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Abstract

DATR 1s a lexical knowledge representation language which is designed to support the
lexicon in an NLP system. Its syntax and semantics are designed to support the types
of inference required in computational lexicography. It was not a design intention of the
language to support general logic programming, yet in this paper we show that the types of
inference permitted in the language do support a general type of logical inference. Drawing an
analogy with Prolog, both are declarative languages, and each has its own inference engine or
theorem prover, which are quite different. DATR allows at least a subset of Prolog-definable
logic programs to be encoded.

*1 am indebted to Jo Calder, Roger Evans, Gerald Gazdar and Adam Kilgarriff for conversations about this
work. Research for this paper is partially supported by an Overseas Research Scholarship (ORS/C17/3) from the
Committee of Vice-Chancellors and Principals of the United Kingdom (CVCP), and a scholarship from Fonds pour
la formation de chercheurs et I’aide & la recherche from the Government of Québec.
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1 Introduction

While Prolog and DATR are both declarative logic programming languages with built-in inference
engines, the former is intended as a tool for a more general class of applications, while the latter
is designed for the more narrow application of lexical representation for feature-based grammar
formalisms. Assuming that the features of DATR are limited to those required for its intended
domain of application, it is interesting to see that a rather general class of recursive functions can
be stated declaratively in DATR.

Prolog explicitly supports computation in a second order logic, having the univ operator.
DATR may also support such computation through a combination of evaluable paths and global
inheritance, though we do not discuss these issues directly in this paper. With respect to first-
order theories; DATR is rather more declarative than Prolog: most importantly, there is no
mechanism to assert and retract clauses;! and there are no variables, even as formal parameters.
A Prolog clause which uses variables as formal parameters is not directly representable in DATR..
An example 1s

P(X) — g(X), r(X).
which denotes that p is true of X if ¢ and r are true of the same X.2 DATR has no variables of
this type. Nevertheless one can express the same intention. ¢ computes some function to derive
a value for X, and we might call this function f. (We can assume that ¢ states f declaratively,
and therefore f is also a declarative statement of the value which satisfies it.) Now ¢ is true of
JO) (the value of f), and r is also true of f(). So we can state the proposition expressed by p as®

p(f() = a(f()), 7(f()).

Every occurrence of f() denotes the same value. In a DATR theory, a path evaluated at a node
always derives the same extensional value (if one exists). But what about the alternative values for
X which Prolog might find during backtracking? DATR has a deterministic semantics, and back-
tracking never occurs. It would seem on the surface that even the set of functions representable
in ‘pure Prolog™ is a superset of those representable in DATR, but intuition may be misleading.
Backtracking, say over a proof tree, implies some type of recursive descent through choice points,
and unfolding the recursive invocations back up to some choice point, when a non-goal terminal is
reached, to try some alternative branch. The same algorithm can be stated deterministically, by
viewing ‘descending’ as moving forward in a downward direction, and ‘backing up’ as moving for-
ward in an upward direction. One need only save at all times the information required to compute
the choice points whose choices have not been exhausted, and their successors remaining to be
searched. If the successors of a particular node are computed all at once, then the list of successors
still unsearched must be stored while each is searched in turn (assuming sequential processing).
This storage, and some execution control, one gets ‘for free’ in the form of the execution stack in
a backtracking language. One can do it explicitly by maintaining lists of choice points and alter-
natives. DATR does not backtrack; but one can certainly implement backtracking algorithms in
DATR. Although Prolog’s built-in proof mechanism performs depth-first left-to-right searching,
it is possible to express in this paradigm breadth-first searching algorithms (see any introductory
textbook on Prolog programming, (e.g., Sterling and Shapiro (1986, pp. 271-273))). Similarly, it
is possible to express within DATR’s existing semantics algorithms which perform other than it’s
‘natural’ theorem-proving strategy. Both in Prolog and DATR there are penalties in time and
space complexity, but not necessarily in program length.

In the following sections we develop a scheme by which a path can be interpreted as a single
argument, and show how function composition can be modelled. We then generalise this to
interpreting paths as an argument list, and again illustrate mechanisms to implement function

1These are extra-logical operations. They allow real variables whose values can be updated.

2If X is free when p is invoked, and ¢ binds X then r must satisfy the same value for X as g does.

3This is not Prolog notation, since in Prolog () would be a term, not a function call.

4I.¢., first-order assert-, cut-, write- and read-free programs — those which do not use extra-logical operations.



composition. The appendix contains a variety of DATR theories illustrating ‘applications’ of these
techniques.

2 Nodes as function definitions; Paths as arguments

DATR nodes implement functions of a single argument, the path. We view the node as a function
and the path as a sequence of symbols, called the argument or argument list.>®

A path is a sequence of path constituents which are elements of a set FEAT. The extension
of a path at a given node is a wvalue, which is itself a sequence over a set ATOM. A DATR
theory is a finite sequence of definitional statements, which implicitly define the sets FEAT and
ATOM.” Because the theory is finite, both of these sets are also finite.® Intuitively, atoms are
terminal symbols which appear as part of a value on the RHS of == in definitional statements.
Path constituents appear inside path descriptors (angle brackets <>), but DATR allows values to
be substituted directly into path descriptors (in an evaluable path), thus any atom may also be
a member of FEAT even if 1t does not appear directly inside a path descriptor. It follows that
ATOM C FEAT.

In viewing a path as an argument, and an argument as a sequence of symbols, we needn’t
require that every atom be a possible such symbol; so we partition ATOM into an alphabet
$terminal, the set of symbols over which arguments may be constructed, and ATOM - $terminal,
about which we have nothing more to say.

Converting a value to a path (or portion of a path) is built-in in the form of evaluable paths.
Converting a path into the argument it represents involves what we call path-to-value conversion,
an operation we define for each symbol of $terminal, and recursively for sequences over this
alphabet.

While some members of FEAT are atoms, there are other symbols which appear in paths
which are distinctly not members of ATOM. We define the set of such symbols as the difference
CONTROL = FEAT — ATOM. Members of CONTROL do not have the property of being
convertible into values.

We begin by defining path-to-value conversion for a sequence of symbols over $terminal.

2.1 Path-to-value conversion

In order to define path-to-value conversion, we need an enumeration of the atoms in the alphabet
$terminal. We begin by defining function PvO, which performs path-to-value conversion for the
alphabet {a, b, ¢, d}.

Pv0: <a> == a
<b> ==
<¢> == ¢
<d> ==

Some theorems of Pv0 are:

5In fact, in this paper we use the terms ‘node’ and ‘function’ synonymously, and the terms ‘path’ and ‘argument
list’ synonymously, unless context indicates otherwise.

6To avoid confusion, we adopt the following terminological conventions: we refer to <p; p2> as a path extension
of <p1>. Where <p1> is the longest defined prefix of <p; p2>, we refer to ps as a defeult extension of <p1>. The
‘extension of a path’ (its value) we refer to as its extensional value, or simply its value.

7The ‘usual’ way one writes a DATR. theory is in fact the reverse: one has a lexical theory in which these sets
are explicit, and the DATR representation follows.

8Every DATR theory is defined over finite sets FEAT and ATOM; so far we have only given them names. The
set of inferences derivable from the theories we will define remains infinite, as it is for every DATR theory.



Pv0: <a> = a
<b> = b
<¢> = ¢
<d> = d

<d a b ¢c> = d.

PvO0 can be stated as a generalisation over some set of atoms, which we define as a DATR, variable.’
We define the variable $terminal and write PvO as follows:

#vars $terminal: a b ¢ d.

Pv0: <$terminal> = $terminal.

The set of theorems remains the same, as the variable notation is merely a shorthand for the
original definition.

Pv0 maps any sequence of symbols over $terminal into the value of the first one, which is
fine for truncation. In order to convert a path sequence into a list of values, we give a recursive
definition, in Pv1:1?

Pvi:<> == ()
<$terminal> == $terminal <>.

The recursive definition of Pv1 is: the value of the empty path is the empty list; and the value of
any other path is a list whose first symbol 1s the value of the first symbol of the path, appended
with the value of Pv1 of the rest of the path. This lets us derive the following theorems:

Pvl: <a> = a
<b> = b
<abacd>=abacd.

2.2 The path as a single argument

A path interpreted as an argument has the format < 1 5 ... z, ;> where

x; 18 a symbol over the alphabet $terminal; and

; 1s the argument terminator.

The argument is a list structure, and the terminator we have introduced is neither part of the
argument nor a member of $terminal (the domain of the theory). Under the path-as-argument
interpretation, the argument must be terminated, permitting a distinction to be drawn between
a path representing an argument which is a nil list (<;>), and the empty path (<>), for which we
do not define a semantics — we do not consider the empty path to be an ‘argument’.'!

The primitive operations on lists are familiar: adding to the list at the front and the end, and
splitting it into its first element and the rest (i.e., its head and tail). The first operation is trivial:
in an evaluable path, symbols placed before an argument’s value construct a new argument with
these symbols at the front, while any symbols placed after its value are added at the end. Suppose
that node A is to pass node B its argument with atom x appended to the end. First we define a
path-to-value conversion which strips the terminator. We call this Pv_to_;:

9 A DATR variable is not a ‘variable’ which takes on different values. Rather, it is a shorthand for listing a fixed
set of values — a macro substitution. (Jenkins 1990)
10Tn this paper we are using a notation for lists differing slightly from that used in current definitions of DATR:
we omit parentheses around non-nil lists. We do, however, use () to represent a nil list.
11 This is analogous to the distinction in some programming languages between £() and £([]) — these being a
function call with no arguments, and one argument (a nil list), respectively.



Pv_to_;:

<> == ()
<$terminal> == $terminal <>
<> == ’invalid symbol’.

To create a new argument with x appended we append x to the value of the original argument:
Al: <> == B:<Pv_to_; x ;>.

Similarly, to create an argument list with x inserted at the front of the original argument, we
place it before the value of the list:

A2: <> == B:<x Pv_to_; ;>.

Of course inserting at the front of the argument could have been done directly, simply by defining
A: <> == B:<x>.!?

The last two extraction operations also require explicit path-to-value conversion on the appro-
priate atom or atoms. First returns the first atom in the argument; a nil list does not have a
first element:

First:
<$terminal> == $terminal
<;> == ’nil 1list’
<> == ’missing terminator’.

The tail of the argument we define as path-to-value conversion of all symbols following the first,
if there is one, and nil if the list is nil.'® If the list is not nil, the result is computed as Pv_to_;
on list with the first element removed:

Rest:
<> == ()
<$terminal> == Pv_to_;:<>
<> == ’missing terminator’.

Some typical theorems of First and Rest are:

First: <abcd ;> = a.

Rest: <;> = ()
<a ;> = ()
<ab ;>=b

5>

<abcd =b c d.

First and Rest can be applied to the results of each other’s (or their own) evaluation — indeed,
this is the primary reason for defining them as we have. For example, the third element of an
argument (assuming there is one), and the tail of the tail could be extracted by Third and Rest2,
respectively, with the following definitions:

Third: <> == First:<Rest:<Rest ;> ;>.
Rest2:<> == Rest:<Rest ;>.

12However when we interpret the path as a list of arguments, explicit recreation will become necessary.
13The semantics of Rest given here are probably in need of slight revision — as a matter of consistency, if First
requires a non-nil argument, so should Rest. We will not pursue this further.



yielding the following theorems:!'*
Third: <abcdaa;>=c.
Rest2: <abcdaa;>=cda a.

2.3 Nodes as functions of more than one argument; Paths as argument
lists

In order to define nodes corresponding to functions of more than one argument, we need a mech-
anism for interpreting a single sequence of path constituents as a sequence of separate arguments,
and of converting path constituents comprising a single argument into the value it represents.

A path interpreted as an argument list has the format < Arg;, ; Args ; ... ; Arg, ;>
where

Arg; is a sequence of symbols over the alphabet $terminal; and

; 1s the argument terminator.
We will define nodes which when queried on a path evaluate to one or other of the arguments.*®
It will be convenient to define a path-to-value conversion operation which performs path-to-value
conversion on an entire argument list. This simply requires converting terminators as well as
symbols in $terminal, a modification of Pv1 which we call Pv:

Pv: <> == ()
<> == <>
<$terminal> == $terminal <>.

Although Pv permits theorems such as the following:

Pv: <ab; cd>=ab;cd
<ab;cd; ;>=ab; cd;.

note that the first one is not a well formed argument list as the last argument is not terminated.
Pv is an underlying primitive — called primarily by the primitives we now define.
2.3.1 Extracting arguments

We begin with Argl, which returns the first ;-terminated argument in the argument list. If ; is
the first symbol, a nil list is returned. Again, the terminator itself is removed:

Argl:
<> == 0
<$terminal> == $terminal <>
<> == ’invalid symbol’.

A typical theorem is Argl:<a b c ; b b ; d d ;> = a b c. Next we define function Pop_arg,
which returns the argument list minus the first argument. The argument list must contain at
least one argument, and which must be terminated:

141t is crucial that arguments be terminated, as Pv_to_; (and hence Rest) map the terminator and any path
extension of it to the nil list. When a path-to-value conversion is performed inside an evaluable path, the semantics
of DATR cause the default extension to be appended to the constructed path. For example, if the constructed
argument in Rest2 were not terminated (7.e., Rest2:<> == Rest:<Rest>.) then resulting theorem would have been
Rest2: <abcdaaj;>=cdaaabcdaa.

15The default extension may add more arguments as the argument list is passed down, but a function which
requires n arguments and accesses only the first n arguments will not be affected by this surfeit.



Pop_arg:

<;> == Pv:<>
<$terminal> == <>
<> == ’invalid symbol’.

A typical theorem is Pop_arg:<a b c ; bb ; dd ;>=bb ; dd ;. We combine these two
primitives to define Arg2, which evaluates to the second argument in an argument list (which may
be the nil list):

Arg2: <> == Argl:<Pop_arg>.

The derivation of theorem Arg2:<a b ¢ ; bb ; dd ;> =b b. is:

Initial query Derived value Justification

Arg2:<aa ; bb ; dd ;> Argl:<Pop.arg:<a a ; bb ; dd ;> | Arg2:<> == Argl:<Pop.arg>

aa;bb;dd;>

= Argl:<bb ; dd ; Pop_arg:<a a ; bb ; dd ;>
aa;bb;dd;> =bb;dd;
= bb Argl definition

Derivation of Arg2:<a a ; bb ; dd ;>="5bb.

Note the reoccurrence of the incoming path, which is effectively ignored. This duplication poses no
problems for the primitives so far defined, but could have adverse effects if unexpected arguments
are accessed, since it effectively adds arguments to the argument list. We avoid this problem by
introducing an argument list terminator.

2.3.2 Argument list termination

Although Arg2 is not ‘confused’ by the presence of ‘extra’ trailing arguments due to DATR’s
default extension inference rule'® it is nonetheless convenient to include the notion of an argument
list terminator, which we notate !. This simplifies some of the argument manipulation primitives
and allows certain error trapping — for example in the case of a missing argument. Judicious
insertion of ! at the end of a constructed evaluable path will, upon instantiation, separate the
nominal argument list from the default extension. Primitive operations treat ! just as Argl treats
; — by mapping it and arbitrary extensions to an empty list.'”

To illustrate, suppose we want to define the constant function A by A:<Arg;>= B:<a b ¢>.
That is, the value of A invoked on any argument is the value of B invoked on the constant
argument a b ¢ ;. Consider the following definition of A:

A: <> == B:<a b ¢ ;>.

If A is called with argument <w y z ;> B will be called with two arguments: <a b ¢ ; w y z ;>.
So the function defined by & is A(Argy) = B(<a b ¢>, Argy); that is, B is a function of two
arguments, the first of which is always the (constant) list (a b ¢). The presence of extraneous
arguments is of no consequence if B is monadic. On the other hand, if B is polyadic then the result
from B is unlikely to be correct, and the definition of A is definitely incorrect. For this reason we
append ! to the argument list, to delimit the nominal argument list from the default extension.
Adopting the convention that everything following ! be ignored, the correct definition of A is:

A: <> == B:<a b c ; I>.

16 When an evaluable path is instantiated, the default extension is appended to the constructed value.

17The argument terminator plays the syntactic role of terminating an argument and of delimiting the argument
from a default extension. Gibbon (1990) uses the mechanism of delimiting the default extension from the query
path by an extra-descriptive atom, which is mapped to () to effectively discard the default extension.



There is nothing to prevent B from ‘accessing’ the path suffix beginning with !; however if B uses
only the primitives we have defined so far, then it will ‘see’ only the argument a b «c.

In the case of monadic functions, the presence of ! is optional. If a function requires n (a
fixed number) of arguments and the first n arguments are those required, then a non-!-terminated
default extension will never be referenced. On the other hand, the insertion of ! keeps the
primitives ‘honest’.1®

In the case of polyadic functions, the argument list terminator is required to delimit a variable-
length argument list from the default extension (as we shall see below).

In view of the distinction between argument lists and ‘invisible’” extensions, we refine Pv to its
final form, where it produces the path-to-value conversion of an entire argument list, discarding
the argument list terminator and the default extension:

Pv: <> == ()
<1> == () % remove trailing default extension.
<> == <>
<$terminal> == $terminal <>.

In summary: the instantiation of an evaluable path <Arglist> is <Arglist {de}> where {de} is
the default extension. The default extension is the entire path on which the node was queried
(the incoming path), minus whatever prefix was matched on the LHS of ==. If the constructed
(or outgoing) argument list is terminated, i.e., <Arglist !> then the outgoing path instantiates as
<Arglist ' {de}> where the constructed argument list does not include arguments due to append-
ing of the default extension, and the default extension is invisible to the argument manipulation
primitives.

2.4 Chopping

In the previous section we discussed how to distinguish the default extension from intended
arguments, and gave a cursory definition of ‘default extension’. When the incoming path (the
path on which a node is queried) is part of an outgoing path (i.e., the path constructed in a
further inheritance specification) there is some control over the form of the incoming path used in
the instantiation of the outgoing path: it can either include the prefix which matched the LHS of
== (i.e., be the entire incoming argument list) or can have the matched prefix removed. We call
this prefix removal chopping. Chopping, which i1s implicit in the semantics of DATR, occurs often
in the applications below. As it can be confusing, we hope this review of its effect will render
them easier to understand.

To extract an argument from the argument list, an extractor primitive is invoked on a path,;
to form an appropriate path we use chopping to (a) remove atoms which are not members of
$terminal, (which must not appear in paths on which the argument manipulation primitives
operate); and (b) to shift arguments. We make extensive use of appropriate chopping in the
example theories which comprise later sections of this paper.

Consider nodes F; below, which return the path-to-value conversion of their argument list,
passed to Pv:

F1:<a b> == Pv.

F2:<a b> == Pv:<>.
F3:<a b> == Pv:<c>.
F4:<a b ¢ ;> == Pv:<>.

18In the event that an argument terminator (;) is erroneously omitted, the presence of ! can provoke early
feedback that something is amiss.



Evaluating path <a b ¢ ;> at each F; yields the following theorems:

Fl: <abc ;>=abc ;.
F2: <abc ;>=c¢ ;.
F3: <abc;>=cc ;.
F4: <abc ;> =

At F1, the entire incoming path is passed on to Pv, including the matched prefix. At F2, the
prefix which matched the LHS of == (<a b>) has been removed (or chopped) from the path. F3
is an example of chopping with replacement — the matched prefix <a b> is chopped and replaced
with c. At F4 the matched prefix, which is chopped, includes the argument terminator, hence the
argument list itself contains one fewer argument, and all of the arguments have been shifted — for
example,F4:<abc ; bbb ; ccc;>=Pvi<bbb; ccc ;> Thus Arg2at F&4is Argl at Pv.

Chopping is vacuous when the matched prefix is the empty path. For example, definitions F5a
and F5b are equivalent:

Fba: <> == Arg2.
FBb: <> == Arg2:<>.

3 Control structures

In this section we illustrate how various types of control structures can be simulated in DATR.

3.1 CASE statements

The cASE statement is the most obvious control structure to represent in DATR because it
corresponds directly to the standard inference mechanism: the statement executed is the one
with the longest leading prefix which matches the query path. If the defined prefixes are all of
the same length, this amounts to selecting the one which matches the prefix of the path of that
length.

J: <> == <case>
<case red> == Casel:<>
<case blue> == Case2:<>
<case green> == Case3:<>.
Casel:<> == red Pv.
Case2:<> == blue Pv.
Case3:<> == green Pv.

Here each case is defined in terms of a different node. If node J is called on an argument prefixed
with a CONTROL sequence (red, blue, or green), then the case definition will be invoked on
the argument itself. Consider the first line of the derivations below which indicate that in each
case the definition is computed on the original argument (with the CONTROL prefix chopped):

J:<red abcd ;> =Casel:<abcd;>=...
J:<blue a b cd ;> = Case2:<abcd ;> = ...
J:<green a b ¢ d ;> = Case3:<abcd ;>= ...

10



CASE statements become more interesting when the selector is a value resulting from some
function of the input. In the simple example below, G returns a case selector label, and J defines
its output in terms of the selector provided by G:

G: <> == green
<a>
<a b>
<b>
<c ¢>

red
== blue
blue

red.

J: <> <case G>
<case red> == Casel:<>
Case2:<>

<case green> == Case3:<>.

<case blue>

Some theorems of this theory are:

J: <> = green
<a ;> = red a ;
<a =red a ad ;
<a blue a b d ;
<c green ¢ a b ;.

>

>

o T o -

[o gl o T o 7

v V V
1}

>

The derivation of J:<a b 4 ;> =

blue a b d

>

; Is:

Initial query

Derived value

Justification

J:kabd ;> =

J:<case G:<a b d ;>abd ;>
J:<case blue a b 4 ;>
Case2:<a b d ;>

blue Pv:<a b d ;>

J: <> <case G>

G:<a b> == blue

J:<case blue Cage2:<>
Cage2:<> == blue Pv

= blue abd ; Pv:i<abd ;>=abd ;

3.2 IF-THEN-ELSE Structures

The 1F statement is simply a CASE statement with two cases, and can be locally defined similarly
Node G in the last example computed some non-boolean function. Node Cond, below, is similar
in form to node G, but computes a boolean function:

Cond:<> == true
<a> == false
<a b> == true
<b> == false
<c ¢> == false.
K: <> == <if Cond>
<if true> == Casel:<>
<if false> == Case2:<>.

Here the selectors are locally defined prefixes <if true> and <if false>. These selectors can be
collected at a central node, which takes a boolean argument and returns the selector.

If: <true>

<false>

== then

else.

11



K: <> == <If:<Condi1>>
<then> == Then_fn:<>
<else> == Else_fn:<>.

Since then and else must be unique prefixes at node K, multiple IF-THEN-ELSE conditions require
unique prefixes:

K2: <> == <1 If:<Condi>>

<1 then> == <2 If:<Cond2:<>>>
<2 then> == Then_fn1:<> % Condl & Cond2
<2 else> == Then_fn2:<> % Condl & Not Cond2
<1 else> == <3 If:<Cond3:<>>>
<3 then> == Then_fn3:<> % Not Condil & Cond3
<3 else> == Then_fn4:<>. % Not Condil & Not Cond3

Here we assume that all of the Cond; nodes return boolean values of either true or false. Note
that chopping at all statements is required to remove the CONTROL prefix.'® For example, the
path on which Then_fn3 is invoked on the original path on which K2 was invoked.

19 Chopping is not performed at the default statement, where it would be vacuous.

12



4 Applications

4.1 Decimal arithmetic

Having discussed how to interpret and manipulate paths as argument lists, we now give our first
example, decimal arithmetic. We begin by defining a look-up table of decimal digit addition for
every pair of decimal digits and a carry of 0 or 1. The set of possible carries is C¢' = {0,1}, and
the set of digits is D = {0,1,2,...,9}. A complete table would have C' x D x D entries, but
then every triple (e, dp, d1) would have a matching entry for (¢, dy, dg). In order to minimise the
size of the table, we store only one of each such pair, and use look-up failure as a flag indicating
that the result is to be found by swapping the digits (and looking again). Node Dadd imple-
ments such a table, where Dadd:<carry ; digit0 ; digitl ;> = new_carry ; remainder ;:

Dadd:
<>

<0
<0
<0

<0

<1
<1
<1

<0
<0
<0

<0

<1
<1

== < Argl ; Arg3 ; Arg2 ;> % swap digits and look again

3050 5>==0;0;
3051 5>==0;
305 25>==0; 23

[y

50 ;9 ;:>==0; 9 ;
)o) )>==o)1)
)0)1;>==o) 3
)o) ;>==o)3)

Accessing the table in Dadd is done through nodes Digit and Carry:
Digit: <> == Arg2:<Dadd>.

Carry: <> == Argl:<Dadd>.

The digit resulting from the addition of two digits plus a previous carry is the value of query
Digit:<old.carry ; digit ; digit ;>, while the new carry resulting from the same addition
is the value of Carry:<old carry ; digit ; digit ;>.

Some theorems of Dadd, Digit and Carry are:

Digit: <0
Carry: <0

;9 3 3 3> =2,
;9 ;3 3 ;> 1.
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Notice that Digit and Carry do not append an argument list terminator to the result from Dadd
before passing it to Arg2. This is because the result returned by Dadd is not simply a sequence of
$terminals, but rather an argument list (i.e., the values are ;-terminated) ready for processing
by the argument extractors. Arg2 is monadic, so any default extension that happens to be trailing
will have no effect.

We need one more tool before defining addition: First_dig returns the first symbol in an
argument, or 0 if the argument is the empty list. This corresponds to the case where one of the
numbers being added is shorter than the other, and we want to ‘pad’ the shorter one with zeros
to make their lengths equal. First dig:<xg 1 ... &, ;> evaluates to xg, if the list is non empty,
or 0 if it is:

First_dig:
<;>==0
<> == First.

We define X +Y recursively as follows: Let X and Y be the sequences of digits @, 2,_1...2¢ and
YmYm—1 - - - Yo, respectively, and let & = max(n, m). Then X 4+ Y is the sequence of digits

cht1 (cx + 2 +yr) (chor +2p-1+ yp—1) ... (co+ 2o+ o)

where

x; is the ¢-th digit of X, or 0 if i > n;

y; 1s the i-th digit of Y, or 0 if ¢ > m; and

¢; is the carry from column (¢ — 1), and ¢ = 0.
Our definition of addition requires the numbers to be added be entered in reverse order, so the
sum of 123 4+ 456 is the value of query RevAdd:<0 ; 3 2 1 ; 6 5 4 ;> where the leading zero
is the initial carry, c¢p.

We recursively compute ¢j41, the leftmost digit of the sum, and compute the digits one to the
right as recursion unfolds.

RevAdd:
<0 ; 5 >==0) % X and Y exhausted; leftmost digit is zero.
<1 ; ; ;>==1 % X and Y exhausted; leftmost digit is a carry.

<> == RevAdd:<Carry:<Argl ; First_dig:<Arg2 ;> ; First_dig:<Arg3 ;> ; > ;
Rest:<Arg2 ;> ;
Rest:<Arg3 ;> ;
>
Digit:<Argl ; First_dig:<Arg2 ;> ; First_dig:<Arg3 ;> ; >.

Some theorems of this theory are:

RevAdd: <0 ;
<0 ;
<0 ;
<0 ;
<0 ;
<0 ;
<0 ;
<0 ;
<0 ;

002

O -
w O O
O e
-

A\

1}

(@

© 00 © ko~
oW

= O, 0 ©NNRO
-
N W o= -

W WO
O oo 01w
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In order to permit X and Y to be input in their natural order, we introduce the primitive
Reverse which returns the reverse of its (single) argument (discarding, as usual, the terminator
and arbitrary extensions which follow it); e.g., Reverse:< 1 2 3 4 ;> = 4 3 2 1.:

Reverse:
<;> == ()
<$terminal> == <> $terminal.

Now we define an addition interface, Add, which constructs an argument for RevAdd with the
numbers reversed, and supplies the initial carry cp:

Add: <> == RevAdd:<0 ; Reverse:<Argl ;> ; Reverse:<Arg2:<> ;> ; ! >,

Some theorems of Add are:

Add: <0 ; 0 ;> =0
<1 ;1 ;>=2
<12;73;:;>=85
<99 ;34 ;>=133
<186 ;320 ;>=50 8.

4.2 Backtracking

As noted in the introduction, backtracking algorithms can be implemented deterministically.?®
The backtracking control built-in in backtracking languages, i.e., automatic stacking and restoring
of execution contexts, is also provided in DATR. First, note that in a list or evaluable path each
inheritance specification is evaluated independently.

A: <> == C D.

B: <> == <C D>
<a> ==
<b> ==

C: <> == a.

D: <> ==

When A:<x> is evaluated, C:<x> and D:<x> are evaluated independently (and possibly in parallel).
Any context change effected at C has no effect on evaluation at D, or on forward evaluation at
A, if there is any. Similarly, evaluation of B:<x> involves independent evaluation of C:<x> and
D:<x>, and further evaluation at B is unaffected by context changes at € or D.?! This is completely
equivalent to context saving and restoration upon procedure invocation in procedural languages
(and Prolog as well).

We can exploit this context saving and restoration to implement backtracking. We begin by
illustrating tree traversal.

20Prolog, as well, searches deterministically. Clauses are tried in their order of enumeration, and conjuncts and
disjuncts are also evaluated in this order.
21Evans et al. (1991) take advantage of this fact to show how prioritised multiple inheritance could be recon-

structed in DATR.
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4.2.1 Tree traversal

We define the powerset tree of order n to be the tree having 2" leaves such that the label of an
edge is 0 or 1, the label on a node is its parent’s label appended with the label on the edge from
its parent to itself, and every non-terminal node having two children, one with each possible edge
label. The powerset tree of order 2, with the internal node labels omitted, is as shown below:

An argument list to represent a node in the tree is a pair < distance_toleaf ; mnode_label ; >,
where

distance_to_leaf is a sequence of n a’s, where n 1s the distance to the leaves; and

node_label is the label on the node.
Expanded out, such an argument has the format: < a, an—1 ... a1 ; bg by ... by ;>. Now,
having incorporated the edge label from its parent into the label on the node itself, we can omit
the edge labels and still categorise completely the tree. Using this notation, the powerset tree of

order 3 is:

<; 000;> <; 001;> <; 010;> <; 011;> <; 100;> <; 101;> <; 110;> <; 111;>

A simple algorithm to traverse the powerset tree and collect the labels on the terminals is shown in
Powerset1, assuming the definition $terminal = {1,0,a}.?2 Powersetl:<a a a ; ;> represents
the root node of the powerset tree of order 3, above, where the first argument, distance_to_leaf,
is a list of 3 a’s, and node_label is the empty list, the label on the root. The leftmost preterminal
node (on the left branch) would be represented by Powerseti:<a ; 0 0 ;> where the distance
to a leaf is 1 and the node label is 0 0. The definition of Powerset1 is:

Powersetl:
<;> == Arg?2 % distance to leaf = 0;
% return label.
<a> == Powersetl:<Argl:<> ; Arg2:<> 0 ;> % descend O-labelled edge;

s

Powerset1:<Argl:<> ; Arg2:<> 1 ;>.

left branch.

descend 1-labelled edge;
right branch.

22 An interesting point about Powerset1 is that the symbols 0 and 1 are members of $terminal, although they do
not appear to appear as values. However, they do appear as values in Pv, by virtue of being enumerated as members
of $terminal. An interesting question is whether the declaration of $terminal could be generated automatically
by a compiler, and this case indicates that distinguishing $terminal from CONTROL is not straightforward.
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The theorem

Powersetl:<a a a ; ;> =
ooo0,001,010,0114,100, 101,110, 111.

enumerates the powerset of order 3, as shown in the diagram above (which is effectively a ‘call tree’
for the derivation of the theorem). The first recursive call appends edge label 0 thus descending
the left branch; the second recursive call appends edge label 1 thus descending the right branch. In
each recursive call the first argument of the constructed argument list is distance_to_leaf (Argl)
chopped, thus decrementing the distance to the leaves.

A shorter version of this algorithm can be written using a minor ‘trick’: Pv does a path-to-
value conversion of an argument list, and is oblivious to the presence or absence of argument
terminators (which are required by the argument extractors Argl, Arg2, etc...). By leaving the
last argument unterminated, and terminating instead the argument list, appending to the last
argument does not involve reconstructing the argument list explicitly. Powerset takes advantage
of this fact, and also uses the implicit node notation (where node self-reference does not require
the node to be named explicitly).?® Here the root node is represented by Powerset:<a a a ;>,
while the same preterminal as above is represented as Powerset:<a ; 0 0>. The definition of
Powerset is:

Powerset:
<;> == Pv:<>
<a> == <Pv:<> 0 !> , <Pv:<> 1 !>,

The initial invocation now requires the final argument to be non-;-terminated, which on the initial
call is a nil list, anyway. Theorems now look like this:

Powerset:<a a a ;> =
coo0,00t1,010,011,100,101,110,111.

4.2.2 Conditional traversal (backtracking)

Powerset, as presented above, does a complete traversal of a powerset tree and collects the labels
from all of the terminals. If the tree is viewed as a search tree, and the terminals as solutions,
this amounts to finding all possible solutions. Now suppose that we have some definition of goal
satisfaction, we want to test terminals as possible solutions, and we are interested in the first
terminal which satisfies the definition of goal.

Powerset does a recursive descent on the left branch followed by a recursive descent on the
right branch, its only ‘decision-making’ being to terminate recursion at terminal nodes, or to
recurse at non-terminal nodes. By inserting a test between the two recursive descents, we can
decide whether a solution has been found in the left-subtree, or whether the right subtree must
also be searched. Instead of simply collecting the labels of the leaves, now we will test them.

To illustrate the searching technique we choose a particularly simple definition of goal satis-
faction: a label will be a solution if 1t begins with the sequence 1 0 1. The value of a satisfying
terminal node could be any function of the label, but for simplicity we return the label itself. In
the case of non-goal terminals, we return an empty list:

Test: <1 0 1> == Pv % success
<> == (). % failure

Notice that with this particular definition, and a search over the powerset tree, a goal state will
always be a child of the right-subtree of the root. Therefore depth-first left-to-right searching will

23 ].e., A:<pathl> == <A:<path2>>. is equivalent to A:<pathl> == <<path2>>.
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visit a number of nodes growing exponentially with the depth of the tree before finding a solution.

Powertest:< a a a a ... a ;> represents the root node of the search tree, as before. The
definition of Powertest is: 2%
Powertest:
<;> == Test:<> % leaf node.
<a> == <if Powertest:<Pv:<> 0 !> ! > % search left subtree.
<if !> == Powertest:<Pv:<> 1 !> % left branch result = (),
% so search right subtree.
<if> == Pv:<>. % NPE: left branch result /= ().

We again make use of a non-;-terminated final argument (though the argument list is !-terminat-
ed).? The terminal nodes are recognised, as before, by an empty distance list. The control logic
is as follows: When the recursive call to search the left subtree is made, a CONTROL prefix is
added, and the default extension will be inserted following !. If the left branch does not contain a
solution, then Powertest returns a nil list, and the instantiated evaluable path will be <if () !>,
which matches the prefix <if !> since the empty list ‘disappears’. What remains after chopping
is the default extension from case <a>, which is the entire argument list. If a solution was found,
the result from Test lies between ‘<if’ and ‘!>’, so Pv picks off the result (up to !), which may
be an argument list, or, as in this case, a sequence of symbols over $terminal. Some theorems
of Powertest are:

Powertest: <a ;> = ()

<a a ;> O
<aaaj;>=101
<aaaaj;>»>=1010
<aaaaaaj;>=101000.

4.3 Polyadic Functions

We noted that functions need not be monadic and that polyadic function are possible. One way
for a function to take a variable number of arguments is to use a mechanism for counting the
number of arguments in the argument list.? Monadic functions only reference arguments which
are anticipated, hence the argument list terminator (!) is optional. With polyadic functions the
I terminator is obligatory to mark the end of the argument list. This reduces the problem of
determining the number of arguments to counting the number of argument terminators in a single
pseudo-argument, the argument list. This is a trivial exercise and a nice application for decimal
arithmetic. Argc returns the number of arguments in its argument list.

Argc:
<;> == Add:<1 ; <> ;>
<$terminal> == <>
<> ==
<> == ’missing ! or invalid symbol’.

24This definition makes use of negative path extension (NPE) (Evans et al. 1991, Moser 1992). Briefly, <if !>
will be matched when the search of the left subtree evaluated to the empty list, while <if> will be matched if the
search evaluated to any other value.

251f Test required the missing terminator to be present, we would reconstruct it at the terminal node (case <;>)
before passing it to Test.

26 Another way to implement polyadic functions is to process the arguments on at a time, chopping them off as
they are processed.
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A few typical theorems of Argc are:

Argc: <!> =0
<; !I>=1
<125 1>=1
<12;32;12;45; !>=4
<; I ; !> =10.

LI I L I T T |

F 1s an example of a polyadic function which takes any number of arguments, given in the form

F:<Argqy ; Args ; ... Arg, ; '>. Note that the argument list terminator is not optional:
F: <> == <case Argc ;>
<case 0 ;> == ’0 args’
<case 1 ;> == ’1 arg:’ Pv:<>
<case 2 ;> == ’2 args:’ Pv:<>
<case> == "the’ Argl:<> ’args are:’ Pv:<Pop_arg:<> !>. J NPE

Some theorems of F are:

F: <!> =0 args
<123 ; !'>=1arg: 123 ;
<123 ;456 ; !>=2args: 123 ; 456 ;
<12 ;3456 ;67;!>=
the 3 args are: 12 ; 345 ; 67 ;
<12 ;34;56,;78;!>=
the 4 args are: 1 2 ; 34 ; 56 ;
<1 ;2;3;4;5,;6,;7;8;9;1 1 ;1
the 1 2 args are:
1;2;3;4,;5,;6;7;8;9;10;11;12;.

The default statement counts the number of arguments, and adds a prefix to the argument list:
<case> a CONTROL prefix?” and a new argument (terminated by ;) indicating the number of
arguments in the original path. The first three <case> selector labels match precisely the added
prefix, so chopping the prefix yields the original path, at which point the appropriate definition
can follow. In the NPE case, the prefix inserted by Arge corresponds to Argi (after chopping the
CONTROL prefix), and all of the original arguments have had their argument index incremented.

4.4 Loops
4.4.1 Definite iteration

For is a polyadic node which simulates definite iteration (counted loops). We say that For
simulates iteration because For:<N ; !> evaluates to the sequence of values returned by node
Body invoked on the single argument ¢, ¢ = 0, 1, ..., N-1; z.e.,

For:<l ; !> = Body:<0 ;> ; Body:<1 ;> ; ... Body:<N-1 ;> ;,

The initial call supplies just one argument — the number of iterations N.

In the definition of For we introduce a new technique of ‘naming the arguments’. This is done
by giving a ‘new name’ to the argument extraction primitive, by defining a node whose definition
is precisely that of the argument extractor. The definition N:<> == Arg2, for example, permits
the second argument to be referenced by the name N, because they have the same value for any
path. The two named arguments here are N, the number of iterations, and I, the loop counter:

27Recall that CONTROL symbols are not convertible into values, so cannot be passed as members of the argument
list to any argument manipulation primitive.
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I:<>==Argil.

N:<>==Arg2.

For: <> == <argc Argc ;>
<argc 1 ;> == For:<0 ;>
<argc 2 ;> == <If:<Equal:<>>>
<then> == () % stop

<else> == Body:<I:<> ; !>

>

For:< Add:<1 ; I:<> ; > ; N:<> ; 1>,

The initial invocation supplies just one argument, N, and the argument list must be !-terminated,
as the argument list is immediately passed to Arge to count the number of argument terminators
(;) preceding the argument list terminator. On the initial call this is case <arge 1>, where
For introduces a new argument, I, with initial value 0, and N become the second argument
(carried over as the default extension).?® Thus the argument list <N ; !> has been changed to
<I ; N ; !>. On subsequent calls, Argc evaluates to 2, and the argument names I and N can
be used (on the initial call ¥ was the first argument, but no direct access was required). Selector
<case 2> passes the argument list to Equal, a monadic function which compares the first two
arguments for equality.?® If I = N, iteration stops (recursion terminates). Otherwise, the value
of the loop is a sequence consisting of the value of Body:<I:<> ; !> followed by the value of For
with I incremented and N copied over.>* Any node Body taking a single argument is suitable; the
following uses addition to compute X + X, for a single argument X:

Body:<> == Add:<Argl ; Argl ;>.

Some theorems using this particular Body are:

For: <0 ; '> = ()
<1 ; !> =0 ;
<2 ; I>=0; 2 ;
<4 ; 1>=0;2; 4 ; 6 ;
<14;!'>=0,;2;4;6;8;10;12;14;16,;18;

Although Body, the body of the simulated loop, is invoked on the value of the loop control
variable, in theory it could be passed the argument list or some function of the arguments. In
the next section we illustrate how to invoke Body on successive elements of an argument list of
arbitrary length, and in the appendix the computation of Pascal’s triangle uses a variation on
this theme to pass the body an entire argument list of arbitrary length.

4.4.2 Foreach iteration

Another type of iteration is the Foreach loop. Here the ‘argument’ is an argument list. Foreach
returns an argument list, whose elements are the result of evaluating Body on each argument in
the original argument list, z.e.:

28Tn modern programming methodology, the loop control variable has a scope local to the loop (i.e., should be
both undefined and inaccessible outside the loop). In the best case, the loop creates the variable itself with no
intervention on the part of the programmer. This is one motivation for introducing I in this fashion.

29The node Equal is defined in Moser (1992). It takes two arguments, and returns true is they are equal, false
otherwise.

30Note that the control prefixes <then> and <else> are chopped, and the constructed argument lists are termi-
nated, to delimit them from the default extension.
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Foreach:<x; ; 2 ; ... ; zn ; '> = Body:<x;> ; Body:<zy> ; ... ; Body:<z,> ;

The value of Foreach on an argument list is a sequence consisting of the value of Body on the
first argument, followed by the value of Foreach on the rest of the argument list:

Foreach:
<> == ()
<> == Body:<Argl ; !> ; <Pop_arg:<> !>,

Some theorems, assuming the same Body as above, are:

Foreach: <!> = ()
<27 ; !'>=54;
<12;7 ;38; !'>=24;14,;7E8,;
<1 ;2 ;3; !>=2,;4,;6;.

5 Prolog in DATR

In the introduction we alluded to the possibility that any pure Prolog program could be translated
into DATR. Indeed, this is our conjecture, and we suspect that the DATR, tools required to do
so consist of no more than those developed in Moser (1992) and in this paper. The obvious way
to go about this is to prove a complexity result for DATR which places it in the same class as
Prolog — a topic of continuing research.
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File: args.dtr

Purpose: Tools for manipulating paths as argument lists.
Authors: Lionel Moser, December 1991.

Documentation: HELP *datr

Related Files: 1ib datr

Version: 4.00

Copyright (c) University of Sussex 1991. All rights reserved.
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Preliminaries:

A1l of the node definitions assume that variable $terminal has already
been set. $terminal is the set of atoms in a particular alphabet (or
descriptive domain).

E.g.,
#vars $terminal: 0 1 23456789 & 1| ~.
#load ’args.dtr’.

This file provides tools for manipulating a path as an argument list,
where the symbols in the descriptive domain of the theory are the
alphabet over which arguments’ values are defined.

Tools included in this kit support argument extraction, manipulation,
and path-to-value conversion (Pv).

A path interpreted as an argument list has the format

<Argl ; Arg2 ; ... Argn ; ! Default_extn>
where
Argi - 1is a sequence of symbols over the alphabet $terminal;

; - 1s the argument terminator;
! - 1s the argument list terminator.

Miscellaneous

1. Many of these primitives contain identical definitions, which could

A

be collected at two or three nodes. Indeed, they are mostly variations

on Argl and Pv, with exceptions (ie, defaults with exceptions).
However for debugging reasons it is more convenient to have them
separate. Since the error message is defined for the default (<>),
it would come from the inherited-from primitive. In order to get a

message back from the inheriting primitive global inheritance would be

required.
2. No use is made of global inheritance, as this could interfere
with the application.
PRIMITIVE DEFINITIONS

Argl returns the first ;-terminated argument. The ; terminator is removed.
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% (It’s easy to replace if it’s needed.)
% If ; is the first symbol, a nil list is returned.

Argl: <> == ’x*xx ERROR: (Argl) Unknown symbol’
<> == 0
<$terminal> == ($terminal <>).

% Arg2 returns the second ;-terminated argument. The ; terminator is removed.
% If ; is the first symbol of the second arg, a nil list is returned.

% At least two arguments must be present in the arg list.

Arg2: <> == Argl:<Pop_arg>.

% Arg3 returns the third ;-terminated argument. The ; terminator is removed.
% If ; is the first symbol, a nil list is returned.

% At least three arguments must be present in the arg list.

Arg3: <> == Argl:<Pop_arg:<Pop_arg>>.

% First returns the first symbol in the first argument.
% The argument must contain at least one symbol.

First: <> == ’#**x ERROR: (First) Invalid argument’
<;> == ’xxxx ERROR: (First) Nil list’
<$terminal> == $terminal.

% Second returns the second symbol in the first argument.
% The argument must have at least two symbols.

Second: <> == ’*%*x* ERROR: (Second) Invalid argument’
<;> == %%k ERROR: (Second) Nil list’
<; ;> == ’%*%**x ERROR: (Second) List too short’
<$terminal> == First:<>.
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% Top is the same as First. It is a nicer notation when the argument
% is viewed as a stack. It could be defined in terms of First, but
% the default (<>) would then be a message from First instead of Top.

Top: <> == ’#**x ERROR: (Top) Invalid argument’
<;> == ?**%x ERROR: (Top) Nil 1list’
<$terminal> == $terminal.

% Pop_arg returns an argument list with the first argument removed.
% The argument must be ;-terminated.

Pop_arg: <> == ’x**x ERROR: (Pop_arg) Invalid symbol’
<> == ()
<;> == Arglist:<>
<$terminal> == <>.

% Pv performs path-to-value conversion.
% All symbols are converted, including argument terminators, up to !.
% A nil argument will return a nil list.

Pv: <> == () % Can’t flag unknown symbols here.
<!> == () % special case: remove trailing default extension.
<G> == (G <)
<$terminal> == ($terminal <>).

% Arglist is a better name for Pv when it is the entire argument
% list that is being reconstructed.
Arglist:<> == Pv.

% Rest returns everything in the ;-terminated argument following
% the first symbol (a tail operator).

Rest: <> == ’*%** ERROR: (Rest) Unknown symbol’
<> == 0
% First symbol
<$terminal> == Pv_to_;:<>.

% Pop is the same as Rest. It’s a better notation when the arg
% is viewed as a stack.

Pop: <> == ’**%x ERROR: (Pop) Unknown symbol’
<> == ()
% First symbol
<$terminal> == Pv_to_;:<>.

% Pv_to_; returns a path-to-value conversion, stopping at the end of
% the first argument.

Pv_to_;:<> == ’****x ERROR: (Pv_to_;) Unknown symbol’
<!> == ’#x*k* ERROR: (Pv_to_;) Missing argument terminator’
<> == 0
<$terminal> == ($terminal <>).
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% Reverse returns the ;-terminated argument reversed, minus the terminator.
% Sample theorem:
% Reverse:< 1 2 3 4 ;> = (432 1).

Reverse: <> == ’Error: (Reverse) Unknown symbol’
<> == 0
<$terminal> == (<> $terminal).

% Remove_last removes the last symbol in a list. The list must contain at
% least one symbol. Remove_last ignores all but the first argument.

% Remove_last:<X0 X1 ... Xn-1 Xn ;> == (X0 X1 ... Xn-1).

% Sample theorems:
% Remove_last: <1 2 ;> = (1 2 3)

% <3214;214;>=(321)

h <3 ;5> = 0.

h

Remove_last: <> == ’**** ERROR: (Remove_last) Invalid argument’
<;> == ’x*x*x ERROR: (Remove_last) Missing argument’
<> == Reverse:<Rest:<Reverse ;> ;>.
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File: arglogic.dtr

Purpose: Generalised logical equality operators using argument
manipulation.

Authors: Lionel Moser, December 1991.

Documentation: HELP *datr

Related Files: 1ib datr; args.dtr

Version: 4.00

Copyright (c) University of Sussex 1991. All rights reserved.
hhhhhhhhhhhthhhhhhhhhhhhhhnnhhbhbhhhhh

This file illustrates how a logical equality operator can be generalised

to the case where the comparands are sequences of symbols over an alphabet

$terminal. The technique is based on the path-as-argument machinery in
args.dtr.

$terminal must have been defined elsewhere.
#load ’args.dtr’.

Equal:<Argl ; Arg2 ;> == true/false
Sample theorems:
Equal: <1 2 3 ;

<123 ;

;> = true
4 ;> = false.

Equal:

%
%

<; ;> == true % reached end of both args
<;> == false % Argl is shorter

% If Arg2 is shorter, First returns error msg, Tequal fails
<> == < If:< Tequal:<First First:<Arg2 ;>>> > % First == First:<Argil>
<then> == Equal:<Rest:<Argl:<> ; > ; Rest:<Arg2:<> ; > ; !>
<else> == false.

Tequal:<atom atom> == true/false
Terminal Equal

Tequal: <> == ’#*** Error: (Tequal) Unknown symbol’

A

<$terminal $terminal> == true
<$terminal> == false.

If:<condition> == then/else

If: <> == ’#**x ERROR: (If) Invalid argument’

A

%
%
%

<true> == then
<false> == else.

-- Some theorems —————————-
Equal: <; ;> = true

<123 ;123 ;> = true
<123 ;1234 ;>= false.
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D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

File:

Purpose:
Authors:
Documentation:
Related Files:
Version:

Copyright (c) University of Sussex 1991. All rights reserved.

add10.dtr

Illustrate decimal arithmetic in DATR.
Lionel Moser, September 1991.

HELP *datr

1ib datr; args.dtr, dadd.dtr

4.00

D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

Base 10 addition

This file implements decimal addition. It’s purpose is to illustrate how
the path can be used to represent an argument list, and how the arguments
can be extracted and modified. The node definitions which perform the

argument manipulation are in args.dtr. The Node which is called to perform
addition is called Add.

Tools for argument manipulation.
#vars $terminal: 0 1 2 3 456 7 8 9.
#load ’args.dtr’.

% Decimal digit addition table
#load ’dadd.dtr’.

%
%
%
%
%
%
%
%
%
%
%

Add adds two decimal numbers X and Y.

Add:<Xn Xn-1

where X = Xn ...
Y=Ym ...

. X1 X0 ; Ym Ym-1 ... YO> = (X + Y).

X0
YO

Add transforms the arguments into the appropriate form for RevAdd,
which does the actual addition.

Example theorem:
Add:<1 2 ; 7 3

The arguments for RevAdd are: A carry (initially 0); the digits of X,
in reverse order;

;> = (8 5).

and the digits of Y, in reverse order.

Add: <> == RevAdd:<0 ; Reverse:<Argl ;> ; Reverse:<Arg2:<> ;> ; | >,

% RevAdd embodies a recursive definition of addition.

% RevAdd:<carry ; X0 X1 ... Xn ; YO Y1 ... Ym ;>
% where

% X = Xn Xn-1 ... X0

% Y=Ym Ym-1 ... YO

%
%

Note that the

numerical arguments are in reverse order, ie.,

% the integer 123 is represented as (3 2 1). This is because
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it is easier to pull off prefixes from the head of a list.
Arguments in general can be viewed as a stack or queue, which
can be accessed by (a) pulling from the left side; (b) pushing
onto the left side; and (c) appending on the right side. We use
; as an argument terminator. Argument extractors

(First, Argl, Arg2, Arg3, and Rest) expect terminators to be

present, but always return the argument without them, so they
are usually replaced.
The definition of Add is as follows. Let k = max(n,m).
Then X + Y is computed as a sequence of digits (C[i]+X[i]+Y[il):
(X + Y) = (CIkI+X[k]1+Y[k]) (Clk-11+X[k-11+Y[k-11) ... (CLol+X[01+Y[01)
where
X[i] is the i-th digit of X;
Y[i] is the i-th digit of Y;
C[i] is the carry from column (i-1),
and CO = 0.
eg, (163 + 456) = ((C[2]1+1+4) (C[1]1+6+5) (CL[01+3+6)) = 619
using C[0] = 0, C[1] = 0, and C[2] = 1.
We recursively pass down the carry until the leftmost digit
of the result is reached, compute this digit, and compute the
digits one the right as we unrecurse.
RevAdd:
<0 ; ; ;> == Q) % X and Y exhausted; leftmost digit is zero.
<1 ; ; ;>==1 % X and Y exhausted; leftmost digit is a carry.

<> == (RevAdd:<Carry:<Argl ; First_dig:<Arg2 ;> ; First_dig:<Arg3 ;> ; > ;
Rest:<Arg2 ;> ;
Rest:<Arg3 ;> ;
>
Digit:<Argl ; First_dig:<Arg2 ;> ; First_dig:<Arg3 ;> ; >
).
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% Carry and Digit are for accessing the decimal digit addition table in
% ’dadd.dtr’. The table is accessed by node Dadd, which derives theorems

% of the form:

% Dadd:< old_carry ; digit ; digit ;> = (new_carry ; remainder ;).

% Carry:<old_carry ; digit ; digit ;> == new_carry.

% Sample theorem:
% Carry: <0 ; 9 ; 3 ;> = 1.

Carry: <> == Argl:<Dadd>.

% Digit:<old_carry ; digit ; digit ;> == new_digit.

% Example theorem:
% Digit: <0 ; 9 ; 3 ;> = 2.

Digit: <> == Arg2:<Dadd>.

% First (see args.dtr) returns the first item in a ;-terminated list,

% but its argument must be non-empty. In this application one of the

% integers may be shorter than the other
% "missing" digits with zeros.
% Sample Theorems:

% First_dig:<X0 X1 ... Xn ;> == X0
% First_dig:<;> == 0
First_dig:
<;>==0
<> == First.
%—-- Some theorems —-———-————————————
%
% Add: <0 ; 0 ;> = (0)
Y <1 ;1 ;>=(2)
Y <0001 ;1;>=(0002)
Y <2 ; 3 ;> = (5)
% <12 ;73;>=(85)
% <12 ;34 ;>=(48)
VA <99 ; 34 ;>=(1323)
Y <186 ;320 ;>=1(5086)
Y <1 ;345 ;>=(34686)
Y <345 ;1 ;>=(34686)
VA <251 ;55 ;>=(3086)
Y <999993;8;>=(100000
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Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% %
% File: dadd.dtr %
% Purpose: Store a table of decimal digit additiomns. %
% Authors: Lionel Moser, September 1991. %
% Documentation: HELP *datr %
% Related Files: lib datr; args.dtr, add10.dtr %
% Version: 4.00 %
% Copyright (c) University of Sussex 1991. All rights reserved. %
% %

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% Dadd is for "decimal digit add". It is an addition table for two decimal
% digits plus a carry (0 or 1). This table would be quite small for a
% binary add - but the rest of the machinery would be the same.

% Dadd:<Carry ; Digit ; Digit ;> = (new_carry ; remainder ;).

Dadd:
% We only store one copy of each sum, so if <¢c ; a ; b ;> is stored
% then <c ; b ; a ;> is not stored. So if the sum isn’t found, swap
% a and b and look again.
<> == < Argl ; Arg3 ; Arg2 ;>

<0 ; 0;0;>==(0;03) <0 ;1 ;56 ;>==1(0;6;)
<0; 0;1;5>==(0;1}3) <0 ;1 ;6 ;>==10(0;7;)
<0; 0;2;>==(0;2;) <0 ;1 ;7 ;>==10(0;8;)
<0; 0; 3;>==(0;3;) <0 ;1 ;8 ;>==1(0;9;)
<0 ; 0 ;4 ;>==(0;4;) <0 ;1 ;9;>==(;0;)
<0 ; 0; 5 ;>==(0;5;)
<0 ; 0; 6 ;>==(0;6;) <t ;1 ;1;>==10(0;3;)
<0; 0;7;3>==(0;73) <t ;1 ;2;>==10(0; 4;)
<0 ; 0; 8;>==(0; 8;) <t ;1 ;3;>==(0;5;)
<0; 0;9;>==(0;9;) <t ;1 ;4 ;>==1(0;6;)
<t ;1 ;56;>==0(00;7;)
<1 ;0;0;>==(0;03) <t ;1 ;6 ;>==1(0;8;)
<1 ;0;1;5>==(0;2;) <t ;1 ;7 ;>==0(00;9;)
<1 ;0; 2;>==(0; 3;) <t ;1 ;8;>==(1;0;)
<1 ;0 ; 3;>==(0;4;3) <t ;1 5;9;>==(;1;)
<1 ;0 ;4 ;>==(0;5;)
<1 ;0 ; 5;>==(0; 6 ;) <0 ;2;2;>==10(0;4;)
<1 ;0 ;6 ;>==0(00;73;) <0 ; 2 ; 3;>==1(0; 5 ;)
<1 ;0 ;7 ;>==10(0 ;8;) <0 ;2 ;4 ;>==1(0; 6 ;)
<1 ; 0; 8;>==10(0;9;) <0 ;2 ;5 ;>==0(00;7;3)
<1 ; 0;9;>==(1;03;) <0 ; 2 ;6 ;>==1(0;8;)
<0 ;2 ;7 ;>==1(03;9;)
<0 ;1 ;15;>==20(€;23;) <0 ; 2 ;8;>==(1;03)
<0 ;1 ; 2;>==10(0;33;) <0 ;2 ;9 ;>==1(1;1}3)
<0 ;1 ; 3;>==10(0;4;)
<0 ;1 ;4 ;>==10(00 ;5;)
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<1;2;2;>==1(0;5;)

<0 ;6 ;6 ;>==1(1;2;)

<1 ;2 ; 3;>==10(0;86;)

<1;2;4;>==10(0;T73;)

<1;2; 5 ;>==1(0;8;)

<0 ;6 ;9;>==(1;5;)

<1;2;6;>==1(0;9;)

<1;2;7;3>==(1;0;)

<1 ;6 ;6;>==1(1;3;)

<1;2;8;5>==(1;13;)

<1 ;6 ;7;>==(1;4;)

<1;2;9;5>==(00;2;)

<1 ;6 ;8;>==1(1;5;)

<1 ;6 ; 9 ;>==1(1; 86 ;)

<0 ; 3;3;>==1(0;6;)

<0 ;3;4;>==10(0;T73;)

<0 ; 3;5;>==1(0;8;)

<0 ; 3 ;6 ;>==10(03;9;)

<0 ;7 ;9;>==(1;6;)

<0 ;3;7;3>==(1;0;)

<0 ; 3;8;>==(1;13;)

<0 ; 3;9;>==(01;23;)

<1;3;3;>==1(0;T73:)

<1;3;4;>==1(0;8;)

<0 ;8 ;8;>==(1;6;)

<1 ; 3 ;5 ;>==0(00;9;)

<0 ;8;9;5>=001;T7;)

<1;3;6;>==1(1;0;)

<1 ;3;7;>==(1;13)

<1;8;8;>==(01;T73;)

<1 ;3;8;5>==(01;2;)

<1;8;9;>==(1;8;)

<1 ;3;9;>==(1;33)

<0 ; 9 ;9 ;>==1(1;83)

<0 ;4 ;4 ;>==1(0;8;)

<0 ;4 ;5 ;>==10(0;9;)

<1 ;9 ; 9;>==1(01;9 ;).
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Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% %
% File: count.dtr %
% Purpose: Count occurrences of a symbol in a list. %
% Author: Lionel Moser, September, 1991. %
% Documentation: HELP *datr %
% Related Files: 1lib datr, add10.dtr, args.dtr %
% Version: 4.00 %
% Copyright (c) University of Sussex 1991. All rights reserved. %
% %

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

#vars $terminal: abcdef 012345678 9.
#load ’args.dtr’.
#load ’addi0.dtr’.

% Count:<A ; X1 X2 ... Xn ;> == # of A’s in X

Count:
<$terminal ; ;> == (0)
<$terminal ; $terminal> == Add:<1 ; Count:<$terminal ; Argl:<> ; !> ; ! >
<$terminal ; > == Count:<$terminal ; Rest:<Argl:<> ;> ; ! >.

% —--—- Some theorems —------

% Count: <a ; defbc ;>=0

% <a ;abec ;>=1
% <b ;ababfbfbca;>=3
% <b jababfbcbbbdefbbfbebbeb; ;>=12.
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hh % hhh %

hh Ul hh Ul hhhhhhhhhh bl hhnhhhDhhhhh

File: sum.dtr %
Purpose: Add up a list of decimal integers. %
Authors: Lionel Moser, December 1991. %
Documentation: HELP *datr %
Related Files: 1lib datr; args.dtr, dadd.dtr %
Version: 4.00 %

Copyright (c) University of Sussex 1991. All rights reserved. %

D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

#vars $terminal: [J] 01 234567 8 9.
#load ’args.dtr’.

#load ’arglogic.dtr’.

#load ’add10.dtr’.

A

Sum:

A

A

Sum:< X1 ; X2 ; . Xn ; [ ;> == sum of Xi’s
<> == <If:<Equal:<Arg2 ; []1 ;>>>

<then> == Argl:<>

<else> == <Add:<Argl:<> ; Arg2:<> ; 1>

Pop_arg:<Pop_arg:<> ! > |

>.

—-——— Some theorems —-——-

Sum: <1 ;
<1 ;
<1 ;
<1 ;

w NN W

o w w ;o

0;>=09

4 ;5;6;7;0;:;>=28

4 ;5 ;6 ;7;:;8;9;10;I[0;:;>=5%5
291;0;>=300
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Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% %
% File: loops.dtr %
% Purpose: Illustrate a couple of types of iteration. %
% Authors: Lionel Moser, September 1991. %
% Documentation: HELP *datr %
% Related Files: 1lib datr, args.datr, arglogic.dtr, polyadic.dtr, %
% add10.dtr, dadd.dtr. %
% Version: 4.00 %
% Copyright (c) University of Sussex 1991. All rights reserved. %
% %

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

#load ’add10.dtr’.
#load ’args.dtr’.
#load ’arglogic.dtr’.
#load ’polyadic.dtr’.

% ‘For’ simulates a counted loop. It is polyadic. The initial call supplies
% just one argument - the number of times to loop. On subsequent calls, For
% adds its own loop counter to the argument list.

% For:<N ; !> initial call to loop N times.
% For:<I ; N ; !> recursive call while looping

% The body of the simulated loop is the node Body. Body is passed the value of
% the loop control variable as an argument; in theory it could be passed the
% argument list or

% something else. For returns the results of Body:<I>, (I = 0,1,...,0-1) as

% an argument list. ie,

% For:<N ; !> == (Body:<0 ;> ; Body:<1 ;> ; ... Body:<N-1 ;> ; !).

% argument names

I:<>==Argil.
N:<>==Arg2. % Argl on initial call only.
For: <> == <argc Argc ;>
<argc 1 ;> == % initial call
For:<0 ;>
<argc 2 ;> ==} looping: test before iterating.
<If:<Equal:<>>> % pass entire arglist; Equal is

% univalent and only uses 1st two.
<then> == () % stop
<else> == (Body:<I:<> ; !> ; For:<Add:<1 ; I:<> ; > ; N:<> ; !>).

% A simple body.

% Body:< X ;> == 2 * X.
Body:<> == Add:<Argl ; Argl ;>.
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% ————— Some theorems --————--—--—-—

% For: <0 ; '> = ()

% <1 ; 1>=(03;)

Y <2 ; 1>=(03; 23)

Y <4 ; '>=(0 ;2 ;4 ; 6;)

Y% <14;1>=(0;2;4;6;8;10;12;14;16;18;
% 20 ;22 ;24 ;26;)

% Another type of iteration is the Foreach loop. Here the ‘argument’ is an
% argument list. Foreach returns an argument list, whose elements are
% the result of evaluating Body on each argument in the original argument list.

% Foreach:<X1 ; X2 ; ... ; Xn ; !> == (Body:<X1> ; Body:<X2>; ...; Body:<Xn>).
Foreach:
<> == ()

<> == (Body:<Argl ; !> ; <Pop_arg:<> !>).

% A more verbose version of the same algorithm, but is independent of
% what symbol is used as the argument delimiter, is:

Foreachl:
<> == <If:<Equal:<0 ; Argc ; >>>
<then> == () % stop
<else> == (Body:<Argl:<> ; !> ; Foreachl:<Pop_arg:<> !>).
% —--— Some theorems of both Foreach and Foreachl —————-
% Foreach: <!> = ()
A <27 ; 1>=(543;)
% <12 ;7;38; !>=(24;14;76;)
% <1 ;2;3; !>=(2;4;686;).
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% File: polyadic.dtr

% Purpose: Illustrate defintion of polyadic functions.
% Authors: Lionel Moser, September 1991.

% Documentation: HELP *datr

% Related Files: 1ib datr, args.dtr, addi10.dtr, dadd.dtr.

% Version: 4.00

Copyright (c) University of Sussex 1991. All rights reserved.

hh % hh % hhhhhhhbhhhhhhhnhhhnhhhbhhhb%hhnh

Polyadic functions have variable arity, that is, they take a varying
number of arguments. I show how to count the number of incoming arguments,
and how to compute different functions based on that number.

#vars $terminal: 0 1 2 3 4 5 6 7 8 9 undef.
#load ’args.dtr’.
#load ’addi0.dtr’.

% Argc:<Argl ; Arg 2 ; . Argn ; !>
% Argc counts the number of argument delimiters (;) preceding the

% argument list terminator (!). The number of arguments may be zero,
% but the ! terminator is not optional.

== n.

Argc: <> == ’x*xx ERROR: (Argc) Missing ! or invalid symbol’
<;> == Add:<1 ; <> ;>
<$terminal> == <>
<I> ==

% Sample theorems:

% Argc: <!> =0
h <G o> = (1)
% <12 ; > =(1)
% <12;32;12;45; !>=(4)
h G s >=(10).
% F is a polyadic function.
% NOTE: The arg list terminator ! is not optional.
% F:<Argl ; Arg2 ; ... Argn ; !>
F: <> == <case Argc ;>
<case 0 ;> == ’0 args’
<case 1 ;> == (’1 arg:’ Arglist:<>)
<case 2 ;> == (’2 args:’ Arglist:<>)
<case> == ("the’ Argl:<> ’args are:’ Arglist:<Pop_arg:<> !>).
% ——— Some theorems —-—---
% F: <!> =0 args
Y <123 ; !>=(1arg: 123 ;)
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Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% %
% File: pascal.dtr %
% Purpose: Compute Pascal’s triangle %
% Author: Lionel Moser, December 1991 %
% Documentation: HELP #*datr %
% Related Files: 1ib datr; args.dtr; arglogic.dtr; addi0.dtr; %
% Version: 2.00 %
% Copyright (c) University of Sussex 1991. All rights reserved. %
% %

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

#vars $terminal: [ ] 01 23 45678 9.
#load ’args.dtr’.

#load ’arglogic.dtr’.

#load ’add10.dtr’.

% Pascal’s triangle looks like this:

% 1

% 1 1

% 1 2 1

% 1 3 3 1

% 1 4 6 4 1
% 1 5 10 10 5 1

% Successor computes the (n+1)th line of the triangle as a function of the
% nth line.

Successor:
<L1;>==([1;<1;>
<> == (Add:<Argl ; Arg2 ; !> ; <Pop_arg ! >)
<t ;3 1>==(;D.

% —---—- Some theorems —----

% Successor: <[ 1 ; I>=([1;1; 1)

% <ft1;1;1>=([1;2;1;D

Y% <flt;2;1;1>=(1;3;3;1;1)

% <fl1;3;3;1;1>=([1;4;6;4;1;1)

Y% <[1;4;6;4;1;1>=([1;5;10;10;5;1;1
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Line6:<> ==
Successor:<Successor:<Successor:<Successor:<Successor:<[ 1 ; I>>>>>.

% Line6: <> = ([ 1 ;5 ;10;10;5;1;1).

% To define a procedure which returns the first N lines of Pascal’s
% triangle, we strip down the For loop to just look at the first two
% arguments, and pass an arbitrary number of following args as the

% arg list to Body. What For computes is:

% For:<I ; W ; {Body(0)} ; !> == ( Body:<{Body(0)}> ;

% Body:<{Body(1)}> ;
% Body:<{Body(2)}> ;
% e

% Body:<{Body(N-1)3}> ;
h )

%

% But it is defined recursively:

% For:<I ; N ; PrevBody ; !> ==

% if I = N: O

% otherwise: (Body:<PrevBody> ; For:<I+1 ; N ; Body:<PrevBody>).

% Argument names

I:<> == Argil.

N:<> == Arg2.

PrevBody:<> == Pop_arg:<Pop_arg !>. % args 3, 4, ..., !

For: <> == <If:<Equal>> % (I = N?) pass entire arglist;
% Equal uses only 1st two.
<then> == () % stop

<else> == (Body:<PrevBody:<> !> ;
For:<Add:<1 ; I:<> ; > ;
N:<>

Body:<PrevBody:<> !> ;
]

>).

% Wire up Successor as the body.

Body: <> == Successor.

% —---—- Some theorems —----

0

%

% For: <0 ; 1 ; [1;15;;>=(L1;1;13;)

%

% For: <0 ;2 ; [1;]1;>=(1;1;]1;[01;2;1;713;
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% Make a pretty interface, and insert top line (Body(0)) of the triangle.

% Pascal:<n ;> == first (n+1) lines of Pascal’s triangle.

Body0:<> == ([ 1 ; 1).

Pascal:<> == (BodyO ; For:<0 ; Argl ; Body0 ; !> ).

% ———-— Some theorems —---—-

L1; ]

;> = (

<0

Pascal:

L1; ]

.>=(

>

<1

Pascal:

L1; ]

;> = (

<2

Pascal:

L1; ]

;> = (

<3
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<6
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D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

File: powerset.dtr %
Purpose: To illustrate theories which can take exponential %
time to evaluate if the compiler isn’t smart. %

Author: Lionel Moser, August 31, 1991. %
Documentation: HELP *datr %
Related Files: 1lib datr %
Version: 3.00 %
Copyright (c) University of Sussex 1991. All rights reserved. %

D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

The powerset tree of order 2 looks like this:

o
/ N\
o/ M
/ \
o o
0/ \1 0/ \1

o o o o
00 01 10 11

The left-branching and right-branching edges are labelled with 0 and 1,
respectively. The nodes (little o’s) have labels which are the concatenation
of all of the edge labels from the root - or, stated recursively, the label
on a node is the label on its parent plus the label on the edge to its
parent. The collection of labels of the leaves of this tree we call the
powerset of 2; they consist of all binary strings of length 2.

In this example I show that the power set of n can be generated, by
generating all binary strings of length n. There are 2°n such strings.

In order to generate these strings, (2°n)-1 calls to Powerset are made,
with no two such calls deriving a value for the same path. (See below.)

The initial query path is a list of n a’s, where n is the length of
the binary strings to be generated, terminated by ;.

<--n a’s —-—>
Powerset:<a a aaa ... a ;> =
(00 ...0,00...1,00...10, ... ,11...11).
=———=—= 2°n binary strings of length n ———————- >

The technique used is to perform a complete depth-first left-to-right
traversal of a binary tree, where an "edge label" represents a binary
digit, which is appended to the digits accumulated from the root to the
current node. A path at an arbitrary node is viewed as two arguments:

a sequence of a’s, representing the distance to the leaf nodes; and the
sequence of binary digits labelling the edges from the root to the current
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% node. The latter sequence (a search tree path) is used to prefix the

% values of the leaves of the subtree of which the current node is the root.
% Arguments are separated by ; (the "argument delimiter"). The symbol !

% is the "argument list terminator". Default extensions which are appended
% following the argument list appear after the terminator and are ignored.

Powerset:
<;> == Pv:<>
<a> == (KPv:<> 0 !> , <Pv:<> 1 !>).

% Pv: Path-to-value conversion.
Pv: <> == () % end of path, since all other symbols are handled explicitly,
% except comma (","), which never occurs.

<a> == (a <>)

<0> == (0 <>)

<1> == (1 <>)

<G> == (<)

<!> == (). % discard trailing default extension.
% —--— Some theorems ———————————————

% Powerset: <;> = ()

% <a ;> (o, 1)

% <aa;>=(00,01,10,11)

0

%

% <aaa;>»=(000,001,010, 011,

% 100,101,110, 111)

0

%

Y <aaaai;>»=(0000,0001,0010, 0011,
% 100,0101,0110,0111,
% 1000,1001,1010, 1011,
% 1100,1101,1110,1111).
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Computing the value of Powerset:<a a a> involves 15 calls to
Powerset, no two of which are the same. They are listed below in
their calling sequence. It can be seen that they are all distinct.
(They are distinct in the prefix preceding the argument list
terminator, but are not distinct in the suffix following it.)

Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:
Powerset:

<a
<a
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= =2 O O O O -~
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[y
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43



Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% File: powerset2.dtr
% Purpose: powerset done with general backtracking.
% Author: Lionel Moser, September, 1991.

% Documentation: HELP #*datr

% Related Files: 1lib datr, powerset.dtr, args.dtr, etc.

% Version: 3.00

% Copyright (c) University of Sussex 1991. All rights reserved.

Dl hhthhhhhhhnhhhnhhhhhhhbhhhnhhhnhhhbh

% powerset.dtr illustrates branching recursive descent, but it has the

% following decisions hardcoded: (1) branching factor of 2; (2) definition of

% successor; (3) the order in which the successors to a node are visited.

% This file illustrates a general backtracking algorithm which is independent

% of these problem-specific details.

#vars $terminal: a 0 1 !,
#load ’args.dtr’.

% Powerset2 is a general algorithm: Successors generates the successors of a

% given node, and returns them in the order they are to be visited. Test
% defines the value of the terminal.

A

% Powerset2:<Distance !! Label ;> == (t1, t2, ..., t[2°n]),
% where ti is a terminal of the powerset tree.
Powerset2:

<I'1> == Test:<>

<a> == Foreach:<Successors !>.

% Modified Foreach so that a delimiter is added only when another value
% follows.
h

% Foreach:<X1 ; X2 ; ... ; Xn ; !> == (Body:<X1> , ..., Body:<Xn>).
Foreach:

<> == ()

<> == (Body:<Argl ; !> <continue Pop_arg:<> !>)

<continue !> == ()

<continue> == (, <Pv:<> !>).

Body:<> == Powerset2.

% We’re only enumerating the leaves, so everyone’s a winner, babe.
Test: <> == Argl. % success
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% Successors:< Distance !! Label ;> == (Rest:<Distance> !! Label 0 ;

% Rest:<Distance> !! Label 1 ;)
Successors:
<a> == (Distance:<> !! Label 0 ; Distance:<> !! Label 1 ;).
% Virtual arguments, defined in terms of !!-delimitation.
% Distance:<distance !! label ;> == distance.
Distance:
<> == ()
<a> == (a <>).

% Label:<distance !! label ;> == label.

Label:
<H> == Argl:<>
<a> == <>,

% Note: It would be nice if the above could be written as
% Distance:

% <> == ()
% <$terminal> == ($terminal <>).
% But !! is a terminal, so the definition, under the current definition, would

% be non-functional.

% --- Some theorems --------

0

%

% Powerset2: <a !! ;> = (0 , 1)

% <aal!l! ;>=(00,01,10,11)

0

%

% <aaal!';>»=(000,001,010, 011,

% 100,101,110, 111)

0

%

Y <aaaal!';>=(0000,0001,0010,0011,
% 0100,0101,0110,0111,
% 1000,1001,1010, 1011,
% 1100,1101,1110,1111).
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File: powertest.dtr %
Purpose: powertest illustrates how to test values at leaf nodes, %
stop searching when a solution is found, and pass the %

solution back as recursion unfolds. %

Author: Lionel Moser, September, 1991. %
Documentation: HELP *datr %
Related Files: 1lib datr, powerset.dtr %
Version: 3.00 %
Copyright (c) University of Sussex 1991. All rights reserved. %

%
D% hh b hhhhhhhbhhnb%hhhbhhhbhhhbhhhnhhhnh

powerset.dtr illustrates full traversal of a binary search tree. This file
illustrates partial traversal of a search tree with backtracking. The search
tree we use is the powerset tree of order n, where n is the distance from
the root to the leaves. We consider the labels on the terminal nodes of the
search tree to be possible solutions to some problem. The algorithm below
(powertest) performs a depth-first left-to-right traversal of the powerset
tree. At each terminal node it tests the label as a possible solution: if it
is, powertest unrecurses back up to the root, passing up the satisfying sol-
ution. Otherwise it backs up and descends the next right branch. Searching
thus stops when a satisfying leaf label is found, or the tree is exhausted.

We illustrate using a simple test for a solution. A label will be a solution
if it begins with the sequence (1 0 1). The result returned could be any
function of the label, but for simplicity we return the label itself.

Test: <1 0 1> == Pv % success

%
%
%
%
%

<> == (). % failure

The number of leaves visited before the solution is found (using this
particular test) grows exponentially with n because the solution is always
in the right-branch subtree of the root, and the searching is done
depth-first left-to-right.

% Powertest:< aaaa ... a ;>

Powertest:
<;> == Test:<> % leaf node
<a> == <if Powertest:<Pv:<> 0 !> ! > % note that <a> is chopped.
<if !> == <continue>
<if> == Pv:<> % negative path extension.
<continue> == Powertest:<Pv:<> 1 !>.
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% Pv: Path-to-value conversion.
Pv: <> == () % end of path, since all other symbols are handled explicitly

<a> == (a <>)
<0> == (0 <>)
<1> == (1 <>)
<G> == (G <)
<> == (). % discard trailing default extension.
% —--—- Some theorems —------
% Powertest: <a ;> = ()
% <aa ;>= ()
% <aaa; ;>=(101)
Y% <aaaa;>=(1010)
Y% <aaaaaa; ;>=((101000).
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