
Lexical Constraints in DATR

Lionel Moser

School of Cognitive & Computing Sciences

University of Sussex

Brighton, U.K.

email: lionelm@cogs.sussex.ac.uk

February 1992

Abstract

DATR contains no special features to support testing of equality, negation, disjunction, or

multiple inheritance. Nevertheless, given an appropriate interpretation it is possible, within

DATR's existing syntax and semantics, to represent these operations. In this paper we review

the technique known as negative path extension, and show how it can be used to reconstruct

negation, disjunction, and equality testing. We then show how these operations can be used

to de�ne what are essentially meta-level constraints on DATR lexical derivation.

Appendix of DATR Examples

clogic.dtr De�ne logic for working with constraints : 15

ctheory.dtr Illustrate constraint logic based on the primitives in clogic.dtr : 17

sets.dtr De�ne set operators : 20

Introduction

DATR is an `untyped' inheritance network representation language, in the sense that all exten-

sional values are of the same basic type (sequences of atoms), and there is no restriction on what

possible extensional values can be reasonably derived for a given path.

1

`Typed' languages, on the

other hand constrain an entity to have (or represent) some value of the appropriate type. Char-

acters, strings, integers, and integer subranges are familiar examples of types. `Typed feature

structures' are those which are obliged to satisfy some set of `type constraints', typically a logical

formula consisting of disjunctions, negations, equalities and logical connectives. While DATR has

no special facilities to support any of the types of constraints discussed in this paper, all can be

expressed within this paradigm, and more { notably various types of multiple inheritance (Evans

et al. 1991, Moser 1992b).

We begin by developing a technique known as negative path extension (introduced in Evans et

al. (1991) and Moser (1991)), and then use it, along with the observation that the set of symbols in

the descriptive domain of any DATR theory is �nite (and hence enumerable), to develop methods

for representing certain forms of negation, disjunction, and constraints. This permits us to impose

constraints on path values, and we are thus able to extend the usual domain of DATR descriptions

of feature values to descriptions of descriptions of feature values. In this respect we are able to

impose meta-level constraints.

1

To avoid confusion, we adopt the following terminological conventions: we refer to <p

1

p

2

> as a path extension

of <p

1

>. Where <p

1

> is the longest de�ned pre�x of <p

1

p

2

>, we refer to p

2

as a default extension of <p

1

>. The

`extension of a path' (its value) we refer to as its extensional value, or simply its value.

1

The type of constraints with which we are concerned in this paper are intra-lexical { that

is, they constrain a single lexical entry, not some projection of it (e.g., a phrase). They may be

used for consistency checking in the lexicon, but they are not constraints on composite feature

structures. An external constraint grammar

2

(such as HPSG (Pollard and Sag 1987, Pollard and

Sag 1991)) imposes constraints on relations between feature structure constituents of separate

feature structures;

3

DATR is designed only to represent lexical items, so we may say that any

constraints evaluable in DATR are intra-lexical-item constraints. These are not without value,

as certain types of constraints are inheritable within and apply to the lexical hierarchy itself.

In particular, lexical signs

4

(or entries) de�ned with respect to a type subsumption hierarchy

must satisfy type constraints corresponding to the type hierarchy. When such constraints are

applied to a phrasal sign they are extra-lexical, or grammatical, constraints. A trivial type of

lexical constraint would be that a lexical item must have a value for the feature <spelling>. This

constraint might be inherited from some higher node (in the lexicon), and any lexical item can be

shown to satisfy it (or not, in which case it is invalid). Other constraints are more local in the sense

that they constrain only the feature-value pairs of the node at which they are de�ned.

5

A feature

<gender> might be required to have a value in the set fmale; female;neuterg. Such constraints

might be particularly useful if a DATR lexicon was to be generated automatically from a machine

readable dictionary. Assuming that such entries could be used as a source for a computational

lexicon (not a bold assumption { e.g., Boguraev & Briscoe (1989)), entries would be presumed

to have various properties, but it is likely that a large dictionary would have exceptions, and

checking the constructed nodes for constraint satisfaction would be helpful. Such constraints are

lexical { they apply to a lexical entry in isolation and can be veri�ed without reference to the

context in which a lexical item occurs.

Any constraint which relates to context of use we call grammatical; constraints of this type

can be represented in DATR as constants (for theories of grammar which posit such constraints as

emanating from lexical entries). For example, linear precedence rules in Flickinger's theory (1987,

pp. 22,85-87) derive from the lexicon, but must be evaluated by an external constraint system.

Subcategorization properties of lexical entries are another grammatical constraint (in HPSG),

such as a common noun subcategorizing for a determiner or a genitive noun phrase. Again this

disjunction can only be evaluated in context. We have little to say about such constraints, other

than they should be statable in DATR in some form which can be `passed up' to the external

user of the lexicon. Nevertheless, they may sometimes be evaluated in the lexicon when some

contextual arguments are `passed down'. For example, the external constraint system may have

to evaluate whether two words can co-occur. It is conceivable that a query to the lexicon could

be of the form \Does Y satisfy X's constraints?" Thus grammatical constraints which could be

evaluated by the lexical component would require instantiation from elsewhere.

This work is an exploration of the ability of DATR to represent the types of constraints used in

computational lexicons. The formalism itself is theory independent, and it is not our intention to

produce a translation of any particular grammatical theory. We develop a classical logic (following

Gazdar (1990)) for illustrating constraint combination.

Negative Path Extension

Negative path extension (NPE) is based primarily on a trivial observation: when a general rule

and an exception are both available and a given pattern matches (or selects) the general case,

2

By `external' we mean external to the lexicon.

3

Speci�cally, separate feature structures must be uni�able.

4

By `sign' we mean a feature structure corresponding to a linguistic entity.

5

The notion of local constraints { constraints a node imposes on itself { does not seem intuitively useful, unless,

as we envision, the constraints are inserted at the node by some extra-nodal entity, e.g., as part of a translation

into DATR from some other lexical representation.

2

then the speci�c exception was not matched. The DATR rule of path extension may be stated

as follows: A path p queried at node A extends the longest de�ned path at A which is a pre�x of

p. This `longest-de�ned-pre�x-wins' rule derives the form of inference known in DATR as default

extension. For example, from the node de�nition for Bird,

Bird: <eats> == yes.

we can derive the following statements:

6

Bird: <eats> = yes

<eats worms> = yes.

The �rst follows from the de�nition of that particular path, while the second extends (by default)

its longest de�ned pre�x (<eats>). The statement

Bird: <swims> = yes.

is not derivable, since there is no pre�x of the path <swims> which is de�ned.

Using negative path extension, we can determine where an arbitrary path constituent inter-

venes in some sequence of enumerated constant paths. Below we have a theory which determines

the location at which some arbitrary value intervenes in the sequence of four b's:

A: <b b b b> == nowhere

<b b b> == 4

<b b> == 3

 == 2

<> == 1.

Some theorems of A are:

A: <x> = 1

<b y x b b> = 2

<b b x y b> = 3

<b b b x> = 4

<b b b b x> = nowhere.

We call this negative path extension since A:<b b x y b> has value 3 because it does not extend

the longer pre�x <b b b>. The pre�xes de�ned at A are called selectors. It is important to note

that the value of A:<b b x y b> is not dependent on the actual values x, and y merely that they

di�er from b.

Evaluable paths

Generally, the domain of path constituents (or features) which appear inside of path de�ning angle

brackets < and > is non-overlapping with the domain of extensional value constituents (appearing

on the right hand side of = and ==). Both types of constituents are simply atoms. One would not

normally expect to derive such statements as

Bird: <yes> = yes.

Bird: <eats> = eats.

However, it is not required that these domains be mutually exclusive, and DATR provides a

mechanism for interpreting a value as a path constituent, or a sequence of values as a sequence

of path constituents. For example, node D below de�nes its default using an evaluable path, one

constituent of which (the value of A) happens to be a sequence.

6

Here, and in subsequent single-node examples, there is an implicit assumption that the single node comprises

the entire theory.

3

A: <x> == w x y.

B: <y> == a.

D: <> == <A B:<y> c>

<w> == z

<w x> == yes.

Notice in the above example that the domains of path constituents and values are not disjoint.

The values w, x, y, and a at nodes A and B are interpreted as path constituents at node D, when the

evaluable path <A B:<y> c> is instantiated. This evaluable path speci�es non-local inheritance

from nodes A and B. The derivation of D:<x> = yes is shown in Figure 1.

Initial query Derived value Justi�cation

D:<x> = D:< A:<x> B:<y x> c x> D:<> == <A B:<y> c>

= D:<w x y a c x> evaluable path instantiation, using

A:<x> = w x y.

B:<y x> = a.

= yes D:<w x> == yes.

Figure 1: Derivation of D:<x> = yes.

Equality

Negative path extension is essentially a test for inequality against a speci�c case or cases. Using

NPE we can de�ne a test for equality against a given constant. From

Equal_13: <13> == true

<> == false.

we can derive the following statements:

Equal_13: <13> = true

<14> = false.

The �rst statement derives from the fact that the path Equal:<13> is de�ned (to have value true),

while the second does not extend path <13>, so extends only the next shortest selector, the empty

path (<>), which has value false.

Equality as a local constraint

An equality test can be used to de�ne constraints on feature values. We begin by illustrating a

simple local constraint { i.e., a constraint self-imposed at the de�ning node.

Node C constrains the value of its path <x> to be 13, using the de�nition of Equal_13 given

above:

C: <constraint1> == Equal_13:<<x>>

<constraint2> == Equal_13:<<y>>

<x> == 13

<y> == 14.

The evaluation of path C:<constraint1> tests whether C satis�es the constraint that its value for

path <x> extend <13>. Similarly for C:<constraint2> and path <y>, yielding the two following

theorems:

C: <constraint1> = true

<constraint2> = false.

Their derivations are shown in Figures 2 and 3, respectively.

4

Initial query Derived value Justi�cation

C:<constraint1> = Equal 13:<C:<x>> C:<constraint1> == Equal 13:<<x>>

= Equal 13:<13> evaluable path instantiation using

C:<x> = 13.

= true Equal 13:<13> = true.

Figure 2: Derivation of C:<constraint1> = true

Initial query Derived value Justi�cation

C:<constraint2> = Equal 13:<C:<y>> C:<constraint2> == Equal 13:<<y>>

= Equal 13:<14> evaluable path instantiation using

C:<y> = 14.

= false Equal 13:<14> = false.

Figure 3: Derivation of C:<constraint2> = false

Generalizing equality

Since there may be a number of atomic tests for equality in the hierarchy, rather than create a

new node for each comparison we can bundle all of the atomic comparisons in a single node, using

the particular test value as a selector path pre�x. A single node can be used to test for all such

cases of equality:

Equal:

<13 13> == true

<13> == false

<singular singular> == true

<singular> == false

<> == 'unexpected selector'.

Now we test a path against a value by using the known constant as a selector:

Equal:<13 <x>> = true (if <x> extends <13>)

Equal:<13 <x>> = false (if <x> does not extend <13>)

The de�nition of node C is modi�ed as follows:

C: <constraint1> == Equal:<13 <x>>

<constraint2> == Equal:<13 <y>>

<x> == 13

<y> == 14.

We still have the following derivable statements:

C: <constraint1> = true

<constraint2> = false.

Given conservative intuitions about the notion of equality, it is perhaps anomalous that the

following theorems are also derivable, by default extension:

Equal: <13 13 hi mom> = true

<13 13 21> = true.

5

To restrict equality to a better approximation of our intuitive notion we could insert a delimiter

after the test value, which can be matched in the selector path, and modify the de�nition of C

accordingly:

7

Equal:

<13 13 ;> == true

<13> == false

<singular singular ;> == true

<singular> == false

<> == 'unexpected selector'.

C: <constraint1> == Equal:<13 <x> ;>

<constraint2> == Equal:<13 <y> ;>

<constraint3> == Equal:<13 <z> ;>

<x> == 13

<y> == 14

<z> == 13 14.

This gives the desired result: the test for equality will fail precisely when the test argument path

(or test value) are not equal. Thus we have have the following theorems:

C: <constraint1> = true

<constraint2> = false

<constraint3> = false.

However, if we delimit the selector as well as the test value, we can use any path as selector,

subject to its value being in the set of selectors. Doing this, we have:

8

Equal:

<13 ; 13 ;> == true

<13 ;> == false

<singular ; singular ;> == true

<singular ;> == false

<> == 'unexpected selector'.

C: <constraint1> == Equal:<13 ; <x> ;>

<constraint2> == Equal:<13 ; <y> ;>

<constraint3> == Equal:<<x> ; <z> ;>

<x> == 13

<y> == 14

<z> == 13 14.

Notice that now we have generalized the testing of equality to include testing of arguments both of

which require evaluation. However, constraint3 is not a meta-level constraint that paths <x> and

<y> must share { i.e., it does not enforce a requirement that <x> unify with <y> (and hence share

token equality for all extensions). On the other hand for every path p, it is satis�ed whenever

<x p> = <y p> holds (i.e., it can test type equality for any extension).

7

It is still not quite the intuitive notion, since Equal:<13 13 ; hi mom> = true remains derivable. We are

ignoring path extensions following the semicolon, which, at least in intention, delimits the interesting part of the

query path.

8

Selectors need not be restricted to atoms. A pre�x such as <a b c ; a b c ;> would behave similarly.

6

Parametrization using DATR variables

By de�ning a DATR variable, $terminal, which enumerates the atoms over which the logical

operators are de�ned, we can make the de�nition of Equal quite concise. For the examples given

thus far, an adequate de�nition would be:

#vars $terminal: 1 2 3 13 14 singular true false.

The restatement of Equal in terms of $terminal is rather elegant:

Equal:

<$terminal ; $terminal ;> == true

<$terminal ;> == false

<> == 'unexpected selector'.

The symbol ;, which lies outside the descriptive domain of the theory, is not enumerated in

$terminal. Other symbols which are not enumerated by $terminalmay also be used (e.g., as path

constituents), so long as they do not appear in paths on which the logical operators are queried.

9

A constraint logic

Thus far we have used only a trivial constraint, testing a value against a single atomic constant. In

order to de�ne conjunctive and disjunctive constraints, we require a logic for combining conjuncts

and disjuncts. If the constraints were to be applied only to fully-speci�ed lexical entries, in

which every path expected to have a value does indeed have one, then classical logic would seem

appropriate. On the other hand, if we wish to state constraints which might be applicable, then

we might also want to have some third logical value, interpreted as `indeterminate'. One example,

mentioned above, was the possibility of testing such constraints as determiner-noun compatibility,

where one of the operands was supplied from a system external to the lexicon. If the constraint

were tested in the absence of a required value, it would be neither satis�ed nor violated. We

choose the alternative, and say that a constraint is satis�ed if it is not violated { and constraints

tested against unde�ned values are either satis�ed, if the value is optional, or violated if the value

is obligatory.

10

We will show how such constraints can be represented, beginning with logical

operators And, Or, and Not. Binary And could be de�ned by enumerating its truth table as follows:

And: <true true> == true

<true false> == false

<false true> == false

<false false> == false.

With this de�nition we can state conjunctive constraints:

D1: <constraints> == And:<<c1> <c2>>

<c1> == Equal:<13 ; <x>>

<c2> == Equal:<14 ; <y>>

<x> == 13

<y> == 14.

9

It would not alter the behaviour of the operators we de�ne in this paper if they were included in $terminal.

The operations would merely apply to a larger set of atoms. We de�ne $terminal to exclude these other atoms

merely to isolate the atoms of interest.

10

Gazdar (1990, pp. 126-127) illustrates various non-classical logics represented in DATR. The presentation of

the logic di�ers slightly from that given by Gazdar, where all of the predicates were de�ned at a single node.

7

The path <constraints> is de�ned in terms of an evaluable path, each constituent of which

evaluates to a boolean value. It becomes And:<true true> when instantiated (in this particular

example), hence we have the theorem:

D1:<constraints> = true.

Since And evaluates to a boolean value, it can itself appear as one of the constituents of a path on

which it is invoked. Omitting for the moment the de�nitions of <c1>, <c2>, etc., one de�nition of

a compound constraint with four conjuncts is:

D2: <constraint3> == And:<And:< <c1> <c2>>

And:< <c3> <c4>>>.

To avoid such repetitive descriptions, we re�ne the de�nition of And to be polyadic (following

Gazdar (1990)) but add the delimiter ; to terminate the sequence of conjuncts:

And: <;> == true

<true> == <>

<false> == false.

This allows <constraint3> to be de�ned more elegantly as:

D3: <constraint3> == And:<<c1> <c2> <c3> <c4> ; >.

In a similar vein we de�ne Or, also polyadic, and Not:

Or: <;> == false

<true> == true

<false> == <>.

Not: <true> == false

<false> == true.

We can compose these logical operators to formany well-formed boolean expression as a constraint.

For example:

D4: <c1> == And:< Or:<Equal:<<x> ; 1 ;>

Equal:<<x> ; 2 ;>

Equal:<<x> ; 3 ;>

;>

Not:<Equal:<<y> ; 4 ;>>

;

>.

In particular, we have a mechanism for testing set membership and a combination of disjunction

and equality, although the statement of the de�nition is tedious. The �rst conjunct of <c1> is

true whenever <x> 2 f1,2,3g. We will develop a concise de�nition of set membership presently,

but �rst we turn our attention to the function of the delimiter of the polyadic And and Or.

The purpose of the delimiter is twofold. First, it avoids the issue of whether a zero-length

sequence of conjuncts (i.e., And:<>) well formed. Of more importance, it permits the logical

operator to be used on arbitrary path extensions, in the same way that Equal:<<x> ; <y> ;> can

be used to test equality of extensions of paths <x> and <y>. Consider, for example, evaluation of

D3:<constraint3 y>. If we assume that <c1 y>, : : :, <c4 y> all evaluate to true, then the evaluable

path instantiates to And:<true true true true ; y>; the default extension, which is not a boolean

value (or in our parlance, not a member of $terminal), becomes a su�x of the path evaluated at

And. As noted by Gibbon (1990), a delimiter (such as ;) can be interpreted as a `cut', by mapping

it and the default extension which follows it, to an empty sequence, allowing for elegant function

composition, which is precisely what we have done at the de�nition of D4:<c1>.

8

In general, we can use function composition to de�ne any logical expression. Material impli-

cation, for example, could be de�ned by the expression:

D5: <c4> == Or:<Not:<c1> <c2> ;>.

D5:<c4> evaluates to true whenever <c1> is false or <c2> is true, precisely when <c1>) <c2> is

true. This can be isolated at a node as follows:

Implies: <> == true

<true false> == false.

and then the constraint at D5:<c4a> can be de�ned as:

D5: <c4> == Implies:<<c1> <c2>>.

Disjunctive constraints such as D6:<c5> test an extensional value for membership in a set, e.g.,

<person> 2 f1; 2; 3g:

D6: <c5> == Or:<Equal:<<person> ; 1 ;>

Equal:<<person> ; 2 ;>

Equal:<<person> ; 3 ;>

;>

<person> == 2.

This yields theorem D6:<c5> = true. As with implication, we can factor out a test for set mem-

bership to a single node. Our de�nition of Member requires an enumeration of all possible sequences

over $terminal of length 2. We do this by de�ning a new DATR variable, $terminal2 = $terminal,

and taking their cross-product.

Member:

<$terminal ; $terminal> == true

<$terminal ; ;> == false

<$terminal ; > == <reduce $terminal ;>

<reduce $terminal ; $terminal2> == <$terminal ;>.

With this de�nition,

Member:<<val> ; <list> ;>

will evaluate to true whenever (the value of) <val> is in (the value of) <list>, assuming that

<val> evaluates to a suitable selector (in this case a $terminal). The de�nition of Member uses

NPE: the �rst case selects those paths where the �rst item in the list is the value to be matched;

the second where the list is exhausted; and the third is the default, where the �rst item in the

list is not the required element, nor is the list exhausted. So we cycle through <reduce>, removing

the �rst symbol of the list, back to the initial case.

11

With this de�nition set membership can be

tested transparently { D6, for example, can be rede�ned as D7:

D7: <c5> == Member:<<person> ; 1 2 3 ;>

<person> == 2.

The theorem D7:<c5> = true is derivable, as with the previous de�nition (of D6:<c5>).

11

It might seem that a less complicated de�nition would su�ce, viz.:

Member:

<$terminal ; $terminal> == true

<$terminal ; ;> == false

<$terminal ; $terminal2> == <$terminal ;>.

This is not an equivalentde�nition; it is not even semanticallywell-formed, as the set $terminal \ $terminal2 6= ;.

9

Subset relations

The generalization of membership of an atom in a list is set inclusion, where every atom in a list

is a member of a second list. Speci�cally, if we let X = x

1

x

2

: : :x

n

and Y = y

1

y

2

: : : y

m

, then we

de�ne Subset:< x

1

x

2

: : : x

n

; y

1

y

2

: : : y

m

;> to be true whenever every x

i

is some y

j

, and false

otherwise. Before de�ning Subset, we �rst make use of path-to-value conversion (Moser 1992a) to

extract the sequence of atoms y

1

y

2

: : : y

m

;:

Arg2: <> == <scan_to_;>

<scan_to_; $terminal> == () <scan_to_;>

<scan_to_; ;> == () <copy_to_;>

<copy_to_; $terminal> == $terminal <copy_to_;>

<copy_to_; ;> == ().

Arg2 is essentially a two-state automaton, with states scan to ; and copy to ;. It produces the

sequence of symbols between the �rst and second ; by: starting in state scan to ;, where it (a)

scans (and removes) terminals up to the �rst ;, outputting nothing (which we illustrate as the

empty list ()); (b) jumps to state copy to ; on input ;, again outputting nothing. From its second

state it has two edges, one traversed on terminals, which it copies to the output, and another

traversed on symbol ;, in which case it outputs nothing and halts.

12

Typical theorems of Arg2, given a suitable de�nition of $terminal, are:

Arg2: <2 3 ; 1 4 ;> = 1 4

<1 2 3 2 1 2 3 ; 1 4 3 2 1 5 ;> = 1 4 3 2 1 5.

We de�ne x

0

x

1

: : : x

n

� y

0

y

1

: : : y

m

recursively in terms of n: if n = 0 then it's true; if n = 1

then it's true if x

1

2 Y ; and if n > 1 then it's true if x

1

2 Y and x

2

: : : x

n

� Y . We again make

use of the assumption that $terminal2 is de�ned identically to $terminal, allowing us to form a

cross-product of terminals.

Subset:

<;> == true

<$terminal ;> == Member

<$terminal $terminal2> == And:<Member:<$terminal ; Arg2 ;>

Subset:<$terminal2> ;>.

The following are example theorems of Subset:

Subset: <3 1 ; 1 2 3 4 ;> = true

<3 1 ; 1 2 4 5 5 ;> = false.

Constraints can be de�ned in terms of Member and Subset, just as was done using And, Or and Not:

F1: <c5> == Subset:< <x> ; <y> ;>

<c6> == Member:< <person> ; 1 2 3 ;>.

Constraint inheritance

All of the constraints we have shown so far have been locally de�ned. For illustrative purposes

this is �ne, but of course the usual case is that some more general class constrains its subclasses

and instances. This can be done by de�ning the constraints in terms of `global inheritance', where

the test values are de�ned with respect to the global context:

12

Evans & Gazdar (1990) discuss formally the class of DATR theories which are equivalent to �nite state

automata.

10

Parent1:

<constraints> == And:< <c1> <c2> <c3> ;>

<c1> == Member:<"<person>" ; 1 2 3 ;>

<c2> == Member:<"<gender>" ; male female neuter ;>

<c3> == Not:<And:<Equal:<"<person>" ; 3 ;>

Equal:<"<number>" ; singular> >>.

Child1: <> == Parent1

<person> == 3

<number> == plural

<gender> == female.

Here the constraints are de�ned so that the values to be tested are inherited from the context

node. Child1 inherits <constraints> (by default, in this case) from Parent1, and Parent1 inherits

<person> (as well as <gender> and <number>) from whichever node originated the query.

It might be desirable, depending upon the grammatical theory, to de�ne constraints which

apply to nodes lacking some constrained attribute. For example, there might be general con-

straints on feature <gender>, but some members of the class to which the constraint applies might

be unspeci�ed for gender. Since in DATR one cannot query paths which have no de�nition, we

might supply a default of the form <> == undef at an appropriate node (perhaps at each node)

such that any path otherwise unde�ned evaluates to this value. undef is assumed to be a symbol

lying outside the descriptive domain of the theory. We could then apply constraints only when the

paths have values lying within the theory's descriptive domain. We �rst de�ne, for convenience,

Is defined:<val> to be true whenever val does not extend undef:

Is_defined: <> == true

<undef> == false.

We now de�ne constraints so that they are not violated by the absence of a test value. Equally,

we can test whether an obligatory path is de�ned:

Parent2: <> == undef

<c6> == Implies:<Is_defined:<"<person>"

Member:<"<person>" ; 1 2 3 ;> >

<c7> == Is_defined:<"<spelling>">.

Parent2:<c6> is reminiscent of GPSG Feature Co-occurrence Restrictions (Gazdar et al. 1985)

(although in GPSG such constraints are grammatical, or extra-lexical, so would fall in the class

constraints merely stated as constants in a DATR representation). In HPSG (Pollard and Sag

1987, Pollard and Sag 1991) constraints on the well-formedness of feature structures hold at both

lexical and grammatical levels, since lexical entries and their projections are both represented as

feature structures, or signs.

13

Adopting the terminology of Carpenter (1990), a feature structure

is said to be well-typed if (i) the value of every feature is appropriate (i.e., satis�es the constraints

on that feature's value); and (ii) every feature de�ned is appropriate (with respect to a type

hierarchy). Furthermore, a feature structure is totally well-typed if (iii) every appropriate feature

is de�ned.

14

Such constraints are not extra-lexical { they apply equally to both lexical and

phrasal signs. It is (a subset of) those which apply to the structure of lexical signs which could be

embedded into lexical entries by local de�nition or inheritance. In HPSG the lexicon is considered

to be a structured hierarchy, with default inheritance providing all of the generalizable structure

of particular word classes. Embedding such constraints (as are representable) in the de�nitions

of word classes would facilitate testing that lexical entries themselves are well-formed.

13

The primary operation in HPSG in uni�cation, and lexical entries are the prede�ned building blocks.

14

In this case there is no possibility of constraint violation `by default' { if a feature is appropriate and unde�ned,

the constraints of the type hierarchy have been violated.

11

Path constraints versus node constraints

The constraints discussed thus far can be categorized into two classes: path constraints, and node

constraints. Consider nodes Parent3 and Child3:

Parent3: <> == undef

<constraints> == And:<<c1> <c2> ;>

<c1 agr> == Equal:<"<agr>" ; "<comp subject agr>" ;>

<c1> == true

<c2> == Is_defined:<"<oblig_path>">.

Child3: <> == undef

<constraints> == Parent3

<agr> == A

<comp subject agr> == B

<oblig_path> == 3.

Constraints <c1> and <c2> di�er in that <c1> can be applied to arbitrary extensions of its de�ned

path. For example, if Child3:<agr p> and Child3:<comp subject agr p> have the same value, then

the statement Child3:<constraints agr p> = true is derivable. However, if <p> does not extend

<agr>, evaluation of Child3:<constraints p> will cause Parent3:<Is defined:<"oblig path p>"> to

be evaluated, and it is not clear that this is a `sensible' question. <c2> is a node constraint, as it

does not apply to paths whose values depend on default extension (of paths de�ned at the node).

Just as we de�ned $terminal to enumerate all of the terminals in the theory, we can assume

a variable $feat which enumerates all of the atoms in the theory, and we can strip o� arbitrary

su�xes of any path, guarding the condition <c2> against meaningless extensions:

15

Parent2:

<c2 $feat> == true

<c2> == Is_defined:<"<oblig_path>">.

Generalizing this method of extension stripping, we de�ne a node which strips o� the su�x

following the �rst atom in a path, and uses global inheritance to evaluate the path of length 1 at

the context node. We call this node Length 1 eval:

Length_1_eval:

<$feat $feat2> == <$feat>

<$feat> == Is_defined:<"<$feat>">.

This de�nition is interesting because Length 1 eval:<f

1

f

2

: : : f

n

> = "<f

1

>" for any atom f

1

.

Summary

In this paper we have addressed the expressivity of DATR for specifying and testing constraints

on the extensional values of paths. Relying on the fact that every DATR theory comprises a �nite

15

None of the machinery developed depends on $terminal excluding atoms which appear only in paths. Indeed,

we only require that $terminal include the alphabet of the descriptive domain of the theory (those which appear

in value sequences). $feat might be a larger set since there is no requirement that path constituents be introduced

before they appear in a query. Thus the single statement theory

A:<x> == 1.

permits the inference

A:<x y> = 1.

although the atom y does not appear in the statement of the theory.

For the purposes of the present discussion we assume that $feat (and $feat2) serve as declarations of the

alphabet of path descriptions, and include at least $terminal. In particular, we exclude queries of paths de�ned

using `undeclared' atoms.

12

number of atoms, we have expressed constraints as tests over an enumeration of them. We used

DATR variables to make the de�nitions short, but the expansion of the statements de�ned in

terms of these variables is �nite and could be expressed without the use of variables.

The notation used to express the constraints is cumbersome, because DATR is not designed to

support the expression of constraints as we have done. Nevertheless, it is interesting that they can

be expressed in the language, because if DATR were used as a target language for a compilation

of a a lexicon, such constraints could be embedded in the output to allow for veri�cation of

the constructed lexicon. In particular, any large scale automatically constructed lexicon is likely

to contain exceptions to whatever expectations are made about the lexical entries, (e.g., �elds

expected to be present on words of various types) and the mechanisms illustrated would draw

attention to them { so that the expectations could be modi�ed or the inconsistencies deleted.

References

[Boguraev and Briscoe 1989] Branimir K. Boguraev and Edward J. Briscoe, editors. Computa-

tional Lexicography for Natural Language Processing. Longman, Harlow, 1989.

[Carpenter 1990] Bob Carpenter. Typed feature structures: inheritance, (in)equality and exten-

sionality. In Walter Daelemans and Gerald Gazdar, editors, Inheritance in Natural Language

Processing: Workshop Proceedings, pages 9{18. Institute for Language Technology and AI,

Tilburg University, The Netherlands, 1990.

[Evans and Gazdar 1990] Roger Evans and Gerald Gazdar, editors. The DATR Papers, Volume

I. CSRP 139. School of Cognitive and Computing Sciences, University of Sussex, Brighton,

UK, 1990.

[Evans et al. 1991] Roger Evans, Gerald Gazdar, and Lionel Moser. Prioritised multiple inheri-

tance in DATR. In Ted Briscoe, Ann Copestake, and Valeria de Paiva, editors, Proceedings of

the ACQUILEX Workshop on Default Inheritance in the Lexicon. Technical Report 238, The

Computer Laboratory, Cambridge University, Cambridge, UK, 1991.

[Flickinger 1987] Dan Flickinger. Lexical Rules in the Hierarchical Lexicon. PhD thesis, Stanford

University, 1987.

[Gazdar et al. 1985] Gerald Gazdar, Ewan Klein, Geo�rey K. Pullum, and Ivan Sag. Generalized

Phrase Structure Grammar. Blackwell, Oxford, 1985.

[Gazdar 1990] Gerald Gazdar. quanti�.dtr. The DATR Papers, Volume I, pages 131{132, 1990.

Formal DATR example �le illustrating �rst order quanti�cation over attributes.

[Gibbon 1990] Dafydd Gibbon. register.dtr. The DATR Papers, Volume I, pages 133{134, 1990.

Formal DATR example �le illustrating binary shift operations.

[Moser 1991] Lionel Moser. Multiple inheritance in DATR: A quick tour. In Richard Dallaway,

Teresa del Soldato, and Lionel Moser, editors, The Fourth White House Papers: Graduate

Research in the Cognitive & Computing Sciences at Sussex, Technical Report CSRP 200. School

of Cognitive & Computing Sciences, University of Sussex, Brighton, UK, 1991.

[Moser 1992a] Lionel Moser. DATR paths as arguments. Technical Report CSRP 215, School of

Cognitive & Computing Sciences, University of Sussex, Brighton, UK, 1992.

[Moser 1992b] Lionel Moser. More multiple inheritance in DATR. School of Cognitive & Com-

puting Sciences, University of Sussex, Brighton, manuscript, 1992.

13

[Pollard and Sag 1987] C. Pollard and I.A. Sag. Information-Based Syntax and Semantics: Vol-

ume I { Fundamentals. CSLI Lecture Notes Series, No. 13. Chicago University Press, Chicago,

1987.

[Pollard and Sag 1991] C. Pollard and I.A. Sag. Information-Based Syntax and Semantics: Vol-

ume II { Agreement, Binding, and Control. Manuscript, circulated at the Third European

Summer School in Language, Logic and Information, Saarbrucken, Germany, August 1991.

14

% %

% %

% File: clogic.dtr %

% Purpose: Define logic for working with constraints. %

% Author: Lionel Moser, December 1991 %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr %

% Version: 7.00 %

% Copyright (c) University of Sussex 1991. All rights reserved. %

% %

% %

% $terminal must be defined elsewhere if loading this file from some

% other file.

%#vars $terminal: alpha beta gamma 1 2 3 undef.

%#load 'args.dtr'.

%#load 'arglogic.dtr'.

% Polyadic AND

% And:<bool bool ... bool ;> ==

% true - if all bools are true;

% false - if any bools are false.

And: <> == '**** ERROR: (And) Invalid argument'

<;> == true

<true> == <>

<false> == false.

% Polyadic OR

% Or:<bool bool ... bool ;> ==

% true - if any bool is true;

% false - if no bool is true.

Or: <> == '**** ERROR: (Or) Invalid argument'

<;> == '**** ERROR: (Or) Nil bool list'

<true ;> == true

<false ;> == false

<true> == true.

% Not.

Not: <> == '**** ERROR: (Not) Invalid argument'

<true> == false

<false> == true.

% Implication

Implies:

<> == true

<true false> == false.

15

% We assume a default value of indef for any path lacking a value

% within the descriptive domain of the theory.

% A path is defined if it does not extend 'undef'.

Is_defined:

<undef> == false

<> == true.

% Safe:<path>

% A path is `safe' if it satisfies its constraints when evaluated with

% respect to the global context. If the path is safe, then return this

% value; if it is not safe, return a message.

Safe: <> == <If:< "<constraints>" > >

<then> == "<>"

<else> == 'constraint violation'.

16

% %

% %

% File: ctheory.dtr %

% Purpose: Illustrate constraint logic based on the primitives %

% in clogic.dtr. %

% Author: Lionel Moser, September 1991 %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr; clogic.dtr %

% Version: 6.00 %

% Copyright (c) University of Sussex 1991. All rights reserved. %

% %

% %

% Negation, disjunction, equality, inequality, and obligatory and

% forbidden features as constraints are illustrated, base on the

% primitives defined in clogic.dtr, sets.dtr and arglogic.dtr.

#vars $terminal: singular plural alpha beta gamma 1 2 3 undef.

#load 'args.dtr'.

#load 'arglogic.dtr'.

#load 'clogic.dtr'.

#load 'sets.dtr'.

% Introduce constraint that something is not 3rd person singular,

% and <person> must have an appropriate value, if it's defined.

NOT_3RD_SG:

<> == undef

<constraints> == And:<<c0> <c1> ;>

<c0> == Implies:<And:<Is_defined:<"<number>">

Is_defined:<"<person>"> ; >

Not:<And:<Equal:<"<person>" ; 3 ;>

Equal:<"<number>" ; singular ;> ; >

>

>

<c1> == Implies:<Is_defined:<"<person>">

Member:<"<person>" ; 1 2 3 ;> >.

% B violates NOT_3RD_SG's constraints.

B: <> == NOT_3RD_SG

<person> == 3

<number> == singular.

% C satisfies NOT_3RD_SG's

% constraints.

C: <> == NOT_3RD_SG

<person> == 1

<number> == singular.

17

% -------- Some theorems --------

% B: <person> = 3

% <constraints> = false.

% C: <person> = 1

% <constraints> = true.

% ParentType introduces compound constraints, and contains all of the

% top-level machinery.

ParentType:

<> == undef

<safe> == Safe:<>

% This is a default for inheriting nodes.

<local_constraints> == ()

% Three constraints are introduced at this node.

% In general, a node's local constraints must be ANDed in; if there aren't

% any then make them satisfied.

<constraints> == And:< "<local_constraints>" <c1> <c2> <c3> ;>

% Constraint c1: disjunction

% <person> is in set {1,2,3}; i.e., member(<person>,{1,2,3}).

<c1> == Member:<"<person>" ; 1 2 3 ;>

% Constraint c2: obligatory feature

% <number> must be defined.

<c2> == Is_defined:<"<number>">

% Constraint c3: forbidden feature

% <alpha> must NOT be defined.

<c3> == Not:<Is_defined:<"<alpha>">>.

% K has inherited constraints and local constraints, all of which are

% satisfied.

K: <> == ParentType

<local_constraints> == <c0>

<c0> == Member:<<person> ; 1 2 ;>

<person> == 2

<number> == singular.

% L violates its constraints - <alpha> is defined.

% satisfied.

L: <> == ParentType

<person> == 2

<number> == singular

<alpha> == 3.

18

% M violates its constraints - <number> is not defined.

% satisfied.

M: <> == ParentType

<person> == 3.

% --- Some theorems ----------------

%

% ParentType: <local_constraints> = ()

% <constraints> = false

% <safe> = constraint violation

% <c1> = false

% <c2> = false

% <c3> = true.

% K: <constraints> = true

% <local_constraints> = true

% <person> = 2

% <constraints person> = true

% <safe person> = 2

% <number> = singular

% <safe number> = singular.

% L: <constraints> = false

% <local_constraints> = ()

% <person> = 2

% <constraints person> = false

% <safe person> = constraint violation

% <number> = singular

% <constraints number> = false

% <safe number> = constraint violation.

% M: <constraints> = false

% <local_constraints> = ()

% <person> = 3

% <constraints person> = false

% <safe person> = constraint violation

% <number> = undef

% <constraints number> = false

% <safe number> = constraint violation.

19

% %

% %

% File: sets.dtr %

% Purpose: Define set operators. %

% Author: Lionel Moser, December, 1991 %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr %

% Version: 6.00 %

% Copyright (c) University of Sussex 1991. All rights reserved. %

% %

% %

#vars $terminal: 1 2 3 4 5 6 7 8 9 0.

#vars $terminal2: 1 2 3 4 5 6 7 8 9 0.

#load 'args.dtr'.

#load 'arglogic.dtr'. % If, Equal, Tequal

#load 'clogic.dtr'. % And, Or, Not

% Member:<atom ; list_of_atoms ;> ==

% true - if item is in list,

% false - if atom is not in list.

%

% Some theorems:

% Member: <1 ; ;> = false

% <1 ; 1 2 3 ;> = true

% <1 ; 2 3 ;> = false

% <1 ; 2 1 3 ;> = true

% <1 ; 2 3 1 ;> = true

%

% Member:<<val> ; <list> ;>

Member:

<$terminal ; $terminal> == true

<$terminal ; ;> == false

<$terminal ; > == <reduce $terminal ;>

<reduce $terminal ; $terminal2> == <$terminal ;>.

20

% Subset takes a cross-product of $terminal, so requires $terminal2

% to be defined identically to $terminal.

%

% Subset:< X0 X1 X2 ... Xn ; Y0 Y1 Y2 ... Ym ;> ==

% true - if every Xi is in Y

% false - otherwise

Subset:

<;> == true

<$terminal ;> == Member

<$terminal $terminal2> == And:<Member:<$terminal ; Arg2 ;>

Subset:<$terminal2> ;>.

% --- Some theorems ----

% Subset: <; ;> = true

% <; 1 2 3 2 ;> = true

% <1 ; 1 2 3 2 ;> = true

% <1 ; 2 3 2 2 ;> = false

% <2 1 ; 2 3 2 2 ;> = false

% <2 1 3 ; 2 3 2 2 1 ;> = true.

% Union:<X0 X1 ... Xn ; Y0 Y1 ... Ym ;> == X U Y

% We define X U Y as Y + (Y - X)

X2: <> == Arg1.

Y2: <> == Arg2.

Union:

<;> == Y2

<$terminal> == <If:<Member:<$terminal ; Y2 ; !> > $terminal>

<then $terminal> == Union:<>

<else $terminal> == Union:<X2:<> ; Y2:<> $terminal ; !>.

% --- Some theorems -----

%

% Union: <1 2 3 ; 1 2 3 ;> = (1 2 3)

% <; 1 2 3 ;> = (1 2 3)

% <1 2 3 ; 2 3 ;> = (2 3 1)

% <1 2 3 4 5 ; ;> = (1 2 3 4 5)

% <1 3 5 ; 2 4 6 ;> = (2 4 6 1 3 5)

% <; ;> = ().

21

% Intersection:<X0 X1 ... Xn ; Y0 Y1 ... Ym ; ;> == XIY % initial call

% Intersection:<X0 X1 ... Xn ; Y0 Y1 ... Ym ; XIY ;> % recursive call

%

% arg names

X1: <> == Arg1.

Y1: <> == Arg2.

XIY:<> == Arg3. % X intersection Y

Intersection:

<;> == XIY

<$terminal> == <If:<Member:<$terminal ; Y1 ; !> > $terminal>

<then $terminal> == Intersection:< X1:<> ; Y1:<> ; XIY:<> $terminal ; !>

<else $terminal> == Intersection:<>.

% --- Some theorems -----

%

% Intersection: <1 2 3 ; 1 2 3 ; ;> = (1 2 3)

% <; 1 2 3 ; ;> = ()

% <1 2 3 ; 2 3 ; ;> = (2 3)

% <1 2 3 4 5 ; ; ;> = ()

% <1 3 5 ; 2 4 6 ; ;> = ()

% <1 3 5 ; 2 4 3 6 ; ;> = (3).

% Setequal:<Set1 ; Set2 ; !> ==

% true - if Set1 and Set2 are the same

% false - otherwise

Setequal:

<> == <If:<Subset>> % Set1 <= Set2?

<then> == Subset:<Arg2:<> ; Arg1:<> ; !> % Set2 <= Set1?

<else> == false.

% Some Theorems

% Setequal: <; ;> = true

% <1 ; 1 ;> = true

% <1 2 ; 1 2 ;> = true

% <3 2 ; 2 3 ;> = true

% <1 2 3 4 5 ; 5 4 3 2 1 ;> = true.

22

