A fully abstract semantics
for concurrent graph reduction

ALAN JEFFREY

ABSTRACT. This paper presents a fully abstract semantics for a variant of the untyped A-calculus
with recursive declarations. We first present a summary of existing work on full abstraction for the un-
typed A-calculus, concentrating on ABRAMSKY and ONG’s work on the lazy A-calculus. ABRAMSKY
and ONG’s work is based on leftmost outermost reduction without sharing. This is notably inefficient,
and many implementations model sharing by reducing syntax graphs rather than syntax trees. Here
we present a concurrent graph reduction algorithm for the A-calculus with recursive declarations, in a
style similar to BERRY and BOUDOL’s Chemical Abstract Machine. We adapt ABRAMSKY and ONG’s
techniques, and present a program logic and denotational semantics for the A-calculus with recursive
declarations, and show that the three semantics are equivalent.
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1 Introduction

This paper is about the relationship between two fields of computer science: full
abstraction, and concurrent graph reduction. Full abstraction is the study of relat-
ing denotational and operational semantics. Concurrent graph reduction is an ef-
ficient parallel implementation technique for non-strict functional programming
languages.

In this paper we apply the techniques of ABRAMSKY (1989) and ONG (1988)
to present a fully abstract denotational semantics for the concurrent graph reduc-
tion algorithm given in PEYTON JONES’s textbook (1987).

In doing so, we use methods from full abstraction, compiler implementation,
and concurrency theory.

1.1 Full abstraction

Full abstraction, originally defined by MILNER (1977), explores the relationship
between an operational semantics of programming languages and its models. The
operational view of a programming language is given by:

o A set of syntactic terms T, and a subset of terms called programs. The pro-
grams are then given an operational semantics.

o A set of tests together with an operational definition of when a term passes a
test. This induces the testing preorder on terms t C ¢ u iff every test ¢ passes
is passed by u.

A model of such an operational view is:

o A partially ordered set (D, <).
e A function -] : T — D. This induces the denotational preorder on terms
t Cp uiff [1] < [u].

‘We can then characterize such models:

e Dis correct iff t Cp uimplies t Cp u.
o D is complete iff t Cp u implies t o u.
o D is fully abstract iff it is correct and complete.

For example:

e In PLOTKIN’s (1977) analysis of the typed functional language of Program-
ming Computable Functions (PCF):

o A term is a PCF term, and a program is a closed term. The operational
semantics is given as a reductions ¢t — u between programs.

o A testis aclosing context C[-] of type Bool or Int, together with a constant
v. A term ¢ passes C[] iff C[r] evaluates to v.

This is then given a denotational semantics in terms of complete partial orders
and continuous functions. PLOTKIN showed that this denotational semantics
is correct but not complete, and showed that this denotational semantics is
comlete for an extension of PCF with a ‘parallel conditional’ term pcond of
type Bool — Int — Int — Int with the semantics:

[u]o if [tJo=0or [u]o=v]o
[pcondtuv]o = < [v]o ifl[l[t]]oz lor [u]o=[v]o
L otherwise

If such a term is added to PCF (and given an appropriate operational seman-
tics) then the semantics is complete.

In DE NICOLA’s (1985) analysis of HOARE’s (1985) Communicating Sequen-
tial Processes (CSP):

o A term is a CSP process, and a program is a closed process. The opera-
tional semantics is given as a labelled transition system between programs
P -% Q, in the style of MILNER (1989).

o A test is a closed substitution p, a program 7', and a special action .
A process P passes (p, T, w) iff every maximal computation of P[p] || T
passes through a state P’ || 7' where T’ can perform w. This is HEN-
NESSY’s (1988) must-testing equivalence.

This is then given a denotational semantics in a variant of BROOKES, HOARE
and ROSCOE’s (1984) failures—divergences model. DE NICOLA showed that
this denotational semantics is fully abstract.

In ABRAMSKY (1989) and ONG’s (1988) analysis of the untyped A-calculus:
o A termis an untyped A-calculus term, and a program is a closed term. The

operational semantics is given as leftmost-outermost reduction between
programs M — N.

o A test is a closing context C[-]. A term M passes C[] iff C[M] evaluates to
weak head normal form, that is a A-term Aw. N.
This is then given a denotational semantics in terms of complete partial or-
ders and continuous functions. ABRAMSKY and ONG showed that this de-
notational semantics is correct but not complete, and that the completeness
problem can again be reduced to definability, in that there is no untyped A-
calculus “parallel convergence test’ term P with the semantics:

[[nyz]]c:{L if [xJo=[ylo= L

[z] o otherwise
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and that if such a term is added (and given an appropriate operational seman-
tics) then the semantics is complete.

This paper is based on ABRAMSKY and ONG’s work, which is surveyed in Chap-
ter 2. The rest of this section will summarize that Chapter.
Given an infinite set V, ranged over by x, y and z, the untyped A-calculus with
P (Ap) is defined:
M:=x|MM | x.M|PMN

This can be given an operational semantics M — N with leftmost-outermost re-
duction, that is reduction is allowed on the left of an application, but not on the
right, or inside a A. We then define M} iff M reduces to weak head normal form
(whnf), thatis M —* Ax. N. Our notion of test is then a closing context C[-], and
M passes C[-] iff C[M]{}. This induces the testing preorder:

MCoN iff C[M]| implies C[N]{} for any closing C

This preorder is based on MORRIS’s (1968) extensional preorder, but is based on
leftmost-outermost reduction to whnf rather than full reduction to normal form,
which was studied by BARENDREGT (1984).

The denotational semantics for Ap is given in the initial domain isomorphic
to its own lifted continuous function space:

D~ (D—D),

We can then give a semantics [M] o in D, where 0 : V — D is an environment
assigning a meaning to any free variables in M. This induces the denotational
preorder:

MCpN iff [M] <[N]
To link the operational and denotational semantics, we present a third semantics,
which can be used as a ‘stepping stone’. This is in the form of a program logic,
with the language of propositions (or COPPO types (BARANDREGT et al., 1983))
@ defined:
P:=w|oA0|0—09
We can give an operational characterization of when a closed term satisfies a

proposition |= M : @, similar to the operational characterization of HENNESS Y—
MILNER (1980) logic:

e |=M: wforany M.

e =M:oAYiff EM:@and =N : Q.

o =EM:@—Yiff Ml andVN.(|=N:@) = (|= MN : ).
For example, if Q is a term which never reaches whnf then:

o Q satisfies w

o Ax.Q satisfies w— .
o Ax.x satisfies every 9— @.
o Axy.x satisfies every 9— (W— ).

This can be generalized to open terms by defining a context [ to be a list of the
formx; : @y, ..., x, : @, for distinct x;. Then:

¢ X1 1@, Xn: @ |=M:Qiff = MM, /x1,...,M,/x,]: @Whenever =M, : @.
We can give two other characterizations of the logic:

¢ A denotational semantics [[-] : @ — D.
e A proof system [ - M : @.

We can then show that the problem of full abstraction is one of showing that the
three presentations of the logic agree, that is:

FrM=M:@ iff TEM:@ iff [@] <[M][I]
To prove this, we show that the program logic characterizes the compact elements
of D, so a is compact iff 3¢. [¢]] = a. From this we can show:
reM:q iff ¢ < [M][]
We can then use some operational reasoning to show:
FrEM:@ implies T'|=M:¢ implies [q@] < [M][l]
The presentation in Chapter 2 follows ABRAMSKY and ONG quite closely, al-
though the proofs are self-contained. The main differences are:

¢ We concentrate on the ‘small step’ operational semantics M — N rather than
the ‘big step’ semantics M}, since this agrees with our treatment of graph
reduction in Chapter 3.

¢ We make no use of applicative bisimulation.

¢ The proofs are more concrete, and do not use all of the abstract machinery of
ABRAMSKY'’s (1991) domain theory in logical form. The interested reader is
highly encouraged to read that paper for less ad hoc proofs.

We shall follow the same outline in Chapter 3 when we prove full abstraction for
concurrent graph reduction.

1.2 Concurrent graph reduction

Graph reduction is an efficient implementation technique for non-strict functional
programming languages, such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN’s
(1982) Ponder, JONES’s (1992) Gofer, TURNER’s (1985) Miranda, and Haskell
(HUDAK et al., 1992).



It was developed by WADSWORTH (1971) as an implementation of leftmost-
outermost reduction. He observed that leftmost-outermost reduction can take ex-
ponential time to evaluate an expression, due to loss of sharing information. For
example, if we define:

l=Ax.x A=M.xx MN=N  M"'N=M(M"N)
Then the evaluation of A" —* | is:
A — (AT (AT =22 — AT =2
Thus, A"l takes 2" — 2 reductions to terminate. This exponential blow-up is
caused by copying A"l in the reduction A™!| — (A" [)(A™1), and can clearly be

seen if we draw the syntax trees for this reduction, where ‘@’ denotes function
application:

! { }
@ _ (@ _». (@ b i
o

This inefficiency is caused by the implementation of B-reduction with substitu-
tion. When we reduce (Aw. M)N — M[N/w], we make a separate copy of N for
each occurrence of w in M, and each copy then has to be reduced separately. We
can remove this inefficiency if, rather than copying terms, we copy pointers to
terms, that is we reduce syntax graphs rather than syntax trees. For example, the
graph reduction of A"*!| is, where ‘[)° denotes a pointer or indirection node:

{

— @ (Graph building)
— @\ (@-updating)

—on @ (Induction)

— @ (@-updating)

- @ (O-updating)
® O
— d) (Garbage collection)

These steps are:

e Graph building, where we expand the definition of A"*!| and turn it into a
graph.

o Application updating, (or B-reduction) where we apply the function A.

¢ By induction, we evaluate A"l to | in 5n steps.

o Application updating, where we apply the function | to produce an indirection
node.

o [Indirection updating, since the indirection node points to a node already in
whnf, we can copy it.

o Garbage collection, where we remove any unwanted nodes.

Since each step of a graph reduction involves a small number of nodes in the
graph, there is a fine grain of granularity and thus much scope for concurrency.
In our simplified view of concurrent graph reduction, we will add a flag to each
node of the graph indicating whether it is currently under evaluation. Thus each
node is either of the form:

e !M representing a fagged node which is being evaluated.
e 7M representing an untagged node which is not.

For example, the reduction of A" ! carried out by one processor is:

!

— @ (Graph building)



Y
— @\ (@-updating)

— @\ (Spine traversal)
¢ )
_6n @\ (Induction)

— @ (@-updating)

- @ (O-updating)
O,
— C}D (Garbage collection)

The new reduction is:
o Spine traversal, where we tag an untagged node that is needed.

We now have a number of possible graphs for each A-calculus term, depending on
which nodes we wish to tag. There are (at least) two approaches to determining
how many nodes should be tagged:

o Sequential reduction is achieved by initially only tagging one node in the
graph, and not allowing graph building to introduce new tagged nodes. This
means that (apart from garbage collection) there will only be one reduction
possible at any one moment, and so we are using the tagging information only
to record the spine stack of the graph (PEYTON JONES, 1987, Ch. 11).

o Concurrent reduction is achieved by initially tagging a number of nodes in the
graph. These nodes can then be evaluated concurrently, and so we are using
the tagging information to record the blocking information of the graph (PEY-
TON JONES, 1987, Ch. 24).

If we decide to use concurrent reduction, there are (at least) two approcahes to
determining which nodes should be tagged:

e Strictness analysis (PEYTON JONES, 1987, Ch. 22) is an automated way of
determining which nodes in a graph are guaranteed to be used. Any such node
can always be tagged. Strictness analysis is in general undecidable, so any
practical algorithm will fail to tag some nodes, but any nodes that are tagged
are guaranteed to be used.

e Program annotation (PEYTON JONES, 1987, Ch. 24) places the burden of de-
ciding which nodes to tag on the programmer. For example, this is the ap-
proach taken in Part 3 where we allow two forms of recursive declaration:
tagged recx := !M in N and untagged recx := ?M in N. This is obviously the
simplest approach for the compiler writer (and semanticist!) to take.

As well as acyclic graphs, we can allow cyclic graphs, which allow for more effi-
cient recursive programs. For example, rather than implement the fixed point of
M as Y M, we could use the cyclic graph:

@)
()
(30

However, this presents a semantic problem not present in the A-calculus, since Y |
diverges, whereas the cyclic fixed point deadlocks since:

(9 (D)
(@) — (o #
D O,

Such terms are called black holes, and one design decision in a semantics is
whether or not to identify divergence and deadlock. Here, we will identify them,
although in the author’s (1993) semantics, they were distinguished.

Another semantic problem caused by concurrent graph reduction is that it is



not confluent (or Church—Rosser), since by spine traversal:

e~

and by garbage collection:

@§%+ 026
o po

but there is no graph G such that:
1
L _* G o *
(40

This is unfortunate, since confluence is a very useful way of proving properties
of operational semanitcs. However, we shall see in Section 3.6 that there is a re-
duction strategy for concurrent graph reduction which is confluent.

gﬁ%

1.3 Full abstraction and graph reduction
We have now seen:

¢ A well-developed theory of fully abstract semantics.
¢ A well-developed practice of concurrent graph reduction.

However, there has been little work on relating these. There have been a number
of proofs of correctness for graph reduction, which will be discussed further in
Chapter 4:

& WADSWORTH (1971) showed that graph reduction of a A-calculus term con-
verges iff tree reduction converges. Since every tree context is a graph con-
text, this means that the testing model for graph reduction is correct for tree
reduction. However, not every graph context is a tree context, and so this does

not show that the testing model for graph reduction is fully abstract for tree
reduction.

® BARENDREGT et al. (1987) generalized WADSWORTH’s result to an arbitrary
graph rewriting system. There has since been much work on relating graph
reduction to tree reduction, for example the correctness results of KENNAWAY
et al. (1993a) and the other papers in SLEEP et al.’s (SLEEP et al., 1993) book.

e LESTER (1989) has shown that a denotational semantics for the typed A-calcu-
lus is correct for the operational semantics of JOHNSSON’s (1984) G-machine

e LAUNCHBURY (1993) has shown that correct semantics for graph reduction
including black holes can be given in the semantic domain D ~ (D —D) | .

e PURUSHOTHAMAN and SEAMAN (1992) have shown that a denotational se-
mantics for PCF with sharing is correct for an operational semantics with ex-
plicit closures.

o The author (1993) has shown that a variant of the semantics given in Chapter 3
is correct for tree reduction.

However, there have been no proofs of full abstraction for concurrent graph re-
duction. In this paper, we will follow ABRAMSKY (1989) when he said:

Since current practice is well-motivated by efficiency considerations and
is unlikely to be abandoned readily, it makes sense to see if a good mod-
ified theory can be developed for it.

In Chapter 3 we present a formal treatment of concurrent graph reduction, based
on BERRY and BOUDOL’s (1990) Chemical Abstract Machine (CHAM). This se-
mantics includes:

o Tagged and untagged nodes.
¢ Garbage collection.
¢ Deadlocked graphs.

We also present a denotational semantics in D ~ (D — D) in which:

e Whether a node is tagged or not is irrelevant.
o Garbage collection is semantically unimportant.
o Deadlock and divergence are identified.

We will then apply the techniques of Chapter 2 to show that this semantics is cor-
rect, and that by including parallel convergence nodes in the syntax, the semantics
is complete. In order to show this, we give a program logic and proof system sim-
ilar to ABRAMSKY and ONG’s, and use this as a bridge between the operational
semantics for graph reduction and the denotational semantics.

In order to carry out this proof, we have to show a number of subsidiary results
about concurrent graph reduction:

10



¢ Garbage collection is semantically unimportant, so a graph can converge iff
it can converge without garbage collecting. One would expect this to be true,
since garbage collection is introduced only because of memory limitations.

¢ Tagging is semantically unimportant, so a graph can converge irrespective of
whether its nodes are tagged or not. In particular, this means that concurrent
evaluation is semantically equivalent to sequential evaluation.

o Referential transparency, which means that it is semantically unimportant if
a graph contains a copy of a node, or a pointer to a node.

There are a number of applications for a fully abstract semantics:

VERIFYING COMPILER OPTIMIZATIONS. A number of compilers of non-strict
functional languages, notably JOHNSSON’s (1984) Lazy ML compiler for the G-
machine, make use of optimizations. Many optimizers, notably peephole opti-
mizers (PEYTON JONES, 1987, Ch. 20) replace one small term with another se-
mantically equivalent, but more efficient term. If a semantics is correct, then we
know that any such optimization will have the same operational behaviour in all
contexts.

Unfortunately, if the semantics is not complete, then there may be valid op-
timizations that are not semantically equivalent, and there is a temptation for the
compiler writer to use ad-hoc reasoning to justify a semantically invalid optimiza-
tion, on the grounds that the semantics is too fine. If the semantics is fully ab-
stract, then such reasoning is invalid, since we can always find a context which
will distinguish inequivalent terms.

ANALYZING OTHER MODELS. Given a correct model, we know that any finer
model must also be correct. For example, we might extend a denotational model
to include sharing or strictness analysis, and we know that the resulting model
will still be correct.

Similarly, given a complete model, we know that any coarser model must also
be complete. For example, MYCROFT’s (1981) abstract interpretation for strict-
ness analysis is a coarser model than the standard denotational model. Thus if the
standard model is complete, then we know that the abstract interpretation is also
complete, without having to perform any operational reasoning.

PRODUCING DISTINGUISHING FORMULAE. Ifadenotational semantics has an
equivalent program logic, we can use it to produce distinguishing formulae. That
is, given two denotationally distinct terms, we can find a logical formula which
one satisfies and the other does not.

Such distinguishing formulae can be used in proof tools to provide a form of
debugging: if the tool proves that two terms are different, it can report this to the
user along with a distinguishing formula which shows why the terms are differ-
ent. This information is invaluable when using a proof tool as part of the design

11

process, rather than as post hoc verification. Distinguishing formulae have been
used in process algebra tools such as the Concurrency WorkBench (CLEAVE-
LAND et al., 1989) and TAV (LARSEN et al., 1989).
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2 Tree reduction

This Chapter presents a summary of existing work on fully abstract models
for leftmost-outermost reduction of the untyped A-calculus. It concentrates on
ABRAMSKY (1989) and ONG’s (1988) work on the lazy A-calculus, but also
includes material from ABRAMSKY (1991), BARENDREGT (1984), BARAN-
DREGTet al. (1983) BOUDOL (1992), PIERCE (1991) and PLOTKIN (1983).

2.1 The A-calculus with P

In this Chapter, we will discuss the theory developed by ABRAMSKY and ONG,
based on leftmost-outermost reduction. This is the semantic basis of the non-
strict functional languages such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN’s
(1982) Ponder, JONES’s (1992) Gofer, TURNER’s (1985) Miranda, and Haskell
(HUDAK et al., 1992).

In the untyped A-calculus, all expressions are functions, and these functions
take functions as inputs, and return other functions. We can regard this as a pure
theory of computation, abstracted away from considerations of data.

The untyped A-calculus has three forms of expression:

o A free variable x.
o An application MN.
e An abstraction Ax . M.

Such terms are sequential and the only form of computation is B-reduction, where
an abstraction is applied (Ax. M)N — M[N/x]. Following PLOTKIN (1977) we
would expect that finding a fully abstract semantics will be much simpler if we
add some form of parallel computation. There are a number of possible paral-
lel combinators one can add: PLOTKIN used ‘parallel conditional’, ABRAMSKY
and ONG used ‘parallel convergence’, and BOUDOL (1992) used ‘parallel join’.
We will follow ABRAMSKY and ONG, and extend the A-calculus to the A-calculus
with P, and add:

o A parallel convergence test P MN.

We will show below that we can implement BOUDOL’s (1992) parallel join using
P. Such a test will converge to the identity function iff either of its arguments
converges. Such a test is similar to AUGUSTSSON’s (1989) oracular choice ex-
cept that AUGUSTSSON’s choice returns a flag indicating which of its arguments
terminated, thus introducing nondeterminism. We would like to preserve deter-
minism (reflected by confluence, discussed in Section 3.6) and so we will use the
weaker ‘parallel convergence’ test. In summary:

DEFINITION. Let V be an infinite set of variables ranged over by x, y and z. Then
Np is defined:

M :=x| MM |Ax.M |PMM

M is in weak head normal form (whnf) iff M = Ax. N.

Let fv M be the free variables of M.

A closed term (or program) has fv M = 0.

A context C[-] is a syntactic term with a number of ‘holes’ represented by -.

C[M] is C[-] with each hole filled by M. C[-] is closing for M if C[M] is closed.

o A substitution is a function p : V— Ap which is almost everywhere the iden-
tity. Let (M; ... M, /x; .. .x,) be the substitution p such that px = M; if x = x;
and px = x otherwise.

e Let M[p] be M with any free variable x replaced by px, with appropriate O-

conversion to avoid capture of free variables. a
EXAMPLES.
e | = Ax.x is the identity combinator.
e K= Ax.Ay.xis the constant combinator.
o YM = (Ax.M(xx))(Ax. M(xx)) is the fixed point of M.
e A= Ax.xxis the diagonal combinator.
o Q = AAis the divergent combinator which never converges.
e Y= (Ax.Ay.xx)(Ax.Ay.xx) is the ogre combinator which always converges.
o ANx.M = Ax.PxxM is a strict(or call-by-value) abstraction.
o J=Y(Ax.Ay.Az.(Pyz(Aw.x(yw)(zw)))) is the join combinator.
e M=Y(Ax.Ay.Az.Aw.x(yw)(zw)) is the meet combinator.
o A=Ax.Ay.Nz.y(zx) is the arrow combinator. a

2.2 Operational semantics

Computation in the untyped A-calculus is represented by B-reductions of the form
(Ax.M)N — MI[N/x], and the various operational semantics for the untyped A-
calculus differ only in where B-reduction can take place. In the standard theory
presented by BARENDREGT (1984), B-reduction can take place anywhere in a
term, whereas in ABRAMSKY and ONG’s theory, reduction can only take place
on the /eft of an application, and outside an abstraction. For example, || — I, and
M — 1M, but M(11) 4 Ml and Ax. (1) 4 Ax . L.

The operational semantics for the A-calculus with P is that of the untyped A-
calculus, with the addition that PMN — | iff M or N is in whnf, and that reduction
is allowed inside either argument of P. This allows for interleaved concurrency,

14



since if M — M’ and N — N’ then:
PMN — PM'N
| |
PMN' — PM'N'
From this operational semantics, we can define the may testing preorder where a
test is a closing context C[-] and M passes C[-] iff C[M] converges. In summary:

DEFINITION. — is given by axioms:

(B) (Ax.M)N — M[N/x]
(Pa) P(Ax.M)N — |
(Pb) PM(Ax.N) —1

and structural rules:

M— M M—M N—N'
@) sn—wn PYVeun—rwn PV EuN—puv

M | N ift M —* N and N is in whnf.

MU iffAN . M1 N.

My iff=3N .M | N.

M Co N iff CIM]{ = C[N]{ for any closing context C. a

EXAMPLES.

IM— M.

KMN —2 M.

YM— M(YM).

AM — MM.

Q — Q, so Q.

Y — Ax.Y, so Y| and YM —2 Y.

If N| then (\x. M)N —* M[N/x]. Otherwise (Ax.M)N1).
If M|} or N} then JMNI} and JMNO —* J(MO)(NO).

If M1y and N1 then J MN1}.

If M|} and N| then MMN| and MMNO —* M(MO)(NO).
If M+ or N{} then M MN+}.

If Oy then AMNO —* M(ON). Otherwise AMNOH. a

2.3 Denotational semantics

The denotational semantics for Ap is given in the domain D that is isomorphic
to its own lifted continuous function space. Thus, any element of D is either L
(representing a divergent term such as Q) or a continuous function from D to D
(representing a convergent term such as Ax. M). This semantics identifies all di-
vergent terms, and distinguishes divergent and convergent terms. In particular, Q
and Ax. Q are distinguished, since the former diverges whilst the latter converges.

15

DEFINITION. D is the initial solution of:
D~(D—D),
where if X and Y are w-cpos:

e X, is X with a new bottom element.
e X —7Y is the continuous function space from X to Y.

This definition will be clarified in Section 2.5. Let the w-continuous functions
unfold : D— (D— D), and fold : (D— D), — D form this isomorphism. a

In Proposition 5 we shall show that D is a complete lattice and so every set of
elements A C D has a join or least upper bound \/ A. In particular, this means
that:

There is a top element T = \/D.

There is a bottom element 1 =\/0.

Every pair of elements has a join aV b= \/{a,b}.

Every pair of elements has ameet aAb=\/{c|a > c < b}.

We can then define the denotational semantics of a term M to be [M] o, where
0 : V— D is an environment used to bind any free variables in M. For example,
[x]lo = ox
DEFINITION. Let ¥ = V — D. Then define [M] in 2 — D as:
[x] = readx
[MN] = split(apply o[M])[N]
[Ax.M] = fold olift o fnx[[M]]
[P MN] = split(fork o[M])[N]
where:
read x0 = Ox
split f¢0 = fo(g0)
fnxfo = foupdateox
L ifa=b=1
fold(liftid) otherwise

fb if unfolda = lift f
1 otherwise

forkab = {

applyab = {

a ifx=y

update axay = {Gy otherwise

Define [p] in £ — X as:
[PJox = [px]o
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Then M Cp N iff [M] < [N]. O

We have presented this semantics using higher-order functions such as split and
apply, since this makes the denotational reasoning in Section 3.9 simpler. Ex-
panding out the definition, we have a semantics which may be more familiar:

[x]o = ox
[MN]o = apply([M]o)([N]o)

[Ax. M]o = fold(lift(fnx[M] o))

[PMN]o = fork([M]o)([N]o)
EXAMPLES.
[1M] = [M].
[KMN] = [M].
[Y M] o is the least solution of a = apply([M]0)a.
Q] = L.
[Y]=T.
[(A*x.M)NJois L if [NJo= L, and [[(Ax.M)N] o otherwise.
[JMN] = [M] V [N].
[MMN] = [M] ATN].
[AMNO]Jois L if [O]o = L, and [N(OM)] o otherwise. a

PROPOSITION 1. [M[p]] = [M] o [p]

PROOF. An induction on M. a

2.4 Program logic

In order to show that D is fully abstract, we need to find a link between the deno-
tational and operational semantics. We will use a program logic ®, with propo-
sitions:

e ), which is satisfied by any closed term.

o @A, which is satisfied by any term that satisfies ¢ and .

e (@— W, which is satisfied by any term that converges, and that when applied
to any term satisfying @ the result satisfies .

For example, a closed term satisfies y = w0 — w iff it converges. The definition
of ‘satisfaction’ can be generalized to open terms by saying that M satisfies @ in
the context (x1 : @1,...,x, : @,) iff M satisfies @ whenever x; is bound to a term
satisfying @;.

DEFINITION. @ is defined as:

P:i=w|ONQ|0— @
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For closed terms M, |: M : @is defined by axiom:

() EM:w
and structural rules:
(A1) EM: 9 EM: (—1) M| YN.=EN:@= |=MN:
=M:onyp FM:o—y
A context T isalistx; : @p,...,x,: @, with distinct x;.

o Letwv(x) :@,...,x,: @) ={x1,...,x,}.

o Let (I x:0A)(x) =@ and ' (x) = wwhen x ¢ wvT.

o Let |=p:Tiff Vx. = p(x) : T(x).
Then I =M : @iffVp.(|=p:T) = (= M[p]: ). a
In addition to the operational interpretation of ®, we can provide a denotational
interpretation, by giving a semantics [[¢] in D for each proposition .

o The semantics of wis L.

o The semantics of @A Y is the join of @ and .

¢ The semantics of @— U is a function which returns Yy whenever it is applied
to an element that satisfies @.

For example, [[y] = [KQ]] = L — L. Note that this relied on any a and b from
D having a join aV b. This will be shown in Section 2.5.

DEFINITION. [@] in D is defined:
o] = L
[onw] = (¢l v Iwl
lo—w] = [l —[w]

where (for w-compact a and b, defined in Section 2.6):

_Jbifa<c
(a=b)e = { L otherwise
a— b = fold(lift(a = b))
The environment [['] is defined as [[x = [ (x)]. O

For each proposition ¢, we can also define a term Mg with the same denotational
semantics as . This is the core of the expressiveness result that allows us to show
that D is fully abstract for Ap. Note that we use the P combinator in defining M,
and so this proof of full abstraction relies on the existence of P.

DEFINITION. Define M as:
Mw = Q

18



Mgy = I MoMy
Migng)—x = MMoxMy—x
Mig-.g)—x = AMeMy—x
We can show by induction on @ that [My]o = [¢]. O

A third interpretation of ® is as a proof system for propositions [' = M : @. This
is first given as a preorder = @ < |, which characterizes when U is a refinement
of @. In Section 2.6 we shall see that - @ < Y iff ] < [¢@].

DEFINITION. The preorder < is given by axioms:

(ID) Fe<o
(cr) Fo<w
(AEa) Fory <o
(AED) FoAy <y
(—w) Fo—w<w—w
(—=A) F@=P)A(e—X) < o—(PAX)

and structural rules:

Fe<y<X (/\I)'_(PSQJ Fo<X
Fo<X Fe<(WAX)
() LI FUSW
R (e—=Y) < (¢ =)
Let F@=yiff Fe< P <@and FT <Aiff Vx. FT(x) <A(x). a

For example, we can show that A is commutative, associative, idempotent and has
unit Win the equivalence - @= Y. The partial order - @ < | is used in defining the
proof system I' = M : @, since all of the structural rules (such as CUT, WEAKENING
and CONTRACTION) can be given by one rule (<). The proof system induces a
preorder on terms given by M Cg N iff N satisfies any property that M satisfies.

(TRANS)

DEFINITION. The proof system ' = M : pis given by axioms:
(or) FM:w
(D) x:@Fx:@

and structural rules:

TEM:9 THM:y FI<A AFM:@ F@<y

M) e (ony) (<) FEM:w
(_}E)FI—M:(p—u]J NEN:o@ (—1) Mx:QFM:
M=MN:y MrM=-Ax.M:p—y
r-M:y r-N:y
Pa) T b an: 9o PO Fepmv: 9=
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Then MCgNiffT-M:@=TFN:foralll and @ a

EXAMPLES.

Fl:o—@

FK:p—=U—q

FrN=EYM:iff Fo=worlr'-M:Yp—@andT=YM : .

FQ:w

FY:@

Ifrx:@FM:Pthen = ANx. M: (QAY)— .

Flie—U—(eAY).

FM:o—o— @

FAL Q= (W—=X) = (e—=W)—X. O
In Section 2.7 we show that the problem of full abstraction reduces to one of
showing that I = M : @iff I |= M : @iff [¢@] < [M][T].

2.5 Categorical presentation of D

In Section 2.3 we asserted the existence of a domain D ~ (D — D), which we
used to give the denotational semantics for Ap. In this section we shall justify this
assertion, by showing that such a domain must exist. This section is a summary of
PIERCE’s (1991) summary of PLOTKIN’s (1983) Pisa Notes, and can be omitted
by readers familiar with domain theory.

The reason why we need a domain isomorphic to its own function space is
because of terms like Y M which provide a means of defining recursive functions.
We said that the semantics of Y M was:

[Y M]|o is the least solution of a = apply([M]0)a

To show that such a solution must exist, we present it as the limit of the sequence
ap < aj; < --- where:
a=1L1  ay1 = apply([M]o)a,
That is:
an = (apply o [M]o)" L
However, we cannot always find a fixed point to a function f by defining a to be

the limit of the sequence f"_L. For example if we define the function odd on the
real interval [0, 1] as:
_f(1+x)/4ifx< i
odd.x = { (1+x)/2 otherwise
13
14080
point of odd since odd( %) = %. In order to bar functions like this, we shall restrict

then the sequence odd" 0 is 0 .. which has limit %, but this is not a fixed
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ourselves to W-continuous functions, that is if:
ais the limitof gy <a; < ---
then:
fais the limit of fay < fa; <
For example, this bars the odd function since:
Listhelimitof0< 2 <3 <.

but:

3 js not the limitof 1 < 3 < L <.
Z 2>8>16
We define the denotational semantics of Ap in D ~ (D — D) . To show that such
a D must exist, we present it as the limit of a sequence of finite domains Dy, Dy, . ..
where:

Dy=1 ) :(Dn_>Dn)J_
This can also be presented as the fixed point of a functor F between domains:
FD;=(D;—D;), =D}

Then in order to show that D exists, we show that F' is continuous. In order to do
this, we present:

¢ A notion of domain, such that the one-point domain 1 is a domain, and F is a
functor between domains.

o A notion of order between domains with least element 1 and where every
chain of domains has a limit.

¢ A notion of continuous functor between domains, such that F is continuous.

Following PLOTKIN (1983), we will use the category of W-cpo’s with embeddings
as the appropriate notion of ordered domains. Since F is a continuous functor, it
must have a least fixed point, which we will use as our definition of D.

The rest of this section will present the technical details of this construction.
We shall begin with a short reminder of some simple category theory. Interested
readers should consult MAC LANE’s (1971) or PIERCE’s (1991) textbooks.

DEFINITION. A category C is:

a class of objects obj C.

a class of arrows arr C.

a domain object dom f for each arrow f.

a codomain object cod f for each arrow f.

an identity arrow id , for each object A.

a composite arrow f o g whenever dom f = codg.

such that:
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e cod(id,) = dom(id,) = A.
e cod(fog)=codf and dom(fog) =domg.
e o is associative with unit id.

We shall write:

e Ainciff A isan objectin C.
e f:dom f—cod fin C iff fis an arrow in C.

A category is small if obj ¢ and arr ¢ are sets. a
EXAMPLES. SET is the category where:

e objects are sets.
e arrows are functions.

A preorder is a small category where:

¢ objects are members of the preorder.

o for any objects A and B there is at most one arrow f : A— B, and we write
A<Bfordf:A—B.

A poset is a preorder where if fog=id then f =g =id.

0 is the poset with no objects.

1 is the poset with one object 0.

2 is the poset with two objects 0 < 1.

wis the poset with objects 0 < 1 < ---

W+ 1 is the poset with objects 0 < 1 < - -+ < W.

If ¢ is a category then ¢ is the category with:

e objects L and lift A for each Ain c.
o arrows !A: L — A and lift f : lift A— lift B for each f : A— Bin C.

If ¢ and D are categories then C X D is the category with:

e objects (A, B) for each Ain ¢ and Bin D.
o arrows (f,g) : (A,B)— (A',B’) foreach f:A—A’incand g: B—B'inD.

In each case, the domain, codomain, identity and composition should be evi-
dent. a

DEFINITION. A functor F : ¢ — D has:

e anobject FAin D for each Ain C.
e anarrow F f: FA— FBinD foreach f:A— Bin C.

such that:
o F(id,y) =idg,.
* F(fog)=FfoFsg. O
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EXAMPLES. lift : ¢ — ¢ is a functor since we have:

e anobject liftAin ¢, foreachAin c.
o an arrow lift f : lift A—lift B for each f: A— Bin C.

If F: ¢ —Dis afunctor then F| : ¢, — D is the functor with:
e objects Fy | = | and F (liftA) = lift(FA) .
o arrows F| (1A) = I(FA) and F (lift ) = lift(Ff).

If ¢ and D are posets, then F : ¢ — D is a functor iff F' is a monotone function.
Let POSET be the category with:

e objects are posets.
e arrows are monotone functions.

In each case the identity and composition properties should be evident. a

DEFINITION. L is the initial object of ¢ iff there is a unique arrow !A: L — A
for every object Ain C. a

EXAMPLES. Many of these categorical definitions have POSET equivalents:

@ is the initial object of SET.

0 is the initial object of POSET.

The initial object of a poset is its least element.

A poset has an initial object iff it is pointed.

The initial object of ¢ | is L. O

DEFINITION.

e An w-chain in ¢ is a set of objects {A; in ¢ | i in w} and a set of arrows
{fl.j tAi—Ajinc i< jinw} suchthatfjlfOﬁ/ = k.

¢ A cocone of such an w-chain is an object A in ¢ and a set of arrows of the form
{fi:Ai—Ainc |iin w} such that fjo f/ = f;.

o The colimit of such an w-chain is a cocone {f; : A; — A in ¢ | i in W} such that
for any other cocone {g; : A;— Bin C | iin W} there is a unique f : A— Bin
such that fo f; = g;.

o A category has all w-colimits iff every w-chain has a colimit.

e F:c—D preserves w-colimits iff whenever {f; : A;— A} is the colimit of
{fl] :Aj—A;} then {F f; : FA;— FA} is the colimit of {Fflj :FA;—FA;}.

e A~Binciffwecanfind f:A—BinCcandg: B—AinCsuchthat fog=id

and go f =id.
o Ain Cis the initial fixed point of F' : ¢ — C iff A ~ FA and for any other B~ FB
there is a unique f : A— B. o

EXAMPLES. Many of these categorical definitions have POSET equivalents:

¢ An w-chain is a set of elements {xo < x; < ---}.
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A cocone of an w-chain is an upper bound.

The colimit of an w-chain C is its join (or least upper bound) \/ C.
A pointed poset has all w-colimits iff it is an w-cpo.

A function preserves w-colimits iff it is W-continuous.
x~yiff x <y <x, thatisiff x=y.

The initial fixed point of a function is its least fixed point.

For example, W+ 1 is an w-cpo, but wis not, since the w-chain {0 <1 <2< .-}
has no least upper bound. Let wcPO be the category with:

& (-cpo’s as objects.
e (-continuous functions as arrows. a

PROPOSITION 2. If ¢ has an initial object and all u>-colimits, then any functor
F : ¢ — ¢ which preserves w-colimits has an initial fixed point.

PROOF. Let C be the w-chain:

{FU=D(W(F'L)): FIL—F/1|i<j}
An adaptation of the usual proof of TARSKI’s fixed point theorem shows that
the colimit of C is the initial fixed point of F. For a discussion of TARSKI’S
fixed point theorem, see a textbook such as (DAVEY and PRIESTLEY, 1990). See

also (LASSEZ et al., 1982) for a short discussion of the history of fixed point the-
orems. o

This allows us to find the fixed point of any functor that preserves w-colimits
of a category with an initial object. Unfortunately, wCPO does not have an
initial object, and there is no obvious definition of a ‘function space’ functor
(—) : wcPO? — wcpo. However (—) can be defined in the subcategory of WcPO
where all the arrows are embeddings, so we shall use this as our category for solv-
ing domain equations:

DEFINITION. An embedding is an arrow e : A— B in WCPO such that we can find
eR: B— Ain wcPo with:

eoef <id eRoe=id
Let WCPOE be the category with:

e (W-cpo’s as objects.
o embeddings as arrows. a

EXAMPLES. The identity function is an embedding, with:
id®=id

Ife:A— Band f: B— C are embeddings, then foe: A — C is the embedding
with:

(foeff = eFo fk
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The arrow eR

then:

is uniquely defined, soif e: A— Bin CPOE and f : B— A in WCPOE

(eo f <id, foe=id) implies X = f
()1 : WCPOE — WCPOE is the lifting functor with:

e A, in WCPOE for A in WCPOE.
e ¢, :A| — B inWCPOE for e: A— Bin WCPOE.

A: WCPOE — WCPOE? is the diagonal functor with:

e AA = (A,A)in wcPOE? for Ain WCPOE.
o Af=(f,f):DA— ABin wcpPoE? for f: A— Bin WCPOE.

(—) : WCPOE? — WCPOE is the w-continuous function space functor with:

e (A— B) in wcPOE for (A, B) in WCPOE.

o (e—f):(A—B)—(A'—B') in wCPOE for (¢, ) : (A, B)— (A", B') in wcPOE?.

where e — f is defined:
(e—f)g= fogoet
(e—f)fg=eogo f*
1 is the initial object in WCPOE. O

DEFINITION. A cocone {e; : A; — A in WCPOE | i in W} is determined iff
Vi{eioel |iinw} =id. O

PROPOSITION 3. Any determined cocone is a colimit.

PROOF. Let {e; : A;— A | iin w} be a determined cocone of an t-chain
{el:A;j—A;|i< jin w}. Then for any other cocone {f;: A;— B | iin w}, define
g:A—Bas:
g=V{fioel |iinw)

¢ = VV{eio fF | iin )
Then we can show that g is the unique embedding such that goe; = f;. Thus
{ej: Ai— A |iin w} is a colimit. O
PROPOSITION 4. Any wW-chain in WCPOE has a determined cocone.
PROOF. Let {el] :Aj—A;| i< j} be an w-chain. An instantiation of this chain
is a function f such that:

domf=w fied; eR(fj)="fi
then define:
A={f| f is an instantiation}
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with the pointwise ordering. This is an w-cpo, with join:

Vifiliinw}j=V{/fij|iin w}

Then define:
i — ela ifi<j
4] = ¢'fa otherwise
R .
e f=fi
We can show that {e;: A;— A | iin W} is a determined cocone. a

DEFINITION. D is the determined colimit of the w-chain:
Dy=1
Dip1 = (Di—Di)y

with ¢; : D; — D in WCPOE given by Proposition 4. Then D is the initial fixed
point of the functor (), o (—) oA given by Proposition 2. O

2.6 Logical presentation of D

In Section 2.5, we gave an abstract presentation of D, using the category of w-
cpo’s with embeddings. In this section, we provide a concrete presentation of D,
similar to SCOTT’s (1982) information systems. Following ABRAMSKY’s (1991)
domain theory in logical form we use the program logic ® as an alternative pre-
sentation of D. In particular, we show that the w-cpo of filters of @ is equivalent
to D.

DEFINITION. W C @ is a filter iff:

e WeW.
o Ifpc Wand Fo< Pthen P € WP.
o Ifo, e WthenpA P e W.

Let Filt ® be the w-cpo of filters, ordered by C. a

Then we can show that Filt @ is isomorphic to D. In proving this, it is essential
that D is algebraic, that is every element of D is determined by its w-compact
approximations.

DEFINITION. An element a is w-compact iff, for any w-chain C:
a<VCimplies3ceC.a<c

Letka = {b < a| b is w-compact}. D is algebraic iff every a is the join of ka.
O

The rest of this section shows that ® precisely characterizes the w-compact ele-
ments of D, and since D is algebraic, Filt ® is isomorphic to D, that is:
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o Fo<yiff [of < [4].
e ais w-compact iff 3Q. a = [[q].
e D~Filt®.

In Section 2.4 we gave a semantics [[-] : @ — D, which assumed that every pair
of elements in D had a join. We shall now show that this assumption is justified.
In fact, we shall show that D is a complete lattice.

DEFINITION. D is a complete lattice iff every subset of D has a join. a
PROPOSITION 5. D is a complete lattice.

PROOF. We can show by induction on # that each D, is a complete lattice, since
Dy =1 is a complete lattice, and D, has join /,; defined:

vooasft ifAC {1}
ntl lift(\/}41 A) otherwise

where:
Visi Ab =V, {fb | liftf € A}
Then D has:
VA= VeV, enlA]) | nin w}
From this we can show that D is a complete lattice. a

From the definition of \/,,, apply respects arbitrary joins, that is:
apply(VA)b = \/{applyab | a € A} (D

but in general, w-continuous functions do not necessarily respect arbitrary join,
for example:

((avb)=T)avb)=T#L=1VvIL=(((avb)=T)a)V(((avb)= T)b)
However, w-continuous functions do respect countable directed joins.

DEFINITION. A C D is directed iff any ay,...,a, € A have an upper bound in
A. a

PROPOSITION 6. If B is countable and directed then f(\/ B) = \/(f[B]).

PROOF. For any directed B= {b; | i in w}, let the w-chain Cbe ¢; =byV - - -V by,.
Then we can show that f(\/ B) = f(\ C) and V(f[C]) = V(f[B]), so the result
follows from f being w-continuous. a

We can then show that a is w-compact iff there is some 7 such that a comes from
D,, that is iff a has depth n.

DEFINITION. a has depth n iff e,(efa) = a. ]
PROPOSITION 7. a is W-compact iff a has depth n for some n.
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PROOF.

= Since D is determined, a < \/{e;(eRa) | iin w}, so since a is w-compact there
is an 7 such that a < e,(efa) < a, so a has depth n.

< Ifa has depth n and a < V/ C for some w-chain C then
a=e(eya) < enley(V C)) = en( V(e [C]))
Since D, is finite, eR[C] is finite. Since C is an w-chain, eR[C] is an -
chain. Since eX[C] is a finite w-chain, it has a top eXb for some b € C. Then
a < e,(\V(eR[C])) = en(efb) < b. Thus, a is w-compact. a

n

We can use this to show that D is algebraic.
PROPOSITION 8. D is algebraic.

PROOF. By Proposition 7, ka = {e;(eRa) | i in w}, so since D is determined,
a=V(ka). a

In fact, we can prove a stronger statement than this, namely that D is prime alge-
braic, that is every element of D is determined by its w-compact prime approxi-
mations.

DEFINITION. a is prime iff, for any finite B C D:
a<\/B=3beB.a<b

Letkpa = {b € ka| bisprime}. D is prime algebraic iff every a is the join of
kpa. O

We can show that a is w-compact prime iff a = b+— ¢, b is w-compact and c is
w-compact prime or ¢ = L. For example, 1 — L is prime, but L is not, since

1L <Vyo.
PROPOSITION 9.

Ifb# L then a < applybe iff (¢c—a) < b.

If a— b has depth n then b= 1 or a and b have depth < n.
a=\V{b—c|b—c<a}.

Forany B#0, a—\/B=\/{a—b| b€ B}.

a— b is W-compact.

If b is prime then a— b is prime.

If a is W-compact prime then a = b+— c.

If a— b is prime then b = L or b is prime.

PN B P~

Thus a is W-compact prime iff a = b c and c is W-compact prime or ¢ = L.
PROOF.

1. Follows from the definition of —.
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. Follows from the definition of depth.
. Ifa= 1 then:
a=1L=VY0=\{b—c|b—c<a}
Otherwise, we can show that for any d:
applyad = apply(\V{b—c|b—c <a})d

andsoa=\{b—c|b—c<a}.
. If a— b < \/C for an w-chain C C D, then:

b = apply(a— b)a < apply(V C)a = \/{applyca | c € C}
Since b is w-compact there is a ¢ € C such that b < apply ca so:

a—b<arapplyca<c

Thus a+— b is w»-compact.
. Ifa— b </ A for a finite set A C D, then:

b= apply(ar— b)a < apply(\/ A)a = V{applyca | c € A}
Since b is prime, there is a ¢ € A such that b < apply ca, so:

(a—b) < (a—applyca) <c

Thus a— b is prime.

. LetA={b—c|b—c<a},soa=VA. Letag,ay,...beanenumeration of A,
and let C = {¢; | iin w} be the w-chain where ¢; = ap V - - -V a;. Then since a is
w-compactand a < \/A=\/Cthereisac; € Csuchthata <c;=ayV---Va,.
Since a is prime, there isa j < isuch thata <a; =b;—c; <a.

. For any c:
applyV{a—b| b€ Bc
= V{apply(a—b)c| b € B} (Eqn 1)
_[VBifa<c
B {J_ otherwise (Defn of —)
= apply(ar—=V B)e (Defn of —)

Then since B# 0, \/{a— b | b € B} # L, and so by part I:
Via—b|be B} =(a—VB)
. Let b=/ B for finite B. If B= 0 then b = L. Otherwise:
a—b=a—\B=\{a—c|c€B}
so since a— b is prime there is a ¢ € B such thata—b = a cso b =c. Thus

b is prime. a

29

We can use this to show that D is prime algebraic.
PROPOSITION 10. D is prime algebraic.

PROOF. Using Proposition 9 we can show by induction on the depth of a that for
any w-compact a that:

a=\{b—c|b~— c<a,cisprime} =\ (kpa)
Then since D is algebraic:
a=V(ka)=V{V(kpb)|b € ka} = V/(kpa)
Thus D is prime algebraic. O

We have shown that every w-compact element is determined by its prime approx-
imations, and so is of the form:

a=a—bV---Va,—b,

Note that L is covered by the case when n = 0. By examination of the semantics
of ® we can see that [[¢]] can always be given in the form:

(o] = [@r— WA AG— Y]
Note that w is covered by the case when n = 0. This allows us to show that our
denotational semantics for ® characterizes precisely the w-compact elements of
D. We will show this by proving a normal form result for propositions, using
factored propositions for the normal form.

DEFINITION.

e Qis factored iff @= @ A --- A @, and each @; is prime.
e Qis prime iff 9=y or @= P — X, Y is factored and X is prime.

@ can be factored iff there is a factored ) such that - @= (. O
PROPOSITION 11.

1. Any @ can be factored.

2. [4q] is w-compact

3. If @ is prime then [[@] is prime.

4. If a is w-compact prime then Iprime @.a = [[@].
5. If a is w-compact then 3factored @.a = [[q@].

PROOF. Parts 1, 2 and 3 are an induction on . Parts 4 and 5 are an induction on
the depth of a.

1. An induction on @.
2. Follows from Proposition 9.
3. Follows from Proposition 9.
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4. By Proposition 9, a = b+ ¢ where c is prime or ¢ = L. If ¢ = L then
[V = L— L =b+— L = a. Otherwise, b and ¢ have smaller depth than a,
so by induction we can find factored @ and prime Y such that [[@] = b and
[w] = c. Then [o— W] =b—c=a.

5. Find w-compact primes a; such thata = ag V - - - V a,. By part 4 we can find
prime @; such that [@] = a;. Then [@A ---A@,] = a. O

We can then show that the inequational theory F @ < () is sound and complete
for the denotational semantics of ®. This uses factored propositions as a normal
form.

PROPOSITION 12. F W< @ iff[[¢] < [W].
PROOF.
SOUNDNESS (=-). An induction on the proof of - < @.

COMPLETENESS (<). We first show by induction on ¢ and (Y that if ¢ and
are factored and [[@] < [y] then F Y < @. Then for any @and , by Proposi-
tion 11 we can find factored ¢f and y' such that - @= ¢ and - ¢ = . Then
by soundness, we have - @=¢ < (/' = (. a

Finally, we can show that the filters of ® form a concrete presentation of D.
PROPOSITION 13. D ~ Filt®.
PROOF. Define con : D— Filt(®) and abs : Filt(®) — D as:
cond = {@| [¢] < d}
abs = \/{[] |y € W}
Then we can show that con and abs form an isomorphism. a

In particular, the semantics of any term M can be given in terms of the proposi-
tions that M satisfies.

ProvosiTion 14. [M]o=VA{[d | [¢] < [MIIT]. ] < o).
PROOF. Follows from Proposition 13. a

2.7 Full abstraction

In this section we shall show that D is fully abstract for Ap. We shall do this in
three parts:

e We show that ' = M : @iff [@] < [M][[T], thus showing that the proof system
is sound and complete for the denotational semantics. This is Proposition 15.

e We then show that if [ = M : @then T |= M : @, and that if [ |= M : @ then
[@] < [M][T]- Thus the three presentations of the logic are equivalent. This
is Proposition 18.
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¢ Finally, we show that full abstraction is gained by proving the three logical
presentations to be equivalent. This is Proposition 19.

The rest of this section provides proofs of these Propositions. This is a specific
instance of ABRAMSKY’s (1991) domain theory in logical form.

First, we give a sketch proof that the proof system for Ap is sound and com-
plete for D.

PROPOSITION 15. M : @ iff[[q] < [M][I]-

PROOF.

SOUNDNESS (=-). An induction on the proof of ' = M : @.

COMPLETENESS (<). An induction on M. The difficult cases are:
o If [@] <[MN][r] then

[l
< apply(IMIT NI (Hypothesis)
= apply([M]IFD(V{[el | [@] <[INIIF]}) (D isalgebraic)
= V{apply(IMIIFDIWI | [W] < INTITT} (Continuity)

so since [[@] is compact there is a P such that:

(Wl <INIITT  [el < apply(IMIIFDIVI

If [M][T] = L then - @=wso I = MN : @. Otherwise [M]['] # L so
[w— @] < [M][r] so by induction T =N :Pand I - M : P— @and so

FEMN: @
o If [qf < [Ax.M][I] then:
[
< [Ax.M][T] (Hypothesis)
= VAW —X] | [9— X1 < [x. M1} (Propn 9.3)
= V{[Ww—xI | IX] < apply([Ax. MI[T W]} (Propn 9.1)
=V{[w—x] | IX] < [M](update[Tx[w])}  (Defn of [Ax.M])
= V{[w—=xX] | Ix] < [M][vx.-T,x: ]} (Defn of update)

Since @is compact we can find {J; and X; such that

[o] <[Wi—=XIV-VIW—Xad  [x] < IMIJvx.Tox: @]
Then by Proposition 12:
FUi—XiA AU, =X <0
and so foreach 1 < i< n:

[xi] < IM][vx. T, x: W]
= vwx.[Lx:Y;EM:x (Induction)
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=>Vx.TFA.M:;—X; (—1)
:>I'I—)\x.M:qu-—>xi (S)

Thus by (AT) and (<), T Ax.M: @ a

This has tied together the denotational and proof theoretic presentations of the
logic, and we can start to link these with the operational presentation. To begin
with, we show that the denotational semantics respects the operational semantics
(following BARENDREGT’s definition of A-theory we might call such a model a
Np-theory).

PROPOSITION 16. IfM — N then [M] = [[N]

PROOF. An induction on the proof of M — N. a

This has an immediate corollary, which is that convergent terms do not have L as
their semantics.

PROPOSITION 17. If M| then [M] L # L.
PROOF. If M |} Ax. N then by Proposition 16, [M] L = [Ax.N] L # L. a

This is enough to show the equivalence of the three logical presentations. Note
that relating the operational and denotational presentations requires the existence
of the terms Mo, and hence the P combinator.

PROPOSITION 18. (TEM: @) = (I |=M: @)= ([¢] < [M][I])
PROOF.
SOUNDNESS (1 = 2). An induction on the proof of ' =M : @.

COMPLETENESS (2 = 3). We first show the case when M is closed, by induc-
tion on @. The only difficult case is when |= M : 9— W, so M|} and by Propo-
sition 17 [M] L # L so:

[Mq]] =[]
=FMy: @ (Propn 15)
= =My: @ (Soundness)
= MMy : Y (Defn of |=)
= [W] < [MMg] L (Induction)
=[] < apply([M]L)[¢] (Defn of [MN])
= [ —[w] < [M]L (Propn 9.1)

= [o—ul < [M]L (Defn of [o— w[)
If M is open, and ' |= M : @then define p as p(x) = M. Then:

[p]L=1[r]
= Fp:T (Propn 15)
= =p:T (Soundness)
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= =Mp]:o (Defn of |=)
= [q] < [M[p]] L (Above)
= [4l < [M]([p]L) (Propn 1)
= o] < [M][r] (Defn of p)
Thus we have completeness. a

We can then use the equivalence of the logical presentations to show full abstrac-
tion.

PROPOSITION 19. MCoNiff MCgN iff M Cp N.
PROOF.

(MEp N= MLCpN) Wefirst prove by structural induction on @thatif M Ty N
and [@] < [M][I] then [¢] < [[N][T]. The only difficult case is when we
have @= P — ¥, in which case [N][I'] # L and so:

[w—x] < [M][r]
= apply[W— X]IW] < apply(IM][FT)IW] (Monotonicity)
= [X] < apply (MDY (Defn of [— X))
= [X] < 2pply (M) (M0 D) ([Mello = [l
= [X] < [MMy][r] (Defn of [MNT])
= [X] < [NMy][r] (Induction)
= IX] < apply(IVIIFD)(IMJIFT) (Defn of [MN])
= [X] < appiy(INI DIV (Moo = [9])
= [W—x] < [MIr] (Propn 9.1)
Thus for any O:
[M]o

= VAl | [¢] < [M]IT].[F] <o} (Propn 14)

< V{49l | [¢] < INIFL.I7] < o} (Above)

= [N]o (Propn 14)

Thusif M Cyp N then M Cp N.
(MEpN= MLCoN) For any closing context C, if M Cp N then:

My
= [=CM]:y (Defn of |=)
= M < [CM]] L (Propn 18)
= M < [CV]L (Hypothesis)
= |=C[N]:y (Propn 18)
= [=CINJY (Defn of |=)
Thus if M Cp N then M Co N.
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(MEpN= MLCgN) Forany I and @, if M Cp N then:

r=m:o
= [¢] < [M][r] (Propn 18)
= [¢ < [NI[rT (Hypothesis)
=TMT-M:@ (Propn 18)
Thusif MCp Nthen M Cg N.
(MEsN= MLCpN) For any 0, if M Cg N then:
[M]o
= V{4 | [¢] < [M][r],[] <o} (Propn 14)
=V{[d |TFM:q[r] <o} (Propn 18)
<O TEN:@[I] <o} (Hypothesis)
= VAl | [¢] < [NIIFT.[FT < o} (Propn 18)
= [N]o (Propn 14)
Thusif MCgNthenMCpN. O

Thus we have shown that D is fully abstract for leftmost-outermost tree reduction
of the untyped A-calculus with P.
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3 Graph reduction

In this Chapter we present a formal model of concurrent graph reduction. To do
this, we:

e Define an untyped A-calculus with recursive declarations.

¢ Show that recursive declarations can be regarded as graphs.

¢ Provide an operational semantics for declarations, based on BERRY and BOU-
DOL’s (1990) Chemical Abstract Machine.

¢ Define a denotational semantics and a program logic.

¢ Show how the proof techniques from Chapter 2 can be adapted to show the
denotational semantics to be fully abstract.

In doing so, we need to show some operational properties about concurrent graph
reduction:

¢ Although concurrent graph reduction is not confluent, we can find a semanti-
cally equivalent reduction strategy which is confluent.

¢ We can show that the concurrent behaviour of our graph reduction model is
unimportant, by showing a semantically equivalent reduction strategy which
models one-processor execution.

e We can show referential transparency for the operational semantics, using
simulation between graphs.

Thus, the fully abstract model for the A-calculus with P is also fully abstract for
the A-calculus with recursive declarations.

3.1 The A-calculus with recursive declarations

The A-calculus with recursive declarations is an extension of the A-calculus with
P, to include mutually recursive declarations such as:

rec(x:=?M,y:=IN) in x@y

which means declare x to be M, declare y to be N, and apply x to y. Terms from
the A-calculus with rec are:

o [lx is an indirection pointing to x.

® x@y is an application applying the function pointed to by x to the argument
pointed to by y.

e xVyis a fork which evaluates the terms pointed to by x and y and returns the
identity function if one of them reaches weak head normal form. Semanti-
cally, this is Pxy from Ap.

o Ax.M is an abstraction.



e recDin M is a recursive declaration of D in M.
Recursive declarations are:

e x:=!M is an tagged node declaring x to be M, and that M should be evaluated
immediately.

e x:= ?M is an untagged node declaring x to be M, and that M should not be

evaluated until it is needed.

€ is the empty declaration.

D, E is the concatenated declaration of D and E.

vx. D is the declaration D with a local variable x.

For example, the term:
recx:=7?M,y:=?N in x@y

declares x to be M and y to be N, then applies x to y. This can be contrasted with
the term:

recx:=!M,y:=INinx@y

which is semantically equivalent, but allows evaluation of M and N to be per-
formed concurrently. This is similar to the annotation of nodes described by PEY-
TON JONES (1987, Ch. 24). In the declaration:

xp =My, ... . Xy =My, y1 :=7INy, ...,y := 1N,

the terms M; are tagged, and so they can all be evaluated concurrently, whereas
the terms NV; are untagged, and so are evaluated when they are needed. All decla-
rations are considered to be recursive, for example:

x:=y.x
declares a term which reaches weak head normal form, is given an argument, and
returns itself. It has the same semantics as the ogre Yin Ap.

We have allowed local variables in declarations, for example, the local decla-
ration localx = ?M in y = ?N can be implemented as:

vx.(x:=?M,y:=17N)

We will see below how this can be generalized, so we can define local D in E in
this language. The handling of local variables here is similar to scope in MIL-
NER’s (1991) polyadic Tt-calculus, and indeed has a very similar operational se-
mantics.

We can think of declarations as a variant of HUGHES’ (1984) supercombinator
code. For example, the supercombinator code:

X =Aw.ww
y=M
$PROG = xy
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can be given as the declaration:
vxy. ($PROG := lxy,x:= 2Aw.ww,y := M)
In summary:
DEFINITION. Lam and Dec are defined:
M = Ox | x@y | xVy | Ax.M |recDin M
D:i=x:=M|x:=?M|€¢|D,D|vx.D
Let D = E mean D and E are syntactically identical. a

EXAMPLES. Given a vector X = x; .. .x,, we can define:

We can implement a ‘black hole’ term as:
O =recx:=!Oxinx
We can implement the A-calculus with P as (for fresh x and y):
x =[x
MN = recx: =M,y :=?N inx@y
PMN = recx:= M,y :=INinxVy
We shall see later that this has the same semantics as Ap. a

Unfortunately, at the moment, there is nothing to prevent inconsistent declara-
tions such as:

x:=Mx:=IN
or declarations with dangling pointers such as:
vy. (x:=10y)
We would like to avoid such terms, since their semantics is by no means obvious.

We will achieve this by restricting our attention to well-formed expressions, with
no inconsistency or dangling pointers.

DEFINITION. The written variables of a declaration are:
wv(x:=M) = {x} wve=0
wv(D,E) =wvDUwvE wv(vx.D) =wvD\ {x}

An expression is well-formed iff:

e every subexpression of the form D, E has wwDNwvE = 0.
e every subexpression of the form vx. D has x € wv D.

From now on, we shall only consider well-formed expressions. a
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EXAMPLES.

o x:=!M,y:= !N is well-formed.

o x:=!M, x:=!Nisnot.

e x:= M, vx.(x:=IN) is well-formed.

¢ Vx.(x:=!M x:=!N) is not.

e x:=!M vx.(y:=IN) isnot. a
Similarly, we can define the read variables and free variables of an expression.

DEFINITION. The read variables of an expression are:

() = {} N(@y) = by
rv(xVy) = {x,y} rv(Ax. M) = rv M\ {x}
rv(recDin M) = (rvM Urv D)\ wvD
rvix:=M)=rwM rve=0

rv(D,E) =rwDUwE rv(vx.D)=rvD\ {x}
The free variables of an expression are:
fvM=wM fvD=rvDUwvD
A declaration is closed iff rv D C wv D. O

In implementation terms, the read variables of a declaration are the pointers lead-
ing out of it, and the written variables are pointers leading into it. For example, x
is a pointer into x := ![ly and y is a pointer out of it.

DEFINITION. A renaming is a function p : V — V which is almost everywhere
the identity.

e Let M[p] be M with any read variable x replaced by px.
e Let D[p] be D with any read variable x replaced by px.
e Let [p]D be D with any written variable x replaced by px.

In each case we apply appropriate a-conversion to avoid capture of free vari-
ables. a

EXAMPLES. Some example renamings are:
(x:=10Ox)[y/x] = (x:=10y)
[y/x](x:=10x) = (y:=!0Ox)
[v/x)(x == 10x)[y/x] = (v:=!Oy)
We can a-convert a local variable (when y is fresh):
vx.D a-converts to Vy.([y/x]D[y/x])
For example:

vx.(x:=!0x) a-convertsto Vy.(y:=!0y)
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If wv D and wv E are disjoint then we can define a localized declaration as:
local Din E =v(wvD).(D,E)

This can be generalized to any declarations D and E by a-converting the written
variables of D first. If wv D = {xj,...,x,} and y;,...,y, are fresh then:

local Din E = Vy. ([y/X]D[y/X],E[y/])
for example:
local(x :=?0x) in (x:= 'Aw.x) = vy. (y:=?0y,x:= Aw.Yy)
We shall see in Section 3.3 that x := !(rec D in M) is semantically equivalent to
local Din (x := IM). a

DEFINITION. We can draw a declaration as a graph, in the fashion of MILNER’s
(1989) flow graphs for cCS. A declaration x := !M with read variables y;,...,y,

can be drawn:
X

Vi Yn
Similarly, a declaration x := ?M can be drawn:
X
Vi Vn

When M is Uy, y@z or yvVz we will usually elide the read variables, drawing
x:= Uy, x:=ly@z and x := lyVz as:

X X X
y y z. y z

A declaration € can be drawn as the empty graph.

A declaration D, E can be drawn by superimposing D on E.

A declaration Vx. D can be drawn by drawing D and erasing any occurrence
of x.

Whenever we have the same variable being read and written in a graph, we
will draw an arrow from the read variable to the written variable. a

EXAMPLES. The application of A to M can be drawn:
Vyz. X

X
I e (=ve: (@)

: )
y : yi=

SR G rown (b))
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The application of M to itself, with sharing can be drawn:

. (x = lu@v,
: u:= 0z,
Y v:i= 0z, @
z z:= M) @
A cyclic graph can be drawn:
X X
L ® o, ©
x := Uy, (x:=10
yi= 10y x := 0y,
(o) [v  ¥='0(0)
We shall see that such tight cyclic graphs give rise to deadlock. a

3.2 Operational semantics

We will give our operational semantics in two parts, based on BERRY and BOU-
DOL’s (1990) Chemical Abstract Machine. We shall first define a syntactic equiv-
alence = on declarations, and then define an operational semantics up to =. This
allows us to abstract away from syntactic details such as associativity of concate-
nation, and present the ‘bare bones’ of the operational semantics.

A similar approach has been taken by MILNER (1991) in presenting the T
calculus, and we shall follow his example more closely than that of BERRY and
BOUDOL.

The syntactic equivalence D = E is given by:

o Concatenation rules which say that concatenation is an abelian monoid with
unit €.

o Scope rules which give properties about local variables:

o Local variables can be a-converted.

o The order of declaration of local variables is unimportant.

o The scope of a local variable can migrate when this does not cause the
capture of free variables.

These rules for local variables are the same as MILNER’s (1991) scope rules
for the Tecalculus, except that we omit Vx.vx. P = Vx. P, since the declaration
vx.Vx.D is not well-formed.

o A fork rule saying that fork is commutative.
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o Congruence rules which say that = is an equivalence relation, and is respected
by concatenation and local variables.

Many of these equivalences were implicitly used when we drew declarations as
graphs. For example, D, (E,F) = (D, E), F corresponds to the fact that super-
imposition of graphs is associative. The only axiom which equates declarations
with different graphs is (VcomM), which says that fork is commutative, and so
we shall not distinguish between:

X X

This axiom halves the number of rules required for fork.

DEFINITION. If z ¢ fv D then = is given by axioms:
(Ass0C) D,(E,F)=(D,E),F

(coMM) D,E=E,D
(UNIT) D,e=D
(a) vx.D =vz.([z/x]D|z/x])
(VSWAP) Vx.Vy.D=vy.vx.D
(VMIG) D,vz.E =vz.(D,E)
(vecoMM)  x:=1(yVz) =x:=!(zVy)
(REFL) D=D
and structural rules:
(SYMM) D=E (TRANS) b=E=F
E=D D=F
D=FE D=FE D=E
Wor=£fr WEp=r YVubD=wE
Note thatif D=E thenrvD =rvE and wD =wv E. a

We can use the equivalence = to simplify the operational semantics for graph re-
duction. This can be given as eight axioms and three structural rules. The axioms
can be broken down into four phases:

o Graph building, in which a recursive declaration is expanded into a graph, for
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example:

o Spine traversal, in which an untagged node pointed to by a tagged node be-
comes tagged, for example:

i

There are three axioms, depending on whether the tagged node is an indirec-
tion, an application, or a fork.

H‘

e Updating, in which a node pointing to an abstraction is updated, for example:

X X

@ @
® ®O ®

There are three axioms, depending on whether the node is an indirection, an
application, or a fork.

o Garbage collection, in which a sub-graph with no incoming pointers is re-
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moved, for example:

X
() :
_>
These phases are not sequential, and there may be more than one axiom which

can be applied at any one point. Since each axiom uses a small number of nodes,
there is much scope for concurrency, for example:

@ ®_@& ®
| |

M

:

The operational semantics — is first given by an operational semantics —, and
— is defined as =—=.
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DEFINITION. ~ is given by axioms:

(BUILD) x:=!(recDin M) — local Din (x := M)
(OTRAV) x:=10y,y:=2M — x:=Oy,y:=M
(@TRAV) x:=1y@z,y: =M — x:=ly@z,y := M
(\/TRAV) x:=Wz,y:="Mw+— x:=yWz,y:=M

(OupD) x:=!Oy,y="Aw.M—x:="A\w.My:=Aw.M
(@upPp) x:=ly@z,y:=Aw. M — x:=M[z/w],y:=Aw.M
(VUPD) x:=lyvz,y:="Mw.M—x:=!1ly:=1Aw.M
(y) viwvD).D — €
and structural rules:

(L) _D—E (R) _D—E (V) _D—E
D, F—EF FD—FE vx.D—Vx.E
Note that if D+— E thenrvD D rv E and wwD = wvE.
D—Eiff D=—=E.
D—YEiff D=E,and D —"*' Eiff D ——"E.

D—>*Eiff§|n.D—>”E.
D—<iEiffIn<i D—"E. O

EXAMPLES. In the graph building phase, we take a term containing a recursive
declaration and build a graph from it:

:=!(recDin M) — local Din (x := M)

For example, the deduction:

x:=1AM
= x:=(rec(y :=1A,2:=2M) in (y@z)) (Defn of AM)
— local(y :=1A,z:= M) in (x := ly@z) (BUILD)
= vyz. (x:=ly@z,y:= A, z:= 2M) (Defn of local)

can be drawn graphically as:

X

(@)

X
-

Similarly, the deduction:

vz.(x:=lzz,z:= M)
= vz. (x:=(rec(u :=10z,v:=20z) in (u@v)),z:= M) (Defn of zz)

— vz. (local(u:=10z,v:=70z) in (x := lu@v),z := M) (BUILD)

= vz. (Vuv. (u:=0z,v:= 20z, x := lu@v),z:= M) (Defn of local)

= vuvz. (u:=10z,v:= 20z, x := lu@v,z:= M) (VMIG)
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can be drawn graphically as:

X

: ()
~(© @

We can build cyclic graphs, for example the deduction:

x:=10
= x:=!(rec(y:=!0Oy) in (Oy)) (Defn of )
— local(y := !0y) in (x:= !0y) (BUILD)
= vy. (x:=!Oy,y:=10y) (Defn of local)

can be drawn graphically as:

Note that this axiom can only be applied to tagged declarations x := !(rec D in M)
and not untagged declarations x := ?(rec Din M). In implementation terms, this
is because we only build a graph for terms currently under evaluation.

In the spine traversal phase, we find a tagged node which points to an un-
tagged node, and tag it. Thus we have three axioms, depending on the form of

the tagged node:
X X
x:=10y,y:="M
Hx::!Dy,y::!M@@y H@@y

X

x:=ly@z,y:=M .
—x:=ly@z,y: =M
() (w)
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X = ‘y\/zy'_
'—>x—‘y\/zy—‘M f

Note that since we are modeling lazy evaluatlon, we have:

x:=ly@z,z:=M™M ' ‘
o xi=1y@z,z:= M '7L>y

This phase is called ‘spine traversal’ because there will often be a ‘spine’ of un-
tagged indirection, application, and fork nodes, which will all be tagged. For ex-
ample:

This phase terminates when we reach a tagged function Aw. M, as in the above
example, and we can perform updating. We have three axioms, depending on
which kind of node is pointing to the function. If it is an indirection node, we
make a copy of the function. Since the function is already in weak head normal
form we are not losing any sharing:

X

X
x:=!0y,y:="Aw.M .—>
y

—x:=1Aw.My:=Aw.M y

If we have an application node pointing to a function we can perform (3-reduction.
This is the ‘work’ of the operational semantics, and we can regard the other rules
as manipulation to produce a graph where [3-reduction can take place. Note that
since we are using renaming rather than substitution to model (3-reduction, we
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have modeled sharing:

&

x:=!y@z,y:=Aw.M

—x = IM[z/w],y:=Aw.M %

X
y z

—

For example:

vyz. (x:=1y@z,y:= A z:= M) & ‘
—Vyz. (x:=lzz,y:= A z:= M
'@ @ ()

If we have a fork node pointing to a function we can return the identity function,
in the same way as the Ap rule for P.

X

x:=lywvz,y:=1Aw.M @ y@

—x:=!lLy:="wWw.M /

The final phase is garbage collection where any subgraphs with no incoming
pointers are removed. This corresponds to the last axiom:

viwvD).Dw+— €
For example, the deduction:

vyz. (x:=lzz,y:= A z:= M)

=vyz. (y:=10x:=2z,z:= M) (comMMm)
=vzy. (y:= 1A x:=zz,2:= M) (VSWAP)
=vz.(vy. (y:=1A),x:=1zz,2:= M) (VMIG)
— Vz.(gx:=lzz,z:= M) y)
=vz.(x:=lzz,z:= M) (UNIT)

can be drawn graphically as:
X X
D¢
Note that although we have presented these phases sequentially, they can be car-
ried out in any order. Since most of the axioms involve very small graphs, con-

taining three or fewer nodes, we have a very small granularity and thus much
scope for concurrency.
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However, the axiom for garbage collection involves graphs of arbitrary size,
and so has much larger granularity, and so less scope for concurrency. In imple-
mentation terms, this corresponds to the fact that much less concurrent graph re-
duction can take place during garbage collection. Indeed, many graph reduction
engines suspend graph reduction completely during garbage collection.

We can combine these phases together to reduce any graph, for example the
deduction:

x:=1AM
= x:=(recy:=A,z:= M in y@z) (Defn of AM)
— localy:= 1A z:=?M in x :=y@:z (BUILD)
= vyz. (x:= y@z,y:= A, z:= M) (Defn of local)
— Vyz. (x:=lzz,y := A z:= IM) (@uPD)
= vz. (x:=lzz,vy. (y:= 1A),z:= 2M) (VMIG)
—Vz.(x:=lzz,€,2:= M) ®
= vz. (x:=lzz,2:= M) (UNIT)
= vz. (x:=(recu:=0z,v:=?0zin u@v),z:= M) (Defn of zz)
— Vvz. (localu :=0z,v:=?0zin x := lu@v,z := M) (BUILD)
= vz. (Vuv. (x:=lu@v,u:=0z,v:=720z),z:=?M)  (Defn of local)
= vuvz. (x = lw@v,u:=0z,v:=z,z:= IM) (VMIG)
— vuvz. (x = lu@v,u:=0z,v:=20z,z := M) (OTRAV)

can be drawn graphically as:

X X X

- 2 -9 @
@@ Yo @

- ® ® -
These steps are: graph building, B-reduction, garbage collection, graph building
and spine traversal. We thus have:

x:=1Q
= x:=1AA (Defn of Q)
=" vuvz. (x:=lu@v,u:='0z,v:=?0z,z:= 1A) (Above)
— vuvz. (x:= lu@v,u:=A,v:=?0z,z:= Q) (OupD)
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— vuvz. (x:=yw,u:=1Av:=20z,z:= Q)

— vvz. (x:=yw,v:=20z,z:= !A)

— vz, (x:=1t@u, ¢ := '0Ov,u:=?0v,v:=?0z,z:= 1A)
— vz, (x:=1t@u,t:= 0Ov,u:=?0v,v:=0z,z:= 1A)
— vz, (x:=1t@u,t :=0v,u:= 0y, v:= A z:= IA)
— vz, (x:=1t@u, ¢t :=0v,u:=?0v,v:= Q)

_

This can be drawn graphically:

x S
@~ @ ®-® 0" ©
() (i) ()

X

. @ @
HH H O ®
L @ &
@ @
(@) x
@
Hﬁﬁ
E

Thus x := 1Q is divergent. This can be contrasted with the deduction:

(x:=10) = vy. (x:=ly,y:=1ly) £
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(@uPD)
)
(BUILD)
(OTRAV)
(Oupb)

)
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which can be drawn graphically as:

® "S5

since the graph is fully built, the spine is tagged, there are no function nodes to
reduce, and there is no garbage. Thus the declaration x := !0 is deadlocked rather
than divergent. Denotationally, we shall identify the terms U and Q, since neither
of them can reach weak head normal form, although operationally they are very
different. a

We can define x to be in weak head normal form (whnf) in D iff D contains
x:=1w.M.
DEFINITION.

e xisin whnfin (x :=Aw. M).

e xisin whnf in (D, E) if x is in whnf in D or E.

e xisin whnfinvy. D if x is in whnf in D and x # y.

Note that if D = E and x is in whnf in D then x is in whnf in E. a
We can use this to define our notion of testing:

e A program is a closed declaration.

e A testis a closing context C[-] and a variable x.

e A term M passes a test iff, when we tag x in C[M], the result reduces to weak
head normal form at x.

DEFINITION.
e tag isdefined (when x # y) as:
tag (x:=IM) = (x:=IM) tag (x:=?M)=(x:=M
tag (y:=!M) = (y:= M) tag(y:=7M)=(y:=M
tag (Vvx.D) =vx.D tag, (Vy.D) = vy.(tag,
tag E=¢€ tag,(D,E) = (tag, D),
For closed D, D |}, E iff tag D —* E and x is in whnf in E.
DU, iff 3E.D ), E and D, iff ~3E . D E
M Cy N iff C[M]{}, = C[N]{, for any x and closing context C.

DCyE iff wwD =wv E and C[D|{}, = C[E]{}, for any x and closing context
C. a

Note that convergence (Dl} ) and termination (D—"+~) are very different in this
operational semantics, although they are equivalent in Ap. For example:

M)
M)
D)
(tag, E)
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e x:=!(recy:=!Qin Aw.y) converges, but does not terminate.
e x:= !0 terminates, but does not converge.

Since we are using convergence rather than termination as our definition of testing
equivalence, we can identify Q and O. The testing equivalence based on termi-
nation has been investigated by the author (1993).

3.3 Denotational semantics

The denotational semantics for Lam is given in the same domain D ~ (D—D)
as A\p. The semantics of Dec is given as [D] : £— Z, so if 0 is an environment,
then so is [D]jo. The main difference between the semantics of Lam and that of
N\p is that the former makes explicit use of recursion. For example, if we define:

constab=a
Then we can show that the semantics of the ‘ogre’:
recx :=!Ay. Oxin Ox
is given as the least solution to:
f =foldoliftoconstof
and so [recx:=A\y. OxinOx] =T.
DEFINITION. Define [M] : Z—D as:
[Ox] = readx
[x@y] = split(apply oreadx)(read y)
[xVy] = split(fork oreadx)(ready)
[Ax.M] = foldolift o fnx[[M]
[recDin M] = [M] o [D]
Define [D] : ¥ — X as:
[x := IM] = fix(set{x}(x := [M])))
[x := 2M] = fix(set{x}(x:=[M]))
[e] =id
[D, E] = fix(set(wv(D, E))([D] < [E]))
[vx.D] = newx[D]

where:
_Jox ifx=y
newxfoy = { faoy otherwise
o _J foifx=y
(x:= floy = {Gy otherwise
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[ flgoxifxeX
setX fgox = { ox otherwise

fix f = V{f"L|nin w}

o M Ty Niff [M] < [N].
e DCpEiffwwD=wvE and [D] < [E]. O

EXAMPLES. We can show that the semantics of the ‘ogre’ termis T, since:

[recx:=!Ay.Oxin Ox]
= [Ox] o [x:=Ay. 04 (Defn of [recDin M])
= readxo [x:=Ay. Ox] (Defn of [Ox])
= readxofix(set{x}(x := [Ay. Ox])) (Defn of [[x := 'M])
= readxoset{x}[Ay. Ox])(fix(set{x}(x := [Ay.Ox])) (Unfold)
= readxoset{x}[Ay. Ox]|[[x := !Ay. Ox] (Defn of [[x := 'M])
= [[Ay. Ox] o x:=Ay. O« (Defn of read and set)
= foldolift o fny[Ox] o [ := !Ay. Ox] (Defn of [Ax.M])

= fold olift o consto((read x) o [[x := Ay. Ox]) (Defn of fn and const)
= fold olift o consto([[0x] o [[x := !Ay. Ox]) (Defn of [Ox])
= fold olift o consto([[recx := 'Ay. Oxin Ox]) (Defn of [recDin M])

The only function which satisfies this is:
[recx:=!\y.OxinOx] =T
The semantics agrees with that of Ap:
[x] = readx
[MN] = split(apply o[M])[N]
[Ax.M] = fold olift o fnx[[M]]
[P MN] = split(fork o[M])[N]

This means we can define M, from Section 2.7 in Lam and that [M] = [@]. We
can also define Dr as:

D.=¢
Dr p = Dr,Dp
Dy = x:= My
then we can show by induction on I that [Dr]jo = [I']. O

The properties of this denotational semantics are discussed in Section 3.9.

3.4 Program logic

The proof that D is fully abstract for Lam proceeds in much the same way as the
proof in Chapter 2. We present a program logic, and use it as a link between
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the denotational and operational semantics. The propositions we will use are the
same as those from Chapter 2, and so we can use all of the material from Sec-
tion 2.6. However, since we are looking at a different syntax, we need a different
operational characterization and a different proof system.

Since the operational semantics for graph reduction is given between decla-
rations rather than terms, the operational characterization of @ is also given for
declarations. So rather than defining |= M : ¢for closed terms, we define |=D: A
for closed declarations. The proposition |= D : A means that the term in D referred
to by x satisfies A(x). For example, the graph:

X

e,
ONO
satisfies Q— Y — Y at x, p— P — @at y, and @— @ at z, that is:
= (x:=ly@z,y:="K,z:=!I):
(o= P—=Uy: o—=U—0z:0—)
We define ‘D satisfies A’ as:
¢ Any declaration satisfies € or x : .

o If D satisfies ' and A, then D satisfies [ A A.

o If D]}, and any extension E of D and z := Ix@y which satisfies y : @satisfies
z: |, then D satisfies ¢p— .

For example:
e D satisfies x : yiff DJJ,.
o x:=!lsatisfies x : — @because any graph
x:=!lz:=x@y,D

which satisfies y : @ also satisfies z : @.

e x:=!K satisfies x : 9— Y — @ because any graph

x:=!1K z:= x@y,w:=z@v,D

which satisfies y : @ and v : ) also satisfies w : @.

e We can show by induction on @that (w := !Ay.w,x := !Ay.w) satisfies x : @.
The only difficult case is when @= ) — X, in which case:

(w:=y. wx:=Ny.w)l,
and in any graph:
w:=Ay.w,x:=Ay.w,z:= lx@y,D
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if y satisfies Y then:

w:=Ay.w,x:=Ay.w,z:= x@y,D
—w:=NAy.wx:=Ay.w,z:=!0w,D
—w:=NAy.wx:=Ay.w,z:=!Ay.w,D

which by induction satisfies z : X. Thus:
(w:=y.wx:=1Ay.w):Q
From this it is simple to show that (w:=Ay.w) : (w: @).

This definition depends on the notion of ‘graph extension’, which is the preorder
DCE.

DEFINITION. D C E iff we can find %, y, D' and E’ such that:

D=vx.D  E=vxy.(D E fvDNy=0
Note that C is a preorder, and that DC EC Diff D=E. d
We can then define the the operational interpretation of the logic.
DEFINITION. For closed declarations, |= D : A is given by the axioms:

(e1) |=D:¢ () =D:(x:w)
and structural rules:
V(z:=!x@y) CTE JD.
mERL RS (0 B bR o Ry

This can be generalized to any D by defining I' |= D : A iff:
VE.(|=D,E :v(wvD).T) implies (= D,E : A)
Similarly, [ |= M : @iff:
VD, z.(|=(D,z:= M) :T) implies (= (D,z:= M) : (z: @))

One consequence of full abstraction is that for A-calculus terms, this operational
definition agrees with the definition of Section 2.4. a

We can define a proof system for Lam as we did for Ap. This uses the same propo-
sitions, and will have judgements of the form ' =M : @and ' = D : A. The main
difference between the proof system for Lam and that of Ap is the proof system
for recursive declarations. Note that:

e The proofrules (!) and (?) for tagged and untagged declarations are the same.
Semantically there is no difference between a tagged or an untagged node,
although they have very different operational behaviour.
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e We are considering declarations to be recursive, and so the proof rules (!), (?),
(L) and (R) for declarations are recursive. For example, to show [ =D, E : O,
we are allowed to have a subgoal of [ = D E : A.

DEFINITION. The proof system [ = M : @is given by axioms:

(o) FM:w

(D) x:@FOx:@
(—E) (:0=WA(Y:Q) Fx@y: Y
(Va) X:YExVy:@—@
(VD) y:yExvy: o—o

and structural rules:
(/\I)I'I—M:(p Fr-=m:y (<)I—F§A AFM:@ Fo<y
FEM:(eAY) - Fr=M:y
Mx:o-M: Y FrED:A AFEM:@
(_q)rl—)\x.M:(p—ujJ (rec) M-recDinM: @
The proof system [' = D : A is given by axiom:

(L) TED:v(wvD).l

and structural rules:

r'-D:A THED:O Fr<I’" IM"eD:N EFAN<A

e S HIYXC) (<) FFD:A
(')Fl—(x::!M):A AFM:@ (q)rl—(x::?M):A A-FM:@
' FTeE(x:=!M):(x: @) ) FE(x:=2M): (x: )

(L)FI—D,E:A AFD:0O (R)FI—D,E:A A-E:O

l-D,E:0© N-D,E:0O
vx.FD:A

v) MNvx.D:vx. A
where vx. (I, x: @A) =T, Aandvx.[ =T when x € wvl. Then:

s MCgNifftvylL@.TEFM:@=THFN:U.

e DCgEiffwwD=wvEand V[ LA.TH-FD:A=THFE:A a
EXAMPLES. The proof system for Lam is similar to that for Ap. Indeed, we can
use this proof system to show:

rEM:p—y TEN:@
X:QFx:@ FrEMN:Q
Fr=Mm:y M=-N:y
MrMN=PMN:@p—0@ rN=PMN:@p—0@

The proof system for Dec allows recursive proofs of properties of declarations.
For example, we can prove by induction on @that - (x := !Aw. Ox) : (x: ). The
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only difficult case is when @= Y — X:

(ID) ——T5—<
(x:x)FOx:x
(1ndn) 5 ) X e
\ Flo=Aw. 0x) s (x:X) (x:X)FAw.0x) : (W—YX)
() Flo="w. Ox): (x:w—X)

From this we can show that F rec(x := !Aw. Ox) in Ox : @ for any proposition @,
and so the term rec(x := !Aw. Ox) in Ox is a maximal element of Cg. a

In Section 3.11 we can show that the problem of full abstraction reduces to one
of showing that ' - D : Aiff I |= D : Aiff [A] < [D][T].

3.5 Operational properties: structural equivalence

In the following four sections we shall look at four properties of the operational
semantics for graph reduction:

This section looks at structural equivalence.
Section 3.6 looks at confluence.

Section 3.7 looks at fagging.

Section 3.8 looks at referential transparency.

In this section we will look more closely at the structural equivalence D = E that
we used to define D — E. Although the structural equivalence is a great help in
presenting D — E, it makes proving properties about D — E harder, since we are
always working modulo =. MILNER (1991) faced a similar problem in proving
properties about the polyadic Tecalculus, which he solved by giving an indepen-
dent presentation based on a commitment relation.

In this paper, we shall continue to prove properties about declarations up to
=, but we will need to know some properties about =. In particular, we shall
present a model for declarations modulo =, and use this to show that:

o If(x:=!M)=(D,E)then D=¢corE=¢.

e If (D, E) = (F, G) then we can find DF, DG, EF and EG such that
D= (DF,DG), E = (EF,EG), F = (DF,EF) and G = (DG, EG).

e Ifvx.D=(E,F) then either E=vx.Gand D= (G,F) or F =vx.G and
D=(E,G).

e Ifvx.D=vy.E and x # y then either D = [x/y|E[x/y] or E = vx.F and
D=vy. F.

e Vx.D# (x:= M)
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We can use = to convert any declaration into standard form vx . D where D con-
tains no local variables. For example:

(x:=!0Oy,localx:=!Owiny:=!x) =vz.(x:=!0y,y:=0z,z:= 0Ow)
DEFINITION. Let the v-less declarations be:

e £is V-less.
e x:=!Mand x := ?M are V-less.
e D E isV-less iff D and E are v-less.

D is standard iff D = vX . E and E is V-less. D can be standardized iff D = E and
E is standard. a

PROPOSITION 20. Any D can be standardized.
PROOF. An induction on D. O
The model for declarations consists of a 4-tuple (X, Y, Z, f) where:

X C V is the set of written variables.

Y C V\ X is the set of hidden variables.

Z C X UY is the set of tagged variables.

f:XUY — Lam is the term associated with each variable.

For example, the model for vy. (x:= IM,y:= 7N) is:

({h, v} {xd s { (e M), (0, N) )

We shall consider this model up to 0-conversion of hidden variables, for example
if z is fresh then we shall equate:

({xh, 0 {xh (M), (v, N)})
= ({x} {2}, {x} {(x, M[2/y]), (v, N[z/3])})
In summary:
DEFINITION. An abstract declaration is a 4-tuple (X,Y, Z, f) such that:
XCV  YCV\X ZCXUY f:XUY—Llam
(X,Y,Z,f)=(X,Y',Z', ') iff we can find orderings X of ¥ and y of Y/, and fresh
Z such that:
Z/3[2)=/5Z]  vx. (f([%/Fx)E/X] = (f ([F/A0)[E/5]
Then the semantics of declarations is given by:
d[e] = (0,0,0,0)
Ofx:=M] = ({x},0,{x},{x— M})
Ofx:=2M] = ({x},0,0,{x— M})

58



d[D,E] = (XUX' YUY ZuZ fUf)
ofvx. D] = (X\ {x},YU{x},Z, /)
where d[D] = (X,Y,Z, f), 0[E] = (X", Y',Z', f') and X, Y, X" and Y are all dis-
joint. O
Then we can show that this semantics is fully abstract for =.
PROPOSITION 21. D = E iff O] D]| = 0[ E].
PROOF.

= This proof consists of showing each of the axioms and structural rules for =
to be sound.

< This proof consists of showing that standard declarations provide a normal
form, up to (VswaP), (a), (Assoc), (coMM) and (UNIT). a

We can use this to show the required results about =.

PROPOSITION 22.

1. If(x:=!M)=(D,E) thenD=¢or E =¢.

2. If (D,E) = (F, G) then we can find DF, DG, EF and EG such that
D= (DF,DG), E = (EF,EG), F = (DF,EF) and G = (DG, EG).

3. Ifvx.D = (E,F) then either E=Vx.G and D = (G,F) or F =vx.G and
D=(E,G).

4. Ifvx.D=Vy.E and x # y then either D = [x/y|E[x/y] or E =Vx.F and
D=vy.F.

5. vx.D# (x:= M)

PROOF. Each of these has a simple proof, based on abstract declarations. For

example, if (x := M) = (D, E) thenleto[ D] = (X,Y,Z, f),0[E] = (X", Y',Z', f)

for disjont X, X', Y and Y’, and so:

(Xux',yuy',zuZ, fuf)={x},0,{x} {x— 1}
and so either X = 0 (and so d[D]] = 9[€])) or X" = 0 (and so A[E] = O[[])). This
completes the proof for part 1, and the others follow similarly. a
3.6 Operational properties: confluence

This section looks at the problems raised because the operational semantics given
in Section 3.2 is not confluent.

DEFINITION. A relation R is confluent iff x R 'R y implies x RR ™ y. a

Confluence is (as we shall see below) very useful in proving results about an op-
erational semantics. There are two reasons why —* is not confluent. The first,
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mentioned in Section 1.2, is due to garbage collection, since:
y, (@ (9
ORPIE

but there is no declaration D such that:

o

The second is due to fork updating, since:

<§ ® &

but there is no declaration D such that:
X X
m y _>* D (_* @ y

In this section we will present a confluent convergent reduction strategy for graph
reduction.

DEFINITION.

o A reduction strategy is a relation —p C —.
° DUf iff tag D —% E and x is in whnf in E.
e —ris convergent iff D|} , < DUf for any closed D. a

The reduction strategy we will present in this section is the same as —, except
that:

o There is no garbage collection. This bars our first counterexample.

o Fork updating can only take place when both of the nodes pointed to by the
fork have been tagged. This bars our second counterexample.

60



For example, we will allow the reduction:

BT
ONORONONONMO
b, &
ONORONO

Note that we need three axioms to replace the axiom:

but not:

(x:=Wyvz,y:=Aw. M) — (x:=!ly:=1Aw.M)
since we have to consider the cases when x =z, y =z, and x Z z # y.

DEFINITION. — is given by axioms:

(BUILD) x:=!(recDin M) —,recDin (x:= M)
(OTRAV) x:=0y,y:=2M —,x:=!Oy,y:= M
(@TRAV) x:=ly@z,y:= M —. x:=y@z,y := M
(VTRAV) x:=1Wz,y:=MM —.x:=yz y:=IM
(OupD) x:=0y,y:="\Ww.Mw—.x:="Aw.My:=1Aw.M
(@upD) x:=1y@z,y:=A.M —. x:=M[z/w],y :=Aw.M
(VUPDa) x:=!yvz,y:= M. M,z:=IN—,.x:=!Ly:=Aw.M,z:= N
(VUPDb) x=Wyy=MwWwM—.x:=!ly=1Aw.M
(VUPDC) x:=wWx,y:=\Ww.M—.x:=!ly:=Aw.M
and structural rules:
D—_.E D—_.E D—_.E
WOoreftF WEperE YuwDowE
Then D —( E iff D=—.=E. O

In the rest of this section, we shall show that — is convergent and that —. is
confluent.
To begin with, we can show some properties of tag:

PROPOSITION 23.

1. tag,(tag,D) = tag,(tag, D)

2. tag,(tag, D) =tag D

3. If D=E thentag, D =tag E.

4. If D — E thentag, D —=<l tag E.

61

5. Ifx is in whnf in D then x is in whnf in tag, D.
6. If x #£ y then x is in whnf in D iff x is in whnf in tag, D.

PROOF.

1. An induction on D.
2. An induction on D.
3. An induction on the proof of D=E.
4. An induction on the proof of D — E.
5. An induction on the proof that x is in whnf in D.
6. = An induction on the proof that x is in whnf in D.
< An induction on the proof that x is in whnf in tag,, D. a

We can show that reduction is independent of the choice of variables, so if y is
fresh then [y/x]D[y/x] has the same behaviour as D:

PROPOSITION 24. Ify is fresh and x # z then:

L. If D — E then |y/x|D]y/x] — [y/x]E[y/x].
2. DY, iff [y/x|Dly/x}4}..
3. DY, iff [y/x|Dly/x]4},.

PROOF. Part 1 is an induction on the proof of D — E, and parts 2 and 3 follow.O

Any reduction D — E is a reduction of the form v¥. (F,G) — VX.(F,H) where
G — H is an axiom. For example, the reduction:

ONORONO

vz.(x:=lzvyz:=!ly:=7) —=vz.(x:=lz:=11y:=?I)

can be given as:

and (x:=1zvy,z:=!l)— (x:=!l,z:=!1) is an axiom.

PROPOSITION 25.

PROOF.

1. An induction on the proof of D — E.
2. An induction on the proof of D —. E. u

We can use this to show that any reduction D = vx. D’ —, E must have come
from a reduction D' —, E’ and E = vx. E’. This means that whether a variable is
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local or global makes no differene to the reduction stragegy — .. This is not true
of —, because of garbage collection.

PROPOSITION 26. IfD=vx.D' —.Ethen D' —.E' and E =vx.E'.
PROOF. By Proposition 25.2:
vx.D' =Vi.(F,G) E=VX.(F,H) Gr.H isanaxiom
Then we can O-convert so that x ¢ X, so by Proposition 22.4:
o either we have:
F=3E D =viE (WHE.G)))
and so, since all the axioms for — . are preserved by 0-conversion:
D = V3. ([6/5)(F, G)[x/y]) e V3. ([e/»](F, D[/ )
and:
E=VX.(F H)=vx.v¥Z.([x/y](F,H)[x/y])
e or we have:
(F,Gy=vx.D" D =vi.D"

and so, by Proposition 22.3 and the fact that all the axioms for —. involve
V-less declarations:

F=vx.F' D =vx.(F',G)

and so:
D' =VX.(F',G) —.VxX.(F',H)
and:
E=Vi.(F,H)=vx.vX.(F' H)
In either case we have found an E’ such that D/ —. E’ and E =vx . E’. O

We would now like to show that — is convergent, that is D} iff D). Unfortu-
nately, it is not the case that any reduction D —* E can be matched by a reduction
D —7 E, since:

o The reduction D —* E might include garbage collection.
e The reduction D —* E may include fork updating with an untagged node.

However, it is the case that any reduction D —* E can be matched by a reduction
D —7 F, where F can be garbage collected to a declaration with fewer untagged
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nodes than E. For example, the reduction:
X X X
B, . O O
ONORONONND

can be matched by the reduction:

i

and:

can be garbage collected to:

which has fewer untagged nodes than:

@,
D,

More formally, we shall show that if D —~ E then D —7— <, E, where D — E
means ‘D can be garbage collected to E” and D <9 E means ‘D has fewer un-
tagged nodes than E’.

DEFINITION. D <, E is given by axioms:
(REFL) D <y D (7) (x:=IM) <y (x:=7M)

and structural rules:

D<HGWE D < F D<»E
(LR) - (v)
D,DIS?E,E V.X.DS‘]V)C.E
D —y E iff D — E is proved using the (y) axiom. a

64



PROPOSITION 27. For closed D: <y VX.(G,TI") (Eqn 5)
1. <y is a partial order: S_? vi.(G.I) (Eqn 6)
2. D =EiffD=<,E. =E (Eqn 4)
3. If D—y—E then D —.—E. And so by part 2, D —5<y E.
4. If D <y—E thenD —='<, E. 5. Similar
5. If D <9—y E then D —y<y E. ’ '
6. If D— E then D —;—3<, E. 6. If D — E then by Proposition 25.1 we have:
1. If D—"E then D —{—y<» E. D=Vi.(F,G) E=Vi.(FH) G—H isanaxiom (7)
PROOF. Then we proceed by analysis on the axiom G — H:
1. By deﬁnit?on, <y is reflexive. By induction on the prgof of D $7 E, we can (y) D—yE,soD —>2‘.—>§‘,§7 E.
show thatif D <4 E <, D then D = E, and so <, is antisymmetric. By induc- o
tion on the proof of D <, E, we can show that if D <, E <, F then D <, F, (VUPD) This axiom has:
and so <, is transitive. G=x:=ywz,y:=\w.M
2. An induction on the proof of =. H=x:=!ly:=1Aw.M
3. If D —y F' — E then by Proposition 25.1: There are three subcases:
D=vVvX.(G,v(wH).H) F=vX.G 2 (x=2z) Soby (VuPDc), G, H, andso D —;—y < E.
Then by Proposition 26: (y=2) Soby (VuPDD), G—H, andso D —7;—y<s E.
E=vi.l G—.I (3) (x#z#y) Since D is closed, z € wv F, and so either:
Thus: F=Vy.(F z:=M) (8)
D and we can d-convert so yNfv G = 0, and so:
= VvX.(G,v(wvH).H) (Eqn 2) D
— VX.(I,Vv(wvH).H Eqn 3
. v5¢’.5 i) ) H (y§ = Vi.(F,G) (Eqn 7)
_ (Eqn 3) = VX.(V¥.(F',z:=M),G) (Eqn 8)
= VXy.(F',z:=M,G) (VMIG)
4. If D <y F — E then by Proposition 25.2 we have: — e VY. (F',z:= M ,H) (VUPDa)
F=vi.(GH) E=Vi.(GI) Hw—.I isanaxiom (4) = VX.(Vy.(F',z:=M),H) (VMIG)
= VvX.(F,H Eqn 8
Then by part 2, and the definition of <s: _ Ex (F.H) EESE 7;
D=vx.(G H) G <G H < H (5) or
Then by analysis of the axiom H . I, we can find: F=Vy.(F,z:= M) ©)
d ! * gl
<1 H =1 (©) and we can a-convert so yNfv G = 0, and so:
Thus: D
D = VX.(F,G) (Eqn 7)
= vX.(G,H") (Eqn 5) = VX.(Vy.(F',z:="M),G) (Eqn 9)
—¥VvX.(G,T) (Eqn 6) = VXy.(F',z:= "M, G) (VMIG)
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— VY. (F',z:=M,G) (VTRAV)
—cVXy. (F',z:= M,H) (VUPDa)
= VX.(vy¥.(F',z:=M),H) (VMIG)
<o VX.(VY.(F',z:=7M),H) (Defn of <)
= VX.(F,H) (Eqn 9)
= FE (Eqn 7)

Thus, D —>:‘,—>§‘/§? E.

(oTHERS) The other axioms are axioms of +—, and so D —7—J <y E.

7. Let D —" E, and proceed by induction on n:

(n=0) Whenn=0,D=E, so trivially D —;—y<» E.
(n>0) Whenn > 0, we have:

D—"E
= D—-""1-E (Defn of —")
> D—i—y<— E (Indn)
=D —>”g—>;§7—>z—>§§7 E (Part 6)
= D === E (Part 4)
= D—{—i—=y<—=y SO E (Part 3)
= D =iy E (Part 5)
= D—{—y<hE (Transitivity)
Thus D —{—y<y E. O

We can then show that — . is convergent.

PROPOSITION 28. For closed D:

1.
2.
3.
4.

Ifx is in whnf in D and E <, D then x is in whnf in E.
If x is in whnf in D and E — D then x is in whnf'in E.
If x is in whnfin D and D — E then x is in whnfin E.

—¢ IS convergent.

PROOF.

1.
2.

An induction on the proof of E <9 D.

By Proposition 25.1 D = vX.(F,v(wv G).G) and E = vX. F. Then since x is
in whnf in D, x is in whnf in F, so x is in whnf in E.

. By Proposition 25.1 D =VX.(F,G), E=VX.(F,H) and G — H is an axiom.

Then since x is in whnf in D, either:

e xisin whnfin F, so x is in whnf in E.
e xisin whnf in G, so by case analysis of each axiom, x is in whnf in H, so
x isin whnfin E.
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4. From the above:

DYy
= tag, D—7 E,xisin whnfin E (Defn of %)
= tag,D—" E,xisin whnf in E (—:C—)
= D|, (Defn of {}.,)
= tag, D —" E,xisin whnfin E (Defn of {},)
= tag, D —; F —§ G <y E,xisin whnf in E (Propn 27.7)
= tag, D —; F —§ G <9 E,xisin whnf in G (Part 1)
:>tang—>:‘.F—>§G§? E, xisin whnfin F (Part 2)
= Dy (Defn of |}5)
Thus — is convergent. O

We can use the fact that — . is convergent to show that convergence is not affected
by local variables:

PROPOSITION 29. For closed D, if w # x then DI} iff vw.DJ},.
PROOF.

= If D|, then we can find E such that tag, D —* E and x is in whnf in E, so

tag, (vw.D) —" vw.E, and x is in whnf in vw. E. Thus vw.DJ,.

< Ifvw. D, then since — is convergent, tag,(Vvw.D) —7 E, and x is in whnf

in E, so by Proposition 26 E = vw. F and tag, D — F. Since x is in whnf in
E, xis in whnf in F, and so Dl},. a

PROPOSITION 30. For closed D:

1.

2.

IfD= (D' ,x:=!recGin M) —.E then E = (D' local Ginx:= M)
orE=(E',x:=!recGin M) and¥N .(D' ,x:=IN) —. (E',x:=IN).
IfD=(D,x:=!0y) —.E

then D' =vx.(D",y = I™M) and E =vX. (D" y:= M, x:=!0y)
orD'=vx. (D' y:=\Ww.M) and E=VX.(D",y .= Aw.M,x .= A\w.M)
orE=(E',x:=!0y) and VM .(D',x .= M) —. (E',x := M).
IfD= (D ,x:=y@z) = E

then D =VvX. (D", y .= M) and E=VX.(D",y .= 'M,x .= \y@z)

orD =vX. (D' )y:="A\w.M) and E=VX.(D",y :=Aw.M,x :=M[z/w])
orE=(E' x:=y@z) and VM . (D' ,x .= M) — (E',x:= 'M).

. IfD= (D ,x:='yz) —.E

then D) =VvX. (D" y:= M) and E=vX.(D")y:=M,x:= yVz)
orD'=vx. (D' z:= M) and E=VX.(D",z:= M, x := yVz)
orD =v. (D', y:=\w.M) and E=VX.(D",y:=A\w.M,x:='I)
orD'=vx. (D' z:='\w.M) and E=VX.(D",z:=\w.M,x:=!I)
orE=(E' ,x:=!yz) and¥M . (D' ,x:= M) —. (E' x:= 'M).
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5. IfD= (D ,x:='"\Ww.M) —_.E thenE' = (E',x:= '\w.M).
6. f D=(D',x:=M) —.E thenE= (D' ,x:= M)
orE=(E'\x:=2M)and D — . E'.

PROOF. These all have similar proofs, we shall prove part 1 as an example. If
(D', x:=!recGin M) — E then by Proposition 25.1 we have:

(D', x:=!recGin M)=Vx.(H,I)
E=vx.(H,J) I—J isanaxiom
Then by Propositions 22.3 and 22.5:
D =vx.D" (D' ,x:=!recGinM) = (H,I) (11)
So by Propositions 22.1 and 22.2 either:

(10)

¢ we have:
H=(K,x:=!recGin M) D" =(K,I) (12)
and so:
E
=VX.(H,J) (Eqn 10)
=VX.(K,x:=!recGinM,J) (Eqn 12)
=VX.(K,J),x:=!recGinM (VMIG)
and for any N:
D ,x:=!N
= vi.D' x:=!N (Eqn 11)
= vX.(K,D),x:=IN (Eqn 12)
— VE.(K,J),x:=IN (I —.J)
e or we have:
I=(K,x:=!recGin M) D" =(H,K) (13)

so the axiom is either:
(BUILD) so we have:
x:=!recGinMw— localGinx:='M
in which case:
I=x:='recGinM J=localGinx:=!M K=¢ (14)

and so:

= Vi.(H,J) (Eqn 10)
= VX.(H,local Ginx:= M) (Eqn 14)
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= (VX.H,local Ginx:= M) (VMIG)
= (VX.(H,K),local Ginx:= M) (Eqn 14)
= (vX.(D"),local Ginx:= M) (Eqn 13)
= (D,local Ginx:= M) (Eqn 11)

(VuPDa) We have:
z:=lyvx,y:=Aw.N,x:=!recGinM
—z:=!Ly:=Aw.N,x:=!recGinM

in which case:

I[=z:=ywx,y:=!Aw.N,x:=!recGinM
J=z —!I,y:: Aw.N,x:=!recGinM (15)
K=z:=lyvx,y:=Aw.N
and so:
E
=VX.(H,J) (Eqn 10)
=VvX.(H,z:=!ly:=Aw.N,x:=recGin M) (Eqn 15)
=VvX.(H,z:=!l,y:=!Aw.N),x:=recGinM (VMIG)
and for any N:
D' x:=IN
= vi.D' x:=IN (Eqn 11)
= VX.(H,K),x:=IN (Eqn 13)
= VX.(H,z:=!yvx,y: = Aw.N),x:= IN (Eqn 15)
= VX.(H,z:=!yvx,y: = Aw.N,x:=IN) (VMIG)
—.VX.(H,z:=!l,y:=Aw.N,x:=IN) (VUPDa)
= VX.(H,z:=!l,y:=!Aw.N),x:= N (VMIG)
The other propositions are proved similarly. a

PROPOSITION 31. — 5! is confluent.

PROOF. If D —5! E and D —£! F then either D=E,D=F, or D — E and
D — F. The first two cases are trivial.
If D—. E and D — F then by Propositions 25.1 we can find:

D=Vi.(G,I) E=VX.(G,J) I—J isanaxiom (16)
and by 26 we can find:
F=vi.H (GI)—.H (17)

Then we proceed by case analysis on which axiom was used to show I+ J. These
all have similar proofs, so we shall just show the case for (BUILD). We have:

I=x:=!recKinM  J=localKin (x:=M) (18)
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Then by Proposition 30.1 either:
e we have:
H=(G,localKinx:=M)

in which case:

=VvXx.(G,J)
= VX.(G,localKin x:= M)
=Vx.H

e or we have:
H=(L,x:=!recKinM
and for any N:
(G,x:=IN)—.(L,x:=!N)
Then let ¥ be wv K and let Z be fresh so:

E
= VX.(G,J)
= VX.(G,localKinx:=!M)
= V. (G2 ([Z/5KTE/, v = M)
= V. (G, [F/3IKI/3),x = M)
V(L F/FIKES5] x = M)
= VX.(L,vz. ([Z/9K[Z/3],x:= M[Z/3]))
= VX.(L,localKinx:= M)
—cVX.(L,x:=!recKin M)
= VX.H
=F

The other cases are similar, and so —>§1 is confluent.

PROPOSITION 32. For closed D, if D — E then D\, iff E{,.
PROOF.
= If D —. E then we have the following diagram:

D—¢—.F

le
E
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(19

(Eqn 16)
(Eqn 18)
(Eqn 19)
(Eqn 17)

(20)

2D

(Eqn 16)

(Eqn 18)
(Defn of local)
(VMIG)

(Egn 21)
(VMIG)

(Defn of local)
(BUILD)

(Eqn 20)
(Above)

a

<1

where x is in whnf in F. Then since —Z" is confluent we can complete the

diagram as:
D _>C e _>C F
e IEE IE
E _>c$1 _>§1 G

Since x is in whnf in F, x is in whnf in G, and so E1},.

< Follows from the definition of D —. a

3.7 Operational properties: independence from tagging

The denotational semantics for tagged declarations (x := !M) and untagged dec-
larations (x := ?M) is the same, despite the fact that tagged and untagged decla-
rations have very different operational behaviour. For example the declaration:

vy. (x:=Ly:=1Q)
can diverge, whereas the declaration:
vy. (x:=11y:=2Q)

cannot. However, both of them can reach whnf at x, and since the testing equiv-
alence is based on reaching whnf, they are testing equivalent. In this section, we
will show that convergence is independent of tagging, that is:

D]}, iff tag, Dl
and that this means that convergence is independent of reduction, that is:
if D— Ethen Dl < E|,
For example, even though the declaration:
vy. (x:=1y:=1Q)
can diverge, and the declaration:
x:=1l

cannot, they have the same convergent behaviour, since:

vy. (x:=1y:=1Q) — (x:=1!I)

In order to show that convergence is independent of tagging, we shall present a
reduction strategy —, where a reduction D —, E will take place only when the
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reduction is needed in order to evaluate x. For example, we will allow:

**

since we need to evaluate M in order to evaluate x, but:

5~
O B e

since we may not need to evaluate N in order to evaluate x. In the rest of this
section we will:

Define the reduction strategy —

Show that D}, ift tag, D —; E and x is in whnfin E.

Show that if D >9 E —% F and x is tagged in D then D —}>+ F.
From this, show that if D >, E then DJ}, iff E{.,.

Show that if D «—y— E then D —« E.

From this, show that if D — E then DJ} . iff EJ},.

First we can define the reduction strategy —, C —:

DEFINITION. — is given by axioms:

(BUILD) D,x:=!recEin M — D,local E in (x:= M)
(OTRAV) D,x:=0y,y:=?M —, D,x:=0y,y:='M
(@TRAV) D, x:=y@z,y:=?M —, D,x:=y@z,y:='M
(VTRAV) D, x: =Wz y:=2M —, D,x:=!yVz,y:= M

(OupD) D,x:=0y,y:='"A\w.M—, D, x:=A\w.M,y:=Aw.M
(@upD) D, x :=y@z,y :='Aw.M —, D, x:=M[z/w],y:=Aw. M
(VUPDa) D,x:=!ywWz,y:=\Ww.M,z:=!N —, D,x:=!l,y:=\w.M,z:= N
(VUPDb) D, x:=yWy,y:=\WwW.M—,Dx:=!ly:=A\w.M
(VUPDC) D, x:=yWx,y:=A\Ww.M —, D,x:=!l,y:=A\w.M

and structural rules:
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Dx:=0y—yE D x:=ly@z—yE
Dx=ly—E @) 5 ar—E
Dx:=yvz—yE (=) D=—,=F
Dx:=Wz—,E /' D—E

D—,E
(V) W D= vy E [x #)]

LetD—_Eiff D—_.Eand D/, E. O
PROPOSITION 33. IfD—, EthenD F —, E F.
PROOF. An induction on the proof of D — E. a

(OIND)

(VIND)

Informally, D — E if the reduction D — . E takes place on the x-spine of D, for
example:

since each of the nodes that are tagged are on the x-spine. More formally, we can
define the x-spine of D to be all the variables where D - x < y:

DEFINITION. D |- x < y is given by axioms:

(REFL) DbFx=<x
(OwDp)  Dx:=!0OykFx=<y
(@ND) D,x:=!y@zFx<y
(VIND) D,x:=!yvzbx<y

and structural rules:

DEx<y<z _\D=Ekx<y
(TRANS) DFx=<z = DFx=<y
DFx<y
(V)VZ.DI—x<y[x¢Z¢y]
Dt x < yis pronounced ‘In D, x spines to y’. a
PROPOSITION 34.
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1. IfDFx<ythen D,Et x < y.
2. Ifvx.DFy<zthenDF y < z
3. Ifx#y#z wis freshand D& x < z then [w/y|D[w/y] - x < z.

PROOF. Inductions on the proof of <. u
Then we can show that D —, E iff there is a reduction on the x-spine of D:

PROPOSITION 35. D —, Eiff D=VX.F, E=VX.G, F —, G is an axiom, and
FEx=<y.

PROOF.

= An induction on the proof of D —, E.
< An induction on the proof of F - x < y. O

PROPOSITION 36. IfDFx<yand D— E then D — E.

PROOF. By Proposition 35, D=VvX.F,E=VX.G,F+y<zand F —, Gis an
axiom. Then by Proposition 34.2, F - x < y, so by (TRANS), F - x < z, so by
Proposition 35, D —, E. a

PROPOSITION 37.

1. fD=(D',D"), Dkx =<z x€wvD andz € wv D"
thendy e wD'Nwv D’ .D'Fx<y.

2. IfD=(D/,D"), DFx <z andx,z€ wD' thenD'Fx < z
ordyerwDnwv D' .D'Fx<y.

PROOF. An induction on the proof of D - x < z.
1. The only difficult cases are (V) and (TRANS). In the case of (V) we have:
D=vw.E EFx<z XEWF#z
Then by Proposition 22.3 either:

e D'=vw.E and E = (E’,D") so by induction we can find
y € rv E'Nwv D’ such that E' - x < y. Then y € wv D" s0 y # w, so
yernwD Nwv D" and by (V) D' x < y.

e D'=vw.E" and E = (D', E") so by induction we can find
yerwD NwvE"suchthat D' -x<y. Theny € rv D' soy # w, so
yeEwD Nwv D",

In the case of (TRANS) we have:
DFx<w=<z
Then either:

e w € wv D' so by induction on Part 2 either:
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o D'+ x < w, and by induction we can find y € rv D' Nwv D" such that
D'+ w <y, soby (TRANS), D' - x < y.

o IyewDnwD' .DEFx<y.

e w € wv D" so by induction we can find y € rv D’ Nwv D" such that
DFx=<y.

The other cases are simpler.
2. Is similar. a
DEFINITION.

e xistaggedinx:=!M.

e xis untagged in x := 7M.

e xis (un)tagged in D, E iff x is (un)tagged in D or E.

e xis (un)tagged in Vy. D iff x # y and x is (un)tagged in D. a

PROPOSITION 38. For closed D:

1. IfD—,.(E',y:="M)=Ethen D= (D',y:=?M) and D' —. E'.

2. If D —( E, y is untagged in D and tagged in E then D =VX.(F,y:= M)
and E=VX.(F,y:=M).

3. If D — E then x is tagged in D.

4. If D—.E = (E',x:= M) and x is tagged in D then D = (D' ,x := M)
orD—,E.

5.IfD—.E=vy.E'then D=vy.D' and D' — E'
orD=VX.(D',z:=!recFin M), E=VX.(D',local F inz:= M),
E'=Vvi.(D,F') andvy.F =local Finz:=!M.

6. f D=(D',x:=M) —.(E'\x:=M)=E thenD — E
or VN .(D',x:=N) —. (E',x:=N).

7. Ifvx.D' =D — E then E=Vvx.E and D' —, E'.

8. IfD=(D',D") —,EthenE=(E' D) and D' — E’
ordyewv D' . DFx<y.

PROOF.
1. By Proposition 25.1 we have:
D=Vi.(F,G) E=VX.(F,H) G —. H is an axiom (22)
Then by Propositions 22.3 and 22.5 we have:
E' =vx.E" (F,H)=(E",y:= M) (23)
Then by Propositions 22.2 and 22.1 either:

e we have:
F=(F'y:=M) (F',H)=E" 24)
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and so: e or we have:

D H=(H x:=M) E'"=(FH") (28)
=VX.(F,G) (Eqn 22) so by case analysis on which axiom could give G — H, either:
=VvX.(F',y:=M,G) (Eqn 24) . h .
= VI.(F,G),y:= M (VMIG) we have G — H and so:

and: G—xH
= FG—yFH (Propn 33)
VX.(F',G) = VI.(F,G) —, %.(F,H) V)
—¢ VX. (F,, ',H) (Eqn 22) =D—.E (Eqn 25)
; 2),6 E Eggz 3431; o we have G = (G',x:= M) and so:
e or we have: G=(G,x:=IM)
' = VX.(F,G) =VX.(F,G ,x:=M) (L), (r) and (v))

H=(H'y=M) (FH)=E" —~ D=V#.(F,G,x:= M) (Eqn 25)

but by analysis of each axiom, there is no axiom G +—. H where H con- = D=VX.(F,G),x:=M (VMIG)

tains an untagged node, and so we have a contradiction. 5. By Proposition 25.1:

2. By Proposition 25.1 we have: D=vi.(GH) E=vit.(GI)  Hw—.Ilisanaxiom  (29)

D=Vx.(G H) E=Vx.(GI) H . I'is an axiom Then we can d-convert so that y ¢ ¥, and by Propositions 22.4 and 22.3 either:

Then since y is untagged in D and tagged in E, this means y must be tagged

e we have:
in H and untagged in I, so the only axioms which could give H — I are the L R
axioms for spine traversal. Thus we can find J such that H = (J,y := ?M) and = omE E'=v3z. [/wl(G DDy/w] (30)
I=(J,y:=IM). The result follows from setting F to be (G, J). so:
3. An induction on the proof of D —, E. D ( )
.. =vw.(G,H (Eqn 29)
4. By Proposition 25.1: = Vinz. (G, H) (Eqn 30)
D=Vi.(F,G) E=VX.(F,H) G — H is an axiom (25) = VWZ. [y/w|(G, H)[y/w] ()
Then by Propositions 22.3 and 22.5: = VyYZ. [y/wl(G, H)ly/w] (VSWAP)
E'=vi.E' E'x=M=FH (26) and:
" - VyZ. [y/wl(G, H)[y/w]
Th P 22.2 22.1, either:
en by Propositions and - cither — VYZ. [y/W(G, I)[y/w] (Eqn 29 and Propn 24.1)
e we have: = F (Eqn 30)
F=(F' ,x:=M) E'=(F H) 27) e or we have:
s0: G=vy.G  E'=vw.(G,]) (31)
D so:
= vi.(F,G) (Eqn 25) b
= V¥. (Fj,x:: M,G) (Eqn 27) = Vib. (G, H) (Eqn 29)
=Vi.(F,G),x:=M (VMIG) = viv. (V)’) ¢, H) (Eqn 31)
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=vyw.(G,H) ((vMIG) and (VSWAP))

and:
viw. (G, H)
—c . (G,I) (Eqn 29)
= E (Eqn 31)

e or we have:
I=vy.I' E=vw.(GI)
so by analysis of each axiom that could give H +— I, we find that the only
possibility is (BUILD) in which case:
D=viv.(G,z:='recFinM)
E =vi.(G,local Finz:=!M)
E'=viv.(G1T)
vy.I'=local Finz:='M
. By Proposition 25.1:
D=vVy.(G,H) E=Vy.(G,I) H v lisanaxiom  (32)
Then by Propositions 22.3 and 22.5 we have:

D =vy.D"'
(D', x:='M) = (G,H)

E' =Vy.E" (33)
(E",x:= M) =(G,I)

Then by Propositions 22.2 and 22.1 either:
e we have:
G= (G ,x:='M) D'= (G H) E"=(GI) (34)

so for any N:

D x:=IN
= (v§.D"),x:=IN (Eqn 33)
= (v5.(G,H)),x:=IN (Eqn 34)
— (V. (G, D)),x:= N (Eqn 32)
= (VW.E"),x:=IN (Eqn 34)
= E' x=IN (Eqn 33)

e or we have:
H=(H x:=M) D'=(GH') I=(I,x:=M) E"=(G]I)
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and by case analysis of each axiom which could give H — I, we find that
either:

o GH—,G,IandsoD —,E.
o Forany N,H' x:=!N—1TI x:= !N,
andso D, x:= !N — E' x:=IN.

7. By Proposition 35:

D=VX.F E=vX.G Fry<z F —, Gisanaxiom (35)

and we can O-convert so that x € X. Then by Proposition 22.4 either:

e we have:
Y=yZ D =ViZ.[x/w]F[x/w] (36)
and so:
E
=VvX.G (Eqn 35)
= VjWZ.G (Eqn 36)
= VxyZ. [x/w]Glx/w] ((a) and (VSWAP))

by Proposition 24.1:
[e/WIF[x/w] = [x/w]Glx/w]
by Proposition 34.3:
[x/W|F[x/w|Fy <z

and so:
D
= VZ.[x/wW|F[x/w] (Eqn 36)
—y VIZ. [x/w]|Glx/w] (Propn 35)
e or we have:
F=vx.F D' =vx.F' (37)
so by analysis of each axiom:
G=vwx.G F'—,G (38)
so:
E
=VvX.G (Eqn 35)
= vix. G (Eqgn 38)
=vxx. G (VSWAP)
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by Proposition 34.2:

F'Fy<z
and so:
D
= VX.F’ (Eqn 37)
—y VX. G’ (Propn 35)

8. An induction on the proof of D —, E. The only difficult case is (V), in which
case:

D=vz. F E=vz.G F—.G
So by Proposition 22.3 either:
e D'=vz.F' and F = (F',D") so by induction either:

o G=(G,D'Yand F' —, G,so D =vz.F' —,vz.G and
E=vz.G=vz.(G,D') = (v. G, D).

o dyewvD' . F'-x<ysoby (v),D'Fx<y.

e D'=vz. F"and F = (D', F") so by induction either:
o G=(G ,FYand D —, G so E=vz.G=vz.(G F")=(G,D").
o dy € wvF".D'+ x < y. Then either:

8 x € wv D' so by Proposition 37.1 we can find a variable
w € rv D Nwv F” such that D' - x < w. Then since w € rv D/,
w € rvD and so w# z, and so by (v), D x < w.

o x€wvD’ andby (sYM), DF x < x. O

PROPOSITION 39. For closed D, if D —.— F and x is tagged in D, then we
have D —,—_ F.

PROOF. Assume D —. E —, F. Then we proceed by induction on the proof of
E—,F.

(BUILD) We have:
E=FE x:=recGinM F=FElocalGinx:='M 39)
We can a-convert G so that wv GNfv E = 0. Then by Proposition 38.4 either:
e we have:
D= (D ,x:=!recGinM) (40)
so by Proposition 38.6 either:

o wehave D —, E,andso D —,—_F.
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o or we have:

YN (D, x:= IN) —c (E', x:= IN) 41)
and so:
D
= D x:=!recGinM (Eqn 40)
—y D localGinx:='M (BUILD)
= localGin (D', x:= M) (VMIG)
—¢local Gin (E' \x:= M) (Eqn 41)
= E'/localGinx:=!'M (VMIG)

F (Eqn 39)
e D— FEandsoD —,—_ F.
(OTRAV) We have:
E=E x:='0Oyy:=2M  F=E x:='Oy,y:=M (42)
By Proposition 38.1:

D=Dy:=2M D —.E' x:=!0y 43)
Then by Proposition 38.4 either:
¢ we have:
D'=D"x:=!0y (44)
and so:
D

=D,y="M (Eqn 43)

= D' x:='0Oy,y:="M (Eqn 44)

— D' x:='0y,y: =M (OTRAV)

=D,y=M (Eqn 44)

—E' x:= 0y, y:=M (Eqn 43)

= F (Eqn 42)

e or we have D —, E’,x := !0y, so by Proposition 33 D —, E, and so
D—,—_F.

(@TRAV) Is similar.
(VTRAV) Is similar.
(Oupp) We have:
E=E' x:='0Oy,y:=\w.M F=E' x:="\w.M,y:=\w.M (45)
Then by Proposition 38.4 either:
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e D= D' x:= !0y, so by Proposition 38.4 either:
o D= D" y:=!Aw.M, so by Propositions 22.2 and 22.1:
D=D" x:=0y,y:="\w.M
Then by Proposition 38.6 either:
o we have D —, E,and so D —,—. F.
0 or we have:

YN.(D" x:=IN,y:=\w.M) —. (E' \x:=IN,y:=Aw.M)

(46)
and so:
D
= (D )x:=Oy,y:=A\w.M) (Eqn 46)
— (D" x:=A\w.M,y:=A\w.M) (OupDp)
— (E' x:=\Ww.M,y:=Aw.M) (Eqn 46)
=F (Eqn 45)

o D—y E,soby UIND D—, E,and so D —— F.
e D—,E ,andsoD —,—_.F.
@upD) Is similar.
VUPDa) Is similar.

(
(
(VUPDb) Is similar.
(VUPDc) Is similar.
(

=) We have E= E' —, F' = F so D —, E' —, F’, and so by induction
D—,—.F =F.
(V) We have:
E=Vv.E F=vy.F E —.F 47)
Then by Proposition 38.5 either:
e wehave D=vy.D' and D' —_ E’. Then x is tagged in D, so by induction
D —,—.F',andso D ——.F.
¢ or we have:
D=VX.(D',z:=!recGin M)
E=vX.(D,localGinz:=M)
E'=vx.(D,G)
Vy.G =localGinz:=!M

(48)

&3

Then:
E/ — F/
= VX.(D,G)—, F' (Eqn 47)
= wx.(D',G) —,vy. F' V)
= VX.(D',vy.G') —,vy. F' (VMIG)
Then by Proposition 38.7:
vy.F'=vx. F" (D' \vy.G') — F" (49)
so by Proposition 38.8 either:
o we have:
F'"=(F" vy.G) D —, F" (50)
Then:
D
X. (D z:='recGin M) (Eqn 48)
—x VX.(F" z:=!recGin M) (Eqn 50)
—y VX (F" localGinz:=!M) (BUILD)
= (F”’ vy.G) (Eqn 48)
= 56 F" (Eqn 50)
= vy. F (Eqn 49)
= F (Eqn 47)

o or we can find w € wv(vy. G') such that D’ + x < w, and since
wv(Vy. G') = {z}, this means w =z, so D' - x < z. Then:

true
= (D z:=recGin M) —, (D' |local Gin z:= M) (BUILD)
= (D z:=recGin M) —, (D' localGinz:=!M) (Propn 36)
= VX. (D, z:=recGin M) —, VX.(D',local Ginz:= M) (V)
= D—,E (Eqn 48)

(OIND) We have:
E=E x:=!0y E—F
Then by Proposition 38.4 either:
e D=D' x:= !0y, so either:

o y is tagged in D, so by induction D —,—. F, and so by (IND)
D—,—.F.

o yis untagged in D, so by Propositions 22.2, 22.1 and 38.2:
D= (D" x:=!0y,y:= M) E= (D" x:=0y,y:=M)
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so by (OIND), D —, E, and so D ——. F.
e D— .FE andsoD —,—_F.
(@IND) Is similar.

(VIND) Is similar. O

PROPOSITION 40. Forclosed D, ifx is tagged in D and D — E then D —;—* E.

PROOF. Let D —7 E, and proceed by induction on 7.

o Ifn=0thenD=EsoD—{—* E.

e If n > 0then D —, F —""! E, and by Proposition 23.4 x is tagged in F
so by induction F —}—* | E, so by Proposition 39 D —;—.—Z . E, and so
D—5—r E. O

PROPOSITION 41. For closed D, if x is tagged in D, D —_ E and x is in whnf
in E then x is in whnf'in D.

PROOF. By Proposition 25.1 we have:
D=VX.(F,G) E=VX.(F,H) G — H is an axiom
Then by the definition of whnf, x ¢ X and either:
e xisin whnfin F, so x is in whnf in D.

e x is in whnf in H, and by inspection of the axioms which could result in
G —. H we have either:

o G —, H and so D —, E which is a contradiction.
o xisin whnf in G and so x is in whnf in D. a

PROPOSITION 42. For closed D, D\ ifftag, D —} E and x is in whnfin E.
PROOF.

= Wehave tag D —7 F and x is in whnf in . By Proposition 40 we know that
tag, D —; E —X F. By Proposition 23.4 x is tagged in E, so by Proposi-
tion 41 x is in whnf in E.

< We have tag, D —} E and so tag, D —~ E. Thus D{,. a

PROPOSITION 43.  If tag D) = D — E and x # y then E = tag,E’ and
D —}E'.

PROOF. An induction on the proof of D — E. a
PROPOSITION 44. D, ifftag, D{,.
PROOF.
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= We have:

Dl
= tag, D —" E,xisin whnf in E
= tagy(tang) —" tag,E,xis in whnf in E
= tag,(tag, D) —" tag,E,xis in whnf in tag E
= tag,(tag,D) —" tag,E,x is in whnf in tag E
= tag, D,
< Ifx =y then:
tag, D},
= tag, Dy,
= tag,(tag, D) —" E,xis in whnf in E
= tag, D —" E,xisin whnf in E
= D|,

If x # y then:
tag, D{,
= tag,(tag,D) —} E,xisin whnf in E
= tag,(tag, D) —} E,xisin whnf in E
=tag, D= FLE= tag, F,x is in whnf in E
= tag D— FLE= tag, F,x is in whnf in F
= D|,
Thus tagyDlLX iff DY,.
COROLLARY 45. IfD <y E then D\}, iff E|,.
PROPOSITION 46. IfD «—y— E then D ——y E.
PROOF. By Proposition 25.1 we can find F and G such that:
D=VX.F VX. (F,Vv(wvG).G) — E
Then by Proposition 38.7 we can find H such that:
E=Vvi.H (F,v(wvG).G) —H
Then by Proposition 38.8 we can find 7 such that:
H=(I,v(wvG).G) F—1
Thus:

= VX.F

— VX. [
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(Defn of {}.,)
(Propn 23.4)

(Propn 23.5)
(Propn 23.1)
(Defn of {},)

x=y)
(Defn of |,)
(Propn 23.2)
(Defn of {},)

(Propn 42)
(Propn 23.1)
(Propn 43)
(Propn 23.6)
(Propn 42)

a

(D

(52)

(53)

(Egqn 51)
(Eqn 53)



—y VX.(I,v(wv G) . G) %

= Vi.H (Eqn 53)
= FE (Eqn 53)
Thus D ——y E. d

PROPOSITION 47. For closed D, if D — E then D\, iff E|,.
PROOF.

= If D —. E, then by Proposition 32, EJ},.
If D — E, then by Propositions 42 and 23.4:

tag, D —y - —y F

1§
tag, E
and x is in whnf in F, so by Proposition 46:
tag, D — — F
R
tag E —x — G

and by Proposition 28.3 x is in whnf in G, and so E{},.
Otherwise D — E from (VUPD) and since D . E and D is closed:

D=vi.(F,w:=!yvz,y:='Aw.M,z:=IN) (54)
E=VX.(F,w:=!l,y:='Aw.M,z:=N) (55)
and so:
D

= VX.(F,w:=!yz,y:= Aw.M,z:=?N) (Eqn 54)
> VX.(F,w:=1yVz,y: = Aw.M,z:=IN) (Defn of <)
— VX (F,w:="!ly:=Aw.M,z:=IN) (VUPDa)
<o VX.(F,w:=!l,y:=Aw.M,z:=7N) (Defn of <)
= E (Eqn 55)

Thus by Proposition 32 and Corollary 45, EJ},.
< Follows from the definition of D —. d

For example, we can use this to show that extending a closed declaration does not
affect its convergence.

PROPOSITION 48. IfDC E, x € wv D, and D is closed, then D}, iff E|,.
PROOF. We can show by induction on the proof of C that:

D=VX.F E=VX.(F,G) wGNfvF =0
Then:
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= If D|, then since — is convergent, tag,(vX.F) —* H and x is in whnf in H,
so by Proposition 26 tag F' — I and H = VX ./, so x is in whnf in /. Then
tag (VX.(F,G)) =2 VX.(I,G), and so E{,.

< If El}, then by Proposition 29, v(wv G) . E{,, so v(wv G) .VX.(F,G){,, so by
(vmi1a), vX.(F,v(wvG) . G){, so by Proposition 47 v¥.F|,,so D{,. O

3.8 Operational properties: referential transparency

Referential transparency was introduced by EVANS (1968) to mean that the se-
mantics of a term should be the same as the semantics of a pointer to a term. In
our semantics this is the same as saying:

[x:=10y,y:=M]| =[x:=M,y:=M]

Denotationally, this is quite simple to prove (although it does require some non-
trivial reasoning about fixed points). But to prove this operationally is much
harder. We need to show that copying a section of graph is equivalent to making
a pointer into a section of graph. Much of the work in showing this turns out to
be in showing that if two variables point to the same term, then we can substitute
one for the other, that is:

[(D,x:= M,y := M)[x/2] = [(D,x:= M,y := M)[y/]
In order to prove this operationally, we need to find some property of a declaration

(D,x:=M,y:= M) which we can use as an operational invariant, so:

o If D satisfies the invariant and D[x/z] — E then we can find an F such that
E —7 Flx/z], and D[y/z] — F[y/z], and F satisfies the invariant.

We can then use this to show that if D[x/z]{,, then D[y/z]{,,. Unfortunately, we
cannot use ‘x and y point to syntactically identical terms’ as the invariant, since:

x:=(recw:=!Min Ow),y:=!(recw:=Min Ow)

—2vvw. (v:=M[v/w],w:= M x:=Ov,y:=0Ow)
and although x and y are syntactically identical in the LHS, they are not syntacti-
cally identical in the RHS. However, they are identical up to a-conversion, and we
can use this as the basis of an invariant: simulation, based on MILNER’s (1989)
definition of bisimulation between processes. Informally, two variables x and y
are similar iff x points to M, y points to N, and M and N are identical, up to substi-

tution of similar variables. More formally, we can define a simulation for v-less
declarations as:

DEFINITION. R C wv D X wv D is a V-less D-simulation iff D is v-less, and for
any x R y:
e If D (x:=!M) then DI (y:=IN[y/Z]), M = N[X/Z],and X R §¥.
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o If D (x:=?M) then D 3 (y := ?N[y/Z]), M = N[X/Z], and X R_¥.
where X R yiff Vi.x; R y;. a

e £istagged.
e x:=!M is tagged.
e x:= 7M is untagged.
For example, if E is V-less, and D is the declaration: .
L ]

x:=My:=ME

D, E is (un)tagged iff D and E are (un)tagged.
vx.D is (un)tagged iff D is (un)tagged.

then one V-less D-simulation is: Define tag D as:
e tage=¢
(o) o tag(x:= M) = (x:=M)
and so x is D-similar to y. If D is the declaration: o tag(x:= M) = (x:= M)
w:=ly@z,x:=z@z,y:=!l,z:=1 o tag(D,E) =tagD,tag £
e tag(vx.D) =vx.(tag D) a

then one v-less D-simulation is:

{(mx), (%,2),(z,2)}

PROPOSITION 49.
1. IfDFX~ ythentagDFX~y.

and so w is D-similar to x. If D is: 2. Ifviv.DFX~ Y then D\ %~ ¥.
x:=10x,y:=10z,z:= !0y PROOF.
then one V-less D-simulation is: 1. From the definition, if & is a V-less D-simulation, then & is a v-less tag D-
{(6y), (x,2)} simulation. Thus, if X is a D-simulation, then & is a tag D-simulation. Thus,

if DFX~ ythentagDF X~ .
and so x is D-similar to y. We can generalize simulation to any declaration D by

converting it into the form V. E, and finding a v-less E-simulation: 2. fviv.DEX~ ythenlet D=VV.E, and R be a V-less E-simulation such that

X R y. Thenvv. R is a D-simulation, and so D X R . a

DEFINITION. PROPOSITION 50. IfD is V-less, closed and tagged, D[X/Z] F X ~

e Vx. R={(y,2) | x £y R z#x}. and D[X/Z] —. E, then E —} F[X/Z], F[X/Z] F X ~ ¥, and D[y /Z] —% F[y/Z).

. ) ST N .. . . IR

. ;{ ,is aD-Sl.I;’fl‘u:IatIOI’.l iff g = vxl. E., R'isa yilless E-simulation, and ® = VX. Dﬂ( . PROOF. We proceed by analysis on which axiom gave D[X/Z] —. E. We shall

* x~ yiff there is a D-simulation K with x R y. prove the case for (BUILD), since the others are simpler. Since D is v-less and
For example, for any E, if D is the declaration: tagged, we have:

x:=M,y:=M,E D= ((x:=!'recGin M), x| :=IMy,....x,:=Mp,)
then we can find a v-less F such that E = vZ. F, and we can O-convert E so E = ((local Ginx:=IM),x; :=IMy,...,x,:= IM,)[X/Z]
D=VZ.(x:=M,y:=IM,F), and {(x,y)} is a v-less (x := IM,y := IM, F)- and we can a-convert G so that wv GNfv D = 0. Then let w = wv G, and define
simulation, so {(x,y)} is a D-simulation, and so: F=viw, .. w,.(Gx:=M,F,....F,) as:
(x:=M,y:=M,E)bx~y e If D[X/Z] F x ~ x; then we can find M}, X;, ¥; and Z; such that:

The rest of this section shows that: recGin M[¥/Z) = Mj[%;/Z]  Mi[¥/Z)=M;[y;/Z] %R

e If D[x/z] - x ~ y then D[x/Z]{},, iff D[y/z}{},,. Thus we can find G; and N; such that:

o If DI x~ ythen DY, iff D{,. (recG;in Ny)[X;/Zi] = recGin M (recG;in N))[¥i/Z] = M;

e We can use this to show referential transparency. Let it be fresh. and define:
l s .

DEFINITION. Define ‘D is (un)tagged’ as: F = ([ W G/ 7], x 1= INi[#i /%))
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e Otherwise F; = (x; := 'M;), and w; = €.
Then:
e For each i such that D[¥/Z] - x ~ x;, (x; := |\M;[¥/Z]) —. vW; . F;[¥/Z] and so
E —} F[X/Z].
o Similarly, D[¥/Z] — F[y/Z].
e Let R beav-less D[X/Z]-simulation such that ¥ & y. Thenlet X’ be the small-

est relation containing K such that wiww;w; R ww;w;w. We can show R is
av-less (G,x:=M,F,,...,F,)[X/Z]-simulation, and so F[X/Z]FX~y. O

PROPOSITION 51. For closed D:

1. If D[X/Z] + X ~ ¥ and D[X/Z]\} then D[y/Z]{,.
2. If D& x~ythen Dy, iff DY,.
PROOF.

1. By Proposition 28.4 tag D[X/Z] —7 E and x is in whnf in E. We now show
by induction on # that if D[X/Z] —" E, x is in whnf in E, and D[X/Z] - X ~ ¥
then D[y/Z]{,.

By Proposition 20 we can find v-less D' such that tag D = viv. D', and by
Propositions 27.4 and 26, D'[X/Z] — E', m < n, and x is in whnf in E’. Then:
o If m=0thenxisin whnf in D/[X/Z], so x is in whnf in D[y/Z], so D[j/Z]{,.
e If m> 0 then D'[¥/Z] —. F —"~! E' so by Proposition 50 F — F'[¥/Z],
F'[X/Z) F X ~ Y and D'[y/Z] — F'[/Z]. Thus we have:
D[¥/7 —, F —m"lE
le
I/
so by confluence:
DA~ F —rE
Iz le
F [)_C'/Z] _}CSm—l E!
Since x is in whnf in E’, x is in whnf in E”, so by induction D'[¥/Z]{,, so
by (v), viv. D'[$/Z]{,. and so by Corollary 45, D[}/Z]{,.
2. Is similar. a
We can use this to show referential transparency:
PROPOSITION 52. For closed declarations:

L (D,x:= 0y, iff (D, x := 0Oy)l},.
2. (D,x:=M,y:=M){, iff (D,x:= 0y, y:=M)|,.

91

PROOF.

1. = Show by induction on 7 that if vX.(D,x:=!y) —" E and x is in whnf in
E, then VX . (D, x := !Oy){},.
If n = 0 then we have a contradiction.
If n > 0 then we have VX. (D, x := !0y) —. F —"~! E, and so by Propo-
sition 30.2 either:
F =vy. (D x:='0y)
and so by induction VX. (D,x := !Dy)l}y, or:
F=vX.(D,x:=M,y:=M) M=MAw.N
and so VX. (D, x := !Oy){},.
< Is similar.
2. = Show by induction on 7 that if:
VX.(D,x:=M,y:=IN)Fx~Yy
VX.(D,x:=!M,y:=IN)—="E
zisin whnf in E
then VX. (D, x:= !0y, y:= IN){,.
If n =0 then z is in whnf in VX. (D,x := M,y := IN) and so:
VX.(D,x:=0y,y:=IN)|,
If n > 0 then we have:
VX.(D,x:=M,y:=IN)—.F —"E
We proceed by case analysis of the axiom for — used. Most of the cases
are similar, so we shall prove the case for (BUILD) when:
M=recGin M
N=recHinN (56)
F=vi.(D,x:='recGin M’ localH iny:= !N
We shall a-convert so thatwv DU {x, y}, wv G and wv H are disjoint. Then
we have:

VX.(D,x:=!recGin M localHiny:=IN') —5"E
vX.(D,local Gin x::lllc\l’,locaIHiny = IN")
and so by confluence:
VX.(D,x:=!recGinM' localHiny:=IN) —5" E
le IS
VX.(D,local Ginx:=!M'/local Hiny:=IN") —=5" 1
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and by (VMIG):
Vx.(D,local Ginx:= M’ local Hiny:=IN")
=vX.v(wvG) .V(wvH).(D,G,H x:='M" y:=N')
and from the definition of simulation:
v¥.V(wvG).v(wH).(D,G Hx:='M y:=IN)Fx~y
so by induction:
vX.v(wvG).v(wv H).(D,G H,x:= !0y, y:=IN)|, (57)

and so:
VX.(D,x:=!0y,y:=IN)
= vX.(D,x:=!0Oy,y:=!recH in N') (Eqn 56)
— VX.(D,x:=!0y,local Hiny:=IN') (BUILD)
— VX.(D,local Gin g, x:= !0y, local Hiny:= IN") Y

= VX.v(wvG).v(wvH).(D,G H,x:=0yy:=N) (VMIC)
and so by Equation 57 and Proposition 47:
VX.(D,x:=0y,y:=IN)|,
The other cases are similar.

<= Is similar. a

3.9 Denotational properties

This section looks at some properties of the denotational semantics presented in
Section 3.3. In particular, we shall show that:

e wv D can be determined from [D].

¢ Concatenation is a commutative monoid, so [D, (E,F)] = [(D,E), F],
[D,€] = [D] and [D, E]| = [E, D].

¢ Syntactic renaming corresponds to semantic renaming, for example
[Mly/«]]l = [M] o (x := ready).
e a-conversion is sound, so [Vx. D] = [vy.([y/x]D[y/x])] for fresh y.
We can use read x to make reasoning about this semantics easier:
PROPOSITION 53. f=giffVx.readxo f=readxog
PROOF. Follows from the definition of read x. a

For example, this means we could have used the following proposition as the def-
inition of newxf, (x := f), and set X fg:
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PROPOSITION 54. Ifx€ X andy € X then:

1. readxonewxf =readx

2. readyonewxf =readyo f
readxo(x:=f)=f

readyo (x:= f) =ready
readxo (set X fg) =readxo fog
readyo (set X fg) =ready

SNk Ww

PROOF. Follows from the definition of read x, newxf, (x := f), and set X fg. O
Another useful property of fix is uniformity:

PROPOSITION 55. IfVi. f(gi) = h(fi) and f L = 1 then f(fixg) = fixh.
PROOF.

flfixg)
= f(V{g"L|ninw}) (Defn of fix)
=V{f(g"L)|nin w} (f is continuous)
= V{r'(fL) | nin w} (Hypothesis)
=V{r"L|ninw} (Hypothesis)
= fixh (Defn of fix)
O
The written variables of a semantic function f can be defined as wv f:
DEFINITION. wv f = {x | readxo f # readx}. O
For example (when & # read x):
wv(x:=h) = {x}
wv(x:=readx) =0
w(newsf) = (wv f)\ {x}
wy(set X fg) C X
wv(fog) CwvfUwvg

We can show that the semantic and syntactic definitions of ‘written variable’ co-
incide.
PROPOSITION 56.

1. If wv f Cwv D then [D] = [D] o f.
2. wwD=wv[D]

PROOF.
1. We can show that if wv f C X then:
Vi.(setXgi)o f =setXg(io f)
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lof=1
and so by uniformity:
fix(set X g) o f = fix(set Xg)
From this it is easy to show by induction on D that [D] = [D] o f.
2. (wv[D] C wvD) An induction on D.
(wv[D] 2 wvD) If wv[D] wv D then find x € wvD and x ¢ wv[[D]). Then:

T
=readxo(x:=T) (Propn 54.3)
=readxo[[D]o(x:=T) (x € wv[[D])
=readxo[[D]o(x:=L)o(x:=T) (Part 1)
=readxo(x:= L)o(x:=T) (x € wv[[D])
=lo(x:=T) (Propn 54.3)
- L (Lof=1)

This is a contradiction, and so wv[[D]] 2 wv D. a

‘We can now show that concatenation is a commutative monoid.

PROPOSITION 57. IfwvfC X,wwgCY, whCX,and XNY =0 then:

1. setXfh=foh

2. fix(set X f) = fofix(set X f)

3. fix(set(XUY)(fog)) = gofix(set(XUY)(fog))

4. fix(set(XUY)(go f)) = fix(set(XUY)(fog))

5. fix(set(X UY)(fix(set X f) ofix(set Y g))) = fix(set(XUY)(fog))
6. [D] = fix(set(wv D)[D])

7. [D,€] = [D]

8. [D,E] = [E, D]

9. [D.(E. )] = [(D,E),F]

PROOF.

1. Forany x € X:

readxosetX fh
=readxo foh (Propn 54.5)
For any x € X:
readxosetX fh
=readx (Propn 54.6)
=readxo foh (x & wv fUwv h)

So by Proposition 53 set X fh= foh.
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2. Follows from part 1.
3. Foranyx € Y:
read xofix(set(XUY)(fog))

= readxo fogofix(set(XUY)(fog)) (Part 1)
= readxo gofix(set(XUY)(fog)) (x € wv f)
Forany x £ Y:
readxofix(set(XUY)(fog))
= readxo gofix(set(XUY)(fog)) (x € wvg)
So by Proposition 53:

fix(set(XUY)(fog)) = gofix(set(X UY)(fog))
4. Foranyx € XUY:
readxoset(XUY)(go f)(fix(set(XUY)(fog)))

= readxo go fofix(set(XUY)(fog)) (Propn 54.5)
= readxo go fogfix(set(XUY)(fog)) (Part 3)
= readxo gofix(set(XUY)(fog)) (Propn 57.2)
= readxofix(set(XUY)(fog)) (Part 3)
and for any x ¢ XUY:
readxoset(XUY)(go f)(fix(set(XUY)(fog)))
=readx (Propn 54.6)
= readxofix(set(XUY)(fog)) (Propn 54.6)

and so by Proposition 53:
set(XUY)(go f)(fix(set(X UY)(fog))) =fix(set(XUY)(fog))
and since fix f is the least fixed point of f:
fix(set(X UY)(go f)) <fix(set(XUY)(fog))
and so by a symmetrical argument:
fix(set(X UY)(go f)) =fix(set(X UY)(fog))
5. If f = go f, we can show by induction on n that (setXg)" Lo f < f:
o (setXg)llof=_1lof<f.
o If x € X then:
readxo (setXg)"t! Lo f

= readxo (set Xg)((setXg)"L)o f (Defn of f™)
= readxogo(setXg)"Lo f (Propn 54.5)
< readxogo f (Indn)

96



= readxo f (f=g°f)
If x € X then:
readxo (setXg)" ! Lo f
= readxo (setXg)((setXg)"L)o f (Defn of f")
=readxo f (Propn 54.6)
Thus (setXg)™*! Lo f < f.
Thus:
f=gof
= V{(setXg)"Lo f|ninw} < f (Above)

= Vi(set X" L[ ninw}of < f
= fix(setXg)o f < f

For example, if wv f = X, wvg =Y and X NY = 0 then we have by part 3:
fix(set(XUY)(fog)) = fofix(set(XUY)(fog))
and so by the above:
fix(set X f) ofix(set(X UY)(fog)) < fix(set(XUY)(fog))  (58)
Similarly:
fix(set Yg) ofix(set(XUY)(fog)) < fix(set(XUY)(fog))  (59)
Thus:

set(X UY)(fix(set X f) ofix(set Yg))(fix(set(X UY)(f o g)))
= fix(set X f) ofix(set Y g) o fix(set(XUY)(fog)) (Propn 57.1)
< fix(set X f) o fix(set(XUY)(fog)) (Eqn 58)
< fix(set(XUY)(fog)) (Eqn 59)
And so since gf < f=fixg < f:

fix(set(X UY)(fix(set X f) ofix(set Yg))) < fix(set(X UY)(fog)) (60)

(o is continuous)
(Defn of fix)

Similarly, we can show:

fix(set(X UY)(fix(set X f) ofix(set Yg)))
= fix(set(X UY)(fix(set Yg) o fix(set X f))) (Propn 57.4)
= fix(set X f) ofix(set(X UY)(fix(set Yg) ofix(setX f)))  (Propn 57.3)
= fofix(set X f) ofix(set(X UY)(fix(setYg) ofix(set X f))) (Propn 57.2)
= fofix(set(XUY)(fix(set Yg) ofix(set X f))) (Propn 57.3)
= fogofix(set(X UY)(fix(set X f) o fix(set Y g))) (Similar)
=set(XUY)(fog)(fix(set(X UY)

(fix(set X f) ofix(set Yg)))) (Propn 57.1)
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and so, since f = gf = fixg < f:

fix(set(X UY)(fix(set X f) ofix(set Yg))) > fix(set(XUY)(fog))
which, together with Equation 60 gives:

fix(set(X UY)(fix(set X f) ofix(set Yg))) = fix(set(XUY)(fog))

6. We have:
fix(set X f)
= fix(set X(foid)) (Identity)
= fix(set X (fix(set X f) o fix(set 0id))) (Part 5)
= fix(set X (fix(set X f) o set Oid(fix(set 0id)))) (Unfold)
= fix(set X (fix(set X f) oid)) (setOfg =id)
= fix(set X (fix(set X f))) (Identity)
so we can show by induction on D that [D]] = fix(set(wv D)[D]).
7. Follows immediately from the definition of [D, €].
8. Follows immediately from part 4.
9. We have:
[D,(E,F)]
= fix(set(wv(D, E, F))([D]
ofix(wv(E, F))([E] o [F]))) (Defn of [D,ET)
= fix(set(wv(D, E, F))(fix(set(wv D)[D]))
ofix(wv(E, F))([E] o [F]))) (Part 6)
= fix(set(wv(D,E, F))([D] o [E] o [F])) (Part 5)
= [[(D,E),F] (Similar)
Thus concatenation is a commuatative monoid. |

Finally, we can show the relationship between semantic and syntactic relabelling
of free variables, and thus show the soundness of a-conversion.

PROPOSITION 58. Ifzis fresh and x & fv E then:

1.

N

[My/a]] = [M] (x = ready)

(x:=ready) o [Dly/x]] = [D] o (x := ready) for any x,y ¢ wvD
(x:=readz) o [[[z/x]D[z/x]] = (z:=readx) o [D] o (x := readz)
[vx. D] = [vz. ([z/9D[z/x])]

[vx.vy.D] = [vy.vx.D]

[D,vx.E] =[vx.(D,E)]

PROOF. An induction on the size of D and M.

1.

The difficult case is to show:
[(recDin M)[y/x]]| = [recDin M]Jo (x :=ready)

98



If x € wv D then:
[(recDin M)[y/x]]

= [recDin M] (Defn of substitution)
= [M]~[D] (Defn of [recDin M])
= [M] o[[D] o (x:=ready) (Propn 56.1)

= [[recDin M] o (x:=ready)
Otherwise, if y € wv D then, for fresh z:

[(recDin M)[y/x]]
= [rec[z/y)D[z/y][y/x] in Mz/y][y/x]]
= [M[z/5]y/x]] = [[z/1D[z/5][y/x]]

(Defn of [recDin M])

(Defn of substitution)
(Defn of [recDin M]))

= [[M] o (y:=readz)o(x:=ready)o[[z/y]D[z/y][y/x]] (Indn on 1)
= [M] o (y:=readz)o[[z/y]|D[z/¥]] o (x :=ready) (Indn on 2)
= [[M]o(z:=ready)o[[D] o (y:=readz)o(x:=ready) (Indn on 3)
= [M[y/z]] o[D] o (y:=readz) o (x :=ready) (Indn on 1)
= [[M] o [D]o(y:=readz)o(x:=ready) (z is fresh)
= [[M] o [D] o (x:=ready) (Propn 56.1)

= [[recDin M] o (x:=ready)
Otherwise:

[(rec Din M)[y/]]
[rec Dly/] in M[y/]]

(Defn of [recDin M]))

(Defn of substitution)

= [M]y/x]] o [D[y/x]] (Defn of [recD in M])
= [M] o (x:=ready) o [D[y/x]] (Indn on 1)
= [M]o[D] o (x:=ready) (Indn on 2)

= [[recDin M] o (x :=ready)
The other cases are simpler.
. The difficult cases are those involving fix, for example to show:
(x:=ready)o[z:= IM[y/x]] = [z:= IM] o (x :=ready)
We first show:
Vi.(x:=ready)oset{z}((z:= [M]) o (x:=ready))i

= (set{x,z}(x:=ready) o {z}(z :=[[M]))((x :=ready) o i)
(x:=ready)oL =1

and:
Vi.set{z}(z := [M])io (x:=ready)

= (set{x,z}(x :=ready) o {z}(z :=[[M])))(io (x := ready))
lo(x:=ready) =1
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(Defn of [recD in M])

(61)

(62)

Then we can use uniformity twice to show:

(x:=ready)o[z:= M[y/«]]
= (x:=ready) Of!x(set{z}(z = [M[y/]])) (Defn of [lx := !M])
= (x:=ready) ofix(set{z}((z := [M]) o (x :=ready))) (Indn on 1)
= fix(set{x, z}(x := read y) oset{z}(z := [M])) (Unif on Eqn 61)
= fix(set{z}(z := [M]))) o (x :=ready) (Unif on Eqn 62)
=[z:=MJo(x:=ready) (Defn of [lx := !M])

The other cases are similar.

. This has a similar proof to part 2.

. Ify € wv(vx. D) then:

readyo [Vx. D]
= ready (y € wv[vx.D])
= readyo vz (Z/ADEAD] (v & wvlvz. (/0D

Otherwise:
readyo [Vx. D]
= readyonewx[D] (Defn of [vx.D])
=readyo[D] (Propn 54.2)
=readyo(z:=readx)o D] (Propn 54.4)
=readyo(z:=readx)o[[D]o(x:=readz) (Propn 56.1)
= readyo (x:=readz)o [[z/x]D[z/x]] (Indn on 3)
=readyo [[[z/x]D[z/x]]] (Propn 54.4)
= readyonewz[[z/x]|D[z/x]] (Propn 54.2)

readyo [Vz.[z/x]|D[z/x]]
Thus for any y:

(Defn of [vx.DJ)

readyo [[Vx. D] =readyo[[vz.[z/x]|D[z/x]]
and so [[vx. D] = [vz.[z/x]D[z/x]].

5. Follows from the definition of new.

. To begin with, we can show by induction on D that if x ¢ fv D then:

(x:=Lo[D]) = ([D]ox:= 1) (63)
‘We can also show that:
(x:=Lof)=(x:= Lonewxf) (64)

Then for any i:

x:= Lo(set(wv(D,E))([D]  [E])i)
=x:=1o[D]o[E]ei (Propn 57.1)
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:[[D]]ox;: J_o[[E]]oi (Eqn63)

=[D]ox:=Lo[[E]ox:=_Loi (Propn 56.1)
=[D]ox:= Lonewx[[E]ox:= Loi (Eqn 64)
=x:=Lo[D]onewx[E]ox:= Loi (Eqn 63)

= set(wv(D,E))(x := Lo[D] onewx[E])(x:= Loi) (Eqn 57.1)
Thus, since x := L o L = 1, we can apply unification and get:
x:= Lofix(set(wv(D, E))([D] o [E]))

= fix(set(wv(D, E))(x := Lo[[D] o newx[E])) ©63)
Similarly, we can show:
x:= Lofix(set(wv(D,vx. E))([D] o newx[E])) 66)

= fix(set(wv(D, E))(x := Lo[[D] o newx[E]))
And so:

x:=Lo[vx.(D,E)]
= x:= L onewx(fix(set(wv(D,E))([D] o [E]))) (Defn of [vx.(D,E)])

= x:= L ofix(set(wv(D, E))([D] < [E])) (Eqn 64)
= fix(set(wv(D, E))(x := Lo [[D] o newx[[E])) (Eqn 65)
= x:= L ofix(set(wv(D,VxstE))([D] o newx[E])) (Eqn 66)
=x:=1o[D,vx.E] (Defn of [D,vx.E])
From this, it is easy to show that [vx.(D,E)] = [D,vx.E]. a

3.10 Logical properites

This section looks at some properties of the operational characterization of the
program logic given in Section 3.4. In particular, we shall show that:

e The logic respects duplication, so |= (D,x:= M,y :=M)[x/z] : Aiff
= (D,x:= M,y :=M)[y/7] : A

¢ The logic is referentially transparent, so |= (D,x :=!0y)[x/z] : Aiff
= (D= 0yl : A

e The logic is unaffected by local variables, so if x € wvA then |= D : A iff
I=vx.D:vx.A.

o The logic respects reduction, so if D — E then |= D : Aiff |= E : A.
PROPOSITION 59.

1. Ifyis fresh and |= D : A then |= [y/x]|D[y/x] : [y/x]A.
2. Ifyis fresh and T |= D: A then [y/x|T |= [y/x]D]y/x] : [y/x]A.
3. Ifyis fresh and T |= M : @ then [y/x]T |= M[y/x] : @.

PROOF. Follows from Proposition 24. O
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PROPOSITION 60. [fD is closed andwv ENwvA = Qthen |=D:Aiff = (D,E) : A.

PROOF. We show by induction on @that |= D : (x: @) iff |= (D,E) : (x: ©). The
only difficult case is when @= W — X:

= Assume |= D: (x:—YX). Then D{, so by Proposition 48 we have (D, E){,.
Then for any (z := !x@y) C F 3 (D, E) 3 D, by induction:

FF:(:W=FF:(z:X)
andso |=(D,E) : (x: P—X).

< Assume |= (D,E): (x:P—YX). Then (D, E){}, so by Proposition 48 we have
DJ... Then for any (z:= !x@y) C F J D, let w = wv E, and ¥ be fresh, so:

= (Fz:=x@y) : (y: W)

= |= [V/#](F,z:= x@y)[V/#] : [v/w](y: P) (Propn 59)
= [= ([V/W](F,z:= x@y)[V/ W], E) : [V/w](y: W) (Indn)
= |= ([¥/W](F,z:= \x@y)[V/W],E) : [V/W](z:X) (Hypothesis)
= [= [V/#](F,z:= x@y)[V/W] : [7/w](z: X) (Indn)
= = (Fz:=x@y) : (z:X) (Propn 59)
andso |=D: (x:P—X).
Then by induction on A, |= D : Aiff |= (D,w:=M) : A. O

PROPOSITION 61. For closed declarations:

1. If =(D,w:=M,x:=M):(w: @)
then |= (D,w =M, x:= M) : (x: @).
2. If E(Dyw:=M,x:=M,z:=w@y) : A
then |= (D,w =M, x:=M,z:= 1x@y) : A.
= (D,x:=10w): (x:@) iff |= (D,x:=10w) : (w: @).
= (D,x:= 10w, z:= x@y) : A iff |= (D, x:= 10w,z := lw@y) : A
= (D,x:= M,y :=M)[x/z] : A iff |= (D,x:= M,y :=M)[y/z] : A
= (D,x:=!0y)x/z] : Aiff |= (D,x:=10y)[y/z] : A
= (D,x:=2M) :Aiff |= (D,x:=M): A

NN kW
T

PROOF. These all have similar proofs, so we shall show parts 1 and 2 as an ex-
ample. We shall show by induction on @ that:
1. If =(D,w:=M,x:=M): (w: Q)
then |= (D,w:= M, x:= M) : (x: @).
2. If =(D,w:=M,x:=M,z:=w@y) : (v: @)
then |= (D,w:= M x:= M, z:= x@y) : (v: @).

From this it is easy to show parts 1 and 2. The only difficult case is when

¢=yY—X.
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1. Assume:
=(D,w:=Mx:=M): (w:P—YX) (67)
Then (D, w := M, x := !M)},, so by Proposition 51.2:
(D,w:=M,x:= M),
For any (z := \x@y) C E J (D, w:= !M,x := M) either:

e z=worz=ux,s0M=x@y,so (D,w:=!M,x:=M){,, which is a con-
tradiction.

® W #£ z # x, so by Proposition 22, we can find F such that:
(F,w:=IM,x:=M,z:= x@y) = (F,z:=!x@y) ID (68)
Then, for fresh v:

FE:(y:¥)
= E=(Fw:=IMx:=M,z:=1x@y): (y: ) (Eqn 68)
= = (F,w:=IM,x:=!M,z:= x@y,v:= x@y) : (y : Y)(Propn 60)
= = (F,w:=IM,x:=!M,z:= x@y,v:=w@y) : (y: Y(Indn on 2)

(
(
(

= = (F,w:=IMx:=!M,z:= x@y,v:=w@y): (v:X) (Eqn 67)
(F,w:=IM,x:= M z:= x@y,v:= x@y) : (v:X)(Indn on 2)
(
(

= = (F,w:=IM,x:=!M,z:= x@y,v:=x@y) : (z: X)(Indn on 1)
= = (F,w:=IMx:=!Mz:=x@y) : (z:X) (Propn 60)
=E:(z:)X) (Above)
Thus for any (z:= x@y) C E 3 (D,w:= M ,x:=M):
=E :<y:w>:> EE:(zix)
andso |= (D,w:=M,x:= M) : (x: Y—X).
2. Assume:
= (Dw:=IMx:=Mz:=w@y) : (v: P—X) (69)

Then (D,w := !M,x := M,z := !'w@y){},, and so by Proposition 51.1, we
have (D,w:=IM,x:=M,z:= 1x@y){,.
For any (¢ := 'v@u) C E J (D,w:= !M,x:= M,z := \x@y) either:

e t=z,sov=wand u=y. Then:

= (D,w:=IMx:=Mz:=!w@y): (v:P—YX)
= =(D,w:=IMx:=M,z:=w@y): (w:P—YX) v=w)
= =(D,w:=Mx:=M,z:=w@y) : (x: P—X) (Part 1)

and so, since (z:= 'w@y) C E 3 (D,w:=M,x:= M,z := lw@y):

FE:(u:y)
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& t # z so by Proposition 22, we can find F' such that:

= FE:(y:p)
= =E:(z:X)
= E=E:(t:X)

E=(Fx:=My:=M, z:=x@y)

and so:
FE:(u:P)
= |—(F,x =IM,y:=M,z:=x@y) : (u:
= = (F,w:=IMx:=M,z:=w@y) :
= = (Fw:=IMx:=M,z:=w@y) :
= =(F,w:=IMx:=M,z:=x@y) : (¢ : )()

= |FE
Thus for any (¢ := v@u) C E 2

(1:X)

=E:(u

2(t:X)
tP—=X).

(u=y
(Above)

(t=2

FOID F2(t:=Wv@u) (70)

(Eqn 70)
(Indn on 2)
(Eqn 69)
(Indn on 2)
(Indn on 2)

(D,w:=IM,x:= M, z:=1x@y):
V)= FE
andso |= (D,w:=IM,x:=M,z:= x@y) : (v

PROPOSITION 62. If(T,w: @) |=M:Ythen (T Ay: @) =My/w]: @

PROOF. For any D and x, find a fresh z, and so by Proposition 59 we have:
(Fz: @) = Mz/w]: Y

and:

= (D,x:=M[y/w]) : T

(D,x:

L 2 R e

ThusTA(y: @) =

AY: Q)
=IM[z/w][y/2]) :TA(y: @)
IM[z/w][y/z],z:=0y) : TA(y: @)
'M[z/w],z:=0y) : F/\(y [0)}
M[z/w],z:=10y): T A(z: @)
M[z/w],z:=10y) : ([,z: @)
M[z/w],z:= !Dy) (x: )

!M%Z x: Q)

Mly/w]: W

PROPOSITION 63. For closed D:

D:(x:Q iff I Fvw.D:(x: ).
2. If =D :Athen |=vw.D:vw.A.
3. If Evw.D: Athen =D : A

1. If w# x then |=
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(71)

(Substitution)
(Propn 60)
(Propn 61.6)
(Propn 61.3)
(z is fresh)
(Eqn 71)
(Propn 61.6)
(Propn 60)
(Substitution)

a



PROOF.

1. An induction on @. The only difficult case is when @ = — X.

= If |=D: (x:P—X) then DJ, so by Proposition 29 vw.DJ} .. For any
(z:= x@y) C E J (vw. D), let v be fresh, by Proposition 22, we can find

F 1 (z:= x@y) such that:
E=vw.F  FJ[v/wD[v/w]
so by Proposition 59:
= [v/wIDy/w]: (x: G —X)

and so:
FE:(y:d)

= =W F:(y: )
= FF:(:w)
= =F:(z:)X)
= E=VwW.F:(z:X)
= =E:(z:)X)

Thus =vw.D: (x: P—X).

< If:

Evw.D:(x:Pg—X)
then vw. DI}, so by Proposition 29 DJ,.

For any (z := x@y) C E O D, we can find F such that:

E=(F,z:=x@y)
Then vw. (F,z := 'x@y) 3 vw. D, so for fresh u and v:
FE:(y:)
= (F.z:= 1x@y) : (y: )
= = (F,z:= x@y,u:= 0y, v:=x@u) : (y: P)
= = (Fz:= 1x@y,u:= 0y, v:=1x@u) : (u: Y

= Evw.(Fz:= x@y,u:=Oy,v:=1x@u) : (u: )
= = (vw. (F,z:= x@y),u:= 0y, v:=x@u) : (u: Y)
= = (vw. (F,z:= x@y),u:=0y,v:=1x@u) : (v:X)

= E=vw.(F z:= x@y,u:=0y,v:=x@u) : (v:
= = (F,z:= 1x@y,u:= Oy, v:=1x@u) : (v: X)
= = (Fz:= x@y,u:= Oy, v:=1x@y) : (v:X)
= = (F,z:= x@y,u:= 0y, v:=x@y) : (z:X)
(F,z:=1x@y) : (z:X)

= =E:(z:X)

X)
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(72)

(73)

(Eqn 72)
(Indn)
(Eqn 73)
(Indn)
(Eqn 72)

(74)

(75)

(Eqn 75)
(Propn 60)
(Propn 61.3)
(Indn)
(VMIG)
(Eqn 74)
(VMIG)
(Indn)
(Propn 61.6)
(Propn 61.1)
(Propn 60)
(Eqn 75)

Thus =D : (x: Pg—X).
2. An induction on A, using part 1.
3. An induction on A, using part 1. O
PROPOSITION 64.
1. If @< Wand |=D:(x:¢) then |=D: (x: ).
2. IftT <Aand |=D:T then |=D:A.
3. fT<T T"E=ED:Nand =N < AthenT |=D: A
4. T <AA=M:@and - @< Ythenl |=M: .
PROOF.

1. An induction on the proof of - @< .

2. An induction on the proof of |=D:T.

3. Follows from part 2.

4. Follows from part 2. O

PROPOSITION 65. For closed D:

1. f D=Ethen |=D:Aiff = E: A

2. IfDCEand |=D:Athen |=E: A

3. IfD—, Ethen =D:Aiff = E:A.
Thus, ifE—} F thenT |= E:AiffT |=F: A
PROOF.

1. A simple induction on A.

2. Follows from Propositions 60 and 63.

3. Show by induction on @that D : (x : @) iff E : (x : @). The only difficult case
is when @ = y— X. We then have two cases, depending on the axiom used in
proving D — E:

(BUILD). We shall show thatif D: (x: —X) then E : (x: {y — X) since the
other direction is easier.
By Proposition 25.2 we can find v-less F such that:

D=VX.(F,w:=!recGin M)
E =VXy.(F,G,w:=M)
¥y=wvG

For simplicity, we assume G is V-less, and that the declaration (F, G) is
well-formed, as the general case is no more interesting. Then for any
(z:=x@y)CTHJE:

o If w=z then D}, which is a contradiction.
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o If w = x then we can find fresh ¥ and I such that:

H=vXy.(F,G,1,w:= M,z :=w@y) (76)
so letw=wv G, and let vand V be fresh. Then since |=D: (x: y—YX),
by Proposition 59:

VX.(F,v:=!recGinM)[v/w]: (v:Pp—X) (77)

and, from the definition of C:

(z:=v@y)
CVX.(F[v/w],G,1,v:=(recGin M)[v/w],

w:=IM[v/w],z:= v@y) 7%
JVX.(F,v:=!recGin M)[v/w]
Then:
FH:(y:y)
= =VXY.(F,G,Lw:=M,z:=w@y) : (y: Q) (Eqn 76)
= = (F,G Lw:=IMz:=w@y): (y: ) (Propn 63)
= |= (F, G, 1, [v¥/ww|G[vW/ww],
vi=IMw:=Mz:=!w@y): (y: ) (Propn 60)

= |= (F[v/w], G, I, [v¥/wiw|G[vJ/wit)],
vi=IMv/w],w:=M[v/w],z:=lv@y) : (y: ) (Propn 61.5)
= = (F[v/w],G,I,v:=(recGin M)[v/w],

w:=IM[v/w],z:= v@y) : (y: Y) (Indn)
= = (F[v/w],G,1,v:=(recGin M)[v/w],

w:=IMv/w],z:=Iv@y) : (z: X) (Eqns 77 and 78)
= |=H:(z:X) (Similarly)

Thus = E: (x: P—X).
o If x # w # z then the proof is similar.
(OTHER) If D — E is proved without (BUILD) then we can show that:
DC D impliesD' —.E' JE
EC E' impliesDC D' —, E’

Then if |= D : (x: y—X) then DI}, so by Proposition 32, El},.. Then for
any (z:= !x@y) C F J E, we can find G such that:

F=(Gz:=x@y) (79)
Then let w be fresh, so:

(w:=1x@y) E (G,w:= x@y,z:= x@y) J E
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and we can find H 2 D such that:

H—.F
Then:
FF:(y:)

= F(Gz:=1x@y) : (y: ) (Eqn 79)
= =(G,z:= x@y,w:=x@y) : (y: ) (Propn 60)
= = (H,w:=1x@y): (y: ) (Indn)
= = (H,w:=1x@y) : (w:X) (FD:(x:9—X))
= =(G,z:= x@y,w:= x@y) : (w:X) (Indn)
= =(G,z:= x@y,w:= x@y) : (z: X) (Propn 61.1)
= =(G,z:=x@y) : (z:X) (Propn 60)
= =F:i(z:X) (Eqn 79)

o = E:(x:P—X).

The other direction is shown similarly. a

3.11 Full abstraction

In this section, we show that the model D is fully abstract for concurrent graph
reduction. This means that concurrent graph reduction has the same fully abstract
model as leftmost-outermost reduction, and so concurrent graph reduction has ex-
actly the same computational power as leftmost-outermost reduction.

This proof follows the same structure as Section 2.7

o We show that ' = D : Aiff [A] < [D][[T], thus showing that the proof system
is sound and complete for the denotational semantics. This is Proposition 66,
the graph reduction equivalent of Proposition 15.

e We then show thatif T D :Athenl |=D:A, and that if " |= D : A then
[A] < [D]IT]. Thus the three presentations of the logic are equivalent. This
is Proposition 69, the graph reduction equivalent of Proposition 18.

o Finally, we show that full abstraction is gained by proving the three logical
presentations to be equivalent. This is Proposition 70, the graph reduction
equivalent of Proposition 19.

Thus, ABRAMSKY and ONG’s techniques can be adapted to graph reduction.

PROPOSITION 66.

L TEM:@if[¢] < [M]].
2. TFD:Aif[A] < [D][].
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PROOF.

SOUNDNESS (=) We have to prove the rules of TFM:@and =D:A be
sound. For example, to prove (1), if [A] < [x:=!M][] and [@] < [M][A]
then:

[x: @]
< (x:=[MDIA] (Hypothesis)
< (x = [M])([x == M]ITT) (Hypothesis)
= [[x:=M][I] (Propn 57.2)

The other cases are similar.
COMPLETENESS (<=) An induction on M and D. For example, if x # y and:
[l < [x@yI[r]
then either [@] = L, so F @=wandso [ - x@y : @, or:
[4ll < [x@y[rT

= [¢] < apply[F ()] (»)] (Detn of [x@y])
= [Fy)—d <[] (Propn 9.1)
= FIMx) <Ty)—o (Propn 12)
=>FM<x:T(y)—@y:T(y) (Defn of <)
=>TFx@y: @ ((<) and (@a))

The proofs for x@x, [lx, xVy and xVx are similar. The proof for Ax. M is
similar to that of Proposition 15. If:

[@] < [recDin M][I] (80)
then:
[l
< [recDin M][I] (Eqn 80)
= [M]([DIIrD) (Defn of [recDin M])
= [MI(VA[A] | [AD < [DIOT]}) (Propn 14)
= V{IM]IA]D | TA] < [DD0FD ) (Continuity)

so since [[@] is compact we can find a A such that:

lol < TM[A]  [AD < IPDIr
so by induction:
AEM:o@ M=D:A

and so by (rec):
M-recDinM: @
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If [A] < [[(x:=M)][T] then:

[A]
<=M (Hypothesis)
= fix(set{x}(x := [M]))[T] (Defn of [lx := !M])
= V{(set{x}(x:=[M]))"L | nin w}[l] (Defn of fix)
= V{(set{x}(x:=[M]))"L[T] | nin w} (Continuity)

so since [[A]] is compact, we can find an #z such that:
[A] < (set{x}(x:= [M]))" L[]
then we can show by induction on nthat I' F (x := M) : A:

o If [A] < (set{x}(x:= [M]))° L[] then [A] = L so by Proposition 12
FA=¢soby(<)and (L) IF (x:=!M):A.

o If [A] < (set{x}(x := [M]))"*! L[] then:

[A(x)]
< (set{x}(x:= [M]))" T L[x (Hypothesis)
= [M]((set{x}(x:=[M])"L[TT) (Defn of set)

= [MI(VA[O] | [O] < (set{x}(x:= [M])"L[TT})  (Propn 14)
= V{[M][O] | [O] < (set{x}(x:=[M]))"L[[]}  (Continuity)

so since [JA(x)] is compact we can find a © such that:
(8] < [MIIE] O] < (setf}(x:= [M]))" L[]
so by induction:
OFM:Alx) Nr-(x:=M):0

and so by (!):
Me(x:=M): (x:Ax))
For any y # x:
true

= [A()] = [A]y (Defn of [A])
= [AW)] < (set{x}(x:= [M]))"* L[ ]y (Hypothesis)
= [A] <[y (Defn of set)
= AW < [Fr»] (Defn of [I])
= ET(y) <A®Y) (Propn 12)
= Fux.T <y:A®y) (Defn of <)
= TE(x:=1M):(y:AQy)) ((L) and (<))

Thus Vy. T (x:= M) : (y:A(y)) and so [ - (x:= M) : A.

The proofs for x := ?M and D, E are similar, and the proof for vx. D is much
simpler. O
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PROPOSITION 67. If D — E then D] = [E].

PROOF. This is a matter of proving each of the axioms for = and + to be sound.
The axioms for = are covered in Propositions 57 and 58.

Of the axioms for —, the axiom for graph building can be shown from Propo-
sition 58. The axioms for spine traversal are simple since [y := ?M] = [y := !M]].
Garbage collection is equally simple, from the definition of new. This leaves the
axioms for updating which all have similar proofs, so we shall consider the case
of an indirection node. For any z # x:

readzo (x:=ready)o[ly:= IM]
=readzo[[y:=IM] (Propn 54.4)
=readzo (x:=[[M])o[y:=M] (Propn 54.4)

and:

readxo (x:=ready)o[[y:=!M]

= readyo[[y:=M] (Propn 54.3)
=readyo(y:=[M])o[y:=M] (Propn 57.2)
= [M]o[y:=M] (Propn 54.3)
= readxo (x:=[[M])o[y:=M] (Propn 54.3)

Thus for any z:
readzo (x:=ready)o[ly:=IM] =readzo (x:=[[M]) o [y:=M]
and so:
(x:=ready)oly:=M]| = (x:=[M]) o [[y:=M] 8D
Then:

[x:=!0y,y:=Aw.M]
= fix(set{x, y}(fix(set{x}(x :=ready))o [y:=Aw.M]))  (Defn of [M])
= fix(set{x, y} (fix(set{x}(x := ready))

ofix(set{y}[y := 'Aw. M]))) (Propn 57.6)
= fix(set{x,y}(x :=readyo[[y:= Aw. M])) (Propn 57.5)
= fix(set{x, y}(x := [Aw. M] o [y := 'Aw. M])) (Eqn 81)
= fix(set{x, y}(fix(set{x}(x := [Aw.M]))
ofix(set{y}[y := 'Aw. M]))) (Propn 57.5)
= fix(set{x, y} (fix(set{x}(x := [Aw.M]))) o [y := !Aw.M])))  (Propn 57.6)
= [x:=1Aw. M,y :=Aw. M] (Defn of [M])
The other cases are similar. O

COROLLARY 68. If D, then [D]ox# L.
PROPOSITION 69.
e TEM: @)= (T'=M: @) = ([¢] < [M][T].
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e TFD:A)=(T'=D:A) = ([A] <[D][IrD.
PROOF.

SOUNDNESS (1 = 2) This is a matter of proving each of the rules of [ =M : @

and ' = D : A sound.

(L) For any D and z, if |= (D,z := !M) : € then by Proposition 64 we know
that |= (D,z:= M) : (z: w). Thus =M : w.

(i) For any D and z, if |= (D,z:=!0x) : (x: ¢) then by Proposition 61.4,
= (D,z:=10x):(z: ). Thusx: @|=0Ox: @

(—E) For any D and z, if |= (D,z:= x@y) : (x : — YAy : @) then
= (D,z:=1x@y) : (x: p— ) and |= (D,z:=x@y) : (y : @), so
= (D,z:=1x@y): (z: ). Thusx: 9— YAy : @ |=x@y: Y.

(Va) For any D and z, assume (D, z := lxVy) : (x 1Y), so:

tag (D,z:=xVy) =1 E (82)
and x is in whnf in E, so:
(D,z:= xVvy)
—5ltag (D,z:=1xVy) (VTRAV)
—5 E (Eqn 82)

and by Propositions 30.4 and 30.5 either E = (F,z:=!1), or
E = (F,z:=!xVy) and since x is in whnf in E, E — (F,z:=!1). Thus:

(D,z:=1xVy) —& (F,z:= 1)
and:
F(Fz:=1D):(z:0—9)
so by Proposition 65:
= (Dz:=1vy): (z: 9— )
Thus (x:y) |= (xVy: 0—@).
(VD) y:y=xVy: @— @is proved similarly.
(A) Assume T =M :@andT =M : .
Then for any D and z, if |= (D,z:=!M):T
then |=(D,z:= M) :(z: @) and |= (D,z:= M) : (z: U)
so |=(D,z:=M) : (z: @AW). Thus T |=M : (@A Y).
(<) Follows from Proposition 64.

(—) Assume I',w: @|= M : Y. Then for any D and x, assume
= (D,x:=!'Aw.M) :T. Then (D,x := 'Aw.M){,, and for any
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(z:=x@y) C E 3 (D, x := 'Aw. M), by Proposition 22 we can find F
such that:
(F,x:='\Ww.M,z:=x@y) = E (83)
so:
=(Dx:="Aw.M):T
= E=E:T (Propn 60)
= = (Fx:=1Ww.Mz:=1x@y): T (Eqn 83)
= F(F,x:="\w.M,z:=M[y/w]) : T (@upD)
Thus
FE:(y:9
= = (Fx:="Ww.Mz:=1x@y) : (y: Q) (Eqn 83)
= = (Fx:="Ww.Mz:=M[y/w]): (y: ) (@uPD)
= = (Fx:="Ww.Mz:=M[y/w]) :TA(y: @) N
= = (Fx:="w.M,z:=Mly/w]): (z: ) (Propn 62)
= = (Fx:=1\Ww.Mz:=1x@y) : (z: ) (@uPD)
= FE:(z:9) (Eqn 83)

Thus (D,x:=Aw. M) : (x: @— ), and so [ |=Aw. M : p— .

(rec) Assume ' |=D:Aand A|=M: @. Let X = wv D and let ¥ be fresh.

Then by Proposition 59:

I |= [y/XD[y/x) - [/3A (84)
/34 = M[y/x] - ¢ (85)

so for any E and z:

= E,z:=!recDinM):T

= |=E,localDinz:=M:T (BUILD)
= |= E,Vy.(z:= \M[y/X],[¥/X|D[y/X]) : T (Defn of local)
= [=Vy. (E,z:= IM[y/3], [y/X]D[y/x]) : T (VMIG)
= = (E,z:= \M[y/x], [j/X|D[y/x]) : T (Propn 63)
= |= (E,z:= \M[y/x], [y/X]D[y/x]) : [/x]A (Eqn 84)
= |= (E,z:= \M[y/x], [y/X]D[y/x]) : (z: @) (Eqn 85)
= [y (E,z:= \M[y/], [j/X]D[y/%]) : (z: ¢) (Propn 63)
= [ E,vy.(z:= \M[y/3], [j/X]D[y/%]) : (z: ¢) (VMIG)
= |=E,localDinz:=M:(z: @) (Defn of local)
= |=E,z:=!recDinM:(z: @) (BUILD)

Thus I |=recDin M : @

(L) Forany E, if |=D,E :v(wvD).T then |=D,E :v(wvD).I. Thus
M=D:v(wvD).T.
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(A) Assumel =D:AandT |= D: ©. Then for any E,
if = D,E :v(wvD).T then |=D,E:Aand |=D,E : ©,
so |=D,E:AAN®. Thus |=D:ANO.

(<) Follows from Proposition 64.

(1) Assume I |= (x:=!M):Aand A= M : @. Then for any E, if

= (x:=IM),E:vx.T then |= (x:=M),E:Aso |= (x:=!M),E: O.

Thus T |= (x:= M) : ©.
(?) Follows from (!) and Proposition 61.7.
(L) Assume ' |=D E:Aand A |= D: ©. Then for any F, if

|=D,E,F:v(wv(D,E)).T then |=D,E,F :Aso |= D,E,F: ©. Thus

=D,E:©.

(R) Assume ' |=D,E:AandA|=D:©. ThenT |=D,E : O follows

similarly.

(v) Assume Vx.[ |= D :A. Then for any fresh y, by Proposition 59:

vx. T = [y/xDly/x] : [y/]A (86)
Then for any E and fresh y:
|=(vx.D),E:v(wv(vx.D)).T

= [= (vy.[y/x]Dly/x]), E: v(wv(vx.D)).T (@)
= = Vy. ([y/xDly/A], E) : v(wv(vx. D)) .T (VMIG)
= |=[y/x|Dly/x],E:v(wv(vx.D)).T (Propn 63)
= |=[y/x|Dly/x],E : v(wv([y/x]D[y/x])) .vx.[  (Defn of vx.T)
= |= [y/x]Dly/x], E: [y/x]A (Eqn 86)
= [=Vy.([y/x]Dly/x],E) : vy. [y/x]A (Propn 63)
= = (vy.[y/x|Dly/x]), E : vy. [y/x]A (VMIG)
= |=(vx.D),E:vx.A (o)

Thus I |=vx.D:vx.A.

Thus the proof system is operationally consistent.

COMPLETENESS (2 = 3) We first show by induction on A that if D is closed and

|= D : Athen [[A] < [D]o.
e If |=D:¢cthen[e] =L <[D]o.

o If|=D:ATthen =D:Aand |=D:T, so by induction [I'] < [D]o and

[a] < [D]o, so [T, A] =[] v [A] < [D]o.
o If | =D:(x:w)then[x:w] =L <[D]o.
o If =D:(x:@AY) then |=D
[x: @] <[DJoand [x: Y] <[D]o, so [x: A Y] < [D]o.
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:(x:@) and |=D: (x: ) so by induction



fresh y and z: . DCyEiff DCSE iff DCp E.
true 2. MCoNiffMCgNiffMCpN.

z [I[—y Dip](]p _(Esz;’]]J' (D(epfilogiDﬁg PROOF. Similar to Proposition 19.
= FD,Dy.gz:= x@y: (y:@ (1) and (R)) Thus we have shown that D is fully abstract for concurrent graph
= |=D,Dy.g,z:=x@y: (y: @) (Soundness)
= [=D,Dyg,z:=x@y: (z: Y) (Defn of |=)
= [z: Y] < [D,Dy.¢,z = x@y]O (Induction)
= [Y] < [D,Dy.q,z:= x@y] Oz (Application)
= [[W] < apply([D]ox)([Dy.qloy) (Defn of [x@y])
= [[W] < apply([DJox)[¢] (Defn of D)
= [o— ] < [D]ox (Propn 9.1)

= [x: 9—y] < [D]o

e If |=D: (x: @— ) then D}, so by Corollary 68 [D]Jox # L. Also, for

(Defn of [x: ¢—y])

PROPOSITION 70.

Thus [o— Y] < [D]o.

Thus we have:
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=D:A= [A] <[D]o (87)
IfT |= D: Athen:
true
= [V(wvD).T] = [Dywpyr]L (Defn of Dp)
= F Dy pyr:V(wvD).T (Propn 66)
= FD,Dy(yypyr :V(wvD).T ((L) and (R))
= = D, Dy pyr :V(wyD).T (Soundness)
= =D, Dy pyr: O (Defn of |=)
= [[A]] < [[Da Dv(wv D).r]]J— (Eqn 87)
= [A] < [DIIr] (Defn of Dp)
If T |= M : @then for fresh z:
true
= [F1=[0Dr]L (Defn of Dp)
= FDr:T (Propn 66)
= FDr,zi=IM:T (L)
= |=Dr,z:=M:T (Soundness)
= |=Dr,z:=M:(z: @) (Defn of |=)
= [z: @] < [Dr,z:=M]L (Eqn 87)
= [z: @) < [z:= M][I] (Defn of Dp)
= [q] < [M]ITT (Application)
Thus the semantics is operationally complete. a
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4 Conclusions

In this paper, we have investigated the relationship between the semantic notion of
full abstraction and the implementation technique of concurrent graph reduction.
We have shown that:

¢ Concurrent graph reduction can be given a simple operational presentation
in the style of BERRY and BOUDOL’s (1990) chemical abstract machine, and
MILNER’s (1991) polyadic T-calculus.

e The techniques of ABRAMSKY (1989) and ONG’s (1988) lazy A-calculus can
be used to show that the fully abstract model for leftmost-outermost reduction
is also fully abstract for concurrent graph reduction.

o To show full abstraction, we discussed a confluent reduction strategy, the rela-
tionship between concurrent and sequential reduction, and referential trans-
parency. These properties are also important in implementations, and it is
reassuring that showing full abstraction and writing compilers have so many
issues in common.

This Chapter will discuss related work in the semantics of graph reduction, and
possible future work.

4.1 Related work

In this section, we discuss some related work on the relationship between denota-
tional or operational models of the A-calculus. The papers described here are only
those most directly related to models of concurrent graph reduction. For a discus-
sion of models of tree reduction for the A-calculus, see (BARENDREGT, 1984); for
a discussion of implementation of graph reduction, see (PEYTON JONES, 1987).

ABRAMSKY AND ONG. This paper is based on ABRAMSKY (1989) and ONG’s
(1988) Lazy A-calculus, which is summarized in Chapter 2.

The main difference between their approach and that outlined here is that their
operational semantics is for tree reduction rather than graph reduction, and so
models -reduction by substitution rather than sharing.

In addition, ABRAMSKY and ONG investigate applicative simulation as an al-
ternative characterization of the operational order. For closed terms from the A-
calculus, M C4 N iff:

o If M| then NJ}.
¢ For any closed O, MO C4 NO.

This can be adapted to the A-calculus with rec as D |= x C, y iff:

e If D|}, then D{,.
e For any closed E, if (X' :=!1x@z,y :=!y@z) CE I DthenE |=x' T4y

However, this definition does not relate directly to the proof of full abstraction,
in the way that ABRAMSKY and ONG’s definition does, and so was not used in
Chapter 3.

BOUDOL. Another paper based on leftmost-outermost reduction of the untyped
A-calculus is BOUDOL’s (1992) A-calculi for (strict) parallel functions. This pre-
sents an operational and denotational semantics for the A-calculus extended with
call-by-value abstraction (A\"x . M) and concurrency (M || N, which we wrote as
MMN). The decision to extend the A-calculus with with P or with A” . M and
M || N is somewhat arbitrary, since both are inter-definable:

Nx.M = Ax.PxxM
M||N=YAx.Ay.Az. (Pyz(Aw.x(yw)(zw))))MN
PMN = (N x.)M) || (N"x.1)M)

In this paper we used P, since it has a simpler graph-reduction semantics, and
corresponds very closely to AUGUSTSSON’s oracular choice discussed below.

BOUDOL’s syntax allows for declarations, letD in Ax .M, but his reduction
rule for declarations is by substitution rather than sharing, and so he models tree
reduction rather than graph reduction. Indeed, the main result of his paper is to
find a fully abstract model for the strict A-calculus with parallelism, and it is dif-
ficult to see how such a result could be applied to graph reduction, since graph
reduction is usually used to evaluate non-strict languages.

ROSE. Another approach to cyclic declarations of the form recD in M is taken
by ROSE (1993), who defines an operational semantics for the A-calculus ex-
tended with rec. He then shows that the A-calculus with rec is a model for the
A-calculus.

However, his semantics for declarations allows non-whnf declarations to be
copied, for example (in our syntax):

(recx:=!Minx) = (recx:=!Min M)

Thus his operational semantics does not correspond to graph reduction. However,
his techniques are useful for showing that the A-calculus with rec is a model for
the A-calculus, and it would be interesting to see if they could be applied to a
semantics with sharing. This is mentioned as being ‘current work’.

WADSWORTH. The study of graph reduction began with WADSWORTHs’ (1971)
thesis. He presents the notion of graph reduction, and shows that graph reduction
is correct for tree reduction of the untyped A-calculus. His graphs are similar to
ours, but are rooted, do not include tagging information, and do not contain re-
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cursive declarations, local variables or cycles. WADSWORTH also investigates the
relationship between graph reduction and the Do, model of the untyped A-calculus
(see (BARENDREGT, 1984) for more details), a topic which was later picked up
by LESTER (1989) and ABRAMSKY (1989) and ONG (1988).

BARANDREGT et al. There is a large body of work on term graph rewriting,
introduced by BARANDREGT et al. (1987), and surveyed by KENNAWAY et al.
(1993b) and the other papers in SLEEP ef al.’s (SLEEP et al., 1993) book. Term
graphs are very similar to declarations, but are rooted, and do not include tagging
information, recursive declarations or local variables.

Term graphs are parameterized by a signature of combinators, and so model
combinator graph reduction, that is graph reduction with a fixed set of combina-
tors, such as S, K and I. Combinator graph reduction was used by TURNER (1979,
1985) in the implementation of SASL and Miranda.

Since term graphs do not have a fixed signature, they allow for more general
reduction strategies than ours. In particular they allow for a natural presentation
of type constructors and deconstructors.

However, since term graphs are so general, it is difficult to find denotational
models for term graph reduction. BARANDREGT et al. (1987) and KENNAWAY
etal. (1993a) show that term graph reduction is adequate for term tree reduction,
but it is not obvious whether more abstract models for term graph reduction be
developed.

LESTER. After WADSWORTH’s thesis, one of the first papers to investigate de-
notational semantics for graph reduction was LESTER’s (1989). He presents a
typed A-calculus, and gives it three semantics:

e A denotational semantics based on STOY’s (1977) semantics for a typed A-
calculus.

¢ An abstract operational semantics for graph reduction using digraphs, which
are very similar to our declarations.

e A concrete operational semantics for graph reduction based on JOHNSSON’s
(1984) G-machine.

He then shows that the denotational semantics is correct for the abstract opera-
tional semantics, which is in turn correct for the concrete operational semantics.
Itis possible that the same techniques could be applied to our work, to find a fully
abstract semantics for the G-machine.

LAUNCHBURY. The approach most like ours is LAUNCHBURY’s (1993) natural
semantics for lazy evaluation. The differences between his operational semantics
and ours are:
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o He presents a ‘large-step’ operational semantics ‘M{}N’ rather than a ‘small-
step’ semantics ‘M — N’.

¢ He presents sequential rather than concurrent reduction, so at each stage there
is one node where reduction can take place. This allows him to give his reduc-
tions between terms of the form ‘rec D in M’, where M is the term currently
being reduced.

¢ His syntax does not include local variables ‘vx.D’, does not distinguish be-
tween tagged and untagged nodes, and does not include fork nodes ‘yvz’. It
does allow applications of the form ‘Mx’ rather than just ‘x@y’.

His semantics is (rewritten in our syntax):

(recDinAx.M) |} (recDinAx.M)

(recDinx) | (recEinAz.N) (recEin N[y/z]) | (recF in O)
(recDin x@y) |} (recF in O)

(recDin M) || (recEin N)

(recD,x:=!Minx)l (recE,x:=!NinN)
(recD,Ein M) |} (recF inN)

(recDinrecEin M) | (recF in N)

Then it is easy to see that LAUNCHBURY’s semantics is a subset of ours, in that
if:

[fvDNwvE = 0]

(recDin M) | (recE in N)

then:
(local Din x := !M) —~ (local E in x := IN)

However, since LAUNCHBURY’s semantics is designed to model sequential rather
than concurrent reduction, our semantics has some reductions which cannot be
matched by his, for example:

(localy:=!linx:=!1) — (localy:=!linx:=1!l)

But since the main result of LAUNCHBURY’S paper is to show that D is an ade-
quate model for his semantics, we have for free that our semantics is adequate for
his. Thus by showing that D is fully abstract for concurrent graph reduction, we
have also shown that concurrent graph reduction is adequate for LAUNCHBURY’s
model of sequential graph reduction.

LAUNCHBURY has investigated a number of properties of his semantics which
have not been covered here, such as space- and time-complexity, update analy-
sis (LAUNCHBURY et al., 1992), and combinators. It is an open problem as to
whether these approaches can be directly translated into our semantics.
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PURUSHOTHAMAN AND SEAMAN. Another approach to the operational se-
mantics of graph reduction is PURUSHOTHAMAN and SEAMAN’s (1992) LAZY-
PCF+SHAR, which extends PLOTKIN’s (1977) PCF with let declarations. This is
given a big-step operational semantics of the form (in our syntax):

(letDin M) || (letEin N)
This semantics is similar to ours and LAUNCHBURY's, except that:

¢ LAZY-PCF+SHAR is a typed language, and has constructors and deconstruc-
tors for booleans and natural numbers.

¢ Since let-expressions are being used rather than rec-expressions, the seman-
tics for fixed points lose some sharing information:

(letDinletx:=!(px. M) in M) || (letE in N)
(letDinpx. M) |} (let E in N)

Extending the semantics to deal with rec-expressions is ongoing work.

o Garbage collection is not modelled, except in the case when an expression is
of ground type (Bool or Int). If M is a function, then their reduction rule for
let is:

(letD,x:=!Nin M) | (let D/, x:= IN"in M")
(letDinletx:=INin M) |} (letD inletx:=IN"in M')
But if M is of ground type, then it has no free variables, and so garbage col-
lection can be performed:

(letD,x:=!Nin M) |} (letD' ,x:=IN"inM')
(letDinletx:=INin M) | (letD" in M")

This is the only form of garbage collection given for LAZY-PCF+SHAR.

PURUSHOTHAMAN and SEAMAN show that LAZY-PCF+SHAR can be given an
adequate semantics in the same domain as PCF. It is an open problem as to
whether LAZY-PCF+SHAR with parallel conditionals can be given a fully abstract
semantics in the same domain as PCF with parallel conditionals.

ARIOLA AND ARVIND. The Graph Rewriting Systems (GRS’s) of ARIOLA and
ARVIND (1993) are very similar to the declarations introduced in this paper. The
only differences are:

e GRS’s are not explicitly designed for parallel evaluation, and so do not distin-
guish between tagged and untagged nodes.

o Local variables are provided by a declaration local D in E rather than by vx. D.

e GRS’s allow for arbitrary term rewriting, rather than being specific to the un-
typed A-calculus.
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e GRS’s have a term ‘o’ to denote black holes such as recx := lxin x.

The operational semantics for GRS’s is very similar to ours and LAUNCHBURY's,
for example one of their rules is (in our syntax):

(recDin (recE in M)) — (recD,E in M)

This is the same as our (BUILD ) except that reduction is between terms rather than
declarations.

ARIOLA and ARVIND present an adequate model for GRS’s in terms of sets
of normal forms. Since GRS’s are independent of the term reductions, it is not
obvious whether a fully abstract semantics could be found.

THE AUTHOR. In a previous paper, the author (1993) presents an operational
semantics for concurrent graph reduction, and shows that graph reduction is cor-
rect for tree reduction. The improvements given in this paper are:

o The proof that the denotational model D is fully abstract for concurrent graph
reduction.

e The use of ABRAMSKY’s (1991) domain theory in logical form to structure
the proof of full abstraction.

o The presentation of the operational semantics directly in terms of declara-
tions, rather than introducing a new type of chemical solutions.

¢ The graphical presentation of graphs has been improved.

The translation of graph reduction into MILNER’s (1991) polyadic Tecalculus has
been omitted, and is further work.

4.2 Future work
There are a number of open problems raised by this work.

SIMPLIFICATION. The operational proofs in Sections 3.6-3.8 are long and
rather tedious case analysis. To a degree, this is to be expected, since any
verification of a practical implementation technique is likely to involve extended
case analysis. However, it would be useful if a presentation could be found
which simplified and generalized the proofs given here.

An analogy can be drawn between the presentation of graph reduction by
WADSWORTH (1971) and BARENDREGT et al. (1987). The former makes explicit
mention of application and abstraction nodes, where the latter is a general theory
of graph and tree reduction.

Unfortunately, full abstraction results are often very syntax-dependent—for
example PLOTKIN’s (1977) proof of full abstraction for PCF with parallel condi-
tionals is very dependent on the syntax and operational semantics of PCF.
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Finding a proof technique that is powerful enough to show full abstraction for
concurrent graph reduction, but does not rely on long case analysis is likely to be
quite difficult.

TYPED A-CALCULIL.  The proofs given in this paper are only for the untyped A-
calculus with recursive declarations. The non-strict functional languages which
are used in practice are typed, and have type constructors and deconstructors (usu-
ally in the form of pattern-matching).

Such constructors and deconstructors could be added to the A-calculus with
recursive declarations. For example, the product type T x U with constructors
and deconstructors:

pair: T—U — (T x U) fst: (TxU)—T snd: (T xU)—U
could be added to the A-calculus with recursive declarations as:
M ::=---|pairxy|fstx|sndx
with the operational semantics for fst given:
wi=fstx,x:=2M — w:=fstx,x:= M
w:=Ifstx, x:= !pairyz+— w:= Oy, x:=!pairyz
Unfortunately, this leaves the problem of giving a semantics for when x is a func-
tion:
x:=fsty,y:=!Aw.M — x:=!Something,y:= 1Aw. M

One possibility would be to use a type system to bar such declarations, but this
would make the proof dependent on a choice of type system.

Another problem is that the proofs in Chapter 3 rely on the fact that D is a
lattice. If the boolean type were to be allowed, the model would no longer be a

lattice, and so the proofs would require the techniques of ABRAMSKY’s (1991)
domain theory in logical form, rather than the simpler logic of Chapter 2.

OTHER PARALLEL COMBINATORS. The parallel mechanisms given in this pa-
per are:

o Parallel evaluation of the form recx := !M in N.
o Parallel convergence of the form xVy.

Neither of these introduce any nondeterminism, which is one reason why con-
current graph reduction has the same fully abstract model as leftmost-outermost
reduction. In practice, languages often require a more powerful form of parallel
convergence, which returns the value of the term which reached whnf first. For
example, if we have a term:

pick : 0 — a — Bool
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which says which of its arguments reached whnf, then we can write a function
which merges two lists as:

merge xsys = if (pick xs ys)
then(merge’ xsys)
else(merge’ ysxs)

merge' [|ys = ys
merge’ (x:: xs)ys = x :: (mergexsys)

The merge function can then be used, for example, in I/O routines which need to
merge two event streams.
The pick function could be added to the A-calculus with rec as:

M ::=---| pickxy
with the operational semantics given:
x:=!pickyz,y:= ™M — x:=!pickyz,y := M
x:=!pickyz,z:= ?M +— x := ! pickyz,z:= M
x:=!pickyz,y:=Aw. M+ x:=true,y :=Aw.M
x:=lpickyz,z:= A\w.M — x:=!false,z:= A\w. M

This is the same operational semantics as yVz, except that we return true (Axy.x)
or false (Axy. y) rather than I.

Although it is simple to give an operational semantics for the A-calculus with
recursive declarations and pick, finding a fully abstract model is non-trivial. For
example, pick is not referentially transparent, since:

[rec(x:=?pick I1)in (x < x)]| = [[true]
[pick 11 < pick 1] = [[pick 1]

This lack of referential transparency is caused by non-determinism, so one would
expect to need a model based on powersets. One open problem is to show that
any fully abstract model for leftmost-outermost reduction of the A-calculus with
nondeterminism is also fully abstract for concurrent graph reduction with nonde-
terminism. One would then be able to apply the techniques of ONG (1993) or DE
’LIGUORO and PIPERNO (1992) to concurrent graph reduction.

Another approach, which is still nondeterministic, but retains referential
transparency, is AUGUSTSSON’s (1989) oracles, which have been implemented
in Lazy ML. This replaces pick with a choose function, that as a side-effect sets
an oracle variable recording the result.

In AUGUSTSSON’s implementation there are an unbounded number of ora-
cles, but we can simply model the case where there is only one oracle variable
called o. This is initially declared as o := !_L, and can have one of three states:
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L, lorr. The choose function could be added to the A-calculus with recursive
declarations as:

M ::= ---| choosexy
D::

o= 1Ll]o=!1]o:="!r

with the operational semantics given:
x:=!chooseyz,y:= ?M — x:=!chooseyz,y:= M
x:=!chooseyz, z:= M — x :=!chooseyz,z:= M

o:=!1l,x:=!chooseyz,y:=A\w.M — o :=!1,x:=!chooseyz,y := !]Aw. M

o:=!1,x:=!chooseyz,z:=!Aw.M +— o :=!r,x:=!chooseyz,z:= A\w. M
o:=!lx:=!chooseyz— o:=1!l x:=!true
o:=1!r,x:=!chooseyz— o:=!r,x:=!false

This is the same operational semantics as pick as long as the o variable is L.
Once the o variable has been set, choose xy always returns the same result. Thus,
choose is nondeterministic, but is referentially transparent, for example:

[rec(x := ?choose I 1) in (x & x)] = [true]
[choose I | & choose I ]| = [[true]

It is an open problem to find a model for such an operator, which is referentially
transparent, but which may have side-effects.
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application I'(x), 18
closing C[-], 14
local vx. T, 56
logical ', 18
semantics [I'], 18
syntactic C[-], 14
w-continuous, 24
convergent reduction strategy, 60
correct model, 1

D, 16

Dr, 53

Dec, 38

declaration, 38
V-less, 58

abstract 0[D], 58
concatenation D, E, 38
empty €, 38
equivalence D = E, 42
expressive Dr, 53
extension D C E, 55
local vX. D, 38

local vx. D, 38
recursive local D in E, 40
standard, 58
tagged node x := M, 38
untagged node x := ?M, 38
denotational
preorder D Cp E, 53
preorder M Cp N, 17, 53
semantics [D]), 52
semantics [M], 16, 52
semantics [[I'], 18
semantics @], 18
semantics [[p], 17
depth, 28
determined cocone, 25
directed, 28

embedding, 24
environment 2, 16

factored proposition, 30

filter, 26

Filt @, 26

fix, 53

fn, 16

fork, 16

fully abstract model, 1

functor, 23
diagonal A, 25
function space (—), 25
lifting (), 25

fvD, 39

fvM, 14

garbage collection D —y E, 64

I, 14

initial fixed point, 24
initial object, 23
isomorphism A ~ B, 24

J, 14

K, 14
ka, 27
kpa, 28

Lam, 38
A-calculus with rec, 38

A-calculus with P, 14

lift, 22

logical
context [, 18
interpretation ' |= M : @, 18
interpretation I' |= D : A, 55
preorder @< W, 19
preorder D Cg E, 56
preorder M Cg N, 20, 56
proof system ' = M : @, 19
proof system ' - D : A, 56
proof system ' - M : @, 56
semantics @], 18

My, 19
M, 14
monotone, 23

new, 52

operational
convergence D}, 51
convergence Dllf, 60
convergence D |, E, 51
convergence M|}, 15
convergence M |} N, 15
divergence My, 15
equivalence D = E, 42
interpretation ' |= M : @, 18
interpretation I |= D : A, 55
preorder D Cp E, 51
preorder M Cp N, 15, 51
semantics D — E, 45
semantics D — . E, 61
semantics D — E, 45
semantics D —y E, 64
semantics D ——, E, 74
semantics D — . E, 61
semantics D —, E, 73
semantics M — N, 15

pointed, 23

poset, 22
0,22
1,22
2,22
w, 22
w+ 1,22
algebraic, 27
bottom L, 16
w-chain, 24
complete lattice, 27
w-continuous, 24

w-cpo, 24
directed, 28
joinaVvb, 16
join VC, 24
least fixed point, 24
meetaAb, 16
prime algebraic, 28
top T, 16

POSET, 23

preorder, 22
denotational D Cp E, 53

denotational M Cp N, 17, 53

extension D C E, 55
logical < Y, 19
logical D Cg E, 56
logical M Cg N, 20, 56
operational D Cp E, 51

operational M Cp N, 15, 51

simulation D - x ~ y, 89

spine D+ x <y, 74

tagging D <y E, 64
prime algebraic, 28
prime element, 28
prime proposition, 30
program, 14
proposition

D, 18

y, 17

w, 18

o—y, 18

PAY, 18

read, 16

reduction strategy, 60
renaming M([p], 39
rvD, 39

semantics
denotational [D], 52
denotational [M], 16, 52
denotational [I'], 18
denotational [@], 18
denotational p], 17
operational D — E, 45
operational D — . E, 61
operational D — E, 45
operational D —y E, 64
operational D —- E, 74
operational D — . E, 61
operational D — E, 73
operational M — N, 15

set, 53



SET, 22
simulation, 89
simulation, v-less, 88
small category, 22
split, 16
standard declaration, 58
step function a+— b, 18
structural equivalence D = E, 42
substitution M[p], 14
syntax

Dec, 38

Lam, 38

Np, 14

o, 18

tagD, 90

tag, D, 51

tagged declaration, 89

tagged variable, 76

term
abstraction Ax. M, 14, 38
application MN, 14
application x@y, 38
arrow A, 14
black hole U, 38
constant K, 14
diagonal A, 14
divergent Q, 14
expressive Mg, 19
fixed point Y M, 14
fork P MN, 14
fork xVvy, 38
identity I, 14
indirection [x, 38
join J, 14
meet M, 14
ogre Y, 14
recursion rec D in M, 38
strict abstraction A¥x. M, 14
variable x, 14

uniformity, 94

untagged declaration, 89
untagged variable, 76
update, 16

V, 14

weak head normal form (whnf), 14, 51
well-formed expression, 38

wvD, 38

wvl, 18

wv f, 94
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