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Abstract

For Arti�cial Life applications it is useful to

extend Genetic Algorithms from a �nite search

space with �xed-length genotypes to open-ended

evolution with variable-length genotypes. A

new theoretical analysis is required, as Holland's

Schema Theorem only applies to �xed lengths. It

will be argued, using concepts of epistasis and �t-

ness landscapes drawn from theoretical biology,

that in the long run a populationmust have geno-

types of nearly equal length, and this length can

only increase slowly. As the length increases, the

population will be nearly converged, and hence

evolving as a species.

1 Introduction

Genetic algorithms (GAs) are a form of search tech-

nique, primarily used for function optimization, mod-

elled on Darwinian evolution. Some basic knowledge

of GAs, is assumed for the purposes of this paper; the

best introduction is (Goldberg 1989). Holland's Schema

Theorem has provided the theoretical underpinning for

GAs (Holland 1975, Goldberg 1989); this Schema The-

orem assumes that all the genotypes in a population are

the same length, and remain so through successive gen-

erations. In the messier world of natural evolution these

assumptions do not hold, which prompts questions such

as:

� Could some more generalized version of this theorem

be extended to include variable length genotypes?

� Are there circumstances in which they might be of

use in GAs?

In speaking of variable length genotypes I will be

making some assumptions, spelt out later, about how

those extra parts on long genotypes, not present on the
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shorter ones, contribute to their �tness. But the an-

swers to these two questions will be, �rstly: no, there

is no such immediate generalization, but rather a very

di�erent process is at work as genotypes change length,

which must be analysed independently. And secondly:

for traditional function optimization problems they are

unlikely to be of use, but they will be in Arti�cial Life.

Manipulation of schemata in the conventional analysis

of GAs can be interpreted in terms of intersections of hy-

perplanes in the prede�ned search-space | for instance

in the case of binary genotypes of length l, the search-

space is a hypercube of l dimensions. If this length is

variable, it is not easy to extend this notion of a search

space satisfactorily. An alternative characterization of a

genotype search space, perhaps less familiar to the GA

community, is borrowed from theoretical biology; this

lends itself more easily to variation in length of geno-

type.

It will be argued that for progress through such a

space to be feasible, it only makes sense for genotypic

variation in length to be relatively gentle. It follows that

instead of attempting a generalization of the Schema

Theorem to genotypes of any length, the analysis of the

convergence of a population of nearly uniform length can

and should be decoupled from the analysis of changes in

length. A general trend towards increase in length is

associated with the evolution of a species rather than

global search. The word species I am using to refer a �t

population of relative genotypic homogeneity.
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As to the question of under what circumstances vari-

able lengths might be of use in GAs, it would seem that

for such traditional GA concerns as function optimiza-

tion in a pre-de�ned domain, one would do best to stick

to �xed lengths. In the context of Arti�cial Life, how-

ever, where an animat is evolving in an environment

with unknown complexity, then variability in genotype

length becomes relevant. A genotype space can be open-

1

It will follow from this that crosses between members of the

same species have a good chance of being another �t member of

the same species; whereas crosses between di�erent species will

almost certainly be un�t.
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Figure 1: Low, but non-zero, epistasis is associated with a search space that is possible, but non-trivial.

ended if the environment itself alters over time, per-

haps in response to the evolution of the animat itself.

The classic case is the Red Queen (or Arms Race) phe-

nomenon of coevolution of di�erent species interacting

with each other, where one can expect over time both

the phenotype complexity and the genotype length to

increase.

The notion of a search space is a metaphor which is

usually a useful one. It does, however, imply a space

of pre-de�ned extent, with a pre-de�ned or recognizable

goal. In the natural world, tempting though it may be

for any one species to think of evolution as a 4 billion

year search for a goal of something very like them, it

is evident that any such notion of a goal can only be a

posteriori. So in order to distinguish the space of possi-

bilities that a species can move in from that of a conven-

tional search space, I shall use the term SAGA space

2

.

This corresponds to the acronym for Species Adaptation

Genetic Algorithms, the altered and extended version of

GAs necessary to deal with such a space.

2 Variable lengths in GAs

Variable length genotypes have been used in GAs in,

for instance, Messy GAs (Goldberg et al. 1990), LS-

1 classi�ers (Smith 1980), Koza's genetic programming

(Koza 1990). The �rst of these in fact uses an underly-

ing �xed-length representation. The analyses o�ered in

the other two examples do not satisfactorily extend the

notion of a schema such that schemata are preserved by

the genetic operators.

For instance, Koza's genetic programming (Koza

1990) uses populations of programs which are given in

the form of LISP S-expressions; these can be depicted as

rooted point-labeled trees with ordered branches. The

primary genetic operator of crossover, or recombination,

swaps complete sub-trees between the parents, and if

these sub-trees are of di�erent size then the o�spring

will have genotypes of di�erent lengths from their par-

ents.

Koza suggests that the equivalent of a schema in the

search space of such programs can be speci�ed initially

by any one speci�c sub-tree. Since the set of all potential

programs containing that sub-tree is in�nite, Koza �nds

it necessary to partition it into �nite subsets indexed
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\Saga : : : story of heroic achievement or adventure; series of

connected books giving the history of a family etc. [Old Norse =

narrative]." Concise Oxford Dictionary.

by the length of the program, and it is these subsets

that are considered as schemata. The number of occur-

rences in the reproductive pool of examples of a particu-

lar schema which, as sampled in the parental pool, shows

above-average �tness, will indeed tend to increase. But

this does not cater for the fact that the crossover oper-

ator will in general turn the o�spring into programs of

di�erent lengths, and hence disrupt the schema which

has been de�ned by program length. A possible way to

minimize this disruption would be to restrict the pos-

sible variations in length to only minimal changes, and

indeed this will be echoed in the conclusions reached

further on in this paper.

The obvious way to extend the crossover operator

from �xed-length to variable-length genotypes is by ran-

domly choosing di�erent crossover positions for each of

the two parents; an o�spring may then inherit two short

portions, or two long portions, and in general will have

a genotype of signi�cantly di�erent length. It will be

shown that this approach is awed.

3 Epistasis

A gene is the unit of analysis in determining the phe-

notype, and hence its �tness, from the genotype; it is

coded for by a small subsection of the genotype. The

term epistasis refers to the linkage between genes on the

genotype, such that the expression of one gene modi�es

or over-rules the expression of another gene.

If there is no epistasis, in other words if the �tness

contribution of each element on the genotype is unaf-

fected by the values of any of the others, then optimiza-

tion can be carried out independently on each element;

simple hill-climbing is adequate. At the other end of

the epistatic scale, where there are many dependencies

between the elements, the only useful building blocks

that a GA tries to manipulate are too long, and eas-

ily disrupted by genetic operators. Indeed in the limit

of maximum epistasis only random search is feasible.

The appropriate region on the epistatic scale suitable

for GA type search is between these two extremes, and

GA representations need to be chosen with this in mind

(Davidor 1990).

4 Uncorrelated Landscapes

A model of a genotype search space which allows ex-

plicit setting of low or high degrees of epistasis is based

2



Search Space Goal

Figure 2: The evolution of a standard GA in a �xed-dimensional search space; the population initially spans the

whole space, and in the end focusses on the optimum.

on the concept of a protein space, originally introduced

in (Maynard Smith 1970). This space has a point for

each possible example of a genotype, and a neighbour-

hood metric which gives all those other points which

can be reached by a single mutation from a given point.

Compared with the traditional GA analysis, which takes

a global view of the whole search space, and considers

how a population of points in this search space can e�ec-

tively range across it by use of recombination, we now

have a very di�erent perspective. Here mutation is the

only genetic operator, instead of just a background one

to prevent irremediable loss of an allele.

Kau�man (Kau�man and Levin 1987, Kau�man

1989) has extended this model to produce a general the-

ory of adaptive walks on rugged �tness landscapes |

where the distribution of �tness values across the space

is visualised as a landscape with �tness represented by

the height. It should be noted that the �tness values are

ascribed to points on a lattice rather than a continuum.

Nevertheless the landscape can be imagined as a moun-

tain range, where ruggedness implies a relative lack of

correlation of heights of nearby points, which in turn is

associated with high epistasis on the genotype.

Gillespie's assumptions (Gillespie 1984), that the mu-

tation rate is slow compared to the assimilation of any

�tter mutation by the population as a whole, are be-

ing used. The population as a whole is considered to

be at a single point in the space, with mutations of

single members sampling the immediately neighbouring

points. Any less �t mutations die out rapidly, whereas

any �tter one causes, by this assumption, the whole pop-

ulation to move to that point.

3
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This is a more restricted assumption than that in (Eigen and

Schuster 1979), where a populationunder the inuenceof selection

and a low mutation rate in general moves to form a quasi-species,

with a probability distribution centred about a point. Eigen and

Schuster show that for a given selective pressure, the maximum

length of genotype that can be reliably held in a tight distribution

at an optimum is of the order of magnitude of the reciprocal of

If the �tnesses of neighbouring points on this land-

scape are completely uncorrelated, then it is maximally

rugged. In an adaptive walk on such a landscape if the

�rst step upwards, from the bottom rank of �tness, takes

one unit of time, then the next step upwards, where only

half the neighbours are �tter, takes on average 2 units,

then 4, 8, : : : , doubling each time (Kau�man and Levin

1987).

5 Correlated landscapes

The above discussion is for a completely uncorrelated

landscape |which can be considered equivalent to max-

imum epistasis between the genes on the genotype. In

most �tness landscapes there is, however some local cor-

relation, in that neighbours will tend to have similar �t-

ness values, and certainly this is true of any search space

in which GAs are to be of use. Let length be de�ned in

this space using the distance metric of how many point

mutations are necessary to move from one genotype to

another. A long jump is de�ned to be the equivalent

of several simultaneous mutations, long enough to jump

beyond the correlation lengths in the landscape. Moves

via such long jumps will in general display important

similarities with the characteristics of uncorrelated land-

scapes (except that in the limit of long jumps all points

are accessible, and hence the notion of a local optimum

becomes meaningless). In particular the above result

still holds: that the waiting time until �nding a �tter

variant by such long jumps doubles after each such im-

provement.

Kau�man further considers a di�erent assumption

from that used above; suppose that instead of a sin-

gle mutant being sampled at each unit of time, there

the mutation rate. Mutation rates of 5� 10

�4

per base by single-

stranded RNA replication is adequate for a phage with length

4500. The lower mutation rates of order 10

�9

associated with

DNA replication and recombination in eukaryotes allow for the

genotypes of length order 10

9

that humans have.

3



is a large population of �xed size simultaneously sam-

pling di�erent mutants, and the population then moves

as a whole to the �ttest of any improved variant encoun-

tered. It is shown that the above result on waiting times

remains almost unchanged.

This search process is of course very di�erent from

that analysed in conventional GAs, where a population

of points e�ectively spans the search space, and recom-

bination allows e�ective moves to predominate. The dis-

tinction between these two types of search process must

be kept in mind when we turn to looking at variable

length genotypes.

6 Variable length genotypes

Let us spell out some assumptions about a genetic sys-

tem with variation in the length of genotypes, within

which many di�erent types of representation, or map-

ping from genotype to phenotype to �tness, could be

allowed.

� Firstly, it is assumed that the genotype can be anal-

ysed in terms of a number of small building blocks, or

genes, that are coded for individually on it; possibly

by a single symbol, or a sequence of symbols. These

genes can be uniquely identi�ed, either by their posi-

tion by reference to an identi�ed end of the genotype,

as in conventional GAs; or by an attached tag or tem-

plate, such as those used in messy GAs (Goldberg et

al. 1990). Longer genotypes will code for genes that

are not present at all on shorter ones.

� Secondly, it is assumed that each gene makes a sepa-

rate additive contribution to the �tness of the whole;

but that the contribution of any one gene can be

modi�ed by epistatic interactions with a number K

of the other genes. This number K is less than the

total number of genes available, otherwise the �tness

landscape would be uncorrelated.

� Thirdly it is assumed that the total of all these ad-

ditive contributions is then normalized in some way

such that the �nal �tness remains within some pre-

de�ned bound regardless of how many genes there

are.

This last condition reects the fact that any �tness

function is only relevant in so far as it a�ects the selec-

tion process. On average in the long term each member

of a viable population will be replaced by just one o�-

spring. Less than one and the population is heading for

extinction, more than one implies exponential growth.

But there are always �nite physical resource limitations

which prevent such unlimited growth, and this has to

be taken account of in the �tness function.

All these assumptions allow a standard GA to oper-

ate when lengths are �xed. In addition to the normal

genetic operators of mutation and crossover, we assume

that there are further operators, perhaps cut and splice,

or increase-length, which allow o�spring to have their

length changed by arbitrary amounts, although still re-

taining at least some genetic material from their par-

ent(s).

Suppose that there are a total ofG di�erent genes rep-

resented in the population, some perhaps represented in

all genotypes and some in only a few. Then by adding

an extra allele for each gene, to indicate whether it is

`absent' in a particular genotype, a new representation

of the population can be formed in which every gene is

represented in every member. Genetic operators which

do not introduce a completely new gene into the popu-

lation allow this to be analysed as a normal GA.

Suppose now that the genetic operators allow, by

lengthening a genotype, the creation of a single new

gene, giving a new total of G + 1. By the second and

third assumptions made explicit above, the epistasis of

this new gene is similar to that of the previous ones. The

new population can now be considered as being spread

across a new (G + 1)-dimensional search space, except

that all bar one member is con�ned within the previous

G-dimensional sub-space. This can still be analysed as

a normal GA with an initially skewed population. If a

single advantageous new gene appears in the population,

it can become widespread through crossovers.

In contrast to this, an alternative possibility is that

the genetic operators allow the creation in one genera-

tion of a large number g of new genes on one genotype.

In the new (G + g)-dimensional search space, the old

population is based entirely inside the original (in rel-

ative terms, very small) G-dimensional subspace, with

just the one new point exploring elsewhere. This is obvi-

ously a `long jump' and the �tness will be uncorrelated

with that of any of the previous generation. If such a

long jump is successful, in the sense that the new genes

are retained in the population, with a resulting gen-

eral increase in the �tness of the population, then the

chances of a successful further long jump will be signif-

icantly less. Any such long jump adaptation will su�er

from the problem of the doubling of waiting time after

each jump.

The picture now emerges of two very di�erent pro-

cesses going on at independent timescales in this SAGA

space. Given a genetic operator which allows unre-

stricted changes in length of genotypes, we can expect

the following sequence of events in a locally correlated

landscape:

� An early population could uctuate in length

through `long jump' adaptation which e�ectively

acts in an uncorrelated landscape; but as average

�tness increases the doubling of waiting times will

slow down this process drastically.

4
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Figure 3: The progress of the always compact course of a species; the z axis indicates both time and the (loosely

correlated) number of dimensions of the current search space. The x and y axes represent just two of the current

number of dimensions.

The possibility of splitting into separate species, and of extinction, are indicated in the sketch, although not here

discussed.

� Thereupon the traditional GA operators of crossover

and mutation will take over, and Holland's Schema

Theorem will be applicable to this phase of the

search.

� Those applications of the change-length operator

which result in minimal changes of length will be

moves on a correlated landscape, and therefore are

feasible even if major changes are increasingly un-

likely.

� If there are selectionary pressures which encourage

the genotype lengths to increase, the population will

become a nearly-converged `species', with an almost

uniform length that increase in small steps.

4

7 SAGA and the Schema Theorem

A schema de�nes a subset of possible genotypes which

share the same values at a speci�ed number of genes.

If there is no upper limit to the possible length of the

genotype, these subsets will be in�nite in size, and esti-

mates of the `average �tness' of a schema based on any

�nite sample become problematical.

We might be tempted to avoid this by saying, in this

particular example we will restrict the space of possi-

bilities to genotypes of length less than, e.g., 1000. But

then `nearly all' possible instances of a particular schema

will refer to genotypes very close to this upper limit, and

4

These ideas should be neutral in respect of the punctuated

equilibria controversy. A succession of small steps may or may

not be rapid in geological time | indeed there may well be good

reasons why there should on occasion be such a cascade. What is

being ruled out here is any single large step.

there may be no reason to expect the average �tness of

this schema to bear any signi�cant relationship to the

�tness of the same schema restricted to genotypes of

maximum length 100, 500 or even 950.

However, consider the case where all the population

have the same G gene sites (though with variations in

the values at each gene site); and we are considering the

addition of one extra gene to one or more of the popula-

tion. We can recast our analysis in terms of a population

all of genotype length G+1, with the extra gene having

one additional possible value of `absent'. For any two

schemata S

1

and S

2

that have the extra gene �xed as

`absent', let S

0

1

and S

0

2

be the corresponding schemata

with the extra gene value allowed any value (including

`absent'). Given the assumptions of low epistasis, the

relative �tnesses of schemata S

1

and S

2

will be closely

correlated with the relative �tnesses of schemata S

0

1

and

S

0

2

. This will still hold true if we allow an extra g genes

rather than one, provided that g is small in relation to

G and the assumption of low epistasis holds. It will not

hold true when g is large, or epistasis is high.

Hence in the short term of small changes in geno-

type length in a population of nearly uniform genotype

length, we can still apply the Schema Theorem.

8 Would variable lengths be useful?

Turning now to the second question posed in the intro-

duction, under what circumstances might it be useful to

have a genetic operator which allows an increase in the

number of genes represented on the genotype? If the

problem being tackled is basically a function optimiza-

tion one, where there is a pre-de�ned search space with

5
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Figure 4: At the top, gene i is linked to neighbours i

0

,

i

00

. The values 011 point into a �tness look-up table for

i. Below, i

0

and i

00

are no longer immediate neighbours.

a �xed number of factors that can be coded for on the

genotype, then it would be folly not to put them all in at

the start, represented in such a way as to minimize the

epistasis, and put one's trust in the Schema Theorem.

A major group of problems which cannot be speci�ed

in terms of a pre-de�ned search space involve coevolu-

tion of one population with another (or several) which

in turn is a�ected by the �rst. Since one population is

part of the environment for the other, the environment

is continually changing (Hillis 1991, Husbands and Mill

1991). The same requirements of relatively few epistatic

interactions between a gene and those aspects of the en-

vironment which it a�ects and is a�ected by, hold if an

evolutionary process is going to be more than random

search.

There are many coevolutionary worlds where an in-

crease in complexity in one population stimulates an

increase in complexity of the other, and so on, perhaps

inde�nitely. So in as much as length of genotype is asso-

ciated with complexity of the phenotype, we can expect

that there is selective pressure for long-term growth in

their lengths. Lindgren (Lindgren 1990, Lindgren 1991)

models a population of individuals competing with each

other at the iterated Prisoner's Dilemma with noise |

the population in practice breaks into sub-populations

with di�erent strategies. There is no recombination, the

only genetic operators being mutation and gene dou-

bling. The particular representation used treats a binary

genotype of length 2

h

as a look-up table; the history

of the last h interactions between competing prisoners,

coded in 0's and 1's and considered as a binary num-

ber, generates a pointer into this look-up table to de-

termine the strategy. Application of the gene-doubling

operator does not in itself generate new strategies, but

allows later mutations to generate �ner discriminations

within that strategy. Hence his representation could

be mapped into a di�erent one where the length of the

genotype only increases by one step at a time. His re-

sults show periods of stasis alternated by periods of un-

stable dynamics, with a long-term growth in the lengths

of the successful sub-populations.

value of B

value of A

000 0.141

001 0.592

010 0.653

011 0.589

100 0.793

101 0.233

110 0.842

111 0.916

Figure 5: Fitness table for gene i, �lled with random

numbers between 0 and 1. i, i

0

and i

00

determine �tness

contribution of gene i to �tness of the whole genotype.

9 Simulation

The NK model (Kau�man and Levin 1987, Kau�man

1989) assumes a binary genotype of length N , where

each position represents a gene which is a�ected by link-

age with K others. This is an abstract model in which

it is assumed that the �tness of the phenotype can be

directly calculated from the values on the genotype.

The three assumptions itemized above hold for the

�tness function. In the case of K = 2, the �tness con-

tribution of gene i depends on the two others to which

it is linked (which may be speci�ed as immediate neigh-

bours, or may be speci�ed at random positions). The

binary alleles of i and its 2 neighbours specify a 3-bit

number which picks a �tness from an 8-place table of

�tnesses associated with gene i | there are N such �t-

ness tables prepared at the start of the simulation, with

each place containing a �tness randomly chosen in the

range 0 to 1.

The �tness of the genotype is then assessed by adding

up the �tnesses thus determined for all N genes, and

dividing by N . It can be seen that in this case ofK = 2,

the ipping of a single bit on the genotype will a�ect the

�tness contributions of on average just 3 genes; the other

N�3 being una�ected, this gives a reasonably correlated

�tness landscape. In the limit of K = N � 1, where the

�tness table associated with each gene would have 2

N

places, the ipping of a single bit would alter everything,

and the �tness landscape is totally uncorrelated.

This model can be extended to allow for changes in

genotype length. The simplifying assumption is made

that any new gene appears at the right-hand end of the

genotype, and that the identity of the gene is uniquely

determined by its position in the genotype. In the case

of K = 2, if linkage is with immediate neighbours to left

and right, the ends are assumed linked in a loop to avoid

boundary conditions. A set of tables of random �tness

values for each gene is set up for the minimal-length

genotype. For each new gene added one new table is

generated for it, and two further replacement tables for

those genes which are neighbours of the newcomer. This

can easily be generalized forK > 2, and also for choice of

6



Figure 6: Average genotype lengths against generations; vertical bars show standard deviations. E�ects of `creeping'

and `unrestricted' increase-length genetic operators on a population with the same �tness conditions, epistasis K = 2.

Left graph, linkage with neighbouring genes. Right graph, random linkage.

epistatic linkages to newcomers being randomly selected

rather than restricted to neighbours.

This allows the setting up of models for simulations

with genotypes of any length, with epistasis of any de-

gree. A standard GA can then be run, with increase in

the lengths of genotype allowed under speci�ed condi-

tions. Such simulations allow experimentation with vari-

able lengths, in an abstract context, without the di�-

culties of choice of representation that normal problems

give.

Experiments have been run with a population of 100

genotypes, all of initial length N

init

= 16, with epista-

sis given by K = 2, linkages being with neighbouring

genes on the genotype; the genetic operators will allow

the lengths to increase. The initial �tness of any geno-

type, as de�ned by look-up tables of random numbers,

was then adjusted by adding a factor proportional to

N=(N+N ), where N is the length of the particular geno-

type andN is the current average genotype-length of the

population. The constant of proportionality was chosen

such that there was a selectionary pressure in favour of

longer genotypes comparable to the selectionary pres-

sures given by the initial �tnesses.

In the �rst trial the genetic operators were crossover,

mutation, and an increase-length operator which in 10%

of o�spring allowed a genotype to increase in length

by between 0 and 50%. In the second trial the `creep-

ing' increase-length operator only allowed an increase of

genotype length in the o�spring by exactly one. Despite

this restriction, the average length increased steadily in

the `creeping' trial as compared to virtually no increase

in the `unrestricted' trial.

On separate trials with the epistatic linkages being

with randomly placed genes instead of with neighbour-

ing genes, the results were similar, although with the

`creeping' increase in length at a slower rate. In both

sets of trials there was much more variation in lengths

within the population in the `unrestricted' case, com-

pared to the `creeping'.

10 SAGA and Development

By working with the evolution of a nearly converged

species increasing in genotype length and in phenotype

complexity over time, we have moved away from the

usual GA notion of evolution as a search technique to-

wards a notion of `evolution as a tinkerer' (Jacob 1989),

always adding to or altering something that is already

viable.

The cumulative process of additions and alterations

implies that a phenotype can be considered as being

produced from a genotype by a developmental process.

It will not be surprising if `Ontogeny recapitulates Phy-

logeny', subject to the small but ever-present possibility

of a later alteration bearing on a signi�cantly earlier

stage in the developmental process. The application of

this approach to, for instance, the evolution of subsump-

tion architectures for robots (Brooks 1991) would seem

to correspond to the e�ective, tinkering, incremental ap-

proach that practical designers take.

One consequence will be that a species will only reach

those parts of a SAGA space that are connected by a

continuous chain of viable ancestors to the origin. Thus

within the space of all possible genotypes of length G

there may well be a host of �t and viable points or is-

lands which, through isolation and lack of a viable path-

way from the origin, are unattainable.

11 SAGA and Genetic Operators

In addition to the usual GA operators of mutation

and/or crossover, an operator which allows change in

genotype length is necessary. The example in the NK
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model simulation above is the most trivial such opera-

tor, and depends on the identity of any gene being given

by its position relative to one end of the genotype. Lind-

gren's (Lindgren 1991) doubling operator uses a repre-

sentation which has this same dependency on position.

If the identity of a gene is given by a tag, or by

template-matching as seems to happen in the real world

of DNA, then absolute positions of genes on the geno-

type need not be maintained. This allows for duplication

of a section of the genotype, after which mutations can

di�erentiate the duplicated parts. The crossover opera-

tor can still be used in a fairly homogeneous population

with slight variations in genotype length, although given

any random crossover point in one parent, a `sensible'

corresponding crossover point in the other parent must

be chosen. This can be uniquely de�ned as that point

(or in some cases, any of a contiguous group of points)

which maximises the longest common subsequences on

both sides of the crossover. A version of the Needleman

and Wunsch algorithm makes this computationally fea-

sible (Needleman and Wunsch 1970, Sanko� 1972).

12 Conclusions

With �xed-length genotypes one can a�ord to think in

terms of a �xed, pre-de�ned search space with a �nite

number of dimensions which, even if it is immense, is at

least theoretically knowable by God or Laplace.

When one allows genotypes to vary in length the

search space is potentially in�nite and it stops making

sense to think of it as prede�ned. Nevertheless, in the

real world, evolution has taken place in such a fashion

that we have very distant ancestors whose genotypes

were much shorter than ours; the problems we face are

not the problems they faced.

When looking at evolution, talking about `problems

being solved' can be very misleading. However, peo-

ple using GAs are usually hoping to use lessons from

evolution in order to �nd solutions to a problem that

faces them. If they really do know the problem they

have to solve, then they can de�ne in �nite terms the

search space, and �xed length genotypes are appropri-

ate. If, however, they are trying to evolve a structure

with arbitrary and potentially unrestricted capabilities,

then the problem space is not pre-de�ned, genotypes

must be unrestricted in length, and a new approach is

needed. Hence this discussion is probably more relevant

to those looking at the evolution of animats or cognitive

structures than it is to those looking at GAs as function

optimizers.

One of the lessons demonstrated is that if genotypes

can potentially increase inde�nitely, they will in prac-

tice only do so on a slow timescale, so that within a

population all genotypes will be very nearly the same

length. Indeed, there will be a high degree of uniformity

in the genotypes, and any signi�cant variations, includ-

ing changes in length, will spread through the whole

population before the next variation occurs. This is in

contrast to the relatively fast timescale on which the

crossover operator, which is the power-house of standard

GAs, very e�ciently mixes and matches �tter schemata.

One factor to bear in mind here is that there is a re-

lationship between mutation rate and the length of a

genotype that can e�ectively evolve. Too little muta-

tion, and there is not the variation to allow change; too

much, and there is not su�cient stability to maintain

�tness.

In contrast to the approach used in Holland's Schema

Theorem, or the hyperplane analysis of schemata, where

the population can e�ectively sample the whole search

space, we must visualise a population in our new, in-

�nitely though slowly expandable, search space as a lo-

calized cloud (with a high degree of consistency within

the population) which can only sample `nearby' points

(those that can be moved to by one or a small number

of applications of the genetic operators.) The question

ceases being `Where in this whole search space is the

optimum?' and becomes instead `From here, where can

we move to that is better?'.
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