

climbing in the �tness landscape; this has implications

for mutation rates and for the selection mechanism for

the evolutionary algorithm. This in turn leads to theo-

retical reasons why tournament selection is appropriate;

there are in any case practical reasons why it might be

appropriate for evolutionary robotics.

2 Related Work

Evolutionary approaches, often using variants of GAs,

to Arti�cial Life in simulations have been widespread

(Langton 1989, Langton et al. 1991). Evolutionary

robotics was proposed for philosophical reasons in (Car-

iani 1989). It is only recently that serious proposals

have been made to use evolutionary approaches to real-

world robots (PRANCE 1991, Brooks 1992, Husbands

and Harvey 1992). Earlier, a student of Brooks dis-

cussed some of the issues involved, with reference to

subsumption architectures, in (Viola 1988). De Garis

(de Garis 1992) proposed using GAs for building be-
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havioural modules for arti�cial nervous systems, or arti-

�cial embryology. Beer (Beer and Gallagher 1991) used

GAs to synthesize a walking behaviour for a six-legged

agent. In a more traditional robotics context, mention

is made of an evolutionary approach in (Barhen et al.

1987).

Recently the Japanese government research laborato-

ries, ATR in Kyoto, have set up a well-funded research

group for Evolutionary Robotics in their Evolutionary

Systems department. Similar work is pursued at ETL

in Japan, and there is interest from Japanese indus-

try; Mitsubishi sponsored a symposium on Evolutionary

Robotics in March 1993. At the Simulation of Adap-

tive Behavior 1992 conference (Meyer et al. 1993) in

Hawaii, a group of papers were closely related to this

�eld. The Evolutionary Robotics Group at Sussex has

been since 1992 arti�cially evolving control systems for

mobile robots | co-evolved with sensor attributes |

for visual navigation tasks. This work started with sim-

ulations of a real physical robot, and is now using a

specialised piece of hardware allowing real vision to be

used in a robot that can have a succession of control sys-

tems rapidly and automatically evaluated in sequence

(Harvey et al. 1993, Cli� et al. 1993b). The control

systems evolved are noisy dynamic recurrent networks

(Cli� et al. 1993a). We agree with Beer (Beer 1992) in

his advocacy of a dynamical systems perspective on au-

tonomous agents, and are generally sympathetic to the

enactive approach to cognition (Varela et al. 1991); in

this paper these concerns will not be elaborated on.

1

3 Simulation versus Reality

Any evolutionary technique is going to need large num-

bers of trials of robots, and practical constraints mean

that these should be done on simulated robots if this is

viable. Traditionally, and for good reason, those who

have built real robots have tended to scorn simulations

as implicitly assuming that all the really hard real-world

problems have been solved. To quote from (Brooks

1991)

First, there is no notion of the uncertainty that

the real world presents : : :Second, there is a ten-

dency to not only postulate sensors which return

perfect information (e.g., the cell ahead contains

food | no real perception system can do such

a thing) but there is a real danger of confusing

the global world view and the robot's view of the

world. : : :

It is standard practice for a commercial pilot to con-

vert to ying a new model of a plane by training in

1
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a ight simulator, so that the �rst real ight in the

new plane is carrying passengers. Two things should

be noted: the conversion is from one plane type to an-

other similar one, and commercial ight simulators are

so complex that, although cheaper than ying the real

thing, the cost is not of a totally di�erent order.

If robot simulations are being used to save money,

then they are likely to be the equivalent of a ight sim-

ulator on a workstation rather than a commercial airline

simulator. The usefulness of robot simulations may be

compared with the usefulness of practising on a per-

sonal ight simulator program for a pilot learning for

the �rst time to y a real light aircraft. There can be

no substitute for experience of the real thing, though

the simulations can be of bene�t.

The simulator is limited by the knowledge of the pro-

grammer of relevant factors to be included, and if, for in-

stance, no account of the e�ects of wind shear is put into

a ight simulator, the �rst encounter with this in the

real world will be hazardous. So any bene�ts brought

to an evolutionary approach by using simulations will

inevitably have to be paid for by major e�ort being put

into the realism of the simulator. Trials of evolved ar-

chitectures on real robots will have to be carried out

at frequent intervals for the dual purpose of validating

the �tnesses and providing feedback for improvement

of the simulator. At Sussex we have found that do-

ing simulations of vision, using ray-tracing, has been so

computationally expensive that we have built hardware

to allow automation of multiple evaluations with real

vision (Cli� et al. 1993b); it is faster.

4 SAGA and gradual increase in com-

plexity

Some hints from natural evolution have been used by the

GA community to produce e�ective search techniques

for complex multi-dimensional search spaces. But this

use of GAs for function optimisation is problem-solving

in what is, although enormous, a pre-de�ned space of

possibilities of known size | this size being a maximum

of a

l

when genotypes are of length l with a possible

alleles at each position. But the most impressive fea-

ture of natural evolution is how over aeons organisms

have evolved from simple organisms to ever more com-

plex ones, with associated increase in genotype lengths.

This aspect of evolution has been completely ignored in

the standard GA literature. GAs have been adapted to

problem-solving, and the problem-solving metaphor or

frame of mind is, I believe, much of the time inappropri-

ate for considering both natural evolution and potential

robot evolution.

The theoretical underpinning for GAs, Holland's

Schema Theorem (Holland 1975, Goldberg 1989) is no

longer valid when the genotypes within a population

vary in length. Some GA systems have used variable
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lengths, e.g. Smith's LS-1 classi�ers (Smith 1980) and

Koza's genetic programming (Koza 1990); but the anal-

yses o�ered in these two examples do not satisfactorily

extend the notion of a schema such that schemata are

preserved by the genetic operators.

The conceptual framework of SAGA was introduced

in 1991 in order to try to understand the dynamics of a

GA when genotype lengths are allowed to increase (Har-

vey 1992b). Working with a �nite population, a stan-

dard GA often starts with a random distribution that

spans the whole search space; the genetic operators, par-

ticularly recombination, shift the population over suc-

cessive generations until hopefully it converges around

some optimum (see �gure 1). If genotype lengths are

going to be allowed to increase inde�nitely, then there

is no �nite search space of pre-determined size, and this

picture can no longer be valid. In (Harvey 1992b) it

is shown, using concepts of epistasis and �tness land-

scapes drawn from theoretical biology (Kau�man 1989),

that progress through such a genotype space will only

be feasible through relatively gradual increases in geno-

type length. A general trend towards increase in length

is associated with the evolution of a species rather than

global search. The word species I use to refer to a �t

population of relative genotypic homogeneity.

2

In contrast to the goal-seeking metaphor of �gure 1,

a journey through SAGA space can be characterised in

the form of �gure 2. The conclusion of (Harvey 1992b),

that only gradual increases in genotype length are likely

to be viable, means that the �nite resources of the pop-

ulation in searching around its current focus should be

concentrated on just such gradual increases. The anal-

ysis given was supplemented by experimentation using

an NK model (Kau�man 1989) which gave con�rmatory

results shown in �gure 3. This conclusion accords well

with, for instance, Brooks' approach of `wiring in' new

behaviours one at a time, and waiting until current be-

haviours are thoroughly debugged before `wiring in' the

next.

In general, the `problem-solving', or `goal-seeking'

metaphor for evolution (�gure 1) is misleading. Within

a SAGA space, however, it can still be useful to use this

metaphor in the restricted sense of searching around the

current focus of a species for neighbouring regions which

are �tter, or in the case of neutral drift, not less �t (�g-

ure 4). Such a search takes place through application of

genetic operators such as mutation or change-length.

A change-length genetic operator, when subject to the

restrictions of only allowing small changes in length in

any single application, can be translated into a form

equivalent to mutation by sleight-of-hand. In the case

2

This is only indirectly related to a biological de�nition of the

word. However it follows from my de�nition that crosses between

members of the same species have a good chance of being another

�t member of the same species; whereas crosses between di�erent

species will almost certainly be un�t.

of an increase by one gene in a binary genotype with

possible alleles 0 and 1, this gene can be considered in-

stead to have 3 possible values 0, 1, and �, where the

latter value is equivalent to `absent'; the new appear-

ance of this gene can be considered as a mutation from

� to either 0 or 1. If more than one gene appears in one

reproduction event, then this would be equivalent to a

simultaneous set of mutations, which for low mutation

rates is highly unlikely.

For this reason in the next sections of this paper we

will consider mutation only, though bearing in mind that

through this sleight-of-hand it will be possible to extend

some of the conclusions to an increase-length operator

which works at very low rates. In addition we will start

by assuming that there is no recombination; i.e. repro-

duction is asexual. Having sketched out the important

factors using this assumption, the impact of recombina-

tion on this sketch will be discussed.

5 Species hill-crawling

Usually in GAs premature convergence of a population

is something to be avoided. In SAGA, we are continually

working with a converged population, and are interested

in encouraging search around the local focus while being

careful not to lose the gains that were made in achieving

the current status quo. In the absence of any mutation

(or change-length) genetic operator selection will con-

centrate the population at the current best. The small-

est amount of mutation will hill-climb this current best

to a local optimum. As mutation rates increase, the

population will spread out around this local optimum,

searching the neighbourhood, but if mutation rates be-

come too high then the population will disperse com-

pletely, and the search will become random with the

previous hill-top lost.

The problem is that of Muller's ratchet (May-

nard Smith 1978). Call the genotype that represents the

very peak of the hill the master sequence (or the `wild-

type'). As a converged population, the other members

will be quite close in Hamming distance to this master

sequence, and hence far more mutations will increase

this Hamming distance than will decrease it. The only

force opposed to this pressure is that of selection prefer-

entially reproducing the master sequence and its near-

est neighbours in su�ciently large numbers to allow an

occasional copy of the master with fortuitously no mu-

tation; the other possibility, of fortuitous back-mutation

from a near neighbour to the master sequence, is so small

as to be usually negligible.

Figure 5 sketches the e�ects of mutation on a popula-

tion centred around a local optimum. The vertical axis

represents �tness or selective values. The horizontal axis

indicates distance in sequence space from the master se-

quence at the top of the hill. The shape of the hill indi-

cates the assumption that within this local neighbour-
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hood increase in numbers of mutations is monotonically

related to decrease in �tness. Figure 6 demonstrates the

e�ect of Muller's ratchet when mutation is high enough

to cause loss of information. Figure 7 sketches the ef-

fects when mutation is high enough (without bringing

Muller's ratchet into play) for some elements of the pop-

ulation to crawl down the hill far enough to reach a ridge

of high selective values. As discussed in (Eigen et al.

1988), this results under selection in a signi�cant pro-

portion of the population working their way along this

ridge, and making possible the reaching of outliers fur-

ther in Hamming-distance in that particular direction

from the master sequence.

If any such outliers reach a second hill that climbs

away from the ridge, then parts of the population can

climb this hill. Depending on the di�erence in �tness

and the spread of the population, it will either move en

masse to the new hill as a better local optimum, or share

itself across both of them.

So in a SAGA setup of evolution of a converged

species, we want to encourage through the genetic op-

erators such hill-crawling down towards ridges to new

hills, subject to the constraint that we do not want to

lose track of the current hill. To quote from (Eigen et

al. 1988)

In conventional natural selection theory, advan-

tageous mutations drove the evolutionary pro-

cess. The neutral theory introduced selectively

neutral mutants, in addition to the advantageous

ones, which contribute to evolution through ran-

dom drift. The concept of quasi-species shows

that much weight is attributed to those slightly

deleterious mutants that are situated along high

ridges in the value landscape. They guide popu-

lations toward the peaks of high selective values.

6 SAGA and mutation rates

Although progress of a species through a �tness land-

scape is not discussed in the standard GA literature,

in theoretical biology there is relevant work in the re-

lated �eld of molecular quasi-species (Eigen and Schus-

ter 1979, Eigen et al. 1988). In particular, analysis

of `the error catastrophe' shows that, subject to cer-

tain conditions, there is a maximum rate of mutation

which allows a quasi-species of molecules to stay lo-

calised around its current optimum. This critical max-

imum rate balances selective forces tending to increase

numbers of the �ttest members of the population against

the forces of mutation which tend, more often than not,

to drag o�spring down in �tness away from any local

optimum. But a zero mutation rate allows for no fur-

ther local search beyond the current species, and other

things being equal increased mutation rates will increase

the rate of evolution. Hence if mutation rates can be ad-

justed, it would be a good idea to use a rate close to but

less than any critical rate which causes the species to

fall apart. A further possibility, in the spirit of simu-

lated annealing, is to temporarily allow the rate to go

slightly above the critical rate | to allow exploration |

and then cut it back again to consolidate any gains thus

made.

For an in�nite population, in the particular context

of molecular evolution, Eigen and Schuster show (Eigen

and Schuster 1979) that these forces just balance for a

mutation rate

m =

ln�

l

where l is the genotype length and � is the superior-

ity parameter of the master sequence | the factor by

which selection of the master sequence exceeds the av-

erage selection of the rest of the population. The dia-

grams they show for the very sharp cuto� at the criti-

cal rate refer to a �tness landscape with a single `nee-

dle' peak for the master sequence, all the rest of the

population taken to be equally (un-)�t; where the hill

slopes more gently from the master sequence, the cuto�

is less abrupt (�gure 14). For typical values of � be-

tween 2 and 20, the upper limit of mutation before a

quasi-species `loses its grip' on the current hill would be

between 0:7=l and 3=l. When the population is of �-

nite large size, yet small enough for stochastic e�ects of

genetic drift to start having an e�ect, the same overall

picture holds except for a reduction in this critical mu-

tation rate (the `error threshold')(Nowak and Schuster

1989). Expressed in terms of the single-digit accuracy

of replication q = 1�m, then the critical value of q for

a population of size N is related to that for an in�nite

population by

q

N

= q

1

�

1 +

2

p

� � 1

l

p

N

+ : : :

�

Nowak and Schuster suggest that the approximations

made in deriving this equation mean that it should only

be relied on for large populations of signi�cantly more

than 100. Nevertheless, the presence of l, genotype

length, in the denominator suggests that for genotypes

of length order 100, and populations of size order 100,

the error threshold will be extremely close to that for

an in�nite population.

Since the natural logarithm of the superiority param-

eter � which enters into the equation for m, variations

in this of an order of magnitude do not a�ect the er-

ror threshold as signi�cantly as variations in genotype

length. In conventional GAs, choice of mutation rates

tends to be a low �gure, typically 0.01 or 0.001 per

bit as a background operator, decided upon without

regard to the genotype length. This despite sugges-

tions from experimentation in (Scha�er et al. 1989)

that optimal rates m

opt

= �=(N

0:9318

l

0:4535

), for some
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constant �; in (Hesser and M�anner 1991) that after ear-

lier higher values should decrease exponentially towards

m

opt

= �

0

=(N

p

l); and in (De Jong 1975) quoted in

(Hesser and M�anner 1991) as recommendingm

opt

= 1=l.

But these rates, and also the error threshold given by

Eigen and Schuster, are based on particular assumptions

about the selective forces on the population. The use of

tournament selection provides a signi�cantly di�erent

range of selective forces to a population, which means

the above analyses cannot be relied on. However, in

all simulations of hill-crawling where di�erent mutation

rates are tried, a typical U-shaped curve is found, giving

the shortest time needed to reach another hill at around

the mutation rates suggested by theory.

In �gure 13, an arti�cial �tness space was created with

two �tness hills. The �tnesses of any point in the space

was given by the (negative of) the minimumof the Ham-

ming distances to each hill. The population was started

entirely concentrated at the peak of one hill, and then

allowed to drift under various mutation rates, with tour-

nament selection, until the other hill was �rst arrived at

by a single member. Obviously with zero mutation it

would never be found; with excessively large mutation,

random search would result, also taking excessively long

times. The typical U-shaped curve is shown in �gure 14.

In this case the di�erence between with and without re-

combinationwas only marginally in favour of the former.

Recently in the GA community there has been some

discussion of the surprising success (in some circum-

stances) of what has come to be called Naive Evolu-

tion; i.e., mutation only, contrary to normalGA folk-lore

which emphasises the signi�cance of crossover. It would

be interesting to check on those circumstances where it

has been found useful, and see whether the population

is in fact converged, with hill-crawling being the mo-

tive force for progress. The optimal mutation rates that

are appropriate when hill-crawling is feasible have been

obscured in the GA literature by the usual practice of

quoting mutation rates per bit or per symbol, rather

than per genotype. It is the optimal mutation rates per

genotype that can be found within a band that is nearly

invariant over all genotype lengths.

7 Tournament Selection for practical

reasons

Realistic simulations take time to run, and it will be

necessary to do a large number in parallel. As each sim-

ulation is complex, parallel machines with SIMD are no

use, and for instance an individual workstation per sim-

ulation would be appropriate. In almost all networks

of workstations there is a vast unused computational

capacity which can be used e�ectively by running back-

ground processes. It then becomes attractive to use an

evolutionary algorithm which allows asynchronous pro-

cessing of the individuals.

Standard GAs tend to evaluate the whole current pop-

ulation, select from these and apply genetic operators

to produce the next generation. A steady-state algo-

rithm such as GENITOR (Whitley 1989) replaces an

individual at a time rather than a generation at a time.

But since it always replaces the currently worst mem-

ber of the population, it requires global communication

of statistics about the whole population before carrying

out such a replacement. In a network of processes run-

ning asynchronously, with the possibility of individual

machines being down for periods of time, this negates

some of the bene�ts of parallelism.

Tournament selection operates by taking two (or

sometimes more) members of the population chosen at

random, and choosing the best of this tournament to

contribute genetic material to a new individual. There

are a variety of ways to choose which old individual

should sacri�ce its place for the new. In a tournament

of size two a copy of the winner, after application of

genetic operators such as mutation or crossover (recom-

bination), could replace the loser, or replace a randomly

chosen member of the population. Sexual recombina-

tion can take place between the winners of two di�erent

tournaments.

The practical advantage of this procedure when us-

ing a network of workstations is that it can be truly

asynchronous and decentralised. Communication be-

tween machines is largely limited to occasional passing

of genotype strings. If one, or a whole group of ma-

chines, slows due to loading or even is down for a time,

the algorithm can carry on regardless on the remaining

machines. It even becomes feasible to use several dif-

ferent networks only occasionally communicating with

each other by electronic mail. Most tournaments would

be `local' within one network, as it is only necessary

for there to be one transmission of genetic material per

`generation' (i.e. number of tournaments equal to popu-

lation size) between two otherwise isolated genetic pools

for them to stay together. It thus becomes possible to

use enormous amounts of computing power currently

little used on present facilities.

For robotics applications it should be noted that the

use of tournament selection reduces the evaluation of

the robots to a very simple question: of two given robots

which is (probably) the `best'? If the robots are tested

(in reality or in simulation) on a series of tasks of in-

creasing complexity in a noisy environment, then the

evaluation will become something like: which of the two

got further before stopping? It is the power of evolution

that complexity can be built up through a succession of

such trivial `questions and answers' each containing at

the very maximum 1 bit of information. As with any

selection mechanism which is equivalent to ranking, it

is not necessary to have an evaluation function that re-

turns a scalar value, which may simplifymatters greatly.
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However, the extent to which noise in tournament selec-

tion | occasionally selecting the less �t by mistake |

a�ects the stability of a species will be considered below.

In the game of Twenty Questions each reply can pro-

vide a maximum of 1 bit of information, hence at the

end potentially discriminating between 2

20

choices; but

answers to inappropriate questions will provide much

less than 1 bit, and frequently zero information. In an

evolutionary approach to robotics it is the task of the

genetic operators such as mutation, change-length, and

recombination to generate new test cases that `ask new

questions' which tend to be appropriate. The following

sections look at the problem from a theoretical perspec-

tive, and demonstrate that tournament selection can aid

the genetic operators in this task.

8 Tournament Selection for theoretical

reasons

Tournament selection relies on selecting randomly from

the population a small number of contestants for a tour-

nament, and taking the winner for further genetic pro-

cessing to contribute to the future population. We will

only consider a tournament of size 2, but within this

constraint there is still a wide range of possibilities.

Tournament selection in GAs are generally used on

a generational basis; i.e. the current generation is held

�xed, and an appropriate number of tournaments are

held to build up a genetic pool for mating or mutation,

after which this becomes the new generation. It can be

shown (Goldberg and Deb 1990) that this is equivalent

to a ranking scheme

3

, in which the highest rank on av-

erage contributes 2 members to the genetic pool, the

middle rank 1 member, and the bottom rank none. In

Eigen and Schuster's terms, the superiority � = 2. Such

a method loses the advantage of asynchronous parallel

computing mentioned earlier.

A steady-state method, which can be done asyn-

chronously, involves replacing the o�spring derived from

the winner after each tournament. In the case of a draw,

the winner is chosen at random. The interesting ques-

tion is, who is to die so as to make way for the o�spring,

and some possibilities are (see �gure 8);

1. A randomly chosen member of the population.

2. A randomly chosen member of the tournament.

3. The loser of the tournament.

4. A subtle variation | do not reproduce from the win-

ner, but remove the loser of the tournament and re-

place it by an o�spring of a randomly chosen member

of the population.

3

The advantages of a ranking scheme are discussed in (Whitley

1989)

The e�ects of these methods will be described in terms

of a notional generation, when a number of tournaments

equal to the population size have been run. The �rst

one is similar in e�ect to the original generational ba-

sis, except that the superiority of the �rst rank is ap-

proximately e rather than 2 | based on the fact that

(1 + 1=N )

N

tends towards e for large N. This superior-

ity only holds true while each member of the population

is in general separately ranked, and ceases being valid

as soon as a signi�cant number of the tournaments are

draws | in other words, Eigen and Schuster's analysis

no longer becomes directly applicable as their selection

mechanism is radically di�erent from tournament selec-

tion.

The second method has the same e�ect as the �rst

{ a randomly chosen member of the tournament will,

in the long run, be just as `averagely �t' as a random

member of the whole population. Since in half of these

tournaments the winner will be replacing itself, then

these N such tournaments are equivalent, as far as � is

concerned, to N=2 tournaments using method 3. Hence

a full notional generation of N tournaments with method

3 yields a � value of e

2

. Surprisingly, method 4 gives the

same value of � as methods 1 and 2.

Method 3 will be the one discussed here, and the e�ect

of mutation rates on a converged species (with a binary

genotype) will be assessed for three di�erent scenarios

(see �gure 9):

1. A mutation rate of � bits ipped per genotype, where

� is a small integer and the genotype length is so

long that the possibility of back-mutations towards

the current master-sequence can be ignored.

2. A similar mutation rate of � bits per genotype on

a genotype of length l, with the possibility of back-

mutations.

3. An average mutation rate of � bits per genotype,

calculated independently at the rate of �=l at each

locus.

8.1 Long genotypes

In the �rst scenario, we can classify each member of the

population by the Hamming-distance from the master

sequence. This will increase by � at each replication,

giving possible distances of 0, �, 2�,: : : , so without loss

of generality we need only consider � = 1. In the context

of hill-crawling, our interest is in how the population

distributes itself within di�erent mutant-classes of size

r

i

, whose members have Hamming-distance i from the

master-sequence. Given a tournament between mem-

bers of distance i and j, for i < j the winner i will

remain in the population, and j will be replaced by a

mutant of distance i + 1. A tournament-draw between
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members of the same distance i results in a winner i and

the loser replaced by i+ 1.

For maximumhill-crawlingwithout losing the master-

sequence (of distance 0) from the population, the long-

term fate of this master-sequence should be considered.

It can be seen that all tournaments between a 0 and a 0

result in the loss of one 0 to the population, and there

is no other way in which 0s can be gained. If all tourna-

ments are constrained to be between two di�erent indi-

viduals, then r

0

will soon reduce to one member which

will thereafter survive alone for ever. This member, the

`wild-type', will win all its tournaments and continually

replenish the ow of mutants down the hill away from

it. Histograms of results from populations of various

sizes run in a computer simulation is shown in �gure 10.

An equation which allows one to iteratively derive the

expected size of each class is derived in Appendix A.

If the same individual can be chosen twice for a tour-

nament, resulting in the replacement of itself by a mu-

tated copy, then the wild-type will eventually be lost

through just such an incident, and Muller's ratchet will

start to operate. However, if tournaments are between

di�erent individuals, then the wild-type will never be

lost, whatever the size of �. We thus have a selec-

tion mechanism which can move the bulk of the pop-

ulation crawling down the hill as much as is desired,

without ever encountering the error threshold of Eigen

and Schuster. The banding into multiples of � can be

broken up by alternating between two di�erent integers

for �.

But careful : : :

There is a dangerous potential aw in this. We are rely-

ing on the choice of winner of a tournament being 100%

reliable, and in the context of evolutionary robotics, as

discussed earlier, this may very easily not be the case. If

the reliability of choice is p < 1, then sooner or later the

wild-type will be lost and Muller's ratchet will start.

A possible counter to this will be to only mutate the

replica with probability q < 1, and otherwise leave it

unchanged. In Appendix B it is shown that this will

save the situation in an in�nite population for values of

q < (2p�1)=p, this being independent of the value of �.

For example, if p = 0:9, we should have q < 0:888 : : :.

In the case of a �nite population, q should be reduced

further to allow for the stochastic e�ects of genetic drift.

The analysis of this case is not attempted here.

8.2 Shorter genotypes

Experiments run in simulation with populations of var-

ious sizes with genotypes of length 100, and with a

mutation rate of exactly one bit ipped at replication,

demonstrate what happens when the possibility of back-

mutation is no longer negligible. The histograms in �g-

ure 11 demonstrates a similar shape to those in the pre-

vious case, except that much more of the population

stays close to the wild-type. It can be seen that in the

case of unreliable choice discussed above, this e�ect will

supplement that of any given value of q in countering

the loss of the wild-type.

8.3 Mutations assessed independently at each

locus

When the same experiment is run on genotypes of length

100, but in this case instead of exactly one bit ipped

per genotype, there is a 1=100 chance of ipping at each

locus on the genotype, the results shown in �gure 12 are

startlingly di�erent. The reason for this is that although

the expected number of mutations per genotype is 1, this

is made up from a probability of about 1=e of no muta-

tions, about 1=0:99e of one mutation, about 1=1:98e of

2 mutations, and so on. The signi�cant probability of

there being no mutation has a similar e�ect to that given

by the deliberate introduction of a probability 1 � q of

no mutation, discussed above in the long genotype sce-

nario and in Appendix B. Appendix C shows that the

proportion of the population expected to be the wild-

type is 2=(1 + e

�

), which when � = 1 gives a value of

about 0.538. When there is a probability p of making

a mistake in a tournament, it is also shown in this ap-

pendix that in an in�nite population the wild-type will

not be lost if p > e

�

=(1 + e

�

), which for � = 1 gives a

minimum value for p of 0.731. To use this equation in

the other direction, if it is known that p > 0:9 then the

maximumvalue of � would be ln 9 � 2:19. These �gures

would be worse in a �nite population due to stochastic

e�ects.

9 SAGA and recombination

It has been suggested above that the application of a

change-length genetic operator at the very low rates re-

quired in SAGA can be treated in a similar fashion to

low mutation rates, although the sleight-of-hand used is

equivalent to increasing the number of possible alleles at

the relevant loci. In the context of adjusting genetic op-

erators so as to be able to inuence hill-crawlingwithout

losing the current wild-type, the introduction of recom-

bination makes a major impact.

One virtue of recombination within a species is that

when two di�erent favourable but improbablemutations

take place within two di�erent members of a popula-

tion, then sexual replication can at a stroke produce an

individual combining both; whereas asexual replication

would require both improbable events to occur within

the same single line of descent. It is this virtue which

is stressed in standard GAs, yet here we will concen-

trate on another virtue | the other side of the same

coin | which is that recombination functions as a form

7



of repair mechanism protecting against Muller's ratchet

(Maynard Smith 1978).

With tournament selection, candidates for recombina-

tion would be the winners of two separate tournaments,

and the two o�spring, after crossover and mutation, can

replace the two losers. In general, the crossover will

produce one o�spring closer to the wild-type than the

average of the two parents' distances, and another o�-

spring further away than this average; after which mu-

tation adds its toll. This constitutes a force producing

a restorative ow towards the wild-type, allowing larger

mutation rates without loss of the current local opti-

mum. Simulations con�rm this.

There are practical computational problems in deal-

ing with recombination with the variable-length geno-

types that are necessary in evolutionary robotics; given

a crossover point in one parent genotype, where should

the crossover point in the other parent genotype be? A

discussion of this problem, and an algorithm which pro-

vides an e�cient technique, are presented in (Harvey

1992a).

10 Elitism in noisy �nite populations

We have been seeking ways of avoiding loss of the wild-

type, while promoting appropriate exploration. In GAs,

the policy of retaining the best, unchanged, for inclusion

in the next generation is known as elitism, and we have

seen that tournament selection gives you elitism for free,

when the tournaments are 100% reliable. In the pres-

ence of noise, we can counter the operation of Muller's

ratchet by some of the measures mentioned above which

guarantee preservation of the wild-type in non-zero pro-

portions in in�nite populations. For �nite populations

of a practical size, stochastic e�ects are signi�cant, and

the counter-measures are less e�ective.

11 Conclusions

An evolutionary approach to robot design, working

from simple towards more complex cognitive architec-

tures, implies species evolution within the SAGA con-

ceptual framework. This requires a very di�erent analy-

sis from standard GAs, and abandoning the goal-seeking

metaphor associated with them. A new metaphor of

hill-crawling of a converged species has been introduced,

and this needs an analysis of the conicting forces of

exploitation and exploration | which here means ef-

�ciently searching down the current hillside and along

high-value ridges in the �tness landscape while being

careful not to lose track of the current hilltop.

Whereas theoretical biologists are trying to analyse

the selection mechanisms they believe exist in the natu-

ral world, in simulated evolution we can choose our own

selection mechanism. Arguments have been presented

that tournament selection can be used for hill-crawling,

with signi�cantly higher mutation rates than are used in

conventional GAs; higher mutation rates enable a faster

rate of evolution. It has also been argued that with the

complex simulations that would be needed in evolution-

ary robotics, requiring serious computing power for each

individual being evaluated, tournament selection allows

a practical evolutionary setup to be highly distributed

over an asynchronous network or networks of machines

with minimal intercommunication. In addition, tour-

naments reduce the selection process to a succession of

binary decisions as to which of two individuals is the

better, avoiding scaling problems with any evaluation

function.

Analytical results have been shown for the e�ects

of tournament selection in the case of in�nite popula-

tions, with and without reliable tournament decisions.

Stochastic e�ects of genetic drift in small populations

alter these results. Results from simulations with �nite

populations under di�erent conditions have been shown,

and practical ways to overcome Muller's ratchet have

been suggested.
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Appendices

A Rank sizes with long genotypes

Consider a population of size N , with binary genotypes,

and classify each individual by Hamming-distance from

the current master sequence or wild-type, which without

loss of generality can be taken to be a genotype of all

0s. It is assumed that �tness monotonically decreases

with this distance, and without loss of generality the

negative �tness can be the number of 1s in the genotype.

At each replication there is a single mutation, and the

genotypes are so long that the chance of a back-mutation

is negligible; i.e. all mutations are deleterious.

The number of individuals with i 1s is de�ned as r

i

.

The loss from and gain to this class should balance at

equilibrium.

Something of rank i is lost in a tournament if there

is a tournament between a rank i and and a rank < i,

with probability

2

r

i

N

i�1

X

j=0

r

j

(N � 1)

;

and also for one between two di�erent members of rank

i, probability

r

i

N

(r

i

� 1)

(N � 1)

:

Something of rank i is gained in a tournament be-

tween rank (i� 1) and a rank > i, with probability

2

r

i�1

N

N

X

j=i+1

r

j

(N � 1)

;

and also for one between two di�erent members of rank

(i � 1), probability

r

i�1

N

(r

i�1

� 1)

(N � 1)

:

Setting gains equal to losses, and eliminatingN (N�1)

we have

2r

i

i�1

X

j=0

r

j

+ r

i

(r

i

� 1) = 2r

i�1

N

X

j=i+1

r

j

+ r

i�1

(r

i�1

� 1):

This gives a value for r

i

based on values for lower is.

Since we know that r

0

= 1, we have

2r

1

+ r

1

(r

1

� 1) = 2(N � 1� r

1

):

This quadratic equation yields a positive solution of

r

1

=

1

2

(�3 +

p

8N + 1):

For N = 100 this gives r

1

� 12:65. Successive values for

higher i can be found by iteratively solving successive

quadratics.

B Noisy decisions in an in�nite popula-

tion

Consider a similar situation to that in appendix A, but

where there is a probability p of correctly deciding a

tournament, and hence (1�p) of making a mistake. We

will be considering the long term possibility of losing

all members of rank 0, and will assume a population of

in�nite size so as to ignore stochastic e�ects of genetic

drift. Let the proportion of the population in rank 0,

the master sequence, be a. To keep up the value of a, we

will impose a probability q of mutating on replication,

and hence (1� q) of there being no mutation.

A wild-type of rank 0 will be lost from the popula-

tion when rank 0 meets rank 0 and there is a mutation,

probability a

2

q; and also when rank 0 meets rank � 1

and the wrong one wins, probability 2a(1� a)(1� p).

A rank 0 will be gained when a rank 0 meets a rank

� 1, the right one wins, and there is no mutation, prob-

ability 2a(1� a)p(1� q).
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Setting gains equal to losses, and dividing by a, we

have

aq + 2(1� a)(1� p) = 2(1� a)p(1� q)

a(4p+ q � 2pq � 2) = 2(2p� pq � 1)

We can assume that p > 0:5, say p = 0:5+ s for positive

s. The factor on the l.h.s. of the equation, multiplying

a, then becomes (2+4s+q�q�2sq�2), which reduces

to 2s(2 � q). We know that s is positive and (2 � q) is

positive, so the condition for a to be positive is that the

r.h.s. of the above equation is also.

Hence 2(2p� pq� 1) > 0, which gives q < (2p� 1)=p as

the condition for the proportion a of rank 0 to remain

positive.

C Mutations assessed independently at

each locus

Consider an population of N binary genotypes each of

length l. N is assumed to be large enough to avoid

stochastic genetic drift, and l is assumed large enough

for approximations to be made below.

If there is on average � mutations per genotype, this

is a probability of �=l at each locus. So the chance of

there being no mutation at all l loci on a genotype is

(1� �=l)

l

. For small � and large l this is close to e

��

.

Let the proportion of rank 0 in the population be

a. Then a rank 0 will be lost to the population when

rank 0 meets rank 0 and there is a mutation, giving a

probability of

a

2

�

1� e

��

)

�

;

a rank 0 will be gained when a rank 0 meets a rank � 1

and there is no mutation, a probability of

2a(1� a)e

��

:

Setting gains equal to losses, and multiplying through,

we have

a(e

�

� 1) = 2(1� a):

Hence the proportion of the population expected to be

the wild-type at equilibrium is:

a =

2

1 + e

�

:

Let us now reconsider this scenario with noise added,

when the winner of a tournament is selected with prob-

ability p. A rank 0 will still be lost to the population

when rank 0 meets rank 0 and there is a mutation, giv-

ing a probability of

a

2

�

1� e

��

)

�

;

but a rank 0 will also be lost when rank 0 meets rank

� 1, and noise makes it lose; probability is

2(1� p)a(1� a):

A rank 0 will be gained when a rank 0 meets a rank � 1,

wins, and there is no mutation, a probability of

2pa(1� a)e

��

:

Setting gains equal to losses, and multiplying through,

we have

a(e

�

� 1 + 2e

�

(1� p)(1 � a)) = 2p(1� a):

Hence

a(e

�

(2p� 1)� 1) = 2p� 2(1� p)e

�

:

The contents of the bracket on the l.h.s. are always

positive, so that the condition for a > 0 is that the

r.h.s. is positive,

p > (1� p)e

�

:

Hence for preservation of the wild-type we need

p >

e

�

1 + e

�

:

The proportion of the population expected to be the

wild-type at equilibrium is:

a =

2

1 + e

�

:
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Search Space Goal

Figure 1: The evolution of a standard GA in a �xed-dimensional search space; the population initially spans the

whole space, and in the end focuses on the optimum.

zno. of dimensions / time in aeons

x

y

"Evolution"

Figure 2: The progress of the always compact course of a species; the horizontal axis indicates both time and

the (loosely correlated) number of dimensions of the current search space. The other axes represent the current

dimensions in genotype space. The possibility of splitting into separate species, and of extinction, are indicated in

the sketch, although not here discussed.
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Figure 3: Average genotype lengths against generations; vertical bars show standard deviations. E�ects of `creeping'

and `unrestricted' increase-length genetic operators on a population with the same �tness conditions, epistasis K = 2.

Left graph, linkage with neighbouring genes. Right graph, random linkage.

Figure 4: As a species evolves through SAGA space, the search for higher �tness only takes place in a very local

search space around the current focus of the species.
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Master sequence

or wild-type

SELECTION

MUTATION

Fitness

0 1 2 ...12....

Hamming distance from master sequence.

Figure 5: The opposing forces of mutation and selection on a population centred around a local optimum, where

Hamming distance from master sequence is directly related to �tness ranking.

Master sequence

or wild-type

SELECTION

MUTATION

Fitness

0 1 2 ...12....

Hamming distance from master sequence.

Figure 6: When mutation outweighs selection so that the �ttest rank can be lost, Muller's ratchet inexorably drives

the population down the hill.
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Master sequence

or wild-type

Fitness

0 1 2 ...12....

Hamming distance from master sequence.

??

Figure 7: If the population can crawl down the hill far enough to reach a ridge of relatively high �tness, it will spread

along it, potentially reaching new hills.

Population

Tournament

Loser Winner

Copy of winnerWho does it replace?
(A) Loser?
(B) Random member

of population?

B? A?

(mutated, maybe crossed
with another winner)

(C) Random member of
tournament?

Figure 8: Tournament Selection. Possible choices for who is to die to make way for the copy of the winner.
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* * * m = 3 mutns

Scenario 1: Exactly m bits flipped, chosen at random. Genotype is so long

that chance of favourable back-mutation towards master-sequence is

negligible.

m = 3 mutns* * *

Scenario 2: Exactly m bits flipped, chosen at random. Finite length

genotype with significant possibility of back-mutation.

* * *
OR

OR

Scenario 3: Each bit is flipped with probability of m/(genotype length).

I.e. on average m mutations on whole genotype.

*

* * * * *

Figure 9: Possible ways to apply a given mutation rate.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Popn 50 Popn 5000Popn 500

Figure 10: Numbers in each class, ranked by the Hamming-distance from the master-sequence. E�ectively in�nitely

long genotype, in that there are no back-mutations, but exactly one mutation in genotype at replication of winner of

tournaments. Results shown are after simulations of number of tournaments equal to 4000 times population size.
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Popn 50 Popn 500 Popn 5000

Figure 11: Similar simulations to those shown in previous �gure, except that genotypes are of length 100. Exactly

one mutation per genotype at replication, which means a signi�cant number of back-mutations towards the master-

sequence.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Popn 50

200,000 tnmts

Popn 500

100,000 tnmts

Popn 5000

250,000 tnmts

Figure 12: Similar conditions to previous �gure, except that there is a 1/100 chance of a mutation at each bit of the

genotype, which is of length 100.
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Figure 13: Two genotypes are designated as start and goal, each of them with maximum �tness (of 0). The �tness

of any other genotype is de�ned as (the negative of) the minimum of the Hamming distances to start and to goal.

This gives a �tness landscape of two hills as shown. The population is all started o� at the peak of the `start hill'.
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Figure 14: Number of tournaments for a population centred at one `hill-top' to have a �rst member reach a nearby

hill-top. Rate speci�ed is the average number of mutations per genotype. Recombination has been used.
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