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Abstract

We have developed a methodology grounded in two be-

liefs: that autonomous agents need visual processing ca-

pabilities, and that the approach of hand-designing con-

trol architectures for autonomous agents is likely to be

superseded by methods involving the arti�cial evolution

of comparable architectures.

In this paper we present results which demonstrate

that neural-network control architectures can be evolved

for an accurate simulation model of a visually guided

robot. The simulation system involves detailed models

of the physics of a real robot built at Sussex; and the

simulated vision involves ray-tracing computer graphics,

using models of optical systems which could readily be

constructed from discrete components.

The control-network architecture is entirely under ge-

netic control, as are parameters governing the opti-

cal system. Signi�cantly, we demonstrate that robust

visually-guided control systems evolve from evaluation

functions which do not explicitly involve monitoring vi-

sual input.

The latter part of the paper discusses work now under

development, which allows us to engage in long-term fun-

damental experiments aimed at thoroughly exploring the

possibilities of concurrently evolving control networks

and visual sensors for navigational tasks. This involves

the construction of specialised visual-robotic equipment

which eliminates the need for simulated sensing.

1 Introduction

Designing control architectures for visually guided mo-

bile autonomous robots that exhibit adaptive behaviour

is likely to be a very di�cult task. So di�cult, in fact,

that we advocate the abandonment of approaches to the

problem which involve solution by manual design.

In place of design-by-hand, we propose using evolu-

tionary techniques. Focus then shifts from specifying

how the robot is to generate adaptive behaviours, to

specifying what adaptive behaviours are generated. By

creating an initial varied population of control architec-

tures, and rating each according to whether desired be-

haviours are exhibited, evolutionary pressure can be ex-

erted on the population. Using a suitably extended form

of genetic algorithm, viable architectures may result.

In this paper we present results which validate our

proposals. We employed the Saga evolutionary prin-

ciple [6] to develop neural-network control architectures

for a simulation model of a real robot under construction

at Sussex. The simulation system incorporates accurate

physics, based on empirical observations of the real sys-

tem, with added noise and uncertainty. The visual sensor

capabilities are simulated using a ray-tracing computer

graphics system [2]. Parameters governing the robot's

sampling of its visual �eld are under genetic control, and

the resultant speci�cations could readily be constructed

from discrete components.

Our results demonstrate that it is possible to evolve

control architectures for visual guidance, using high-level

evaluation functions which make no explicit reference to

vision.

The results presented here are all for robots operating

in relatively simple environments, comparable to those

used for testing some real visually guided robots (e.g.

[4]); but not as visually complex as a typical cluttered

o�ce environment. The computational costs of provid-

ing appropriately accurate simulation data scales very

poorly as the complexity of the environment increases. In

order to fully explore the possibilities of our methodology

with more challenging tasks in increasingly complex en-

vironments, we have developed an approach which allows

us to eliminate much of the computationally expensive

simulation work. This involves using specially designed

robotic equipment which allows for the use of `real' (op-

tical) vision, while facilitating exploration of issues in

the concurrent evolution of visual sensors and control

networks for navigation tasks. Section 6 describes this

work, which we have only recently commenced.

This paper deals largely with practical issues: our

methodological position is expressed in more depth in

a separate paper [7]. For the sake of completeness, it is

summarised briey in the next section.
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2 Background

In another paper [7], we have presented arguments sup-

porting the notion that an evolutionary approach to the

design of robot control systems can be expected to su-

persede design by hand. In that paper we also explored

issues arising from the adoption of an evolutionary ap-

proach and gave results of preliminary simulation exper-

iments in evolving control architectures for simple robots

equipped with a few touch-sensors: four `whiskers' and

two `bumpers'. For reasons explained in [7], the control

architectures were based on a particular kind of `neural'

network, and central to the evolutionary mechanisms is

the notion of a gradual incremental development, build-

ing on already existing capabilities.

The results of the experiments with purely tactile sen-

sors are highly encouraging: for certain types of evalu-

ation function, the robot population can evolve to the

point where genuinely useful behaviours emerge. Nev-

ertheless, the proximal nature (and low dimensionality)

of the robot's sensors forever constrain it as unable to

go beyond primitive `bumping and feeling' strategies in

navigating around its environment. For more sophisti-

cated navigation strategies, based on distal information,

the addition of visual sensing capabilities is required.

Briey, the rationale for adding vision is that it allows

for much more sophisticated behaviour patterns (e.g. lo-

cation recognition in navigation). The remainder of this

paper discusses our experiences in adding visual process-

ing capabilities to the simulated robot.

3 And Then There Was Light

Rather than imposing on the robot some visual sensors

with �xed properties, it seemed much more sensible, and

in keeping with our incremental evolutionary approach,

to investigate the concurrent evolution of visual sensors

and control networks. In essence we have started with

simple very low resolution devices coupled to small net-

works, and will work towards higher resolution devices

made useful by more complex networks generating more

sophisticated behaviours. Major factors a�ecting how

this occurs are under evolutionary control.

3.1 Preliminaries

Because the simulated robot is based on a physical robot

under development, it is necessary to su�ciently con-

strain the visual processing capabilities available under

evolutionary control, so that whatever designs evolved

are (at least in principle) capable of being built using

available hardware. In essence, this meant opting for

very low visual resolution. The total number of pix-

els had to be at least two or three orders of magnitude

lower than that used in conventional computational vi-

sion research.

1

A cursory survey of some biology literature indicated

that, for creatures such as insects or other arthropods

which have very few photoreceptor units, the photore-

ceptors often have large angles of acceptance,

2

and are

distributed around the body so as to sample a wide visual

�eld. These simple photoreceptor units are perhaps best

not thought of as pixels in an image (or `tiles' in a retinal

`mosaic'): a more appropriate approach is to consider the

photoreceptors as simple local brightness detectors. For

example, if the portion of the optic array directly above

an animal suddenly goes dark while the rest of the optic

array remains constant, it seems likely that something

is about to drop on the animal from above, and rapid

evasive action is probably a sensible adaptive behaviour

in such situations. Of course, the animal doesn't have to

construct any internal representations or reason about

the cause of the darkness; it just has to do something

useful.

For this reason, our work to date on evolving visually

guided robots has concentrated on ultra-low-resolution

vision, close in spirit to Braitenberg's Vehicles [1]. The

simulated robot has been given a few photoreceptor

units, which could realistically be added to the physi-

cal robot. This could be done using discrete components

(e.g. photodiodes, phototransistors, or ldr's) with indi-

vidual lenses, thereby creating an electronic compound

eye, cf. [4]; or by using conventional ccd cameras but

impairing their optics by mounting sand-blasted glass

screens in front of the lens so as to generate input im-

ages with focus-independent blur, prior to some coarse

sub-sampling scheme.

The simulated robot was equipped with vision by em-

bedding it within the SyCo vision simulator system de-

scribed in [2]. The SyCo simulator was developed for

studying issues in visual processing for control of an air-

borne insect, but only minor alterations were required:

the `altitude' was clamped at a constant value, because

the robot is a wheeled vehicle travelling on a at oor;

and the visual sampling pattern, which is �xed in SyCo

had to be placed under genetic control.

The SyCo simulator synthesizes vision by means of

a computer graphics technique called ray-tracing (see

e.g. [5]). This is a method which involves instantaneous

point-sample estimates (`rays') of the relevant projec-

tion integrals, and so aliasing is a common problem.

Put most simply, aliasing is a problem where insu�cient

samples are taken to give an accurate impression of the

1

In `conventional' computer vision, image sizes of 512�512 (i.e.

262144 pixels) are not considered large.

2

The acceptance angle of a photoreceptor can be de�ned as

twice its maximum incidence angle, where the maximum incidence

angle is the largest angle, measured as eccentricity o� the 'recep-

tor's visual axis (\direction of view"), at which an incoming ray of

light can still have a signi�cant e�ect.
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(visual) signal being sampled.

To limit the e�ects of aliasing, the SyCo code was

con�gured to determine each photoreceptor's activity by

averaging the readings from several rays per simulated

receptor, distributed across that receptor's visual �eld.

This provides more accurate estimates of image bright-

ness in the receptor's �eld of view. However, it is impor-

tant to keep the number of rays per receptor relatively

low. This is for two reasons: one pragmatic, the other

theoretical. First, ray-tracing is a computationally ex-

pensive process, so using fewer rays per receptor saves

processing time. Second, real vision is not an arbitrary-

precision process. In vision, noise is inescapable, and

noise e�ectively reduces a continuum of brightness lev-

els to a small number of discrete ranges (e.g. [9]). By

limiting the number of rays per receptor, the precision

of the brightness-value estimate is correspondingly re-

duced. The simulated robot must be able to cope with

noisy limited precision perception, because that is all the

real world has to o�er.

3.2 Particulars

3.2.1 Vision

In keeping with the minimal incremental approach advo-

cated in [7], we have commenced our studies by exploring

the e�ects of adding just two photoreceptors to the sensor

suite (bumpers and whiskers) described above. Taking a

cue from biological vision, the sensors are situated in po-

sitions which are bilaterally symmetric about the robot's

longitudinal midline.

Having only two receptors introduces manifest limita-

tions on the classes of behaviours that can be expected

to evolve in the robot. Assuming that the receptors

sample largely distinct portions of the optic array, the

only information the robot can access concerning its vi-

sual surroundings is likely to be limited to the raw data

(the brightness levels recorded by the photoreceptors)

and summary statistics such as the average brightness,

or the di�erence between the two signals.

Nevertheless, the acceptance angles of the photorecep-

tors, and their positions relative to the longitudinal axis,

can be varied under genetic control. The two receptors

are constrained to have the same angle of acceptance,

which is coded as a binary number represented as a bit-

vector �eld in the robot's genome. A second bit-vector

�eld in the genome governs the eccentricity of the pho-

toreceptors, measured o� the robot's longitudinal axis.

Figure 1 illustrates these two angles.

The details of the genetic coding of the acceptance an-

gle � and the eccentricity � of the two photoreceptors is

straightforward. In principle, the angles are constrained

to the ranges � 2 (0; �] � R and � 2 [0; �=2] � R,

but the use of a bit-vector genome forces a discretiza-

tion of these ranges. Both angles are represented by four

AoA AoA

Ecc Ecc

Figure 1: Angle of acceptance and eccentricity for the two-

photoreceptor robot. A top-down view of the robot, and the rele-

vant angles.

Figure 2: A cartoon of an appropriate robot: the angle of accep-

tance can be altered using zoom lenses. The eccentricity can be

altered by rotating the cameras on their stalks.

bits in the genome, giving a choice of 2

4

= 16 discrete

values for each angle, i.e. a total of 2

8

= 256 con�gu-

rations of � and �. If the integer values represented by

the genome �elds for � and � are i

�

and i

�

respectively

(i

�

; i

�

both 2 f0; 1; : : :; 15g �N), then � = (1+i

�

)�=16,

and � = i

�

�=15.

The genome is currently being extended to allow the

number of photoreceptors to be placed under genetic con-

trol. In the current two-receptor model, each receptor

has a square cross-section to its receptive �eld. As an

anti-aliasing measure, sixteen rays, arranged on a regu-

lar 4� 4 grid, are traced for each pixel.

All experiments to date have involved evolving archi-

tectures which enable the robot to guide itself within a

closed cylindrical room. The curved walls of the room

are black, while the oor and ceiling are white. Figure 3
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Figure 3: Illustration of the ray-tracing system. The left-hand

�gure shows the robot's position and orientation within the cylin-

der, which has black walls and white oor and ceiling. At upper

right is a pair of relatively high-resolution images, traced from the

robot's position inside the cylinder. The lower-right �gure shows

the two 4 � 4 images traced prior to averaging, with � = 1:571

and � = 0:628. The �nal two photoreceptor brightness levels are

derived by averaging the 4� 4 images.

illustrates output from the ray-tracing system in this en-

vironment; Figure 4 illustrates the e�ects of varying �

and �.

3.2.2 Physics

The simulation involves a realistic physics for determin-

ing the e�ects of the robot moving across the oor and

colliding with the walls. As described in more detail in

[7], the simulated robot is cylindrical in shape with two

wheels towards the front and a single trailing rear castor.

The wheels have independent drives allowing turning on

the spot and fairly unrestricted movement across a at

oor. Outputs from the robot's control networks feed

direct to the wheel drives. Depending on the strength

and sign of their signal, the wheels rotate at one of �ve

rates: full speed forward; full speed backward; half speed

forward; half speed backward; and stationary. The con-

tinuous movement of the robot is simulated by polling

the network outputs at an appropriate rate. At each

step of the simulation the next position and orientation

of the robot is calculated using the appropriate kinematic

equations (with a suitable amount of noise added). Col-

lisions are handled as accurately as possible, based on

observations of the physical system. Briey, if the robot

collides with a high velocity normal to the surface it un-

dergoes a noisy reection with a rotation determined by

its original direction of motion; if it collides at low speed

its behaviour depends on the angle of incidence { it may

rotate until normal to the obstacle or it may skid around

until it is parallel.

4 Experiments

Results from earlier experiments discussed in [7] demon-

strated that our methods could be used to evolve robots

which could engage in primitive tactile-based navigation

patterns such as wall-following. The primary goal in the

Figure 4: Varying � and �. For all the �gures, the robot's posi-

tion is the same as in Figure 3; the left-hand column shows the pair

of 4� 4 images, while the right-hand column shows the respective

higher-resolution images.

experiments described below was to explore the possibil-

ity of evolving robots which could use their visual percep-

tion capabilities to avoid collisions with the walls prior

to making physical contact with the wall via one of their

tactile sensors. Using intentional language, we can say

that the robot learns to predict, from visual data alone,

that a collision is likely in the near future, and takes

appropriate evasive action. We felt this was a suitably

low-level task for preliminary experiments. More com-

plex behaviours are currently being evolved from this

one.

So, the �rst task set for our robots was to roam around

an empty cylindrical room without hitting the walls. The

two-photoreceptor robot has, in theory, su�cient sensory

data to avoid the dark walls. Examination of the visual

data shown in Figures 3 and 4 con�rms this. For exam-

ple, a useful strategy would be: if the di�erence between

the brightness levels of the two receptors is greater than

some threshold, dependent on the values of � and �, then

the robot should turn in the direction of the brighter re-

ceptor.

The evolutionary process requires an evaluation func-

tion E by which the �tness of individuals in the pop-
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ulation can be rated. We have found three evaluation

functions useful:

E

1

=

X

8t

D(t)

E

2

=

 

X

8t

D(t)

!

�

 

X

8t

B(t)

!

E

3

=

 

X

8t

D(t)

!

�

 

X

8t

G(t)

!

where:

8t denotes all time, i.e. the lifetime of the

individual;

D(t) denotes the distance travelled on timestep t

B(t) denotes the average brightness of

the two photoreceptors at time t

G(t) denotes a Gaussian function of the robot's

distance from the centre of the cylinder at time t

The reasons behind choosing these evaluation func-

tions were straightforward. The function D, used in all

the evaluation functions, encourages the robots to move

(otherwise the best way of avoiding bumping into walls

is simply to remain stationary).

E

1

only employs D, so the robots which travel furthest

in their lifetimes are rated as the �ttest: nevertheless,

the mechanics of the collision simulation still penalises

robots which collide with the walls at all often.

E

2

is an extension of E

1

: the inclusion of the sum of

brightness B introduces a selection pressure which is ex-

plicitly vision-oriented. As a robot approaches a wall,

the value of B drops because the wall will tend to oc-

cupy more of the visual �eld of the two receptors. So,

robots which over their lifetime have a high value of

P

B

are ones which have tended to avoid approaching walls,

and are hence rated as �tter than those which spend a

lot of time moving close up to walls.

E

3

is a more subtle version of E

2

. Rather than explic-

itly rate the �tness according to total brightness over a

lifetime, we rate the robots on the basis of how much of

their time is spent near the centre of the cylinder's oor

disk. This is done by measuring the robot's distance d

from the oor-centre at time t, and then weighting the

distance by a Gaussian G of the form:

G = exp(�d

2

=c)

for some constant c, which ensures that G � 0 for d >�

2r=3, where r is the cylinder's radius. So, while there is

no explicit mention of vision in E

3

, it is hoped that the

robots will evolve to the point where they use their visual

input to ensure they are always some distance away from

the walls.

Section 5 discusses the results from using these evalu-

ation functions. Before that, we describe some details of

the evolutionary mechanisms used.

4.1 Evolutionary Mechanisms

Populations of robot genotypes underwent evolution

guided by selective pressures based on the evaluation

functions given above. The genotype of each robot con-

sists of two chromosomes: one codes for the neural archi-

tecture and the other for properties of its visual sensors.

As was described in Section 3.2.1, the visual sensor chro-

mosome is a simple �xed length bit string which decodes

into a set of parameters giving angle of acceptance and

eccentricity of the robot's two photoreceptors. The neu-

ral architecture chromosome is more complex, needing a

fairly involved process of decoding. The coding and its

interpretation are described briey below, but further

details can be found in [7].

The robots `neural-style' control networks have a �xed

number of input units: one for each sensor. In this case

there are eight: front and back bumper, two whiskers

toward the front and two whiskers toward the back, and

the two photoreceptors, or `eyes' (cf. Figure 1).

The networks also have a �xed number of outputs; two

for each of the motor drives. As all of the units are noisy

linear threshold devices (as described in [7]) with outputs

in the range [0:0; 1:0]� R, two units are needed to give

the motors a signal in the range [�1:0; 1:0]� R, so that

forwards and backwards motion is possible. If the output

signals from these four output units are labelled S

o1

to

S

o4

, then the left motor signal is the di�erence between

S

o1

and S

o2

, while the right motor signal is the di�erence

between S

o3

and S

o4

.

As well as these units these network chromosome codes

for a number of `hidden' units. The number is not pre-

speci�ed { the chromosomes are of variable length. The

bulk of the chromosome codes for the connections be-

tween the units. These are unrestricted; complex recur-

rent nets are quite possible, as will be seen below.

The networks are real-valued and continuous { think of

them as analogue circuits with real-valued signals contin-

uously propagating { which gives them many desirable

dynamical adaptive properties. A link may be one of

two types: normal or veto; this property is under genetic

control. A normal connection joins the output from one

unit to the input of another, with unity weight. A veto

connection is a special in�nitely inhibitory connection

between two units. If there is a veto connection between

units a and b, and a's output exceeds its veto threshold

then all normal connection outputs from b are switched

to zero. The veto threshold is always signi�cantly higher

than the lower threshold for a neuron's sigmoid transfer

function.

The genetic algorithm used is in accordance with

the Saga principles [6]: crossover allows only gradual

changes in genotype length. Although we only present

results here from simple preliminary experiments, we are

currently evolving more complex nets from those devel-

oped here, still in keeping with the incremental Saga
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approach.

Within this framework, the aims of our �rst set of

simulation experiments was to try and evolve coupled

networks and visual sensors capable of generating inter-

esting behaviours.

5 Results

All of the following results were achieved with population

size 40, a crossover probability of 1 and a mutation rate

of the order of one bit per genotype. The visual sensor

and network chromosomes are crossed and mutated sep-

arately, but both contribute to the resultant phenotype:

the sighted robot. Rank based selection was used with

the �ttest individual being twice as likely to breed as

the median individual. So far the experiments have only

been run for a relatively small number of generations,

given the expense of the ray tracing and the fact that

each individual is evaluated multiple times, as described

below.

Each individual in each generation was run four times

from random starting positions and orientations. Each

run was for a �xed number of time steps. The �tness of

the individual was taken as the worst score from their

four runs. This strategy is used to encourage robust-

ness, remembering that there is noise at all levels in the

system. A �ne-time-slice simulation was used as a close

approximation to a continuous system. At each time

step the sensor readings are fed into the neural network.

The continuous nature of the networks was simulated by

running them (synchronously updating all unit inputs

and outputs) for a number of iterations (about 100, but

with a variance to counter distorting periodic e�ects) and

then converting the outputs to motor signals. The new

position of the robot is then calculated, using the model

physics described in Section 3.2.2.

By using suitably �ne time-slices, this mode of simu-

lation is more than adequate; although we are working

on more subtle techniques to allow fully asynchronous

event-based simulations.

The �rst set of experiments used evaluation function

E

1

, a simple integration of distance moved. Comparisons

were made between sighted and blind robots (which used

only the six touch sensors). Both did well although the

evolved behaviours were quite di�erent in the two cases.

The blind robots evolved to make looping elliptical move-

ments like that shown in Figure 5.

The strategy seems sensible as it tends to keep the

robot away from the walls. The networks quickly evolved

to the state where sensory inputs triggered changes in

directions which sped the robot away from the wall. See

Figure 10, later, for an example of such behaviour.

The sighted robots did better, tending to keep moving

by staying away from the walls using visually guided be-

haviours like those shown in Figure 8, described in more

Figure 5: Typical path of blind robot under evaluation function

E

1

. The arrows show the orientation of the robot at each time step,

and their length is equal to the diameter of the robot.

Figure 6: Evolved behaviour of sighted robot under evaluation

function E

2

.

detail later.

The second set of experiments use E

2

. This evalua-

tion function makes explicit use of the visual signal, so

a comparison with blind robots was not sensible. The

behaviours which evolved were unexpectedly simple but

made perfect sense. A very �t and robust behaviour

which rapidly dominated is shown in Figure 6.

The robot evolved to have photoreceptors with high

angle of acceptance and high eccentricity, and it turns in

a tight circle by jamming one motor full on and one o�.

Turning in a circle at full speed rapidly moves the robot

away from the wall if it collides, as shown in Figure 6. So

this strategy tends to maximise

P

D(t), but it also gives

a very high value for

P

B(t) given that this visual signal

is high except if a photoreceptor is close to and pointing

towards a wall. The graphs of visual signals against time

look like those shown in Figure 7.

The third set of experiments, using E

3

, produced

the most interesting behaviours. Remember the Gaus-

sian function, G(t), drops o� sharply towards the walls.

Early on, the circular motion behaviour predominated as

shown in Figure 7. It can be seen that there is no corre-

lation between visual signal and motor output; vision is

not yet being used.

This behaviour is not very robust as it scores poorly

on

P

G(t) if the robot starts o� near a wall. But within

a few generations the much more robust behaviour of

Figure 8 appeared. Here the robot is making clear use

of vision to keep it away from the walls and so score well

6



Figure 7: Fittest behaviour of sighted robot in very early gener-

ations under evaluation function E

3

.

Figure 8: Later evolved behaviours under E

3

.

on the Gaussian function.

The graphs in Figure 8 show the visual signals and the

motor signals (with noise removed for easier interpreta-

tion) plotted against time. The basic strategy is to jam

one motor on full speed and one on half speed (in this

case it is moving backwards)

3

to move in an ellipse. But

when the visual signal drops, one of the motors is turned

o�, causing the tight turns shown in the �gure. The sen-

sors evolved to have a fairly high angle of acceptance but

a low eccentricity (both `eyes' clearly pointing forward)

which makes sense in the context of this behaviour. So

here we see a clear correlation between visual signal and

motor output; vision is being used to great e�ect.

Examination of the evolved network, shown in Fig-

ure 9, that generates the behaviour in Figure 8 reveals

a complicated connectivity with many indirect feedback

loops and subtle uses of veto connections. The jammed-

on right motor is achieved by the relevant output unit

feeding back into itself and having no other inputs. Once

internal noise generates an input to the unit it will am-

plify and then circulate forever (at the moment signals

do not attenuate in time, although of course veto connec-

tions can turn parts of the net on and o�). Visual signals

feeding into the left motor outputs provide its visually

3

We, as experimenters, have designated a particular mode of

movement as `forward' (motor signals positive), but clearly in this

simple environment there is a duality between forwards and back-

wards movement. `Running towards light' and `runnning away

from dark' are equivalent behaviours.

Right

Motor

"Normal" Connection

Veto Connection

Connection from/to sensor/actuator

Left

Motor

FB

BB

FRW

BRW

BLW

FLW

Left Eye

Right Eye

FB=Front Bumper

RB=Rear Bumper

FRW=Front Right Whisker

BRW=Back Right Whisker

FLW=Front Left Whisker

BLW=Back Left Whisker

Processing Node 

Figure 9: Evolved network responsible for generating the be-

haviour shown in Figure 8

correlated behaviour.

In earlier generations, the tactile sensors seem to have

been used much more. By the later stage at which the

behaviour shown was produced, vision is dominant. Ex-

amination of the wiring strongly suggests that many of

the tactile sensor input nodes are essentially being used

as `internal' nodes: vision keeps the robot away from

the walls and hence avoids the possibility of turning the

sensors on, thereby rendering the tactile input units vir-

tually redundant; later, over a number of generations,

the `input' units are employed for other uses. This is

a good example of the strongly opportunistic nature of

evolution. It pays no regard to the initial characterisa-

tions given to the nodes.

One of the most remarkable phenomena we observed

was the emergence of networks involving oscillatory cir-

cuits built up from complicated loops of veto and normal

connections. Under certain initial conditions, when the

robot's visual signals became high these circuits would

periodically turn the motors on and o� so that the robot

moved slowly through the bright area of the room. Al-

though this reduces the score on the

P

D(t) component

of E

3

it is e�ective in increasing the score on the

P

G(t)

component.

The mature evolved networks typically appeared

rather complex for their given tasks. We are currently

exploring methods of exerting an evolutionary pressure

towards simpler networks, by introducing costs for link

creation in the evaluation functions, and by employing

neuron models with more exibility (e.g. variations in

time delays and/or connection strengths).

Blind robots did fairly well on the E

3

evaluation func-

tion too; directly evolving strategies to move well away

7



Figure 10: Evolved behaviour of blind robot under E

3

.

from the wall, such as reversing, as shown in Figure 10.

The change in direction of the robot in the middle of

its path (this one is moving forwards) is a clear case of

reversing.

In each of the experiments the networks were capa-

ble of generating a wide range of behaviours. This was

due to their dynamical properties and gave important

advantages. Although Hebbian-style learning is on our

agenda, we can probably delay its use for a while given

the power of these continuous dynamical nets.

6 Discussion and Further Work

The results show quite clearly that, in all three cases, the

robot design evolved to satisfy the evaluation function.

Furthermore, there was a clear behavioural di�erence be-

tween those robots which used vision, and those which

were unsighted. Interesting results have been achieved

with relatively small populations and after realtively few

generations. We think this is largely due to the particu-

lar type of networks we have chosen to use. They have

properties which appear to result in a search space highly

suited to evolutionary techniques. The SAGA principles

of gradual and incremental evolution should help to keep

the search space constrained so that small to medium

sized populations can be used throughout our work.

Our work to date has involved evolving robots which

move around an empty cylindrical room without hitting

the walls. Work is currently in progress on extending

the robot's behaviour so it can move in cluttered envirn-

ments without collisions. However, the computational

costs of the ray-tracing system scales roughly in propor-

tion with the number of objects in the robot's environ-

ment: simulating vision in cluttered environments soon

imposes deeply problematic computational burdens on

the overall system.

Nevertheless, the results so far have been su�ciently

successful that our approach bears further exploration in

increasingly complex environments and with more chal-

lenging tasks. But there is a severe limitation on how

much further the work can be taken in its current form:

the computational costs of simulating vision and realis-

tic physics mean that vast quantities of computer time

are taken up with providing an accurate `virtual reality'

for the simulated robots. For this reason, we are moving

into a second phase in our work. This reduces our re-

liance on simulation, by using an accurately controllable

real-world robot linked to o�-board processing. We call

this system `toytown'.

The toytown experimental setup described below is

now under development and we expect our �rst results

in the near future. The apparatus has been designed

to allow us to engage in long term fundamental experi-

ments aimed at thoroughly exploring the possibilities of

our evolutionary methodology. In particular, we aim to

explore the concurrent evolution of control networks and

visual sensors for navigational tasks. As in the exper-

iments described earlier, details of the animat's visual

sensing and neural architecture are under genetic con-

trol.

6.1 Toytown

Our experiences to date have con�rmed earlier intuitive

notions that simulation of visual inputs is computation-

ally horrendous | this is directly associated with the

usefulness of vision, in that it gives inputs from a vast

range of the environment both far and near. So the in-

centives for working with real rather than simulated vi-

sion are even higher than with the other senses. Active

vision for a robot in a real world requires something like a

camera moving with the robot through that world, which

for experimental purposes normally requires a decision

to be made between having computational processing of

visual inputs done onboard the robot, or o�board via

some link to more powerful stationary computers. Both

of these choices have negative factors associated, either

the size and weight of onboard computation, or the prob-

lems of radio links and tangled umbilical cables.

So for experimental purposes we have devised a third

method, which allows a miniature robot with active vi-

sion, with the robot size e�ectively only a few cms across,

to roam freely through an environment set up by the

experimenters. The environment could be a `toytown',

although the word `toy' here only refers to the size. It is

a real world that the robot is in, with real-world vision

problems.

A gantry is set up above a at surface, with a hori-

zontal girder able to move west and east by means of a

stepper motor, providing the X-coordinates of the robot.

Along the girder another stepper motor allows movement

of a platform north and south (the Y-coordinates). From

the platform a ccd camera is �xed pointing vertically

downwards. A conical mirror is �xed with its axis along

8



Figure 11: The toytown gantry system. See text for further

details.

the camera axis, some cms below the lens and occupying

its �eld of view. The camera and mirror can be moved

together with its supporting platform in the X and Y

dimensions. Vertical movement relative to the platform

can also be provided to give the Z dimension. The mir-

ror itself can be considered as the body of the sighted

arti�cial creature which can move through the environ-

ment provided for experimental purposes. A sketch of

the toytown system is shown in Figure 11.

Potentially a 360

�

�eld of view is available, although

software sampling (under `genetic' control) can provide

any number of virtual pixels or photoreceptors facing any

speci�ed direction; rotation of this visual �eld about the

vertical axis can be e�ected in software, as can any num-

ber of strategies for sampling the visual �eld (cf. [3]). A

system of servo motors, racks and pinions can provide an

accuracy of movement of plus or minus one millimetre.

Touch sensors around the conical mirror complete the

`body' of the robot. The robot's control network is sim-

ulated o�-board on a computer. The sensory inputs are

fed into the controller via an umbilical cable and inter-

facing cards. In a similar way the controller sends motor

commands to the various actuators.

The `body' of the robot is only the size of the conical

mirror plus touch sensors, and subject only to its attach-

ment to the camera above, and hence to the gantry, can

be moved anywhere in an experimental setup. This setup

can be suitably small, and easily altered. In this way all

of the real world characteristics of moving around in a

noisy visual environment are retained, with a number

of advantages for experimental purposes over a wheeled

ground-based autonomous robot:

� There are no problems with tangled umbilicals, and

on-board power supplies and computers are not an

issue.

� The environment is easily changed - it can be made

less structured or more dynamic or whatever suits

the current level of evolution.

� Time can be slowed down to a rate appropriate

to computational resources. As cognitive process-

ing becomes more computationally demanding the

speed of movement of the creature and other dy-

namic objects in the environment can be made as

slow as is desired.

� The highly controllable nature of the apparatus

means that experiments are repeatable and very

long runs can be achieved without any human inter-

vention. This means that, for each generation, each

member of the population can be evaluated without

recourse to simulation.

A succession of tasks of increasing complexity can be

set for such a robot. Automatic evaluations for each task

allow a succession of tests, and the evolutionary process,

to continue without immediate human intervention. A

possible succession of tasks would be:

� Movement towards an `object' (a prominent dark

mark, perhaps).

� Rotation (virtual rotation via software resampling

of camera input) to face a moving object.

� Avoidance of obstacles.

� Movement between two objects.

� Movement centrally along a striped corridor.

� Identi�cation of, and movement through, `door-

ways'.

� Exploratory movement within a simple maze.

� Identi�cation of particular `situations' within such

a maze or environment, and return to them after

exploration.

� Development of `place recognition' by navigation

through the environment between speci�ed points

via self-selected intermediary places.

� Navigation and interaction with a dynamic world.

� Performance of previous tasks but subject to arbi-

trary polarity reversal of the motor outputs.

The outputs from the controller provide signals to the

motor drives (with the deliberate addition of noise if de-

sired) which e�ectively allow the robot to move continu-

ously and freely in this world. The robot is to all intents

and purposes autonomous. However, although it does

not `know' its absolute position and orientation, this in-

formation is always available to the experimenters. This

is extremely useful for automatic �tness evaluation, re-

peatability, repositioning and so on.
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The `Toytown' environment has some similarities with

the `Tinytown' environment at Rochester [8]. However

the latter has a camera pointing down that can move only

in two dimensions, giving the equivalent of `low-ying

aerial photographs'. In contrast, the toytown robot has

a (virtual) rotational degree of freedom, and can travel in

and amongst the objects of a 3-D world, with a horizontal

�eld of view manipulable between 0

�

to 360

�

.

7 Summary and Conclusions

As further support of our claims in [7], we have pre-

sented early results from experiments in evolving net-

work processing architectures for mobile robots. Using

networks of relatively constrained processing units (`neu-

rons'), and simple evaluation functions, we have been

able to evolve visual control architectures, even when the

evaluation function is not de�ned in terms of monitoring

visual inputs.

The results have demonstrated the feasibility of the ap-

proach, but the computational costs of simulating vision

have lead us to develop a method which allows for a mix

of `real' vision and evolutionary methods, using readily

available hardware. The `toytown' project is at an early

stage, but our current results are su�ciently promising

that we are con�dent of future success. Watch this space.
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