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Abstract

In this paper we propose and justify a method-

ology for the development of the control systems,

or `cognitive architectures', of autonomous mobile

robots. We argue that the design by hand of such

control systems becomes prohibitively di�cult as

complexity increases.

We discuss an alternative approach, involv-

ing arti�cial evolution, where the basic build-

ing blocks for cognitive architectures are adaptive

noise-tolerant dynamical neural networks, rather

than programs. These networks may be recurrent,

and should operate in real time. Evolution should

be incremental, using an extended and modi�ed

version of genetic algorithms. We �nally propose

that, sooner rather than later, visual processing

will be required in order for robots to engage in

non-trivial navigation behaviours.

Time constraints suggest that initial architec-

ture evaluations should be largely done in sim-

ulation. The pitfalls of simulations compared

with reality are discussed, together with the im-

portance of incorporating noise. To support our

claims and proposals, we present results from

some preliminary experiments where robots which

roam o�ce-like environments are evolved.

1 Introduction

This paper �rstly gives an analysis which proposes that

an evolutionary approach to the design of robots can be

expected to supercede design by hand; it then explores

issues arising from this, and presents results from some

preliminary experiments: using an extended genetic al-

gorithm, we have evolved control architectures for a sim-

ulated version of a physical robot constructed at Sussex.

An evolutionary approach to real robotics was dis-

cussed at a 1987 workshop (3), and in the context of

subsumption architecture by a student of Brooks (27);

but no practical results have been reported. A number

of researchers have shown the method to be viable for

simulated robots in highly simpli�ed simulated worlds

(1), but have not had to face the exponential increase

in complexity that follows with progress from toy worlds

into the real world.

Independently in 1991, we (as members of the Prance

consortium) made a research proposal to use an evolu-

tionary approach in developing real autonomous robots

(24); and Brooks proposed at Ecal-91 in Paris a di�er-

ent evolutionary approach, using genetic programming

(9).

Straightforward Genetic Algorithms (GAs) use evolu-

tionary ideas for function optimisation, and are not im-

mediately applicable to robotics. Necessary adaptations

to GAs are discussed in (14). This paper concentrates

on other issues, in particular whether the cognitive ar-

chitecture of a robot should be evolved in the form of a

Behavioural Language, as advocated by Brooks, or in the

form of arti�cial neural networks. We argue that there

are good reasons for the latter approach.

After setting the stage with these theoretical consider-

ations we go on to report on preliminary simulation ex-

periments in evolving control networks for simple robots

equipped with a few touch sensors. The simulations are

not naive { they are based on observations of a real robot

and attempt to model the physics of its interactions with

the world.

2 Interesting robots are too di�cult to

design

Traditional approaches to the development of au-

tonomous robot control systems have made only modest

progress, with fragile and computationally very expen-

sive methods. This is largely because of the traditional

implicit assumption of functional decomposition | the

assumption that perception, planning and action can be

analysed independently of each other.

In contrast, recent work at MIT bases robot control ar-

chitectures around behavioural decomposition (6, 8). In

theory, this involves analysing independent behaviours

of a robot or animat,

1

such that each behaviour can be

`wired in' all the way from sensor input to motor out-

put. Simple behaviours are wired in at �rst, and then

more complex behaviours are added as separate layers,

a�ecting earlier layers only by means of suppression or

inhibition mechanisms.

It is extremely di�cult to foresee all possible interac-

1

Animat: simulated animal or autonomous robot (28).



tions with the environment, and between separate parts

of the robot itself (8, 22). Designing appropriate cogni-

tive architectures is a task with inherently explosive com-

plexity. Complexity is likely to scale much faster than

the number of layers or modules within the architecture

| it can scale with the number of possible interactions

between modules.

To design cognitive architectures for robots with emer-

gent behaviours hence requires either (a) a computation-

ally intractable planning problem (10) or (b) a creative

act on the part of the designer | which is to be greatly

admired, though impossible to formalise. In both cases

it seems likely that the limits of feasibility for real robots

doing useful things are currently being reached.

3 Let's evolve robots instead

If, however, some objective �tness function can be de-

rived for any given architecture, there is the possibility of

automatic evolution of the architecture without explicit

design. Natural evolution is the existence proof for the

viability of this approach, given appropriate resources.

Genetic Algorithms (GAs) (12) use ideas borrowed from

evolution in order to solve problems in highly complex

search spaces, and it is here suggested that GAs, suitably

extended in their application, are a means of evading the

problems mentioned in the previous section.

The arti�cial evolution approach will maintain a pop-

ulation of viable genotypes (chromosomes), coding for

cognitive architectures, which will be inter-bred and mu-

tated according to a selection pressure. This pressure

will be controlled by a task-oriented evaluation function:

the better the robot performs its task the more evolu-

tionarily favoured is its cognitive architecture. Rather

than attempting to hand-design a system to perform a

particular task or range of tasks well, the evolutionary

approach will allow their gradual emergence.

There is no need for any assumptions about means to

achieve a particular kind of behaviour, as long as this

behaviour is directly or implicitly included in the evalu-

ation function. Brooks' subsumption approach was men-

tioned above as a contrast to the dogmatic assumptions

of functional decomposition implicit in much of tradi-

tional robotics. Nevertheless, it is similarly not nec-

essary to be dogmatically committed to an exclusively

behavioural decomposition. By allowing either type of

decomposition, the evolutionary process will determine

whether in practice either one, or neither, should char-

acterise the robots' cognitive architecture.

4 An incremental, species approach

An animal should not be considered as a solution to a

problem posed 4 billion years ago. Nevertheless, in the

short term, adaptations in a species may be usefully in-

terpreted as solving particular problems for that species.

So when using the evolution of animals as a source of

ideas for the evolution of animats, GAs should be used

as a method for searching the space of possible adapta-

tions of an existing animat, not as a search through the

complete space of animats. The basis for extending stan-

dard GAs to cope with this has been worked out in (14).

The implications are that the population being evolved

is always a genetically-converged species; and that in-

creases in genotype length, associated with increases in

complexity, can only happen very gradually.

This of course has strong resemblances to Brooks' in-

cremental approach, wherein `low-level' behaviours are

wired in and thoroughly debugged, before the next layer

of behaviour is carefully designed on top of them. The

di�erence with the approach we advocate is that of sub-

stituting evolution for design.

5 The use of simulation

Arti�cial evolution requires that the members of a size-

able population must be evaluated over the course of

many generations. In the case of the evolution of au-

tonomous robot control systems, to date it has been as-

sumed it would take far too long to do all of these evalua-

tion in the real world (15, 9, 24, 3). Instead it is suggested

that most evaluations should be done in simulation. In

the short to medium term this seems a sensible strategy

but we have strong doubts about its long term viability.

Assuming the use of simulation for the time being, it

is crucial that it is kept as closely in step with reality

as possible. A number of techniques can be used to this

end. Firstly, the simulation can be calibrated at regular

intervals by carefully testing the architectures evolved in

the real robot. Serious discrepancies should be ironed

out. Secondly, accurate simulations of the inputs to the

robot sensors and the reactions of the actuators should be

based on carefully collected empirical data. Thirdly, and

above all, noise must be taken into account at all levels.

In order to acquire the desired level of accuracy it may be

necessary to use a mixed hardware/software simulation

in which simulated signals are fed into hardware sensors

or actuators and the response is read directly. The use

of low resolution sensing makes this approach feasible. It

is important to remember that it is not our world that

is being simulated, but the robot's.

A range of unstructured dynamic environments should

be used in the simulation. A cognitive architecture that

has evolved to cope with a range of such environments

is much more likely to be robust than one evolved to

operate in a single well structured world.

If adaptive noise-tolerant units, such as neural nets,

are used as the key elements of the control system, then

100% accuracy is not required. Discrepancies between

the simulations and the real world, as long as they are

not too big, can be treated as noise; the system can adapt

to cope with this.



In the long term, as the robots become more sophisti-

cated and their worlds more dynamic, will the simulation

run out of steam? The simulation of a medium resolution

visual system with, for instance, motion detection pre-

processing is painfully slow on today's hardware. Tech-

niques to test many generations of control systems in real

worlds will have to be developed. We are currently pur-

suing the development of one such technique: see (11)

for further details.

6 What should we evolve?

So far we have not addressed the question of what exactly

it is that is being evolved. There are at least three useful

ways to implement the control system of an autonomous

robot:

� An explicit control program, in some high level lan-

guage;

� A mathematical expression mapping inputs to out-

puts, e.g. a polynomial transfer function;

� A blue-print for a processing structure, a network of

simple processing elements.

6.1 High Level Programs

In (9), following a suggestion by Langton, Brooks pro-

poses using an extension of Koza's genetic programming

techniques (18) as the method for evolving a physical or

simulated robot.

One potential problem with evolving a programming

language is that, if it supports partial recursion, pro-

grams to be evaluated may never halt, unless some ar-

bitrary `time-out' is imposed. Brooks' Behaviour Lan-

guage (7) does not use partial recursion, and hence can

be evolved without this problem. Subject to the quali�-

cation that Genetic Programming should have genotype

length changes restricted to small steps his approach at

�rst sight seems reasonable, but we have two broad ob-

jections.

The �rst is that any such programming approach

treats the `brain' as a computational system, producing

a set of motor outputs for any given set of sensor in-

puts. This snapshot view of cognition has been the main

paradigm in AI, but we support an alternative view of

agents as dynamical systems rather than computational

systems, which are perturbed by their interactions with

the environment, which is also a dynamical system. This

view is expressed in (19, 5, 26), and will not be developed

further here.

The second objection, which is supported by our sim-

ulation results, is that the primitives manipulated in the

evolutionary process should be at the lowest level possi-

ble, and this is in contrast to Brooks' use of higher level

languages. The Behavior Language, BL, is in e�ect a

blueprint for a network of Finite State Automata, and

the target language Brooks proposes for Genetic Pro-

gramming is an even higher level language, GEN, which

can be compiled into BL.

Our intuitions are based on the notion that any high

level semantic groupings necessarily restricts the possi-

bilities available to the evolutionary process, compared

to the alternative of letting the lowest level of primitives

be manipulated by genetic operators. The human de-

signer's prejudices are incorporated within their choice

of high-level semantics, and these restrictions give rise

to a much more coarse-grained �tness landscape, with

steeper precipices. It might be thought that the use of

low-level primitives necessitates enormously many gen-

erations of evolution with vast populations before any

interesting high-level behaviour emerges, but our simu-

lations show that this is not the case at all.

A further factor concerning high-level languages is that

the injection of noise into anything other than the lowest

levels becomes di�cult to justify. For a network consid-

ered to be modelled at a physical level it is easier to

justify the insertion of noise at many points within the

system, and as will be seen this appears to have valuable

e�ects, not least in making the �tness landscape more

blurred and hence less rugged for evolution.

6.2 Polynomial Transfer Functions

There are a number of close relationships, in this con-

text, between polynomial transfer functions and arti�cial

neural networks, not least that the input-output associ-

ations of most neural networks can be arbitrarily closely

approximated by a polynomial function and vice versa.

Clearly the problem of brittleness and halting is not an

issue, yet neither scheme is computationally restricted.

Even for modest numbers of inputs and outputs, the

most useful transfer function may be a highly complex

non-linear expression with many terms; the search space

is potentially very large. Simulation results suggest

that the search space, except for low dimensions, lacks

structure, resulting in the GA degenerating into random

search. Similar results for the related problem of system

identi�cation have also been reported (16).

The robustness required for useful behaviour in the

real world is almost certainly going to demand either

some degree of adaptation or an expression complicated

enough to cover a wide enough range of situations. The

latter leads to the problems described above. The former

will require auxiliary systems identi�cation algorithms

which will seriously complicate matters by being compu-

tationally expensive (25) and requiring error measures.

6.3 Neural Nets

Evolutionary approaches to designing connectionist net-

work architectures are manifold, e.g. (17, 13, 21, 23); All



these have used some form of genetic algorithm to search

through a pre-de�ned �nite space of possible network ar-

chitectures. In other words, at a more or less sophisti-

cated level, the basic architecture has been de�ned with

some parameters left as variables, and the GA has been

used to tweak the parameters to optimal values. It is

argued in (14) that for the equivalent of robot evolution

it will be necessary to extend this to open-ended evolu-

tion instead, with signi�cant implications. Nevertheless,

the evolvability of connectionist networks in general is

clearly established.

It might be argued that in practice connectionist net-

works are simulated on a serial computer; and in turn

that a serial Turing machine can be simulated with a

connectionist network. This does not mean that their

evolvability is the same. To build a connectionist net-

work as a virtual machine on top of a conventionally

programmed computer does not alter the fact that the

virtual machine may be suitable for evolutionary devel-

opment whereas the underlying real machine is not | the

mutations of structure are at the virtual machine level

only. The price paid for this, however, is the computa-

tional ine�ciency of simulating one type of computation

with another.

Concise speci�cation on the genotype of sub-networks

or modules which may be repeatedly used is possible,

provided that there is a mechanism to interpret such

speci�cations several times analogously to the way sub-

routines are called within a program. The desirability

of adaptation has been mentioned above, and obviously

arti�cial neural networks allow for this. The massively

parallel nature of neural nets enables very fast implemen-

tation in the appropriate hardware, in contrast to the

necessarily (locally) serial interpretation of a behaviour

language.

What sort of network?

There are good grounds for thinking that a generalised

form of connectionist network could be one very appro-

priate class. Let us start with three basic axioms:

1. The `brain' should be a physical system, occupying

a physical volume with a �nite number of input and

output points on its surface.

2. Interactions within the brain should be mediated

by physical signals travelling with �nite velocities

through its volume, from the inputs, and to the out-

puts.

3. Subject to some lower limit of an undecomposable

`atom' or node, these three axioms apply to any phys-

ical subvolume of the whole brain.

A justi�cation for the third axiom is that of the in-

cremental development of the whole by alterations and

additions over evolutionary timescales. The consequence

of these axioms, as can be seen by shrinking in any

fashion the surface containing the original volume, is a

network model where internal nodes are the undecom-

posable atoms, and connections between inputs, internal

nodes and outputs are through directed arcs by signals

taking �nite times. Such a network can be arbitrarily

recurrent. The assumption of only a �nite number of in-

put/output points on any surface means that this is not a

�eld theory. It rules out of this model such more general

methods of physical interaction as might be assumed to

be involved with, e.g. di�use chemical neurotransmitters

in the human brain.

No assumptions about the operations of the nodes

have yet been made. The simplest assumptions would

be those of standard connectionist models. Input signals

are weighted by a scalar quantity; all output signals are

identical when they leave the node, being calculated from

the weighted sum of the inputs. If this weighted sum is

passed through a sigmoid or thresholding function, then

we have the non-linear behaviour we have learnt to know

and love. So far the only generalisation this model has

when compared with the picture given in (20) is that

timelags between nodes need to be speci�ed. But a whole

new universe of possible dynamical behaviours is opened

up by this extension.

Such networks are more di�cult to analyse than stan-

dard feedforward ones. However with an evolutionary

approach it may not be necessary to analyse how it

works, but rather one should be able to assess how good is

the behaviour it elicits. This is no short-cut recipe, but

requires that the internal complexity of the `brain' (of

an organism or a machine) be dependent on the history

of interactions with its world; the more the complexity

that is required, the longer the history that is needed to

mould it.

A particular type of network falling under this general

classi�cation, and used in the experiments described in

this paper, is described in more detail in section 9.1.

7 Timing issues

The practical problems of timing should be taken note

of. The robot will have timing circuitry to synchronise

sensing, control and motor activities. This should not

cause any undue problems for the implementation of

evolved neural networks. As long as they operate us-

ing discrete time intervals, then even complex recurrent

networks can be handled in a straightforward manner.

The more general and possibly more powerful class of

asynchronous continuous time networks are a little more

di�cult but create no signi�cant problems. Arbitrar-

ily complex polynomial transfer functions, which may

involve a lengthy computation, are certainly more di�-

cult to handle than discrete time networks. Potentially

non-halting high level programs with many conditional
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Figure 1: Plan view of simple six-sensor robot.

branches are harder still.

8 Robots need vision

In autonomous robot navigation, a number of sensor

technologies are commonly employed to enable the task

of navigation. For the purposes of the discussion that

follows, it is useful to employ the distinction found in

the biology literature between exteroceptors and intero-

ceptors. An exteroceptor is a receptor (i.e. sensor) which

detects stimuli external to an animal, e.g. light or sound;

an interoceptor senses or detects stimuli that arise inside

the animal, e.g. blood pressure.

The development of a successful navigating robot de-

pends on �nding a satisfactory combination of extero-

ceptors and interoceptors. Here the discussion focusses

on the exteroceptors we envisage necessary for our robot.

The majority of recent projects in autonomous

behavioural

2

robotics have not employed vision as a

primary exteroception mechanism. Most commonly,

mechanosensory \whiskers" and \bumpers", or active

ranging devices (such as ultrasound depth sensors or

laser light-stripers) have been employed. Such sensors

are essentially proximal sensing devices. That is, they

only provide reliable data for the immediate surround-

ings of the robot. Such robots are thus forced to employ

primitive navigation strategies. The most common such

strategy is \wall following", where the robot must always

maintain sensory contact with a sizeable static external

surface, such as a wall of the robotics lab. Wall-following

robots that lose sensory contact with all external surfaces

often su�er from sensor-blindness, the chief symptom of

which is a signi�cant degradation, or total loss, of navi-

gation ability.

In some restricted behavioural or ecological niches,

wall-following is a satisfactory navigation strategy, and

sensor-blindness can be overcome by wandering until sen-

sory contact is re-established. The need for more sophis-

ticated navigation competences, which we take as man-

ifest, is only likely to be overcome fully by an increased

reliance on distal sensors | in particular, vision.

2

I.e., subsumption-based or reactive-systems robotics.

There is growing research in the �eld of mounting com-

puter vision systems on mobile robotic platforms { an

approach referred to as animate vision (2). While many

projects are underway in developing animate vision sys-

tems, we are not aware of any where evolution is em-

ployed in preference to design.

Although using vision does not eliminate problems

such as sensor-blindness, it does provide a rich source of

information concerning an agent's external environment.

Whether designing or evolving a visual system, a num-

ber of factors have to be taken into account. Signi�cant

factors include:

� The discretization of the sampling of the optic array,

i.e. how many pixels do we want in the images our

robot samples, and what sort of geometry should the

image have (a square raster is not necessarily con-

venient). The number of pixels in the image has a

manifest e�ect on the bandwidth of the visual pro-

cessing channels.

� The angular extent of the vision system's �eld of view

{ should the robot be equipped with 360

o

vision or

will a more restricted �eld of view su�ce?

� The visual angular resolution of the robot's optics.

Should the vision system employ a uniform resolu-

tion, or have some sort of spatially variant \foveal"

(nonuniform) vision system? Many animals have res-

olution which varies across the visual �eld. Typically

this is a result of the need for high-resolution vision

for certain tasks (predation or identifying mates) cou-

pled with a need for a wide �eld of view, sampled at

a lower resolution.

That many animals, particularly insects, successfully

occupy their ecological niches using low-resolution low-

bandwidth vision as a primary source of exteroception in-

formation indicates that such an approach (as opposed to

high resolution and bandwidth) is worth exploring within

an evolutionary robotics context, in the �rst instance at

least.

Simulation vs. Reality in Vision

For the evolutionary approach to be successful, methods

of varying the details of the visual sampling and the sub-

sequent processing of the visual signal are imperative.

Evolutionary learning can be accelerated if the pop-

ulations undergoing evolution exist within a simulated

system. The problem here is in ensuring that the sim-

ulated visual systems correspond in a useful manner to

the physical visual systems with which the robot will be

equipped. While such simulations are possible in princi-

ple, the computational demands soon become consider-

able and, unless the necessary processing hardware (e.g.
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Figure 2: Noisy neuron transfer function.

specialised graphics pipeline processors) is readily avail-

able, it is envisaged that physical instantiation of the

visual systems would be required at an early stage.

For a physical robot to be equipped with a vision sys-

tem that has variable sampling bandwidth, geometry,

visual extent, and angular resolution, requires that the

camera(s) mounted on the robot are capable of o�er-

ing performance at the upper limits of what is envisaged

necessary. For example, a high-resolution image can be

subsampled (with averaging or smoothing) to provide a

lower-resolution image. This could be done under genetic

control, which is a very crude �rst step towards evolving

sensors.

Whether the image-capture mechanism is real or vir-

tual, the image-processing scheme can be simulated (i.e.

the parallelism can be simulated rather than embodied in

truly parallel hardware). But as the imaging bandwidth

increases, or if the robot's speed of reaction is critical,

specialised image processing hardware (with suitably ad-

justable parameters) would be required.

Envisaging what is necessary for the robot is likely only

to be possible after some experience with it: a circularity

which reveals that some iteration is required between

the simulation work and the building of real robots { a

pluralist approach will be the most fruitful.

9 Preliminary Experiments

A real robot assembled in the Engineering Department

at Sussex has been simulated using the methodology es-

tablished above. The behaviour of the motors propelling

the wheels has been modelled for the outputs, as have

inputs from whisker and bumper touch sensors. Simu-

lation of a low resolution insect-type visual system has

been added and results using that are described in an-

other paper (11). This is part of an ongoing project at

Sussex to develop an evolutionary approach to robotics,

with increasingly sophisticated tasks leading to naviga-

tion using learnt visual landmarks.

The �rst phase of the work explored the methodol-

ogy using careful simulations. Results from this are pre-

sented here. We are now into the second phase of the

work which will directly calibrate the simulations using

the real robot. A further phase, described in (11), also

just begun, will look at the evolution of visually guided

behaviours without using simulations at all.

A plan view of the robot used in the simulation exper-

iments is shown in Figure 1. The robot is cylindrical in

shape with two wheels towards the front and a trailing

rear castor.

The wheels have independent drives allowing turning

on the spot and fairly unrestricted movementacross a 
at


oor. The signals to the motor can be represented as a

real value in the range [�1:0; 1:0]. This range is divided

up into �ve more or less equal segments, depending on

which segment the signal falls into, the wheel will either:

remain stationary; rotate full speed forward; full speed

backward; half speed forward; or half speed backward.

The aim of the experiments was to evolve `neural-style'

networks to control the robot in a variety of environ-

ments. Before going on to describe the experiments in

detail, the particular type of neural networks used, and

their genetic encoding, will be described.

9.1 The neural networks

As explained in Section 6.3 we advocate the use of contin-

uous real-valued networks with unrestricted connections

and time delays between units. These can be thought of

as something like analogue circuits with real-valued sig-

nals continuously propagating through the connections.

Our experience, and also that of others (4), is that this

sort of network can support a range of behaviours, de-

pending on its exact couplings with the world, and so

is highly adaptive without using Hebbian-type weight

changes or the like.

The particular networks used in the experiments have

a �xed number of input nodes, one for each sensor, and

a �xed number of output units, two for each motor. As

all the units are linear threshold devices with outputs in

the range [0:0; 1:0] � R, two units are needed to give

the motors a signal in the range [�1:0; 1:0] � R. If the

output signals from these four output units are labelled

S

o1

, to S

o4

then, the left motor signal is given by S

o1

�

S

o2

, and the right motor signal is given by S

o3

� S

o4

.

Each unit is a noisy linear threshold device. Internal

noise was added because we felt it would provide further

useful and interesting dynamical properties. Any physi-

cal implementation of our nets would be likely to include

naturally occurring noise anyway. The input-output re-

lationship for such a node is shown in Figure 2, which

was generated by plotting the output for a �xed set of

inputs ten times and overlaying them.



Chromosome for complete ‘neural network’ or ‘nervous system’

Input nodes (fixed no.) Internal nodes (indefinite no.) Output nodes (fixed no.)

Chromosome section for single node

Y

Node marker Node specification Link specifications

X, Y or Z Fixed no. of chars for

node threshold, etc.

Indefinite no. of links

specified.

Section for single link

A V 7

A,B,C or D

Link addressing fwds or 
bkwds, relative address

or absolute address.

N or V

Normal link

or Veto link

0 - 7

Size of jump of link to a connected node,

2 bits. 1 bit 3 bits
addressing specified by the ABC or D.

the direction of jump and form of

X X X X X X X Y Y Y Y Y Y Y Z Z Z Z Z Z Z

S T B N 0 A V 5 ...   ...   ...   ... D N 3A V 7

...    ...   ...

Figure 3: The genetic encoding scheme

Within the networks two types of connection are al-

lowed: normal and veto. A normal connection is a

weighted link joining the output of one unit to the input

of another. A veto connection is a special in�nitely in-

hibitory connection between two units. If there is a veto

connection between units a and b, and a's output exceeds

its veto threshold, then all normal connection outputs

from b are turned o� (though in the current implemen-

tation, further veto outputs are not a�ected). The veto

threshold is always much higher than the lower thresh-

old for the normal signal. The veto mechanism is a crude

but e�ective model of phenomena found in invertebrate

nervous systems.

3

As well as the input and output units, each network

will have some number of `hidden' units. This number is

not prespeci�ed { the genotypes can be a variable length.

The genetic encoding speci�es properties of the units and

the connections and connection-types emanating from

them. It is now described in more detail.

9.2 The genetic encoding

The genetic encoding used is illustrated in Figure 3.

The genotype is interpreted sequentially. Firstly the

input units are coded for, each preceded by a marker.

For each node, the �rst part of its gene can encode node

properties such as threshold values; there then follows a

variable number of groups each representing a connec-

tion from that node. Each group speci�es whether it is

a normal or veto connection, and then the target node

3

For example, feed-forward inhibition of the locust lgmd visual

interneuron acts as a veto to prevent the lgmd from producing

transient responses caused by delays in earlier processing. See e.g.

(29, pp.77-78).
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Figure 4: Results of simple experiment. See text for further

explanation.

indicated by jump-type and jump-size. The jump-type

allows for both relative and absolute addressing. Rela-

tive addressing is provided by jumps forwards or back-

wards along the genotype order; absolute addressing is

relative to the start or end of the genotype. These modes

of addressing mean that o�spring produced by crossover

will always be legal.

The internal nodes and output nodes are handled simi-

larly with their own identifying genetic markers. Clearly

this scheme allows for any number of internal nodes. The

variable length of the resulting genotypes necessitates

a careful crossover operator which exchanges homolo-

gous segments. In keeping with Saga principles, when

a crossover between two parents results in an o�spring

of di�erent length, such changes in length (although al-

lowed) are restricted to a minimum.

9.3 The physics: simulating movement

In the experiments described next the continuous nature

of the system was modelled by using a �ne-time-slice sim-

ulation. At each time step the sensor readings are fed

into the neural network. The continuous nature of the

networks is simulated by running them (synchronously

updating all units inputs and outputs for a number of

iterations (about 100), with a variance to counter dis-

torting periodic e�ects) and then converting the outputs

to motor signals. The new position of the robot is then

calculated by using the appropriate kinematic equations.

Using the wheel velocities, the motion is resolved into a

rotation about one wheel plus a translation parallel to

the velocity vector of the other. Standard Newtonian

mechanics are used. However, the motion is not mod-

elled as being wholly deterministic: noise is injected into

the calculations. Collisions are handled as accurately as

possible | using observations of the real system. The



Figure 5: Motion of a single robot controlled by an evolved network.

nature of the collision depends on speed and angle of

incidence as well as the shape of the obstacle.

This type of simulation is not perfect, it can and will

be made more accurate, but we feel it is realistic enough

to take our results seriously.

9.4 The experiments

Each of the following experiments was run for 50 gener-

ations, each with a population size of 40. The crossover

rate was set at 1.0, while the mutation rate was of the

order of 1 bit per genotype.

Figure 4 shows the results for an experiment in which

a control network was evolved using an evaluation func-

tion which encouraged wandering in a cluttered o�ce-

type environment containing walls, pillars and doorways

(see Figure 5). Robust control networks were favoured

by scoring each genotype several times for a single �t-

ness evaluation. The robot was always started from the

same position in the same orientation, and was scored

on how far away from its starting position it moved in a

�xed time period. On each scoring run the robot faced

a di�erent set of situations because of the noise in the

system. The minimum of the scores achieved was taken

as the �tness value for the genotype. The robots were

started from rest with no initialising signals; internal

noise was su�cient to allow �tter nets to settle into use-

ful initial states. The bottom line on the graph shows

the �tness of the best individual in each generation. The

top line shows the best score achieved by any member of

the population for any of the runs making up its evalua-

tion set. The fact that these two lines converge indicates

that more and more robust networks began to appear.

Clearly very good control networks have evolved for this

simple speci�c task. Figure 5 shows a short run by a

robot controlled by one of these networks. As a matter

of convenience, the robot's whiskers are shown moving

through objects. It can be seen that the network gener-

ates a `move in a straight line at full speed' behaviour

when in free space, and various rotational movements

when presented with obstacles. Members of earlier gen-

erations had far more random behaviours, spending most

of their time in messy collisions or just sitting still.

Figure 6 shows a typical behaviour generated by a net-

work evolved under a evaluation function describing a

much more di�cult task. The evaluation function mea-

sured the area of the enclosed polygon formed by the

robot's path over a �nite time period. This time the

robot was always started at random locations with a ran-

dom orientation. Note the robot turns fairly smoothly on

encountering obstacles. In earlier generations collisions

were much more messy.

Figure 7 gives interesting comparative results for dif-

ferent �tness functions based on the above evaluation

function. It shows the best, average and worst scores of

the best individuals per generation scored over its eval-

uation set as in the previous experiment.

The upper graph was obtained by taking the �tness to

be the average of the small number of runs in the evalu-

ation set; the lower graph was obtained by taking the �t-

ness to be the worst of the runs. Each run started from a

random position with a random orientation. The results

clearly show that evaluating from the average gives a bet-

ter average performance but a very poor noisy worst per-

formance. Evaluating from the worst pushes the worst



Figure 6: Motion of a robot evolved to maximise the area of the

bounding polygon of its path over a limited time period.

and average much closer together, providing a far more

robust solution.

Figure 8 shows a network evolved in this second exper-

iment. It is fairly complex with many feedback loops, but

it is interpretable in terms of generated behaviours. If

it reminds you of a bowl of spaghetti without the bolog-

nese sauce and chianti, this is probably partly due to

the fact that there is no term in the evaluation functions

that penalises unnecessary links. However, initial pop-

ulations are started with individuals having (randomly)

one or zero internal nodes; the number can only grow

gradually if that promotes greater �tness. We expect

that more concise networks will result if we introduce a

cost for link creation in the evaluation function, and al-

low for the possibility of non-unity time delays and/or

weights on connections.

These early experiments with primitive behaviours

have clearly been successful: we have built on them by

evolving networks for sighted robots; further details of

the work involving vision are given in (11).

10 Conclusions

There is no evidence to suggest that humans are good

at designing systems which involve many emergent in-
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Figure 7: Comparative results for di�erent �tness functions.

Left-hand graph is where �tness is measured by the average of

a series of tests; right-hand graph where �tness is measured as

the worst performance in a series of tests. Abscissa is generation

number; ordinate is �tness value. See text for further explanation.

Figure 8: An evolved network: no work of art, but a working

robot controller.

teractions between many constituent parts. But robust

control systems for robots may well fall under this classi-

�cation. Arti�cial evolution seems a good way forward,

and it has been advocated in this paper.

Results from realistic simulation experiments have

been presented. They lend weight to our claim that an

incremental arti�cial evolution is a viable methodology.
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