
A fully abstract semantics

for concurrent graph reduction

ALAN JEFFREY

ABSTRACT. This paper presents a fully abstract semantics for a variant of the untyped λ-calculus
with recursive declarations. We first present a summary of existing work on full abstraction for the un-

typed λ-calculus, concentrating on ABRAMSKY and ONG’s work on the lazy λ-calculus. ABRAMSKY

and ONG’s work is based on leftmost outermost reduction without sharing. This is notably inefficient,
and many implementations model sharing by reducing syntax graphs rather than syntax trees. Here
we present a concurrent graph reduction algorithm for the λ-calculus with recursive declarations, in a
style similar to BERRY and BOUDOL’s Chemical Abstract Machine. We adapt ABRAMSKY and ONG’s
techniques, and present a program logic and denotational semantics for the λ-calculus with recursive
declarations, and show that the three semantics are equivalent.

Contents

1 Introduction 1

1.1 Full abstraction : 1
1.2 Concurrent graph reduction : 4
1.3 Full abstraction and graph reduction : 9

2 Tree reduction 13

2.1 The λ-calculus with P : 13
2.2 Operational semantics : 14
2.3 Denotational semantics : 15
2.4 Program logic : 17
2.5 Categorical presentation of D : 20
2.6 Logical presentation of D : 26

2.7 Full abstraction : 32

3 Graph reduction 36

3.1 The λ-calculus with recursive declarations : 36
3.2 Operational semantics : 41
3.3 Denotational semantics : 52
3.4 Program logic : 53
3.5 Operational properties: structural equivalence : : : : : : : : : : : : : : : : : : : 57

3.6 Operational properties: confluence : 59
3.7 Operational properties: independence from tagging : : : : : : : : : : : : : : : : 72
3.8 Operational properties: referential transparency : : : : : : : : : : : : : : : : : : 88
3.9 Denotational properties : 93
3.10 Logical properites : 101
3.11 Full abstraction : 108

4 Conclusions 117

4.1 Related work : 117
4.2 Future work : 122

Index of authors 128

Index of definitions 129

A fully abstract semantics for concurrent graph reduction

Alan Jeffrey

School of Cognitive and Computing Sciences
University of Sussex
Falmer
Brighton

BN1 9QH
UK

alanje@cogs.susx.ac.uk

Computer Science Report 12/93

Thanks to Lennart Augustsson, Matthew Hennessy, Mark Jones,
John Launchbury, Edmund Robinson and Allen Stoughton
for many useful comments.

When used as the name of a programming language,
Miranda is a trademark of Research Software Limited

Copyright c

 1993–1994 Alan Jeffrey

This work has been funded by SERC project GR/H 16537.

ii

1 Introduction

This paper is about the relationship between two fields of computer science: full

abstraction, and concurrent graph reduction. Full abstraction is the study of relat-

ing denotational and operational semantics. Concurrent graph reduction is an ef-

ficient parallel implementation technique for non-strict functional programming
languages.

In this paper we apply the techniques of ABRAMSKY (1989) and ONG (1988)

to present a fully abstract denotational semantics for the concurrent graph reduc-
tion algorithm given in PEYTON JONES’s textbook (1987).

In doing so, we use methods from full abstraction, compiler implementation,

and concurrency theory.

1.1 Full abstraction

Full abstraction, originally defined by MILNER (1977), explores the relationship
between an operational semantics of programming languages and its models. The

operational view of a programming language is given by:

� A set of syntactic terms T , and a subset of terms called programs. The pro-
grams are then given an operational semantics.

� A set of tests together with an operational definition of when a term passes a

test. This induces the testing preorder on terms t vO u iff every test t passes
is passed by u.

A model of such an operational view is:

� A partially ordered set (D;�).

� A function [[�]] : T !D. This induces the denotational preorder on terms
t vD u iff [[t]]� [[u]].

We can then characterize such models:

� D is correct iff t vO u implies t vD u.

� D is complete iff t vD u implies t vO u.

� D is fully abstract iff it is correct and complete.

For example:

� In PLOTKIN’s (1977) analysis of the typed functional language of Program-

ming Computable Functions (PCF):

� A term is a PCF term, and a program is a closed term. The operational
semantics is given as a reductions t! u between programs.

� A test is a closing context C[�] of type Bool or Int, together with a constant

v. A term t passes C[�] iff C[t] evaluates to v.

This is then given a denotational semantics in terms of complete partial orders

and continuous functions. PLOTKIN showed that this denotational semantics
is correct but not complete, and showed that this denotational semantics is

comlete for an extension of PCF with a ‘parallel conditional’ term pcond of

type Bool! Int! Int! Int with the semantics:

[[pcondtuv]]σ =

8
<

:

[[u]]σ if [[t]]σ = 0 or [[u]]σ = [[v]]σ

[[v]]σ if [[t]]σ = 1 or [[u]]σ = [[v]]σ

? otherwise

If such a term is added to PCF (and given an appropriate operational seman-

tics) then the semantics is complete.

� In DE NICOLA’s (1985) analysis of HOARE’s (1985) Communicating Sequen-

tial Processes (CSP):

� A term is a CSP process, and a program is a closed process. The opera-
tional semantics is given as a labelled transition system between programs

P
a

�! Q, in the style of MILNER (1989).

� A test is a closed substitution ρ, a program T , and a special action ω.

A process P passes (ρ;T;ω) iff every maximal computation of P[ρ] k T

passes through a state P0 k T 0 where T 0 can perform ω. This is HEN-

NESSY’s (1988) must-testing equivalence.

This is then given a denotational semantics in a variant of BROOKES, HOARE

and ROSCOE’s (1984) failures–divergences model. DE NICOLA showed that

this denotational semantics is fully abstract.

� In ABRAMSKY (1989) and ONG’s (1988) analysis of the untyped λ-calculus:

� A term is an untyped λ-calculus term, and a program is a closed term. The
operational semantics is given as leftmost-outermost reduction between

programs M! N.

� A test is a closing context C[�]. A term M passes C[�] iff C[M] evaluates to

weak head normal form, that is a λ-term λw:N.

This is then given a denotational semantics in terms of complete partial or-
ders and continuous functions. ABRAMSKY and ONG showed that this de-

notational semantics is correct but not complete, and that the completeness

problem can again be reduced to definability, in that there is no untyped λ-
calculus ‘parallel convergence test’ term P with the semantics:

[[Pxyz]]σ =

�

? if [[x]]σ = [[y]]σ =?

[[z]]σ otherwise

2

and that if such a term is added (and given an appropriate operational seman-

tics) then the semantics is complete.

This paper is based on ABRAMSKY and ONG’s work, which is surveyed in Chap-

ter 2. The rest of this section will summarize that Chapter.
Given an infinite set V , ranged over by x, y and z, the untyped λ-calculus with

P (Λ

P

) is defined:

M ::= x jMM j λx :M j PMN

This can be given an operational semantics M ! N with leftmost-outermost re-

duction, that is reduction is allowed on the left of an application, but not on the
right, or inside a λ. We then define M+ iff M reduces to weak head normal form

(whnf), that is M!� λx :N. Our notion of test is then a closing context C[�], and

M passes C[�] iff C[M]+. This induces the testing preorder:

M vO N iff C[M]+ implies C[N]+ for any closing C

This preorder is based on MORRIS’s (1968) extensional preorder, but is based on
leftmost-outermost reduction to whnf rather than full reduction to normal form,

which was studied by BARENDREGT (1984).

The denotational semantics for Λ

P

is given in the initial domain isomorphic
to its own lifted continuous function space:

D' (D!D)

?

We can then give a semantics [[M]]σ in D, where σ : V !D is an environment

assigning a meaning to any free variables in M. This induces the denotational
preorder:

M vD N iff [[M]]� [[N]]

To link the operational and denotational semantics, we present a third semantics,

which can be used as a ‘stepping stone’. This is in the form of a program logic,

with the language of propositions (or COPPO types (BARANDREGT et al., 1983))

Φ defined:

φ ::= ω j φ^φ j φ!φ

We can give an operational characterization of when a closed term satisfies a
proposition j= M : φ, similar to the operational characterization of HENNESSY–

MILNER (1980) logic:

� j= M : ω for any M.

� j= M : φ^ψ iff j= M : φ and j= N : ψ.

� j= M : φ!ψ iff M+ and 8N : (j= N : φ)) (j= MN : ψ).

For example, if Ω is a term which never reaches whnf then:

� Ω satisfies ω

3

� λx :Ω satisfies ω!ω.

� λx : x satisfies every φ!φ.

� λxy : x satisfies every φ! (ω!φ).

This can be generalized to open terms by defining a context Γ to be a list of the
form x1 : φ1; : : :;xn : φn for distinct xi. Then:

� x1 : φ1; : : :;xn : φn j=M : φ iff j=M[M1=x1; : : :;Mn=xn] : φ whenever j=Mi : φi.

We can give two other characterizations of the logic:

� A denotational semantics [[�]] : Φ!D.

� A proof system Γ `M : φ.

We can then show that the problem of full abstraction is one of showing that the

three presentations of the logic agree, that is:

Γ j= M : φ iff Γ `M : φ iff [[φ]]� [[M]][[Γ]]

To prove this, we show that the program logic characterizes the compact elements

of D, so a is compact iff 9φ : [[φ]] = a. From this we can show:

Γ `M : φ iff [[φ]]� [[M]][[Γ]]

We can then use some operational reasoning to show:

Γ `M : φ implies Γ j= M : φ implies [[φ]]� [[M]][[Γ]]

The presentation in Chapter 2 follows ABRAMSKY and ONG quite closely, al-

though the proofs are self-contained. The main differences are:

� We concentrate on the ‘small step’ operational semantics M! N rather than

the ‘big step’ semantics M+, since this agrees with our treatment of graph
reduction in Chapter 3.

� We make no use of applicative bisimulation.

� The proofs are more concrete, and do not use all of the abstract machinery of

ABRAMSKY’s (1991) domain theory in logical form. The interested reader is
highly encouraged to read that paper for less ad hoc proofs.

We shall follow the same outline in Chapter 3 when we prove full abstraction for

concurrent graph reduction.

1.2 Concurrent graph reduction

Graph reduction is an efficient implementation technique for non-strict functional
programming languages, such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN’s

(1982) Ponder, JONES’s (1992) Gofer, TURNER’s (1985) Miranda, and Haskell

(HUDAK et al., 1992).

4

It was developed by WADSWORTH (1971) as an implementation of leftmost-

outermost reduction. He observed that leftmost-outermost reduction can take ex-

ponential time to evaluate an expression, due to loss of sharing information. For
example, if we define:

I= λx : x ∆ = λx : xx M0N = N Mn+1N = M(MnN)

Then the evaluation of ∆n+1

I!

�

I is:

∆n+1

I! (∆n

I)(∆n

I)!

2n

�2

I(∆n

I)! ∆n

I!

2n

�2

I

Thus, ∆n

I takes 2n

� 2 reductions to terminate. This exponential blow-up is
caused by copying ∆n

I in the reduction ∆n+1

I! (∆n

I)(∆n

I), and can clearly be

seen if we draw the syntax trees for this reduction, where ‘@’ denotes function

application:

∆ ∆n

I

@

�

��

�

��

@

@R

�

�	

?

q

q

q

q

q

�

��

!

∆n

I∆n

I

@

�

��

�

��

@

@R

�

�	

?

q

q

q

q

q

�

��

!

2n

�2

I

∆n

I

@

�

��

�

��

@

@R

�

�	

?

q

q

q

q

q

�

��

! ∆n

I

?
q

�

��

!

2n

�2

I

?
q

�

��

This inefficiency is caused by the implementation of β-reduction with substitu-

tion. When we reduce (λw:M)N !M[N=w], we make a separate copy of N for
each occurrence of w in M, and each copy then has to be reduced separately. We

can remove this inefficiency if, rather than copying terms, we copy pointers to

terms, that is we reduce syntax graphs rather than syntax trees. For example, the
graph reduction of ∆n+1

I is, where ‘∇’ denotes a pointer or indirection node:

∆n+1

I

q
?

�

�
	

!

∆ ∆n

I

@

�

��

�

��

@

@R

�

�	

?

q

q

q

q

q

�

��

(Graph building)

!

H

Hj

�

��

q

q

q

q

q

?

@

@R

�

��

�

��

@

∆n

I∆

(@-updating)

!

5n

I

H

Hj

�

��

q

q

q

q

q

?

@

@R

�

��

@

∆

�

��

(Induction)

5

!

∇

I

q

q

q

q

?

@

@R

�

��

∆

�

��

�

��

(@-updating)

!

I

I

q

q

q

?

�

��

∆

�

��

�

��

(∇-updating)

!

I

?
q

�

�� (Garbage collection)

These steps are:

� Graph building, where we expand the definition of ∆n+1

I and turn it into a

graph.

� Application updating, (or β-reduction) where we apply the function ∆.

� By induction, we evaluate ∆n

I to I in 5n steps.

� Application updating, where we apply the function I to produce an indirection

node.

� Indirection updating, since the indirection node points to a node already in

whnf, we can copy it.

� Garbage collection, where we remove any unwanted nodes.

Since each step of a graph reduction involves a small number of nodes in the

graph, there is a fine grain of granularity and thus much scope for concurrency.

In our simplified view of concurrent graph reduction, we will add a flag to each
node of the graph indicating whether it is currently under evaluation. Thus each

node is either of the form:

� !M representing a tagged node which is being evaluated.
� ?M representing an untagged node which is not.

For example, the reduction of ∆n+1

I carried out by one processor is:

!∆n+1

I

q
?

�

�
	

!

?∆n

I!∆

!@

q

q

q

q

q

?

�

�	

@

@R

�

��
�

��

�

��

(Graph building)

6

!

H

H

Hj

?∆n

I!∆

!@

q

q

q

q

q

?

@

@R

�

��
�

��

�

��

(@-updating)

!

!∆n

I

H

H

Hj

!∆

!@

q

q

q

q

q

?

@

@R

�

��
�

��

�

��

(Spine traversal)

!

6n

! I

H

H

Hj

!∆

!@

q

q

q

q

q

?

@

@R

�

��
�

��

�

��

(Induction)

!

! I!∆

q

q

q

q

?

@

@R

�

��
�

��

�

��

!∇
(@-updating)

!

! I

! I!∆

q

q

q

?

�

��

�

��
�

��

(∇-updating)

!

! I
q
?

�

�� (Garbage collection)

The new reduction is:

� Spine traversal, where we tag an untagged node that is needed.

We now have a number of possible graphs for each λ-calculus term, depending on
which nodes we wish to tag. There are (at least) two approaches to determining

how many nodes should be tagged:

� Sequential reduction is achieved by initially only tagging one node in the
graph, and not allowing graph building to introduce new tagged nodes. This

means that (apart from garbage collection) there will only be one reduction

possible at any one moment, and so we are using the tagging information only
to record the spine stack of the graph (PEYTON JONES, 1987, Ch. 11).

� Concurrent reduction is achieved by initially tagging a number of nodes in the

graph. These nodes can then be evaluated concurrently, and so we are using
the tagging information to record the blocking information of the graph (PEY-

TON JONES, 1987, Ch. 24).

7

If we decide to use concurrent reduction, there are (at least) two approcahes to

determining which nodes should be tagged:

� Strictness analysis (PEYTON JONES, 1987, Ch. 22) is an automated way of

determining which nodes in a graph are guaranteed to be used. Any such node
can always be tagged. Strictness analysis is in general undecidable, so any

practical algorithm will fail to tag some nodes, but any nodes that are tagged

are guaranteed to be used.

� Program annotation (PEYTON JONES, 1987, Ch. 24) places the burden of de-

ciding which nodes to tag on the programmer. For example, this is the ap-

proach taken in Part 3 where we allow two forms of recursive declaration:

tagged recx := !M in N and untagged recx := ?M in N. This is obviously the
simplest approach for the compiler writer (and semanticist!) to take.

As well as acyclic graphs, we can allow cyclic graphs, which allow for more effi-

cient recursive programs. For example, rather than implement the fixed point of
M as YM, we could use the cyclic graph:

!∇

��
	

?
q

q

�

��

�

��

q

q

q

�

�	
q

!M

!@

�

��

However, this presents a semantic problem not present in the λ-calculus, since YI

diverges, whereas the cyclic fixed point deadlocks since:

! I
�

��

!@

q

�

�	

q

q

q

�

��

�

��

q
q
?

	

��

!∇

! !∇

! I
�

��

q

q

q

�

��

�

��

q
q
?

	

��

!∇

6!

Such terms are called black holes, and one design decision in a semantics is

whether or not to identify divergence and deadlock. Here, we will identify them,
although in the author’s (1993) semantics, they were distinguished.

Another semantic problem caused by concurrent graph reduction is that it is

8

not confluent (or Church–Rosser), since by spine traversal:

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

!∇

?
q

q

�

��q

�

��

?

?M

!

!M

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

!∇

?
q

q
q

�

��

?

�

��

and by garbage collection:

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

!∇

?
q

q

�

��q

�

��

?

?M

!

?M

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

q

?

�

��

but there is no graph G such that:

!M

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

!∇

?
q

q
q

�

��

?

�

��

!

� G �

?M

H

Hj

�

��

!@

q

q

q

�

��

q
q
?

��

!∇

q

?

�

��

This is unfortunate, since confluence is a very useful way of proving properties

of operational semanitcs. However, we shall see in Section 3.6 that there is a re-

duction strategy for concurrent graph reduction which is confluent.

1.3 Full abstraction and graph reduction

We have now seen:

� A well-developed theory of fully abstract semantics.

� A well-developed practice of concurrent graph reduction.

However, there has been little work on relating these. There have been a number

of proofs of correctness for graph reduction, which will be discussed further in

Chapter 4:

� WADSWORTH (1971) showed that graph reduction of a λ-calculus term con-
verges iff tree reduction converges. Since every tree context is a graph con-

text, this means that the testing model for graph reduction is correct for tree

reduction. However, not every graph context is a tree context, and so this does

9

not show that the testing model for graph reduction is fully abstract for tree

reduction.

� BARENDREGT et al. (1987) generalized WADSWORTH’s result to an arbitrary
graph rewriting system. There has since been much work on relating graph

reduction to tree reduction, for example the correctness results of KENNAWAY

et al. (1993a) and the other papers in SLEEP et al.’s (SLEEP et al., 1993) book.

� LESTER (1989) has shown that a denotational semantics for the typed λ-calcu-

lus is correct for the operational semantics of JOHNSSON’s (1984) G-machine

� LAUNCHBURY (1993) has shown that correct semantics for graph reduction
including black holes can be given in the semantic domain D' (D!D)

?

.

� PURUSHOTHAMAN and SEAMAN (1992) have shown that a denotational se-

mantics for PCF with sharing is correct for an operational semantics with ex-
plicit closures.

� The author (1993) has shown that a variant of the semantics given in Chapter 3

is correct for tree reduction.

However, there have been no proofs of full abstraction for concurrent graph re-

duction. In this paper, we will follow ABRAMSKY (1989) when he said:

Since current practice is well-motivated by efficiency considerations and

is unlikely to be abandoned readily, it makes sense to see if a good mod-

ified theory can be developed for it.

In Chapter 3 we present a formal treatment of concurrent graph reduction, based

on BERRY and BOUDOL’s (1990) Chemical Abstract Machine (CHAM). This se-

mantics includes:

� Tagged and untagged nodes.

� Garbage collection.

� Deadlocked graphs.

We also present a denotational semantics in D' (D!D)

?

in which:
� Whether a node is tagged or not is irrelevant.

� Garbage collection is semantically unimportant.

� Deadlock and divergence are identified.

We will then apply the techniques of Chapter 2 to show that this semantics is cor-

rect, and that by including parallel convergence nodes in the syntax, the semantics
is complete. In order to show this, we give a program logic and proof system sim-

ilar to ABRAMSKY and ONG’s, and use this as a bridge between the operational

semantics for graph reduction and the denotational semantics.
In order to carry out this proof, we have to show a number of subsidiary results

about concurrent graph reduction:

10

� Garbage collection is semantically unimportant, so a graph can converge iff

it can converge without garbage collecting. One would expect this to be true,

since garbage collection is introduced only because of memory limitations.

� Tagging is semantically unimportant, so a graph can converge irrespective of

whether its nodes are tagged or not. In particular, this means that concurrent

evaluation is semantically equivalent to sequential evaluation.

� Referential transparency, which means that it is semantically unimportant if

a graph contains a copy of a node, or a pointer to a node.

There are a number of applications for a fully abstract semantics:

VERIFYING COMPILER OPTIMIZATIONS. A number of compilers of non-strict

functional languages, notably JOHNSSON’s (1984) Lazy ML compiler for the G-

machine, make use of optimizations. Many optimizers, notably peephole opti-

mizers (PEYTON JONES, 1987, Ch. 20) replace one small term with another se-

mantically equivalent, but more efficient term. If a semantics is correct, then we

know that any such optimization will have the same operational behaviour in all
contexts.

Unfortunately, if the semantics is not complete, then there may be valid op-

timizations that are not semantically equivalent, and there is a temptation for the
compiler writer to use ad-hoc reasoning to justify a semantically invalid optimiza-

tion, on the grounds that the semantics is too fine. If the semantics is fully ab-

stract, then such reasoning is invalid, since we can always find a context which
will distinguish inequivalent terms.

ANALYZING OTHER MODELS. Given a correct model, we know that any finer

model must also be correct. For example, we might extend a denotational model
to include sharing or strictness analysis, and we know that the resulting model

will still be correct.

Similarly, given a complete model, we know that any coarser model must also
be complete. For example, MYCROFT’s (1981) abstract interpretation for strict-

ness analysis is a coarser model than the standard denotational model. Thus if the

standard model is complete, then we know that the abstract interpretation is also

complete, without having to perform any operational reasoning.

PRODUCING DISTINGUISHING FORMULAE. If a denotational semantics has an

equivalent program logic, we can use it to produce distinguishing formulae. That

is, given two denotationally distinct terms, we can find a logical formula which
one satisfies and the other does not.

Such distinguishing formulae can be used in proof tools to provide a form of

debugging: if the tool proves that two terms are different, it can report this to the
user along with a distinguishing formula which shows why the terms are differ-

ent. This information is invaluable when using a proof tool as part of the design

11

process, rather than as post hoc verification. Distinguishing formulae have been

used in process algebra tools such as the Concurrency WorkBench (CLEAVE-

LAND et al., 1989) and TAV (LARSEN et al., 1989).

12

2 Tree reduction

This Chapter presents a summary of existing work on fully abstract models

for leftmost-outermost reduction of the untyped λ-calculus. It concentrates on
ABRAMSKY (1989) and ONG’s (1988) work on the lazy λ-calculus, but also

includes material from ABRAMSKY (1991), BARENDREGT (1984), BARAN-

DREGTet al. (1983) BOUDOL (1992), PIERCE (1991) and PLOTKIN (1983).

2.1 The λ-calculus with P

In this Chapter, we will discuss the theory developed by ABRAMSKY and ONG,

based on leftmost-outermost reduction. This is the semantic basis of the non-

strict functional languages such as AUGUSTSSON’s (1984) Lazy ML, FAIRBURN’s
(1982) Ponder, JONES’s (1992) Gofer, TURNER’s (1985) Miranda, and Haskell

(HUDAK et al., 1992).

In the untyped λ-calculus, all expressions are functions, and these functions

take functions as inputs, and return other functions. We can regard this as a pure
theory of computation, abstracted away from considerations of data.

The untyped λ-calculus has three forms of expression:

� A free variable x.

� An application MN.

� An abstraction λx :M.

Such terms are sequential and the only form of computation is β-reduction, where

an abstraction is applied (λx :M)N ! M[N=x]. Following PLOTKIN (1977) we

would expect that finding a fully abstract semantics will be much simpler if we
add some form of parallel computation. There are a number of possible paral-

lel combinators one can add: PLOTKIN used ‘parallel conditional’, ABRAMSKY

and ONG used ‘parallel convergence’, and BOUDOL (1992) used ‘parallel join’.
We will follow ABRAMSKY and ONG, and extend the λ-calculus to the λ-calculus

with P, and add:

� A parallel convergence test PMN.

We will show below that we can implement BOUDOL’s (1992) parallel join using

P. Such a test will converge to the identity function iff either of its arguments
converges. Such a test is similar to AUGUSTSSON’s (1989) oracular choice ex-

cept that AUGUSTSSON’s choice returns a flag indicating which of its arguments

terminated, thus introducing nondeterminism. We would like to preserve deter-
minism (reflected by confluence, discussed in Section 3.6) and so we will use the

weaker ‘parallel convergence’ test. In summary:

DEFINITION. Let V be an infinite set of variables ranged over by x, y and z. Then

Λ

P

is defined:

M ::= x jMM j λx :M j PMM

� M is in weak head normal form (whnf) iff M = λx :N.

� Let fvM be the free variables of M.

� A closed term (or program) has fvM =

/0.

� A context C[�] is a syntactic term with a number of ‘holes’ represented by �.

C[M] is C[�] with each hole filled by M. C[�] is closing for M if C[M] is closed.

� A substitution is a function ρ : V!Λ

P

which is almost everywhere the iden-
tity. Let (M1 : : :Mn=x1 : : :xn) be the substitution ρ such that ρx = Mi if x = xi

and ρx = x otherwise.

� Let M[ρ] be M with any free variable x replaced by ρx, with appropriate α-
conversion to avoid capture of free variables. 2

EXAMPLES.

� I= λx : x is the identity combinator.

� K= λx :λy : x is the constant combinator.

� YM = (λx :M(xx))(λx :M(xx)) is the fixed point of M.

� ∆ = λx : xx is the diagonal combinator.

� Ω = ∆∆ is the divergent combinator which never converges.

� ϒ = (λx :λy:xx)(λx :λy:xx) is the ogre combinator which always converges.

� λvx :M = λx :PxxM is a strict(or call-by-value) abstraction.

� J= Y(λx :λy :λz : (Pyz(λw: x(yw)(zw)))) is the join combinator.

� M= Y(λx :λvy :λvz :λw: x(yw)(zw)) is the meet combinator.

� A= λx :λy :λvz : y(zx) is the arrow combinator. 2

2.2 Operational semantics

Computation in the untyped λ-calculus is represented by β-reductions of the form

(λx :M)N ! M[N=x], and the various operational semantics for the untyped λ-
calculus differ only in where β-reduction can take place. In the standard theory

presented by BARENDREGT (1984), β-reduction can take place anywhere in a

term, whereas in ABRAMSKY and ONG’s theory, reduction can only take place
on the left of an application, and outside an abstraction. For example, I I! I, and

I IM! IM, but M(I I) 6!MI and λx : (I I) 6! λx : I.

The operational semantics for the λ-calculus with P is that of the untyped λ-
calculus, with the addition that PMN! I iff M or N is in whnf, and that reduction

is allowed inside either argument of P. This allows for interleaved concurrency,

14

since if M!M0 and N! N 0 then:

PMN ! PM0N

#

PMN 0

! PM0N 0

From this operational semantics, we can define the may testing preorder where a

test is a closing context C[�] and M passes C[�] iff C[M] converges. In summary:

DEFINITION. ! is given by axioms:

(β) (λx :M)N ! M[N=x]

(Pa) P(λx :M)N ! I

(Pb) PM(λx :N)! I

and structural rules:

(@l)

M!M0

MN!M0N

(Pl)

M!M0

PMN! PM0N

(Pr)

N! N 0

PMN! PMN 0

� M + N iff M!� N and N is in whnf.

� M+ iff 9N :M + N.

� M* iff :9N :M + N.

� M vO N iff C[M]+)C[N]+ for any closing context C. 2

EXAMPLES.

� IM!M.

� KMN!2 M.

� YM!M(YM).

� ∆M!MM.

� Ω!Ω, so Ω*.

� ϒ! λx :ϒ, so ϒ+ and ϒM!2 ϒ.

� If N+ then (λvx :M)N!� M[N=x]. Otherwise (λvx :M)N*.

� If M+ or N+ then JMN+ and JMNO!�

J(MO)(NO).

� If M* and N* then JMN*.

� If M+ and N+ then MMN+ and MMNO!�

M(MO)(NO).

� If M* or N* then MMN*.

� If O+ then AMNO!� M(ON). Otherwise AMNO*. 2

2.3 Denotational semantics

The denotational semantics for Λ

P

is given in the domain D that is isomorphic
to its own lifted continuous function space. Thus, any element of D is either ?
(representing a divergent term such as Ω) or a continuous function from D to D

(representing a convergent term such as λx :M). This semantics identifies all di-
vergent terms, and distinguishes divergent and convergent terms. In particular, Ω
and λx :Ω are distinguished, since the former diverges whilst the latter converges.

15

DEFINITION. D is the initial solution of:

D' (D!D)

?

where if X and Y are ω-cpos:

� X

?

is X with a new bottom element.

� X!Y is the continuous function space from X to Y .

This definition will be clarified in Section 2.5. Let the ω-continuous functions

unfold : D! (D!D)

?

and fold : (D!D)

?

!D form this isomorphism. 2

In Proposition 5 we shall show that D is a complete lattice and so every set of

elements A � D has a join or least upper bound

W

A. In particular, this means
that:

� There is a top element >=

W

D.

� There is a bottom element? =

W

/0.

� Every pair of elements has a join a_b =

W

fa;bg.

� Every pair of elements has a meet a^b =

W

fc j a� c � bg.

We can then define the denotational semantics of a term M to be [[M]]σ, where
σ : V!D is an environment used to bind any free variables in M. For example,

[[x]]σ = σx

DEFINITION. Let Σ =V!D. Then define [[M]] in Σ!D as:
[[x]] = readx

[[MN]] = split(apply �[[M]])[[N]]

[[λx :M]] = fold� lift� fnx[[M]]

[[PMN]] = split(fork�[[M]])[[N]]

where:

readxσ = σx

split f gσ = f σ(gσ)

fnx f σ = f �updateσx

forkab =

�

? if a = b = ?

fold(lift id) otherwise

applyab =

�

f b if unfolda = lift f

? otherwise

updateσxay =

�

a if x = y

σy otherwise

Define [[ρ]] in Σ!Σ as:

[[ρ]]σx = [[ρx]]σ

16

Then M vD N iff [[M]]� [[N]]. 2

We have presented this semantics using higher-order functions such as split and

apply, since this makes the denotational reasoning in Section 3.9 simpler. Ex-

panding out the definition, we have a semantics which may be more familiar:

[[x]]σ = σx

[[MN]]σ = apply([[M]]σ)([[N]]σ)

[[λx :M]]σ = fold(lift(fnx[[M]]σ))

[[PMN]]σ = fork([[M]]σ)([[N]]σ)

EXAMPLES.

� [[IM]] = [[M]].

� [[KMN]] = [[M]].

� [[YM]]σ is the least solution of a = apply([[M]]σ)a.

� [[Ω]] =?.

� [[ϒ]] =>.

� [[(λvx :M)N]]σ is ? if [[N]]σ =?, and [[(λx :M)N]]σ otherwise.

� [[JMN]] = [[M]]_ [[N]].

� [[MMN]] = [[M]]^ [[N]].

� [[AMNO]]σ is ? if [[O]]σ = ?, and [[N(OM)]]σ otherwise. 2

PROPOSITION 1. [[M[ρ]]] = [[M]]� [[ρ]]

PROOF. An induction on M. 2

2.4 Program logic

In order to show that D is fully abstract, we need to find a link between the deno-

tational and operational semantics. We will use a program logic Φ, with propo-
sitions:

� ω, which is satisfied by any closed term.

� φ^ψ, which is satisfied by any term that satisfies φ and ψ.

� φ!ψ, which is satisfied by any term that converges, and that when applied
to any term satisfying φ the result satisfies ψ.

For example, a closed term satisfies γ = ω!ω iff it converges. The definition

of ‘satisfaction’ can be generalized to open terms by saying that M satisfies φ in
the context (x1 : φ1; : : :;xn : φn) iff M satisfies φ whenever xi is bound to a term

satisfying φi.

DEFINITION. Φ is defined as:

φ ::= ω j φ^φ j φ!φ

17

For closed terms M, j= M : φ is defined by axiom:

(ωi) j= M : ω

and structural rules:

(^i)

j= M : φ j= M : ψ

j= M : φ^ψ (!i)

M+ 8N : j= N : φ) j= MN : ψ

j= M : φ!ψ

A context Γ is a list x1 : φ1; : : :;xn : φn with distinct xi.

� Let wv(x1 : φ1; : : :;xn : φn) = fx1; : : :;xng.

� Let (Γ;x : φ;∆)(x) = φ, and Γ(x) = ω when x 62 wvΓ.

� Let j= ρ : Γ iff 8x : j= ρ(x) : Γ(x).

Then Γ j= M : φ iff 8ρ : (j= ρ : Γ)) (j= M[ρ] : φ). 2

In addition to the operational interpretation of Φ, we can provide a denotational

interpretation, by giving a semantics [[φ]] in D for each proposition φ.

� The semantics of ω is ?.

� The semantics of φ^ψ is the join of φ and ψ.

� The semantics of φ!ψ is a function which returns ψ whenever it is applied

to an element that satisfies φ.

For example, [[γ]] = [[KΩ]] = ? 7! ?. Note that this relied on any a and b from
D having a join a_b. This will be shown in Section 2.5.

DEFINITION. [[φ]] in D is defined:

[[ω]] = ?

[[φ^ψ]] = [[φ]]_ [[ψ]]

[[φ!ψ]] = [[φ]] 7! [[ψ]]

where (for ω-compact a and b, defined in Section 2.6):

(a) b)c =

�

b if a� c

? otherwise

a 7!b = fold(lift(a) b))

The environment [[Γ]] is defined as [[Γ]]x = [[Γ(x)]]. 2

For each proposition φ, we can also define a term Mφ with the same denotational
semantics as φ. This is the core of the expressiveness result that allows us to show

that D is fully abstract for Λ

P

. Note that we use the P combinator in defining Mφ,

and so this proof of full abstraction relies on the existence of P.

DEFINITION. Define Mφ as:

Mω = Ω

18

Mφ^ψ = JMφMψ

Mω!χ = KMχ

M

(φ^ψ)!χ = MMφ!χMψ!χ

M

(φ!ψ)!χ = AMφMψ!χ

We can show by induction on φ that [[Mφ]]σ = [[φ]]. 2

A third interpretation of Φ is as a proof system for propositions Γ `M : φ. This
is first given as a preorder ` φ � ψ, which characterizes when ψ is a refinement

of φ. In Section 2.6 we shall see that ` φ� ψ iff [[ψ]]� [[φ]].
DEFINITION. The preorder� is given by axioms:

(id) ` φ � φ

(ωi) ` φ � ω

(^ea) ` φ^ψ � φ

(^eb) ` φ^ψ � ψ

(!ω) ` φ!ω � ω!ω

(!^) ` (φ!ψ)^ (φ!χ) � φ! (ψ^χ)

and structural rules:

(trans)

` φ� ψ � χ

` φ� χ (^i)

` φ� ψ ` φ � χ

` φ � (ψ^χ)

(!�)

` φ0 � φ ` ψ � ψ0

` (φ!ψ) � (φ0!ψ0)

Let ` φ = ψ iff ` φ� ψ � φ and ` Γ� ∆ iff 8x : ` Γ(x) � ∆(x). 2

For example, we can show that^ is commutative, associative, idempotent and has

unit ω in the equivalence ` φ=ψ. The partial order ` φ�ψ is used in defining the
proof system Γ`M : φ, since all of the structural rules (such as CUT, WEAKENING

and CONTRACTION) can be given by one rule (�). The proof system induces a

preorder on terms given by M vS N iff N satisfies any property that M satisfies.

DEFINITION. The proof system Γ `M : φ is given by axioms:

(ωi) ` M : ω

(id) x : φ ` x : φ
and structural rules:

(^i)

Γ `M : φ Γ `M : ψ
Γ `M : (φ^ψ)

(�)

` Γ� ∆ ∆ `M : φ ` φ� ψ
Γ `M : ψ

(!e)

Γ `M : φ!ψ Γ ` N : φ
Γ `MN : ψ (!i)

Γ;x : φ `M : ψ
Γ ` λx :M : φ!ψ

(Pa)

Γ `M : γ
Γ ` PMN : φ!φ (Pb)

Γ ` N : γ
Γ ` PMN : φ!φ

19

Then M vS N iff Γ `M : φ) Γ ` N : ψ for all Γ and φ. 2

EXAMPLES.

� ` I : φ!φ.

� ` K : φ!ψ!φ.

� Γ ` YM : φ iff ` φ = ω or Γ `M : ψ!φ and Γ ` YM : ψ.

� ` Ω : ω.

� ` ϒ : φ.

� If Γ;x : φ `M : ψ then Γ ` λvx :M : (φ^ γ)!ψ.

� ` J : φ!ψ! (φ^ψ).

� `M : φ!φ!φ.

� ` A : φ! (ψ!χ)! (φ!ψ)!χ. 2

In Section 2.7 we show that the problem of full abstraction reduces to one of

showing that Γ `M : φ iff Γ j= M : φ iff [[φ]]� [[M]][[Γ]].

2.5 Categorical presentation of D

In Section 2.3 we asserted the existence of a domain D ' (D!D)

?

which we
used to give the denotational semantics for Λ

P

. In this section we shall justify this

assertion, by showing that such a domain must exist. This section is a summary of

PIERCE’s (1991) summary of PLOTKIN’s (1983) Pisa Notes, and can be omitted

by readers familiar with domain theory.
The reason why we need a domain isomorphic to its own function space is

because of terms likeYM which provide a means of defining recursive functions.

We said that the semantics of YM was:

[[YM]]σ is the least solution of a = apply([[M]]σ)a

To show that such a solution must exist, we present it as the limit of the sequence

a0 � a1 � �� �where:

a0 =? an+1 = apply([[M]]σ)an

That is:

an = (apply � [[M]]σ)n

?

However, we cannot always find a fixed point to a function f by defining a to be
the limit of the sequence f n

?. For example if we define the function odd on the

real interval [0;1] as:

oddx =

�

(1+ x)=4 if x < 1
2

(1+ x)=2 otherwise

then the sequence odd

n 0 is 0; 1
4

;

3
8

; : : : which has limit 1
2
, but this is not a fixed

point of odd since odd(1
2

) =

3
4
. In order to bar functions like this, we shall restrict

20

ourselves to ω-continuous functions, that is if:

a is the limit of a0 � a1 � �� �

then:

f a is the limit of f a0 � f a1 � �� �

For example, this bars the odd function since:

1
2

is the limit of 0� 1
4

�

3
8

� �� �

but:
3
4 is not the limit of 1

4 �

3
8 �

7
16 � �� �

We define the denotational semantics of Λ

P

in D' (D!D)

?

. To show that such
a D must exist, we present it as the limit of a sequence of finite domains D0;D1; : : :

where:

D0 = 1 Dn+1 = (Dn!Dn)
?

This can also be presented as the fixed point of a functor F between domains:

FDi = (Di!Di)
?

= Di+1

Then in order to show that D exists, we show that F is continuous. In order to do

this, we present:

� A notion of domain, such that the one-point domain 1 is a domain, and F is a
functor between domains.

� A notion of order between domains with least element 1 and where every

chain of domains has a limit.

� A notion of continuous functor between domains, such that F is continuous.

Following PLOTKIN (1983), we will use the category of ω-cpo’s with embeddings

as the appropriate notion of ordered domains. Since F is a continuous functor, it

must have a least fixed point, which we will use as our definition of D.

The rest of this section will present the technical details of this construction.
We shall begin with a short reminder of some simple category theory. Interested

readers should consult MAC LANE’s (1971) or PIERCE’s (1991) textbooks.

DEFINITION. A category c is:

� a class of objects objc.

� a class of arrows arrc.

� a domain object dom f for each arrow f .

� a codomain object cod f for each arrow f .

� an identity arrow idA for each object A.

� a composite arrow f �g whenever dom f = codg.

such that:

21

� cod(idA) = dom(idA) = A.

� cod(f �g) = cod f and dom(f �g) = domg.

� � is associative with unit id.

We shall write:

� A in c iff A is an object in c.

� f : dom f! cod f in c iff f is an arrow in c.

A category is small if objc and arrc are sets. 2

EXAMPLES. set is the category where:

� objects are sets.

� arrows are functions.

A preorder is a small category where:

� objects are members of the preorder.

� for any objects A and B there is at most one arrow f : A! B, and we write
A� B for 9 f : A!B.

A poset is a preorder where if f �g = id then f = g = id.

� 0 is the poset with no objects.

� 1 is the poset with one object 0.

� 2 is the poset with two objects 0 < 1.

� ω is the poset with objects 0 < 1 < � � �

� ω+1 is the poset with objects 0 < 1 < � � �< ω.

If c is a category then c
?

is the category with:

� objects? and liftA for each A in c.

� arrows !A : ?!A and lift f : liftA! liftB for each f : A!B in c.

If c and d are categories then c�d is the category with:

� objects (A;B) for each A in c and B in d.
� arrows (f ;g) : (A;B)! (A0;B0) for each f : A!A0 in c and g : B!B0 in d.

In each case, the domain, codomain, identity and composition should be evi-

dent. 2

DEFINITION. A functor F : c!d has:

� an object FA in d for each A in c.

� an arrow F f : FA!FB in d for each f : A!B in c.

such that:

� F(idA) = idFA.

� F(f �g) = F f �Fg. 2

22

EXAMPLES. lift : c!c

?

is a functor since we have:

� an object liftA in c

?

for each A in c.

� an arrow lift f : liftA! liftB for each f : A!B in c.

If F : c!d is a functor then F

?

: c
?

!d

?

is the functor with:

� objects F

?

?=? and F

?

(liftA) = lift(FA) .

� arrows F

?

(!A) = !(FA) and F

?

(lift f) = lift(F f).

If c and d are posets, then F : c!d is a functor iff F is a monotone function.
Let POSET be the category with:

� objects are posets.

� arrows are monotone functions.

In each case the identity and composition properties should be evident. 2

DEFINITION. ? is the initial object of c iff there is a unique arrow !A : ?!A

for every object A in c. 2

EXAMPLES. Many of these categorical definitions have poset equivalents:

�

/0 is the initial object of set.

� 0 is the initial object of poset.

� The initial object of a poset is its least element.

� A poset has an initial object iff it is pointed.

� The initial object of c
?

is?. 2

DEFINITION.

� An ω-chain in c is a set of objects fAi in c j i in ωg and a set of arrows

f f
j

i : Ai!A j in c j i� j in ωg such that f k
j � f

j
i = f k

i .

� A cocone of such an ω-chain is an object A in c and a set of arrows of the form

f fi : Ai!A in c j i in ωg such that f j � f
j

i = fi.

� The colimit of such an ω-chain is a cocone f fi : Ai!A in c j i in ωg such that

for any other cocone fgi : Ai!B in c j i in ωg there is a unique f : A!B in c

such that f � fi = gi.

� A category has all ω-colimits iff every ω-chain has a colimit.

� F : c! d preserves ω-colimits iff whenever f fi : Ai!Ag is the colimit of

f f
j

i : Ai!A jg then fF fi : FAi!FAg is the colimit of fF f
j

i : FAi!FA jg.

� A' B in c iff we can find f : A!B in c and g : B!A in c such that f �g = id

and g� f = id.

� A inc is the initial fixed point of F :c!c iff A'FA and for any other B'FB

there is a unique f : A!B. 2

EXAMPLES. Many of these categorical definitions have poset equivalents:

� An ω-chain is a set of elements fx0 � x1 � �� �g.

23

� A cocone of an ω-chain is an upper bound.

� The colimit of an ω-chain C is its join (or least upper bound)

W

C.

� A pointed poset has all ω-colimits iff it is an ω-cpo.

� A function preserves ω-colimits iff it is ω-continuous.

� x' y iff x� y � x, that is iff x = y.

� The initial fixed point of a function is its least fixed point.

For example, ω+1 is an ω-cpo, but ω is not, since the ω-chain f0� 1� 2� �� �g

has no least upper bound. Let ωcpo be the category with:

� ω-cpo’s as objects.

� ω-continuous functions as arrows. 2

PROPOSITION 2. If c has an initial object and all ω-colimits, then any functor

F : c!c which preserves ω-colimits has an initial fixed point.

PROOF. Let C be the ω-chain:

fF(j�i)
(!(F i

?)) : F i

?!F j

? j i� jg

An adaptation of the usual proof of TARSKI’s fixed point theorem shows that

the colimit of C is the initial fixed point of F. For a discussion of TARSKI’s
fixed point theorem, see a textbook such as (DAVEY and PRIESTLEY, 1990). See

also (LASSEZ et al., 1982) for a short discussion of the history of fixed point the-

orems. 2

This allows us to find the fixed point of any functor that preserves ω-colimits

of a category with an initial object. Unfortunately, ωcpo does not have an
initial object, and there is no obvious definition of a ‘function space’ functor

(!) : ωcpo2

!ωcpo. However (!) can be defined in the subcategory of ωcpo

where all the arrows are embeddings, so we shall use this as our category for solv-
ing domain equations:

DEFINITION. An embedding is an arrow e : A!B inωcpo such that we can find

eR : B!A in ωcpo with:

e� eR

� id eR

� e = id

Let ωcpoe be the category with:

� ω-cpo’s as objects.

� embeddings as arrows. 2

EXAMPLES. The identity function is an embedding, with:

id

R

= id

If e : A!B and f : B!C are embeddings, then f � e : A!C is the embedding

with:

(f � e)R

= eR

� f R

24

The arrow eR is uniquely defined, so if e : A!B in cpoe and f : B!A inωcpoe

then:

(e� f � id; f � e = id) implies eR

= f

()

?

: ωcpoe!ωcpoe is the lifting functor with:

� A

?

in ωcpoe for A in ωcpoe.

� e

?

: A

?

!B

?

in ωcpoe for e : A!B in ωcpoe.

∆ : ωcpoe!ωcpoe2 is the diagonal functor with:

� ∆A = (A;A) in ωcpoe2 for A in ωcpoe.

� ∆ f = (f ; f) : ∆A!∆B in ωcpoe2 for f : A!B in ωcpoe.

(!) : ωcpoe2

!ωcpoe is the ω-continuous function space functor with:

� (A!B) in ωcpoe for (A;B) in ωcpoe.

� (e! f) : (A!B)!(A0!B0) inωcpoe for (e; f) : (A;B)!(A0;B0) inωcpoe2.

where e! f is defined:

(e! f)g = f �g� eR

(e! f)Rg = e�g� f R

1 is the initial object in ωcpoe. 2

DEFINITION. A cocone fei : Ai! A in ωcpoe j i in ωg is determined iff

W

fei � eR
i j i in ωg = id. 2

PROPOSITION 3. Any determined cocone is a colimit.

PROOF. Let fei : Ai ! A j i in ωg be a determined cocone of an ω-chain

fe
j
i : Ai!A j j i� j inωg. Then for any other cocone f fi : Ai!B j i inωg, define

g : A!B as:

g =

W

f fi � eR
i j i in ωg

gR

=

W

fei � f R
i j i in ωg

Then we can show that g is the unique embedding such that g � ei = fi. Thus

fei : Ai!A j i in ωg is a colimit. 2

PROPOSITION 4. Any ω-chain in ωcpoe has a determined cocone.

PROOF. Let fe
j
i : Ai!A j j i � jg be an ω-chain. An instantiation of this chain

is a function f such that:

dom f = ω f i 2 Ai e
jR
i (f j) = f i

then define:

A = f f j f is an instantiationg

25

with the pointwise ordering. This is an ω-cpo, with join:

W

f fi j i in ωg j =
W

f fi j j i in ωg

Then define:

eia j =
�

e
j
i a if i� j

eiR
j a otherwise

eR
i f = f i

We can show that fei : Ai!A j i in ωg is a determined cocone. 2

DEFINITION. D is the determined colimit of the ω-chain:

D0 = 1

Di+1 = (Di!Di)
?

with ei : Di!D in ωcpoe given by Proposition 4. Then D is the initial fixed

point of the functor ()
?

� (!)�∆ given by Proposition 2. 2

2.6 Logical presentation of D

In Section 2.5, we gave an abstract presentation of D, using the category of ω-

cpo’s with embeddings. In this section, we provide a concrete presentation of D,
similar to SCOTT’s (1982) information systems. Following ABRAMSKY’s (1991)

domain theory in logical form we use the program logic Φ as an alternative pre-

sentation of D. In particular, we show that the ω-cpo of filters of Φ is equivalent
to D.

DEFINITION. Ψ� Φ is a filter iff:

� ω 2Ψ.

� If φ 2Ψ and ` φ� ψ then ψ 2Ψ.

� If φ;ψ 2Ψ then φ^ψ 2Ψ.

Let FiltΦ be the ω-cpo of filters, ordered by �. 2

Then we can show that FiltΦ is isomorphic to D. In proving this, it is essential

that D is algebraic, that is every element of D is determined by its ω-compact

approximations.

DEFINITION. An element a is ω-compact iff, for any ω-chain C:

a�
W

C implies 9c 2C :a� c

Let ka = fb� a j b is ω-compactg. D is algebraic iff every a is the join of ka.

2

The rest of this section shows that Φ precisely characterizes the ω-compact ele-

ments of D, and since D is algebraic, FiltΦ is isomorphic to D, that is:

26

� ` φ� ψ iff [[φ]]� [[ψ]].

� a is ω-compact iff 9φ :a = [[φ]].

� D' FiltΦ.

In Section 2.4 we gave a semantics [[�]] : Φ!D, which assumed that every pair
of elements in D had a join. We shall now show that this assumption is justified.

In fact, we shall show that D is a complete lattice.

DEFINITION. D is a complete lattice iff every subset of D has a join. 2

PROPOSITION 5. D is a complete lattice.

PROOF. We can show by induction on n that each Dn is a complete lattice, since

D0 = 1 is a complete lattice, and Dn+1 has join

W

n+1 defined:

W

n+1 A =

�

? if A � f?g

lift(

W

0

n+1 A) otherwise

where:

W

0

n+1 Ab =

W

nf f b j lift f 2 Ag

Then D has:

W

A =

W

fen(
W

n eR
n [A]) j n in ωg

From this we can show that D is a complete lattice. 2

From the definition of

W

n, apply respects arbitrary joins, that is:

apply(

W

A)b =

W

fapplyab j a 2 Ag (1)

but in general, ω-continuous functions do not necessarily respect arbitrary join,
for example:

((a_b))>)(a_b) => 6=?=?_? = (((a_b))>)a)_ (((a_b))>)b)

However, ω-continuous functions do respect countable directed joins.

DEFINITION. A � D is directed iff any a1; : : :;an 2 A have an upper bound in

A. 2

PROPOSITION 6. If B is countable and directed then f (
W

B) =
W

(f [B]).

PROOF. For any directed B = fbi j i in ωg, let the ω-chain C be ci = b0_� � �_bn .

Then we can show that f (
W

B) = f (
W

C) and

W

(f [C]) =

W

(f [B]), so the result
follows from f being ω-continuous. 2

We can then show that a is ω-compact iff there is some n such that a comes from

Dn, that is iff a has depth n.

DEFINITION. a has depth n iff en(e
R
n a) = a. 2

PROPOSITION 7. a is ω-compact iff a has depth n for some n.

27

PROOF.

) Since D is determined, a�
W

fei(e
R
i a) j i in ωg, so since a is ω-compact there

is an n such that a� en(e
R
n a) � a, so a has depth n.

(If a has depth n and a�
W

C for some ω-chain C then

a = e(eR
n a) � en(e

R
n (

W

C)) = en(
W

(eR
n [C]))

Since Dn is finite, eR
n [C] is finite. Since C is an ω-chain, eR

n [C] is an ω-

chain. Since eR
n [C] is a finite ω-chain, it has a top eR

n b for some b 2C. Then

a� en(
W

(eR
n [C])) = en(e

R
n b) � b. Thus, a is ω-compact. 2

We can use this to show that D is algebraic.

PROPOSITION 8. D is algebraic.

PROOF. By Proposition 7, ka = fei(e
R
i a) j i in ωg, so since D is determined,

a =

W

(ka). 2

In fact, we can prove a stronger statement than this, namely that D is prime alge-

braic, that is every element of D is determined by its ω-compact prime approxi-

mations.

DEFINITION. a is prime iff, for any finite B�D:

a�
W

B)9b 2 B :a� b

Let kpa = fb 2 ka j b is primeg. D is prime algebraic iff every a is the join of

kpa. 2

We can show that a is ω-compact prime iff a = b 7! c, b is ω-compact and c is

ω-compact prime or c = ?. For example, ? 7!? is prime, but ? is not, since

?�

W

/0.

PROPOSITION 9.

1. If b 6=? then a� applybc iff (c 7!a) � b.

2. If a 7!b has depth n then b =? or a and b have depth < n.

3. a =

W

fb 7! c j b 7! c� ag.

4. For any B 6= /0, a 7!

W

B =

W

fa 7!b j b 2 Bg.

5. a 7!b is ω-compact.

6. If b is prime then a 7!b is prime.

7. If a is ω-compact prime then a = b 7! c.

8. If a 7!b is prime then b =? or b is prime.

Thus a is ω-compact prime iff a = b 7! c and c is ω-compact prime or c =?.

PROOF.

1. Follows from the definition of 7!.

28

2. Follows from the definition of depth.

3. If a =? then:

a =? =

W

/0 =

W

fb 7! c j b 7! c� ag

Otherwise, we can show that for any d:

applyad = apply(

W

fb 7! c j b 7! c� ag)d

and so a =

W

fb 7! c j b 7! c� ag.

4. If a 7! b�
W

C for an ω-chain C �D, then:

b = apply(a 7! b)a� apply(

W

C)a =

W

fapply ca j c 2Cg

Since b is ω-compact there is a c 2C such that b� apply ca so:

a 7!b� a 7!apply ca� c

Thus a 7!b is ω-compact.

5. If a 7! b�
W

A for a finite set A�D, then:

b = apply(a 7!b)a� apply(

W

A)a =

W

fapply ca j c 2 Ag

Since b is prime, there is a c 2 A such that b� apply ca, so:

(a 7! b) � (a 7!apply ca) � c

Thus a 7!b is prime.

6. Let A= fb 7!c j b 7!c� ag, so a=
W

A. Let a0;a1; : : :be an enumeration of A,

and letC = fci j i inωg be the ω-chain where ci = a0_� � �_ai. Then since a is
ω-compact and a�

W

A=

W

C there is a ci 2C such that a� ci = a0_� � �_ai .

Since a is prime, there is a j � i such that a� a j = b j 7! c j � a.

7. For any c:

apply

W

fa 7!b j b 2 Bgc

=

W

fapply(a 7! b)c j b 2 Bg (Eqn 1)

=

�

W

B if a� c

? otherwise
(Defn of 7!)

= apply(a 7!

W

B)c (Defn of 7!)

Then since B 6= /0,

W

fa 7!b j b 2 Bg 6=?, and so by part 1:

W

fa 7!b j b 2 Bg = (a 7!

W

B)

8. Let b =

W

B for finite B. If B =

/0 then b =?. Otherwise:

a 7!b = a 7!

W

B =

W

fa 7! c j c 2 Bg

so since a 7!b is prime there is a c2 B such that a 7!b = a 7!c so b = c. Thus

b is prime. 2

29

We can use this to show that D is prime algebraic.

PROPOSITION 10. D is prime algebraic.

PROOF. Using Proposition 9 we can show by induction on the depth of a that for

any ω-compact a that:

a =

W

fb 7! c j b 7! c� a;c is primeg =
W

(kpa)

Then since D is algebraic:

a =

W

(ka) =
W

f

W

(kpb) j b 2 kag =
W

(kpa)
Thus D is prime algebraic. 2

We have shown that every ω-compact element is determined by its prime approx-
imations, and so is of the form:

a = a1 7!b1_� � �_an 7! bn

Note that? is covered by the case when n = 0. By examination of the semantics

of Φ we can see that [[φ]] can always be given in the form:

[[φ]] = [[φ1!ψ1^� � �^φn!ψn]]

Note that ω is covered by the case when n = 0. This allows us to show that our

denotational semantics for Φ characterizes precisely the ω-compact elements of

D. We will show this by proving a normal form result for propositions, using
factored propositions for the normal form.

DEFINITION.

� φ is factored iff φ = φ1^� � �^φn and each φi is prime.

� φ is prime iff φ = γ or φ = ψ!χ, ψ is factored and χ is prime.

φ can be factored iff there is a factored ψ such that ` φ = ψ. 2

PROPOSITION 11.

1. Any φ can be factored.

2. [[φ]] is ω-compact

3. If φ is prime then [[φ]] is prime.

4. If a is ω-compact prime then 9prime φ :a = [[φ]].
5. If a is ω-compact then 9factored φ :a = [[φ]].

PROOF. Parts 1, 2 and 3 are an induction on φ. Parts 4 and 5 are an induction on
the depth of a.

1. An induction on φ.

2. Follows from Proposition 9.

3. Follows from Proposition 9.

30

4. By Proposition 9, a = b 7! c where c is prime or c = ?. If c = ? then

[[γ]] = ? 7!? = b 7!? = a. Otherwise, b and c have smaller depth than a,

so by induction we can find factored φ and prime ψ such that [[φ]] = b and

[[ψ]] = c. Then [[φ!ψ]] = b 7! c = a.

5. Find ω-compact primes ai such that a = a0_� � �_an. By part 4 we can find

prime φi such that [[φi]] = ai. Then [[φ0^� � �^φn]] = a. 2

We can then show that the inequational theory ` φ � ψ is sound and complete
for the denotational semantics of Φ. This uses factored propositions as a normal

form.

PROPOSITION 12. ` ψ� φ iff [[φ]]� [[ψ]].

PROOF.

SOUNDNESS ()). An induction on the proof of ` ψ� φ.

COMPLETENESS ((). We first show by induction on φ and ψ that if φ and ψ
are factored and [[φ]]� [[ψ]] then ` ψ � φ. Then for any φ and ψ, by Proposi-

tion 11 we can find factored φ0 and ψ0 such that ` φ = φ0 and `ψ = ψ0. Then

by soundness, we have ` φ = φ0 � ψ0 = ψ. 2

Finally, we can show that the filters of Φ form a concrete presentation of D.

PROPOSITION 13. D' FiltΦ.

PROOF. Define con : D!Filt(Φ) and abs : Filt(Φ)!D as:

cond = fφ j [[φ]]� dg

absΨ =

W

f[[ψ]] j ψ 2Ψg

Then we can show that con and abs form an isomorphism. 2

In particular, the semantics of any term M can be given in terms of the proposi-

tions that M satisfies.

PROPOSITION 14. [[M]]σ =

W

f[[φ]] j [[φ]]� [[M]][[Γ]]; [[Γ]]� σg.
PROOF. Follows from Proposition 13. 2

2.7 Full abstraction

In this section we shall show that D is fully abstract for Λ

P

. We shall do this in
three parts:

� We show that Γ`M : φ iff [[φ]]� [[M]][[Γ]], thus showing that the proof system

is sound and complete for the denotational semantics. This is Proposition 15.

� We then show that if Γ ` M : φ then Γ j= M : φ, and that if Γ j= M : φ then

[[φ]]� [[M]][[Γ]]. Thus the three presentations of the logic are equivalent. This

is Proposition 18.

31

� Finally, we show that full abstraction is gained by proving the three logical

presentations to be equivalent. This is Proposition 19.

The rest of this section provides proofs of these Propositions. This is a specific

instance of ABRAMSKY’s (1991) domain theory in logical form.

First, we give a sketch proof that the proof system for Λ

P

is sound and com-

plete for D.

PROPOSITION 15. Γ `M : φ iff [[φ]]� [[M]][[Γ]].

PROOF.

SOUNDNESS ()). An induction on the proof of Γ `M : φ.

COMPLETENESS ((). An induction on M. The difficult cases are:

� If [[φ]]� [[MN]][[Γ]] then

[[φ]]
� apply([[M]][[Γ]])([[N]][[Γ]]) (Hypothesis)

= apply([[M]][[Γ]])(
W

f[[φ]] j [[φ]]� [[N]][[Γ]]g) (D is algebraic)

=

W

fapply([[M]][[Γ]])[[ψ]] j [[ψ]]� [[N]][[Γ]]g (Continuity)

so since [[φ]] is compact there is a ψ such that:

[[ψ]]� [[N]][[Γ]] [[φ]]� apply([[M]][[Γ]])[[ψ]]

If [[M]][[Γ]] =? then ` φ = ω so Γ `MN : φ. Otherwise [[M]][[Γ]] 6=? so

[[ψ!φ]] � [[M]][[Γ]] so by induction Γ ` N : ψ and Γ `M : ψ!φ and so

Γ `MN : φ.

� If [[φ]]� [[λx :M]][[Γ]] then:

[[φ]]
� [[λx :M]][[Γ]] (Hypothesis)

=

W

f[[ψ!χ]] j [[ψ!χ]]� [[λx :M]][[Γ]]g (Propn 9.3)

=

W

f[[ψ!χ]] j [[χ]]� apply([[λx :M]][[Γ]])[[ψ]]g (Propn 9.1)

=

W

f[[ψ!χ]] j [[χ]]� [[M]](update[[Γ]]x[[ψ]])g (Defn of [[λx :M]])

=

W

f[[ψ!χ]] j [[χ]]� [[M]][[νx :Γ;x : ψ]]g (Defn of update)

Since φ is compact we can find ψi and χi such that

[[φ]]� [[ψ1!χ1]]_� � �_ [[ψn!χn]] [[χi]]� [[M]][[νx :Γ;x : ψi]]

Then by Proposition 12:

` ψ1!χ1^� � �^ψn!χn � φ

and so for each 1� i� n:

[[χi]]� [[M]][[νx :Γ;x : ψi]]

) νx :Γ;x : ψi `M : χi (Induction)

32

) νx :Γ ` λx :M : ψi!χi (!i)

) Γ ` λx :M : ψi!χi (�)

Thus by (^i) and (�), Γ ` λx :M : φ. 2

This has tied together the denotational and proof theoretic presentations of the

logic, and we can start to link these with the operational presentation. To begin
with, we show that the denotational semantics respects the operational semantics

(following BARENDREGT’s definition of λ-theory we might call such a model a

Λ

P

-theory).

PROPOSITION 16. If M! N then [[M]] = [[N]]

PROOF. An induction on the proof of M! N. 2

This has an immediate corollary, which is that convergent terms do not have? as

their semantics.

PROPOSITION 17. If M+ then [[M]]? 6=?.

PROOF. If M + λx :N then by Proposition 16, [[M]]?= [[λx :N]]? 6=?. 2

This is enough to show the equivalence of the three logical presentations. Note
that relating the operational and denotational presentations requires the existence

of the terms Mφ, and hence the P combinator.

PROPOSITION 18. (Γ `M : φ)) (Γ j= M : φ)) ([[φ]]� [[M]][[Γ]])

PROOF.

SOUNDNESS (1) 2). An induction on the proof of Γ `M : φ.

COMPLETENESS (2) 3). We first show the case when M is closed, by induc-

tion on φ. The only difficult case is when j= M : φ!ψ, so M+ and by Propo-

sition 17 [[M]]? 6=? so:

[[Mφ]] = [[φ]]

) `Mφ : φ (Propn 15)

) j= Mφ : φ (Soundness)

) MMφ : ψ (Defn of j=)

) [[ψ]]� [[MMφ]]? (Induction)

) [[ψ]]� apply([[M]]?)[[φ]] (Defn of [[MN]])

) [[φ]] 7! [[ψ]]� [[M]]? (Propn 9.1)

) [[φ!ψ]]� [[M]]? (Defn of [[φ!ψ]])

If M is open, and Γ j= M : φ then define ρ as ρ(x) = MΓ(x). Then:

[[ρ]]?= [[Γ]]

) ` ρ : Γ (Propn 15)

) j= ρ : Γ (Soundness)

33

) j= M[ρ] : φ (Defn of j=)

) [[φ]]� [[M[ρ]]]? (Above)

) [[φ]]� [[M]]([[ρ]]?) (Propn 1)

) [[φ]]� [[M]][[Γ]] (Defn of ρ)

Thus we have completeness. 2

We can then use the equivalence of the logical presentations to show full abstrac-

tion.

PROPOSITION 19. M vO N iff M vS N iff M vD N.

PROOF.

(M vO N)M vD N) We first prove by structural induction on φ that if MvO N

and [[φ]] � [[M]][[Γ]] then [[φ]] � [[N]][[Γ]]. The only difficult case is when we

have φ = ψ!χ, in which case [[N]][[Γ]] 6= ? and so:

[[ψ!χ]]� [[M]][[Γ]]

) apply[[ψ!χ]][[ψ]]� apply([[M]][[Γ]])[[ψ]] (Monotonicity)

) [[χ]]� apply([[M]][[Γ]])[[ψ]] (Defn of [[ψ!χ]])

) [[χ]]� apply([[M]][[Γ]])([[Mψ]][[Γ]]) ([[Mφ]]σ = [[φ]])

) [[χ]]� [[MMψ]][[Γ]] (Defn of [[MN]])

) [[χ]]� [[NMψ]][[Γ]] (Induction)

) [[χ]]� apply([[N]][[Γ]])([[Mψ]][[Γ]]) (Defn of [[MN]])

) [[χ]]� apply([[N]][[Γ]])[[ψ]] ([[Mφ]]σ = [[φ]])

) [[ψ!χ]]� [[N]][[Γ]] (Propn 9.1)

Thus for any σ:
[[M]]σ

=

W

f[[φ]] j [[φ]]� [[M]][[Γ]]; [[Γ]]� σg (Propn 14)

�

W

f[[φ]] j [[φ]]� [[N]][[Γ]]; [[Γ]]� σg (Above)

= [[N]]σ (Propn 14)

Thus if M vO N then M vD N.
(M vD N)M vO N) For any closing context C, if M vD N then:

C[M]+

) j=C[M] : γ (Defn of j=)

) [[γ]]� [[C[M]]]? (Propn 18)

) [[γ]]� [[C[N]]]? (Hypothesis)

) j=C[N] : γ (Propn 18)

) j=C[N]+ (Defn of j=)

Thus if M vD N then M vO N.

34

(M vD N)M vS N) For any Γ and φ, if M vD N then:

Γ `M : φ

) [[φ]]� [[M]][[Γ]] (Propn 18)

) [[φ]]� [[N]][[Γ]] (Hypothesis)

) Γ `M : φ (Propn 18)

Thus if M vD N then M vS N.

(M vS N)M vD N) For any σ, if M vS N then:

[[M]]σ

=

W

f[[φ]] j [[φ]]� [[M]][[Γ]]; [[Γ]]� σg (Propn 14)

=

W

f[[φ]] j Γ `M : φ; [[Γ]]� σg (Propn 18)

�

W

f[[φ]] j Γ ` N : φ; [[Γ]]� σg (Hypothesis)

=

W

f[[φ]] j [[φ]]� [[N]][[Γ]]; [[Γ]]� σg (Propn 18)

= [[N]]σ (Propn 14)

Thus if M vS N then M vD N. 2

Thus we have shown that D is fully abstract for leftmost-outermost tree reduction
of the untyped λ-calculus with P.

35

3 Graph reduction

In this Chapter we present a formal model of concurrent graph reduction. To do
this, we:

� Define an untyped λ-calculus with recursive declarations.

� Show that recursive declarations can be regarded as graphs.

� Provide an operational semantics for declarations, based on BERRY and BOU-

DOL’s (1990) Chemical Abstract Machine.

� Define a denotational semantics and a program logic.

� Show how the proof techniques from Chapter 2 can be adapted to show the

denotational semantics to be fully abstract.

In doing so, we need to show some operational properties about concurrent graph
reduction:

� Although concurrent graph reduction is not confluent, we can find a semanti-

cally equivalent reduction strategy which is confluent.

� We can show that the concurrent behaviour of our graph reduction model is

unimportant, by showing a semantically equivalent reduction strategy which

models one-processor execution.

� We can show referential transparency for the operational semantics, using
simulation between graphs.

Thus, the fully abstract model for the λ-calculus with P is also fully abstract for

the λ-calculus with recursive declarations.

3.1 The λ-calculus with recursive declarations

The λ-calculus with recursive declarations is an extension of the λ-calculus with

P, to include mutually recursive declarations such as:

rec(x := ?M;y := ?N) in x@y

which means declare x to be M, declare y to be N, and apply x to y. Terms from
the λ-calculus with rec are:

� ∇x is an indirection pointing to x.

� x@y is an application applying the function pointed to by x to the argument
pointed to by y.

� x_y is a fork which evaluates the terms pointed to by x and y and returns the

identity function if one of them reaches weak head normal form. Semanti-
cally, this is Pxy from Λ

P

.

� λx :M is an abstraction.

� recD in M is a recursive declaration of D in M.

Recursive declarations are:

� x := !M is an tagged node declaring x to be M, and that M should be evaluated
immediately.

� x := ?M is an untagged node declaring x to be M, and that M should not be

evaluated until it is needed.

� ε is the empty declaration.

� D;E is the concatenated declaration of D and E.

� νx :D is the declaration D with a local variable x.

For example, the term:

recx := ?M;y := ?N in x@y

declares x to be M and y to be N, then applies x to y. This can be contrasted with
the term:

recx := !M;y := !N in x@y

which is semantically equivalent, but allows evaluation of M and N to be per-

formed concurrently. This is similar to the annotation of nodes described by PEY-

TON JONES (1987, Ch. 24). In the declaration:

x1 := !M1; : : :;xm := !Mm;y1 := ?N1; : : :;yn := ?Nn

the terms Mi are tagged, and so they can all be evaluated concurrently, whereas

the terms Ni are untagged, and so are evaluated when they are needed. All decla-
rations are considered to be recursive, for example:

x := !λy : x

declares a term which reaches weak head normal form, is given an argument, and
returns itself. It has the same semantics as the ogre ϒ in Λ

P

.

We have allowed local variables in declarations, for example, the local decla-

ration localx = ?M in y = ?N can be implemented as:

νx : (x := ?M;y := ?N)

We will see below how this can be generalized, so we can define localD in E in

this language. The handling of local variables here is similar to scope in MIL-
NER’s (1991) polyadic π-calculus, and indeed has a very similar operational se-

mantics.

We can think of declarations as a variant of HUGHES’ (1984) supercombinator

code. For example, the supercombinator code:

x = λw:ww

y = M

$PROG = xy

37

can be given as the declaration:

νxy : ($PROG := !xy;x := ?λw:ww;y := ?M)

In summary:

DEFINITION. Lam and Dec are defined:

M ::= ∇x j x@y j x_y j λx :M j recD in M

D ::= x := !M j x := ?M j ε jD;D j νx :D

Let D = E mean D and E are syntactically identical. 2

EXAMPLES. Given a vector~x = x1 : : :xn, we can define:

ν~x :D = νx1 : : : : :νxn :D

We can implement a ‘black hole’ term as:

0 = recx := !∇x in x

We can implement the λ-calculus with P as (for fresh x and y):

x = ∇x

MN = recx := !M;y := ?N in x@y

PMN = recx := !M;y := !N in x_y

We shall see later that this has the same semantics as Λ

P

. 2

Unfortunately, at the moment, there is nothing to prevent inconsistent declara-

tions such as:

x := !M;x := !N

or declarations with dangling pointers such as:

νy : (x := !∇y)

We would like to avoid such terms, since their semantics is by no means obvious.

We will achieve this by restricting our attention to well-formed expressions, with

no inconsistency or dangling pointers.

DEFINITION. The written variables of a declaration are:

wv(x := M) = fxg wv ε =

/0

wv(D;E) = wvD[wvE wv(νx :D) = wvDnfxg

An expression is well-formed iff:

� every subexpression of the form D;E has wvD\wvE =

/0.

� every subexpression of the form νx :D has x 2 wvD.

From now on, we shall only consider well-formed expressions. 2

38

EXAMPLES.

� x := !M;y := !N is well-formed.

� x := !M;x := !N is not.

� x := !M;νx : (x := !N) is well-formed.

� νx : (x := !M;x := !N) is not.

� x := !M;νx : (y := !N) is not. 2

Similarly, we can define the read variables and free variables of an expression.

DEFINITION. The read variables of an expression are:

rv(∇x) = fxg rv(x@y) = fx;yg

rv(x_y) = fx;yg rv(λx :M) = rvM nfxg

rv(recD in M) = (rvM[rvD)nwvD

rv(x := M) = rvM rv ε =

/0

rv(D;E) = rvD[rvE rv(νx :D) = rvDnfxg

The free variables of an expression are:

fvM = rvM fvD = rvD[wvD

A declaration is closed iff rvD� wvD. 2

In implementation terms, the read variables of a declaration are the pointers lead-

ing out of it, and the written variables are pointers leading into it. For example, x

is a pointer into x := !∇y and y is a pointer out of it.

DEFINITION. A renaming is a function ρ : V!V which is almost everywhere

the identity.

� Let M[ρ] be M with any read variable x replaced by ρx.

� Let D[ρ] be D with any read variable x replaced by ρx.

� Let [ρ]D be D with any written variable x replaced by ρx.

In each case we apply appropriate α-conversion to avoid capture of free vari-
ables. 2

EXAMPLES. Some example renamings are:

(x := !∇x)[y=x] = (x := !∇y)

[y=x](x := !∇x) = (y := !∇x)

[y=x](x := !∇x)[y=x] = (y := !∇y)

We can α-convert a local variable (when y is fresh):

νx :D α-converts to νy : ([y=x]D[y=x])

For example:

νx : (x := !∇x) α-converts to νy : (y := !∇y)
39

If wvD and wvE are disjoint then we can define a localized declaration as:

localD in E = ν(wvD) : (D;E)

This can be generalized to any declarations D and E by α-converting the written

variables of D first. If wvD = fx1; : : :;xng and y1; : : :;yn are fresh then:

localD in E = ν~y : ([~y=~x]D[~y=~x];E[~y=~x])

for example:

local(x := ?∇x) in (x := !λw: x) = νy : (y := ?∇y;x := !λw: y)

We shall see in Section 3.3 that x := !(recD in M) is semantically equivalent to

localD in (x := !M). 2

DEFINITION. We can draw a declaration as a graph, in the fashion of MILNER’s

(1989) flow graphs for CCS. A declaration x := !M with read variables y1; : : :;yn

can be drawn:

y1 � � � yn

!M

x

�

�
	

qq

q

Similarly, a declaration x := ?M can be drawn:

?M

q

q q

x

y1 � � � yn

�

�
	

When M is ∇y, y@z or y_z we will usually elide the read variables, drawing

x := !∇y, x := !y@z and x := !y_z as:

zy zyy

x x x

q

q

q

�

��

!_

q
q

�

��

!∇

q

q

q

�

��

!@

A declaration ε can be drawn as the empty graph.
A declaration D;E can be drawn by superimposing D on E.

A declaration νx :D can be drawn by drawing D and erasing any occurrence

of x.
Whenever we have the same variable being read and written in a graph, we

will draw an arrow from the read variable to the written variable. 2

EXAMPLES. The application of ∆ to M can be drawn:

x := !y@z;

y := !∆;

z := ?M
!∆

�

��q

?M

�

��q

@

@R

�

�	

!@

�

��

q

q

q

x

y z

νyz :

(x := !y@z;

y := !∆;

z := ?M)

!∆

�

��q

?M

�

��q

@

@R

�

�	

!@

�

��

q

q

q

x

40

The application of M to itself, with sharing can be drawn:

x := !u@v;

u := !∇z;

v := ?∇z;

z := ?M �

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

q

�

��

?M

@

@R

�

�	

q

q

q

�

��

!@

x

u v

z z

νuvz :

(x := !u@v;

u := !∇z;

v := ?∇z;

z := ?M)

�

��q

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

?M

A cyclic graph can be drawn:

x := !∇y;

y := !∇y
y

x

�

�
�

?

!∇

�

��

q
q

!∇

�

��

q
q

νy :
(x := !∇y;

y := !∇y)

x

�

�
�

?

!∇

�

��

q
q

!∇

�

��

q
q

We shall see that such tight cyclic graphs give rise to deadlock. 2

3.2 Operational semantics

We will give our operational semantics in two parts, based on BERRY and BOU-

DOL’s (1990) Chemical Abstract Machine. We shall first define a syntactic equiv-

alence� on declarations, and then define an operational semantics up to�. This
allows us to abstract away from syntactic details such as associativity of concate-

nation, and present the ‘bare bones’ of the operational semantics.

A similar approach has been taken by MILNER (1991) in presenting the π-
calculus, and we shall follow his example more closely than that of BERRY and

BOUDOL.

The syntactic equivalence D� E is given by:

� Concatenation rules which say that concatenation is an abelian monoid with

unit ε.

� Scope rules which give properties about local variables:

� Local variables can be α-converted.

� The order of declaration of local variables is unimportant.

� The scope of a local variable can migrate when this does not cause the

capture of free variables.

These rules for local variables are the same as MILNER’s (1991) scope rules

for the π-calculus, except that we omit νx :νx :P� νx :P, since the declaration

νx :νx :D is not well-formed.

� A fork rule saying that fork is commutative.

41

� Congruence rules which say that� is an equivalence relation, and is respected

by concatenation and local variables.

Many of these equivalences were implicitly used when we drew declarations as

graphs. For example, D; (E;F) � (D;E);F corresponds to the fact that super-
imposition of graphs is associative. The only axiom which equates declarations

with different graphs is (_comm), which says that fork is commutative, and so

we shall not distinguish between:

@

@R

!N

�

��q

!_
�

��

q

q

q

�

�	

x

�

��q

!M

@

@R

!N

�

��q

!_
�

��

q

q

q

�

�	

x

�

��q

!M

This axiom halves the number of rules required for fork.

DEFINITION. If z 62 fvD then � is given by axioms:

(assoc) D; (E;F) � (D;E);F

(comm) D;E � E;D

(unit) D;ε � D

(α) νx :D � νz : ([z=x]D[z=x])

(νswap) νx :νy :D � νy :νx :D

(νmig) D;νz :E � νz : (D;E)

(_comm) x := !(y_z) � x := !(z_y)

(refl) D � D

and structural rules:
(symm)

D� E

E �D

(trans)

D� E � F

D� F
(l)

D� E

D;F � E;F

(r)

D� E

F;D� F;E

(ν) D� E

νx :D� νx :E

Note that if D� E then rvD = rvE and wvD = wvE. 2

We can use the equivalence� to simplify the operational semantics for graph re-
duction. This can be given as eight axioms and three structural rules. The axioms

can be broken down into four phases:

� Graph building, in which a recursive declaration is expanded into a graph, for

42

example:

!vv

q
q

�

��

?
?

x

q
q

�

��

?∇

q

�

��

!∆

!

q

�

��

!∆

q
q

�

��

?∇

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

� Spine traversal, in which an untagged node pointed to by a tagged node be-

comes tagged, for example:

q

�

��

!∆

q
q

�

��

?∇

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

!

!∇

q
q
q

�

��

!∆

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

�

��

There are three axioms, depending on whether the tagged node is an indirec-

tion, an application, or a fork.

� Updating, in which a node pointing to an abstraction is updated, for example:

!∇

q
q
q

�

��

!∆

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

�

��

!

q

�

��

!∆

q

�

��

!∆

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

There are three axioms, depending on whether the node is an indirection, an

application, or a fork.

� Garbage collection, in which a sub-graph with no incoming pointers is re-

43

moved, for example:

q

�

��

!∆

q

�

��

!∆

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

!

!∆

�

��q

�

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

These phases are not sequential, and there may be more than one axiom which
can be applied at any one point. Since each axiom uses a small number of nodes,

there is much scope for concurrency, for example:

q

�

��

!∆
q

�

��

!∆

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇
q
q

�

��

?∇

@

@R

�

�	

!

!∆

�

��q

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

?∇

q

�

��

!∆

q

�

��

!∆

#

!∆

�

��q

�

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

! !∆

�

��q

!∆

�

��q

?∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

?

The operational semantics! is first given by an operational semantics 7!, and

! is defined as �7!�.

44

DEFINITION. 7! is given by axioms:

(build) x := !(recD in M) 7! localD in (x := !M)

(∇trav) x := !∇y;y := ?M 7! x := !∇y;y := !M

(@trav) x := !y@z;y := ?M 7! x := !y@z;y := !M

(_trav) x := !y_z;y := ?M 7! x := !y_z;y := !M

(∇upd) x := !∇y;y := !λw:M 7! x := !λw:M;y := !λw:M

(@upd) x := !y@z;y := !λw:M 7! x := !M[z=w];y := !λw:M

(_upd) x := !y_z;y := !λw:M 7! x := ! I;y := !λw:M

(γ) ν(wvD) :D 7! ε
and structural rules:

(l)

D 7! E

D;F 7! E;F

(r)

D 7! E

F;D 7! F;E

(ν) D 7! E

νx :D 7! νx :E

Note that if D 7! E then rvD� rvE and wvD = wvE.

� D! E iff D�7!� E.

� D!0 E iff D� E, and D!n+1 E iff D!!n E.

� D!� E iff 9n :D!n E.

� D!�i E iff 9n� i :D!n E. 2

EXAMPLES. In the graph building phase, we take a term containing a recursive

declaration and build a graph from it:

x := !(recD in M) 7! localD in (x := !M)

For example, the deduction:

x := !∆M

� x := !(rec(y := !∆; z := ?M) in (y@z)) (Defn of ∆M)

7! local(y := !∆; z := ?M) in (x := !y@z) (BUILD)

� νyz : (x := !y@z;y := !∆; z := ?M) (Defn of local)

can be drawn graphically as:

q

�

�
	

!∆M

x

!

!∆

�

��q

?M

�

��q

@

@R

�

�	

!@

�

��

q

q

q

x

Similarly, the deduction:

νz : (x := !zz; z := ?M)

� νz : (x := !(rec(u := !∇z;v := ?∇z) in (u@v)); z := ?M) (Defn of zz)

7! νz : (local(u := !∇z;v := ?∇z) in (x := !u@v); z := ?M) (BUILD)

� νz : (νuv: (u := !∇z;v := ?∇z;x := !u@v); z := ?M) (Defn of local)

� νuvz : (u := !∇z;v := ?∇z;x := !u@v; z := ?M) (νmig)

45

can be drawn graphically as:

?
q

q
q

�

��

?M

x

!zz

�

��

!

�

��q

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

?M

We can build cyclic graphs, for example the deduction:

x := !0
� x := !(rec(y := !∇y) in (∇y)) (Defn of 0)

7! local(y := !∇y) in (x := !∇y) (BUILD)

� νy : (x := !∇y;y := !∇y) (Defn of local)

can be drawn graphically as:

�

��q

!0
x

!

x

�

�
�

?

!∇

�

��

q
q

!∇

�

��

q
q

Note that this axiom can only be applied to tagged declarations x := !(recD in M)

and not untagged declarations x := ?(recD in M). In implementation terms, this

is because we only build a graph for terms currently under evaluation.

In the spine traversal phase, we find a tagged node which points to an un-
tagged node, and tag it. Thus we have three axioms, depending on the form of

the tagged node:

x := !∇y;y := ?M

7! x := !∇y;y := !M y

x

?

?M

�

��q
q
q

�

��

!∇

7!

!M

q

�

��

!∇

�

��

q
q

?

x

y

x := !y@z;y := ?M

7! x := !y@z;y := !M

q

�

��

?M

�

�	

q

q

q

�

��

!@

x

y z

7!

!M

q

�

��

zy

x

!@

�

��

q

q

q

�

�	

46

x := !y_z;y := ?M

7! x := !y_z;y := !M

!_
�

��

q

q

q

?M

�

��q

�

�	

x

y z

7!

!M

q

�

��

zy

x

�

�	

q

q

q

�

��

!_

Note that since we are modeling lazy evaluation, we have:

x := !y@z; z := ?M

76! x := !y@z; z := !M
zy

?M

q

�

��

x

q

q

q

!@

�

��

@

@R

76!

!M

q

�

��

zy

x

q

q

q

!@

�

��

@

@R

This phase is called ‘spine traversal’ because there will often be a ‘spine’ of un-

tagged indirection, application, and fork nodes, which will all be tagged. For ex-

ample:

q

?λw:M

�

�	

?@

�

��

q

q

q

p

p

p

�

�	

�

�	

x

q

q

q

!@

�

��

?@

�

��

q

q

q

�

�	

@

@R

@

@R

@

@R

�

�
	

7!

�

!λw:M

�

�
	

q

�

��

!@

q

q

q

�

��

!@

q

q

q

@

@R

@

@R

@

@R

�

�	

�

��

!@

q

q

q

x

�

�	

�

�	

p

p

p

�

�	

This phase terminates when we reach a tagged function λw:M, as in the above
example, and we can perform updating. We have three axioms, depending on

which kind of node is pointing to the function. If it is an indirection node, we

make a copy of the function. Since the function is already in weak head normal

form we are not losing any sharing:

x := !∇y;y := !λw:M

7! x := !λw:M;y := !λw:M y

x

?

!∇

�

��

q
q

�

�
	

!λw:M

q

7!

y

�

�
	

!λw:M

q

x

�

�
	

!λw:M

q

If we have an application node pointing to a function we can perform β-reduction.

This is the ‘work’ of the operational semantics, and we can regard the other rules

as manipulation to produce a graph where β-reduction can take place. Note that
since we are using renaming rather than substitution to model β-reduction, we

47

have modeled sharing:

x := !y@z;y := !λw:M

7! x := !M[z=w];y := !λw:M

λw:M

q

zy

x

!@

�

��

q

q

q

�

�	

�

�
	

7! zy

q
q

!M[z=w]

�

�
	

�

�
	

x

q

!λw:M

For example:

νyz : (x := !y@z;y := !∆; z := ?M)

7! νyz : (x := !zz;y := !∆; z := ?M)

!∆

�

��q

?M

�

��q

@

@R

�

�	

!@

�

��

q

q

q

x

7!

!∆

�

��q

�

��

!zz

x

?M

�

��q
q
q
?

If we have a fork node pointing to a function we can return the identity function,

in the same way as the Λ

P

rule for P.

x := !y_z;y := !λw:M

7! x := ! I;y := !λw:M

!_
�

��

q

q

q

�

�	

x

y
�

�
	

q

!λw:M

7!

�

��

q

x

�

�
	

q

!λw:M

y

! I

The final phase is garbage collection where any subgraphs with no incoming

pointers are removed. This corresponds to the last axiom:

ν(wvD) :D 7! ε

For example, the deduction:

νyz : (x := !zz;y := !∆; z := ?M)

� νyz : (y := !∆;x := !zz; z := ?M) (COMM)

� νzy : (y := !∆;x := !zz; z := ?M) (νswap)

� νz : (νy : (y := !∆);x := !zz; z := ?M) (νmig)

7! νz : (ε;x := !zz; z := ?M) (γ)

� νz : (x := !zz; z := ?M) (UNIT)

can be drawn graphically as:

!∆

�

��q

�

��

!zz

x

?M

�

��q
q
q
?

!

?
q

q
q

�

��

?M

x

!zz

�

��

Note that although we have presented these phases sequentially, they can be car-

ried out in any order. Since most of the axioms involve very small graphs, con-
taining three or fewer nodes, we have a very small granularity and thus much

scope for concurrency.

48

However, the axiom for garbage collection involves graphs of arbitrary size,

and so has much larger granularity, and so less scope for concurrency. In imple-

mentation terms, this corresponds to the fact that much less concurrent graph re-
duction can take place during garbage collection. Indeed, many graph reduction

engines suspend graph reduction completely during garbage collection.

We can combine these phases together to reduce any graph, for example the
deduction:

x := !∆M

� x := !(recy := !∆; z := ?M in y@z) (Defn of ∆M)

7! localy := !∆; z := ?M in x :=!y@z (BUILD)

� νyz : (x := !y@z;y := !∆; z := ?M) (Defn of local)

7! νyz : (x := !zz;y := !∆; z := ?M) (@upd)

� νz : (x := !zz;νy : (y := !∆); z := ?M) (νmig)

7! νz : (x := !zz;ε; z := ?M) (β)

� νz : (x := !zz; z := ?M) (UNIT)

� νz : (x := !(recu := !∇z;v := ?∇z in u@v); z := ?M) (Defn of zz)

7! νz : (localu := !∇z;v := ?∇z in x := !u@v; z := ?M) (BUILD)

� νz : (νuv: (x := !u@v;u := !∇z;v := ?∇z); z := ?M) (Defn of local)

� νuvz : (x := !u@v;u := !∇z;v := ?∇z; z := ?M) (νmig)

7! νuvz : (x := !u@v;u := !∇z;v := ?∇z; z := !M) (∇trav)

can be drawn graphically as:

q

�

�
	

!∆M

x

!

!∆

�

��q

?M

�

��q

@

@R

�

�	

!@

�

��

q

q

q

x

!

!∆

�

��q

�

��

!zz

x

?M

�

��q
q
q
?

!

?
q

q
q

�

��

?M

x

!zz

�

��

!

�

��q

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

?M

!

�

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

q

�

��

!M

These steps are: graph building, β-reduction, garbage collection, graph building
and spine traversal. We thus have:

x := !Ω

� x := !∆∆ (Defn of Ω)

!

� νuvz : (x := !u@v;u := !∇z;v := ?∇z; z := !∆) (Above)

! νuvz : (x := !u@v;u := !∆;v := ?∇z; z := !∆) (∇upd)

49

! νuvz : (x := !vv;u := !∆;v := ?∇z; z := !∆) (@upd)

! νvz : (x := !vv;v := ?∇z; z := !∆) (γ)

! νvz : (x := !t@u; t := !∇v;u := ?∇v;v := ?∇z; z := !∆) (BUILD)

! νvz : (x := !t@u; t := !∇v;u := ?∇v;v := !∇z; z := !∆) (∇trav)

! νvz : (x := !t@u; t := !∇v;u := ?∇v;v := !∆; z := !∆) (∇upd)

! νvz : (x := !t@u; t := !∇v;u := ?∇v;v := !∆) (γ)

! �� �

This can be drawn graphically:

!Ω

x

q

�

��

!

�

!∆

�

��q

�

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

! !∆

�

��q

!∆

�

��q

?∇
�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

?

!

!vv

q
q

�

��

?
?

x

q
q

�

��

?∇

q

�

��

!∆

q

�

��

!∆

!

!vv

q
q

�

��

?
?

x

q
q

�

��

?∇
q

�

��

!∆

!

q

�

��

!∆

q
q

�

��

?∇

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

!

!∇

q
q
q

�

��

!∆

?

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

�

��

!

q

�

��

!∆

q

�

��

!∆

x

!@

�

��

q

q

q

�

�	

@

@R

q
q

�

��

!∇

q
q

�

��

?∇

@

@R

�

�	

!

!∆

�

��q

�

�	

@

@R

?∇

�

��

q
q

!∇

�

��

q
q

@

@R

�

�	

q

q

q

�

��

!@

x

! �� �

Thus x := !Ω is divergent. This can be contrasted with the deduction:

(x := !0)! νy : (x := !y;y := !y) 6!

50

which can be drawn graphically as:

�

��q

!0

x

!

x

�

�
�

?

!∇

�

��

q
q

!∇

�

��

q
q

6!

since the graph is fully built, the spine is tagged, there are no function nodes to

reduce, and there is no garbage. Thus the declaration x := !0 is deadlocked rather
than divergent. Denotationally, we shall identify the terms0 and Ω, since neither

of them can reach weak head normal form, although operationally they are very

different. 2

We can define x to be in weak head normal form (whnf) in D iff D contains
x := !λw:M.

DEFINITION.

� x is in whnf in (x := !λw:M).

� x is in whnf in (D;E) if x is in whnf in D or E.

� x is in whnf in νy :D if x is in whnf in D and x 6= y.

Note that if D� E and x is in whnf in D then x is in whnf in E. 2

We can use this to define our notion of testing:

� A program is a closed declaration.

� A test is a closing context C[�] and a variable x.

� A term M passes a test iff, when we tag x in C[M], the result reduces to weak
head normal form at x.

DEFINITION.

� tagx is defined (when x 6= y) as:

tagx(x := !M) = (x := !M) tagx(x := ?M) = (x := !M)

tagx(y := !M) = (y := !M) tagx(y := ?M) = (y := ?M)

tagx(νx :D) = νx :D tagx(νy :D) = νy : (tagx D)

tagx ε = ε tagx(D;E) = (tagx D); (tagx E)

� For closed D, D +x E iff tagx D!� E and x is in whnf in E.

� D+x iff 9E :D +x E and D*x iff :9E :D +x E.

� M vO N iff C[M]+x)C[N]+x for any x and closing context C.

� DvO E iff wvD =wvE and C[D]+x)C[E]+x for any x and closing context

C. 2

Note that convergence (D+x) and termination (D!�

6!) are very different in this
operational semantics, although they are equivalent in Λ

P

. For example:

51

� x := !(recy := !Ω in λw: y) converges, but does not terminate.

� x := !0 terminates, but does not converge.

Since we are using convergence rather than termination as our definition of testing

equivalence, we can identify Ω and 0. The testing equivalence based on termi-

nation has been investigated by the author (1993).

3.3 Denotational semantics

The denotational semantics for Lam is given in the same domain D' (D!D)

?

as Λ

P

. The semantics of Dec is given as [[D]] : Σ!Σ, so if σ is an environment,

then so is [[D]]σ. The main difference between the semantics of Lam and that of
Λ

P

is that the former makes explicit use of recursion. For example, if we define:

constab = a

Then we can show that the semantics of the ‘ogre’:

recx := !λy :∇x in ∇x

is given as the least solution to:

f = fold� lift�const� f

and so [[recx := !λy :∇x in ∇x]] =>.

DEFINITION. Define [[M]] : Σ!D as:
[[∇x]] = readx

[[x@y]] = split(apply� readx)(read y)

[[x_y]] = split(fork� readx)(read y)

[[λx :M]] = fold� lift� fnx[[M]]

[[recD in M]] = [[M]]� [[D]]

Define [[D]] : Σ!Σ as:

[[x := !M]] = �x(setfxg(x := [[M]]))

[[x := ?M]] = �x(setfxg(x := [[M]]))

[[ε]] = id

[[D;E]] = �x(set(wv(D;E))([[D]]� [[E]]))

[[νx :D]] = newx[[D]]

where:

newx f σy =

�

σx if x = y

f σy otherwise

(x := f)σy =

�

f σ if x = y

σy otherwise

52

setX f gσx =

�

f (gσ)x if x 2 X

σx otherwise

�x f =

W

f f n

? j n in ωg

� M vD N iff [[M]]� [[N]].

� DvD E iff wvD = wvE and [[D]]� [[E]]. 2

EXAMPLES. We can show that the semantics of the ‘ogre’ term is >, since:

[[recx := !λy :∇x in ∇x]]

= [[∇x]]� [[x := !λy :∇x]] (Defn of [[recD in M]])

= readx� [[x := !λy :∇x]] (Defn of [[∇x]])

= readx��x(setfxg(x := [[λy :∇x]])) (Defn of [[x := !M]])

= readx� setfxg[[λy :∇x]](�x(setfxg(x := [[λy :∇x]])) (Unfold)

= readx� setfxg[[λy :∇x]][[x := !λy :∇x]] (Defn of [[x := !M]])

= [[λy :∇x]]� [[x := !λy :∇x]] (Defn of read and set)

= fold� lift� fny[[∇x]]� [[x := !λy :∇x]] (Defn of [[λx :M]])

= fold� lift�const�((read x)� [[x := !λy :∇x]]) (Defn of fn and const)

= fold� lift�const�([[∇x]]� [[x := !λy :∇x]]) (Defn of [[∇x]])

= fold� lift�const�([[recx := !λy :∇x in ∇x]]) (Defn of [[recD in M]])

The only function which satisfies this is:

[[recx := !λy :∇x in ∇x]] =>

The semantics agrees with that of Λ

P

:

[[x]] = readx

[[MN]] = split(apply �[[M]])[[N]]

[[λx :M]] = fold� lift� fnx[[M]]

[[PMN]] = split(fork�[[M]])[[N]]

This means we can define Mφ from Section 2.7 in Lam and that [[Mφ]] = [[φ]]. We

can also define DΓ as:

Dε = ε
DΓ;∆ = DΓ;D∆

Dx:φ = x := !Mφ

then we can show by induction on Γ that [[DΓ]]σ = [[Γ]]. 2

The properties of this denotational semantics are discussed in Section 3.9.

3.4 Program logic

The proof that D is fully abstract for Lam proceeds in much the same way as the

proof in Chapter 2. We present a program logic, and use it as a link between

53

the denotational and operational semantics. The propositions we will use are the

same as those from Chapter 2, and so we can use all of the material from Sec-

tion 2.6. However, since we are looking at a different syntax, we need a different
operational characterization and a different proof system.

Since the operational semantics for graph reduction is given between decla-

rations rather than terms, the operational characterization of Φ is also given for
declarations. So rather than defining j= M : φ for closed terms, we define j=D : ∆
for closed declarations. The proposition j=D : ∆ means that the term in D referred

to by x satisfies ∆(x). For example, the graph:

! I!K

qq

zy

x

q

q

q

�

��

!@

�

�	

@

@R

�

��

�

��

satisfies φ!ψ!ψ at x, φ!ψ!φ at y, and φ!φ at z, that is:

j= (x := !y@z;y := !K; z := ! I) :

(x : φ!ψ!ψ;y : φ!ψ!φ; z : φ!φ)

We define ‘D satisfies ∆’ as:

� Any declaration satisfies ε or x : ω.

� If D satisfies Γ and ∆, then D satisfies Γ^∆.

� If D+x and any extension E of D and z := !x@y which satisfies y : φ satisfies

z : ψ, then D satisfies φ!ψ.

For example:

� D satisfies x : γ iff D+x.

� x := ! I satisfies x : φ!φ because any graph

x := ! I; z := !x@y;D

which satisfies y : φ also satisfies z : φ.
� x := !K satisfies x : φ!ψ!φ because any graph

x := !K; z := !x@y;w := !z@v;D

which satisfies y : φ and v : ψ also satisfies w : φ.

� We can show by induction on φ that (w := !λy :w;x := !λy :w) satisfies x : φ.

The only difficult case is when φ = ψ!χ, in which case:

(w := !λy :w;x := !λy :w)+x

and in any graph:

w := !λy :w;x := !λy :w; z := !x@y;D

54

if y satisfies ψ then:

w := !λy :w;x := !λy :w; z := !x@y;D

! w := !λy :w;x := !λy :w; z := !∇w;D

! w := !λy :w;x := !λy :w; z := !λy :w;D

which by induction satisfies z : χ. Thus:

(w := !λy :w;x := !λy :w) : φ

From this it is simple to show that (w := !λy :w) : (w : φ).

This definition depends on the notion of ‘graph extension’, which is the preorder

Dv E.

DEFINITION. Dv E iff we can find~x,~y, D0 and E 0 such that:

D� ν~x :D0 E � ν~x~y : (D0

;E 0) fvD\~y = /0

Note that v is a preorder, and that Dv E vD iff D� E. 2

We can then define the the operational interpretation of the logic.

DEFINITION. For closed declarations, j= D : ∆ is given by the axioms:

(εi) j= D : ε (ωi) j= D : (x : ω)

and structural rules:

(^i)

j= D : Γ j= D : ∆

j= D : Γ^∆ (!i)

D+x

8(z := !x@y) v E wD:

j= E : (y : φ)) j= E : (z : ψ)

j= D : (x : φ!ψ)

This can be generalized to any D by defining Γ j= D : ∆ iff:

8E : (j= D;E : ν(wvD) :Γ) implies (j= D;E : ∆)

Similarly, Γ j= M : φ iff:

8D; z : (j= (D; z := !M) : Γ) implies (j= (D; z := !M) : (z : φ))

One consequence of full abstraction is that for λ-calculus terms, this operational

definition agrees with the definition of Section 2.4. 2

We can define a proof system for Lam as we did for Λ

P

. This uses the same propo-

sitions, and will have judgements of the form Γ `M : φ and Γ `D : ∆. The main

difference between the proof system for Lam and that of Λ

P

is the proof system
for recursive declarations. Note that:

� The proof rules (!) and (?) for tagged and untagged declarations are the same.

Semantically there is no difference between a tagged or an untagged node,

although they have very different operational behaviour.

55

� We are considering declarations to be recursive, and so the proof rules (!), (?),

(l) and (r) for declarations are recursive. For example, to show Γ `D;E : Θ,

we are allowed to have a subgoal of Γ `D;E : ∆.

DEFINITION. The proof system Γ `M : φ is given by axioms:

(ωi) ` M : ω

(id) x : φ ` ∇x : φ

(!e) (x : φ!ψ)^ (y : φ) ` x@y : ψ

(_a) x : γ ` x_y : φ!φ

(_b) y : γ ` x_y : φ!φ
and structural rules:

(^i)

Γ `M : φ Γ `M : ψ
Γ `M : (φ^ψ)

(�)

` Γ� ∆ ∆ `M : φ ` φ� ψ
Γ `M : ψ

(!i)

Γ;x : φ `M : ψ
Γ ` λx :M : φ!ψ (rec)

Γ `D : ∆ ∆ `M : φ
Γ ` recD in M : φ

The proof system Γ ` D : ∆ is given by axiom:

(?) Γ ` D : ν(wvD) :Γ
and structural rules:

(^i)

Γ `D : ∆ Γ ` D : Θ
Γ ` D : (∆^Θ)

(�)

` Γ� Γ0 Γ0 `D : ∆0 ` ∆0 � ∆
Γ ` D : ∆

(!)

Γ ` (x := !M) : ∆ ∆ `M : φ
Γ ` (x := !M) : (x : φ) (?)

Γ ` (x := ?M) : ∆ ∆ `M : φ
Γ ` (x := ?M) : (x : φ)

(l)

Γ `D;E : ∆ ∆ `D : Θ
Γ ` D;E : Θ (r)

Γ ` D;E : ∆ ∆ ` E : Θ
Γ ` D;E : Θ

(ν) νx :Γ `D : ∆
Γ ` νx :D : νx :∆

where νx : (Γ;x : φ;∆) = Γ;∆ and νx :Γ = Γ when x 62 wvΓ. Then:
� M vS N iff 8Γ;φ :Γ `M : φ) Γ ` N : ψ.
� DvS E iff wvD = wvE and 8Γ;∆ :Γ ` D : ∆) Γ ` E : ∆. 2

EXAMPLES. The proof system for Lam is similar to that for Λ

P

. Indeed, we can

use this proof system to show:

x : φ ` x : φ
Γ `M : φ!ψ Γ ` N : φ

Γ `MN : ψ
Γ `M : γ

Γ ` PMN : φ!φ
Γ ` N : γ

Γ ` PMN : φ!φ

The proof system for Dec allows recursive proofs of properties of declarations.

For example, we can prove by induction on φ that ` (x := !λw:∇x) : (x : φ). The

56

only difficult case is when φ = ψ!χ:

(!)

(Indn)

...

` (x := !λw:∇x) : (x : χ) (!i)

(�)

(ID)

(x : χ) `∇x : χ

(x : χ;w : ψ) `∇x : χ

(x : χ) ` (λw:∇x) : (ψ!χ)

` (x := !λw:∇x) : (x : ψ!χ)

From this we can show that ` rec(x := !λw:∇x) in ∇x : φ for any proposition φ,

and so the term rec(x := !λw:∇x) in ∇x is a maximal element of vS. 2

In Section 3.11 we can show that the problem of full abstraction reduces to one

of showing that Γ `D : ∆ iff Γ j= D : ∆ iff [[∆]]� [[D]][[Γ]].

3.5 Operational properties: structural equivalence

In the following four sections we shall look at four properties of the operational

semantics for graph reduction:

� This section looks at structural equivalence.

� Section 3.6 looks at confluence.

� Section 3.7 looks at tagging.

� Section 3.8 looks at referential transparency.

In this section we will look more closely at the structural equivalence D� E that
we used to define D! E. Although the structural equivalence is a great help in

presenting D! E, it makes proving properties about D! E harder, since we are

always working modulo �. MILNER (1991) faced a similar problem in proving
properties about the polyadic π-calculus, which he solved by giving an indepen-

dent presentation based on a commitment relation.

In this paper, we shall continue to prove properties about declarations up to

�, but we will need to know some properties about �. In particular, we shall
present a model for declarations modulo �, and use this to show that:

� If (x := !M) � (D;E) then D� ε or E � ε.

� If (D;E) � (F;G) then we can find DF , DG, EF and EG such that

D� (DF;DG), E � (EF;EG), F � (DF;EF) and G� (DG;EG).

� If νx :D� (E;F) then either E � νx :G and D� (G;F) or F � νx :G and

D� (E;G).

� If νx :D� νy :E and x 6= y then either D� [x=y]E[x=y] or E � νx :F and

D� νy :F.

� νx :D 6� (x := !M)

57

We can use � to convert any declaration into standard form ν~x :D where D con-

tains no local variables. For example:

(x := !∇y; localx := !∇w in y := !x) � νz : (x := !∇y;y := !∇z; z := !∇w)

DEFINITION. Let the ν-less declarations be:

� ε is ν-less.

� x := !M and x := ?M are ν-less.

� D;E is ν-less iff D and E are ν-less.

D is standard iff D = ν~x :E and E is ν-less. D can be standardized iff D� E and
E is standard. 2

PROPOSITION 20. Any D can be standardized.

PROOF. An induction on D. 2

The model for declarations consists of a 4-tuple (X ;Y;Z; f) where:

� X �V is the set of written variables.

� Y �V nX is the set of hidden variables.

� Z � X [Y is the set of tagged variables.

� f : X [Y!Lam is the term associated with each variable.

For example, the model for νy : (x := !M;y := ?N) is:

(fxg;fyg;fxg;f(x;M); (y;N)g)

We shall consider this model up to α-conversion of hidden variables, for example

if z is fresh then we shall equate:
(fxg;fyg;fxg;f(x;M); (y;N)g)

= (fxg;fzg;fxg;f(x;M[z=y]); (y;N[z=y])g)

In summary:

DEFINITION. An abstract declaration is a 4-tuple (X ;Y;Z; f) such that:

X �V Y �V nX Z � X [Y f : X [Y!Lam

(X ;Y;Z; f) = (X ;Y 0;Z0; f 0) iff we can find orderings~x of Y and~y of Y 0, and fresh

~z such that:

[~z=~x][Z] = [~z=~y][Z0] 8x : (f ([~x=~z]x))[~z=~x] = (f 0([~y=~z]x))[~z=~y]

Then the semantics of declarations is given by:

∂[[ε]] = (

/0; /0; /0; /0)

∂[[x := !M]] = (fxg; /0;fxg;fx 7!Mg)

∂[[x := ?M]] = (fxg; /0; /0;fx 7!Mg)

58

∂[[D;E]] = (X [X 0

;Y [Y 0;Z[Z0; f [f 0)

∂[[νx :D]] = (X nfxg;Y [fxg;Z; f)

where ∂[[D]] = (X ;Y;Z; f), ∂[[E]] = (X 0

;Y 0;Z0; f 0) and X , Y , X 0 and Y 0 are all dis-
joint. 2

Then we can show that this semantics is fully abstract for �.

PROPOSITION 21. D� E iff ∂[[D]] = ∂[[E]].

PROOF.

) This proof consists of showing each of the axioms and structural rules for �

to be sound.

(This proof consists of showing that standard declarations provide a normal

form, up to (νswap), (α), (assoc), (comm) and (unit). 2

We can use this to show the required results about �.

PROPOSITION 22.

1. If (x := !M)� (D;E) then D� ε or E � ε.

2. If (D;E) � (F;G) then we can find DF, DG, EF and EG such that

D� (DF;DG), E � (EF;EG), F � (DF;EF) and G� (DG;EG).

3. If νx :D� (E;F) then either E � νx :G and D� (G;F) or F � νx :G and

D� (E;G).

4. If νx :D� νy :E and x 6= y then either D� [x=y]E[x=y] or E � νx :F and

D� νy :F.

5. νx :D 6� (x := !M)

PROOF. Each of these has a simple proof, based on abstract declarations. For
example, if (x := !M)� (D;E) then let ∂[[D]] = (X ;Y;Z; f), ∂[[E]]= (X 0

;Y 0;Z0; f 0)

for disjont X , X 0, Y and Y 0, and so:

(X [X 0

;Y [Y 0;Z[Z0; f [f 0) = (fxg; /0;fxg;fx 7! fg)

and so either X =

/0 (and so ∂[[D]] = ∂[[ε]]) or X 0

=

/0 (and so ∂[[E]] = ∂[[ε]]). This
completes the proof for part 1, and the others follow similarly. 2

3.6 Operational properties: confluence

This section looks at the problems raised because the operational semantics given

in Section 3.2 is not confluent.

DEFINITION. A relation R is confluent iff x R �1R y implies x R R �1 y. 2

Confluence is (as we shall see below) very useful in proving results about an op-

erational semantics. There are two reasons why !� is not confluent. The first,

59

mentioned in Section 1.2, is due to garbage collection, since:

? I
q

y

�

��

�

? I
q

!∇

�

��

q
q

?

y

�

��

!

�

! I
q

!∇

�

��

q
q

?

y

�

��

but there is no declaration D such that:

? I
q

y

�

��
!

� D �

! I
q

!∇

�

��

q
q

?

y

�

��

The second is due to fork updating, since:

! I! I
q

�

�� q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��

�

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

�

? I

! I

! I
q

�

�� q

y

x

q

�

��

�

��

but there is no declaration D such that:

! I! I
q

�

�� q

y

x

�

�	

q

q

q

�

��
!_

@

@R

�

��
!

� D �

? I

! I

! I
q

�

�� q

y

x

q

�

��

�

��

In this section we will present a confluent convergent reduction strategy for graph

reduction.

DEFINITION.

� A reduction strategy is a relation!R �!.

� D+R
x iff tagx D!�

R E and x is in whnf in E.

� !R is convergent iff D+x, D+R
x for any closed D. 2

The reduction strategy we will present in this section is the same as!, except
that:

� There is no garbage collection. This bars our first counterexample.

� Fork updating can only take place when both of the nodes pointed to by the

fork have been tagged. This bars our second counterexample.

60

For example, we will allow the reduction:

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

! I! I
q

�

�� q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

! I

�

��

q

x

y

qq

! I

! I
�

��

�

��

but not:

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

? I

! I

! I
q

�

�� q

y

x

q

�

��

�

��

Note that we need three axioms to replace the axiom:

(x := !y_z;y := !λw:M) 7! (x := ! I;y := !λw:M)

since we have to consider the cases when x = z, y = z, and x 6= z 6= y.

DEFINITION. 7!c is given by axioms:

(build) x := !(recD in M) 7!c recD in (x := !M)

(∇trav) x := !∇y;y := ?M 7!c x := !∇y;y := !M

(@trav) x := !y@z;y := ?M 7!c x := !y@z;y := !M

(_trav) x := !y_z;y := ?M 7!c x := !y_z;y := !M

(∇upd) x := !∇y;y := !λw:M 7!c x := !λw:M;y := !λw:M

(@upd) x := !y@z;y := !λw:M 7!c x := !M[z=w];y := !λw:M

(_upda) x := !y_z;y := !λw:M; z := !N 7!c x := ! I;y := !λw:M; z := !N

(_updb) x := !y_y;y := !λw:M 7!c x := ! I;y := !λw:M

(_updc) x := !y_x;y := !λw:M 7!c x := ! I;y := !λw:M

and structural rules:

(l)

D 7!c E

D;F 7!c E;F

(r)

D 7!c E

F;D 7!c F;E

(ν) D 7!c E

νx :D 7!c νx :E

Then D!c E iff D�7!c� E. 2

In the rest of this section, we shall show that !c is convergent and that !�

c is
confluent.

To begin with, we can show some properties of tag:

PROPOSITION 23.

1. tagx(tagy D) = tagy(tagx D)

2. tagx(tagx D) = tagx D

3. If D� E then tagx D� tagx E.

4. If D! E then tagx D!�1

tagx E.

61

5. If x is in whnf in D then x is in whnf in tagy D.

6. If x 6= y then x is in whnf in D iff x is in whnf in tagy D.

PROOF.

1. An induction on D.
2. An induction on D.

3. An induction on the proof of D� E.

4. An induction on the proof of D! E.
5. An induction on the proof that x is in whnf in D.

6.) An induction on the proof that x is in whnf in D.

(An induction on the proof that x is in whnf in tagy D. 2

We can show that reduction is independent of the choice of variables, so if y is
fresh then [y=x]D[y=x] has the same behaviour as D:

PROPOSITION 24. If y is fresh and x 6= z then:

1. If D! E then [y=x]D[y=x]! [y=x]E[y=x].

2. D+z iff [y=x]D[y=x]+z.

3. D+x iff [y=x]D[y=x]+y.

PROOF. Part 1 is an induction on the proof of D! E, and parts 2 and 3 follow.2

Any reduction D! E is a reduction of the form ν~x : (F;G)! ν~x : (F;H) where

G 7! H is an axiom. For example, the reduction:

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

? I

! I

! I
q

�

�� q

y

x

q

�

��

�

��

can be given as:

νz : (x := !z_y; z := ! I;y := ? I)! νz : (x := ! I; z := ! I;y := ? I)

and (x := !z_y; z := ! I) 7! (x := ! I; z := ! I) is an axiom.

PROPOSITION 25.

1. If D! E then D� ν~x : (F;G), E � ν~x : (F;H) and G 7!H is an axiom.

2. If D!c E then D� ν~x : (F;G), E � ν~x : (F;H) and G 7!c H is an axiom.

PROOF.

1. An induction on the proof of D! E.

2. An induction on the proof of D!c E. 2

We can use this to show that any reduction D � νx :D0

!c E must have come
from a reduction D0

!c E 0 and E � νx :E 0. This means that whether a variable is

62

local or global makes no differene to the reduction stragegy!c. This is not true

of!, because of garbage collection.

PROPOSITION 26. If D� νx :D0

!c E then D0

!c E 0 and E � νx :E 0.

PROOF. By Proposition 25.2:

νx :D0

� ν~x : (F;G) E � ν~x : (F;H) G 7!c H is an axiom

Then we can α-convert so that x 62~x, so by Proposition 22.4:

� either we have:

~x =~yy~z D0

� ν~y~z : ([x=y](F;G)[x=y])

and so, since all the axioms for 7!c are preserved by α-conversion:

D0

� ν~y~z : ([x=y](F;G)[x=y]) 7!c ν~y~z : ([x=y](F;H)[x=y])

and:

E � ν~x : (F;H)� νx :ν~y~z : ([x=y](F;H)[x=y])

� or we have:

(F;G)� νx :D00 D0

� ν~x :D00

and so, by Proposition 22.3 and the fact that all the axioms for 7!c involve

ν-less declarations:

F � νx :F0 D0

� ν~x : (F 0;G)

and so:

D0

� ν~x : (F 0;G) 7!c ν~x : (F 0;H)

and:

E � ν~x : (F;H)� νx :ν~x : (F 0;H)

In either case we have found an E 0 such that D0

!c E 0 and E � νx :E 0. 2

We would now like to show that!c is convergent, that is D+c
x iff D+x. Unfortu-

nately, it is not the case that any reduction D!� E can be matched by a reduction

D!�

c E, since:

� The reduction D!� E might include garbage collection.

� The reduction D!� E may include fork updating with an untagged node.

However, it is the case that any reduction D!� E can be matched by a reduction

D!�

c F, where F can be garbage collected to a declaration with fewer untagged

63

nodes than E. For example, the reduction:

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!

? I

! I

! I
q

�

�� q

y

x

q

�

��

�

��

!

�

��

�

��

q

x

y

q

! I

? I

can be matched by the reduction:

! I
q

�

��

? I
q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!c

! I! I
q

�

�� q

y

x

�

�	

q

q

q

�

��

!_
@

@R

�

��
!c

! I

�

��

q

x

y
qq

! I

! I
�

��

�

��

and:

! I

�

��

q

x

y
qq

! I

! I
�

��

�

��

can be garbage collected to:

�

��

! I

q

y

x

q

�

��

! I

which has fewer untagged nodes than:

�

��

�

��

q

x

y

q

! I

? I

More formally, we shall show that if D!� E then D!�

c!γ�? E, where D!γ E

means ‘D can be garbage collected to E’ and D �? E means ‘D has fewer un-

tagged nodes than E’.

DEFINITION. D�? E is given by axioms:

(refl) D�? D (?) (x := !M) �? (x := ?M)

and structural rules:

(lr)

D�? E D0

�? E 0

D;D0

�? E;E 0

(ν)

D�? E

νx :D�? νx :E

D!γ E iff D! E is proved using the (γ) axiom. 2

64

PROPOSITION 27. For closed D:

1. �? is a partial order.

2. D�?� E iff D��? E.

3. If D!γ!c E then D!c!γ E.

4. If D�?!c E then D!�1
c �? E.

5. If D�?!γ E then D!γ�? E.

6. If D! E then D!�

c!

�

γ�? E.

7. If D!� E then D!�

c!

�

γ�? E.

PROOF.

1. By definition, �? is reflexive. By induction on the proof of D �? E, we can
show that if D�? E �? D then D = E, and so�? is antisymmetric. By induc-

tion on the proof of D�? E, we can show that if D�? E �? F then D �? F ,

and so �? is transitive.

2. An induction on the proof of �.

3. If D!γ F !c E then by Proposition 25.1:

D� ν~x : (G;ν(wvH) :H) F � ν~x :G (2)

Then by Proposition 26:

E � ν~x : I G!c I (3)

Thus:

D

� ν~x : (G;ν(wvH) :H) (Eqn 2)

!c ν~x : (I;ν(wvH) :H) (Eqn 3)

!γ ν~x : I (γ)

� E (Eqn 3)

4. If D�? F!c E then by Proposition 25.2 we have:

F � ν~x : (G;H) E � ν~x : (G; I) H 7!c I is an axiom (4)

Then by part 2, and the definition of�?:

D� ν~x : (G0

;H0

) G0

�? G H0

�? H (5)

Then by analysis of the axiom H 7!c I, we can find:

I0 �? I H0

!

�

c I0 (6)

Thus:

D

� ν~x : (G0

;H0

) (Eqn 5)

!

�

c ν~x : (G0

; I0) (Eqn 6)

65

�? ν~x : (G; I0) (Eqn 5)

�? ν~x : (G; I) (Eqn 6)

� E (Eqn 4)

And so by part 2, D!�

c�? E.

5. Similar.

6. If D! E then by Proposition 25.1 we have:

D� ν~x : (F;G) E � ν~x : (F;H) G 7!H is an axiom (7)

Then we proceed by analysis on the axiom G 7!H:

(γ) D!γ E, so D!�

c!

�

γ�? E.

(_upd) This axiom has:

G = x := !y_z;y := !λw:M

H = x := ! I;y := !λw:M

There are three subcases:

(x = z) So by (_updc), G 7!c H, and so D!�

c!

�

γ�? E.

(y = z) So by (_updb), G 7!c H, and so D!�

c!

�

γ�? E.

(x 6= z 6= y) Since D is closed, z 2 wvF, and so either:

F � ν~y : (F 0

; z := !M) (8)

and we can α-convert so~y\ fvG =

/0, and so:

D

� ν~x : (F;G) (Eqn 7)

� ν~x : (ν~y : (F 0; z := !M);G) (Eqn 8)

� ν~x~y : (F 0; z := !M;G) (νmig)

!c ν~x~y : (F 0; z := !M;H) (_upda)

� ν~x : (ν~y : (F 0; z := !M);H) (νmig)

� ν~x : (F;H) (Eqn 8)

� E (Eqn 7)

or:

F � ν~y : (F 0; z := ?M) (9)

and we can α-convert so~y\ fvG =

/0, and so:

D

� ν~x : (F;G) (Eqn 7)

� ν~x : (ν~y : (F 0; z := ?M);G) (Eqn 9)

� ν~x~y : (F 0

; z := ?M;G) (νmig)

66

!c ν~x~y : (F 0

; z := !M;G) (_trav)

!c ν~x~y : (F 0

; z := !M;H) (_upda)

� ν~x : (ν~y : (F 0; z := !M);H) (νmig)

�? ν~x : (ν~y : (F 0; z := ?M);H) (Defn of�?)

� ν~x : (F;H) (Eqn 9)

� E (Eqn 7)

Thus, D!�

c!

�

γ�? E.

(others) The other axioms are axioms of 7!c, and so D!�

c!

�

γ�? E.

7. Let D!n E, and proceed by induction on n:

(n = 0) When n = 0, D� E, so trivially D!�

c!

�

γ�? E.

(n > 0) When n > 0, we have:

D!n E

) D!n�1

! E (Defn of!n)

) D!�

c!

�

γ�?! E (Indn)

) D!�

c!

�

γ�?!

�

c!

�

γ�? E (Part 6)

) D!�

c!

�

γ!
�

c�?!

�

γ�? E (Part 4)

) D!�

c!

�

c!

�

γ�?!

�

γ�? E (Part 3)

) D!�

c!

�

c!

�

γ!
�

γ�?�? E (Part 5)

) D!�

c!

�

γ�? E (Transitivity)

Thus D!�

c!

�

γ�? E. 2

We can then show that!c is convergent.

PROPOSITION 28. For closed D:

1. If x is in whnf in D and E �? D then x is in whnf in E.

2. If x is in whnf in D and E!γ D then x is in whnf in E.

3. If x is in whnf in D and D! E then x is in whnf in E.

4. !c is convergent.

PROOF.

1. An induction on the proof of E �? D.

2. By Proposition 25.1 D� ν~x : (F;ν(wvG) :G) and E � ν~x :F. Then since x is

in whnf in D, x is in whnf in F, so x is in whnf in E.

3. By Proposition 25.1 D� ν~x : (F;G), E � ν~x : (F;H) and G 7!H is an axiom.

Then since x is in whnf in D, either:

� x is in whnf in F, so x is in whnf in E.

� x is in whnf in G, so by case analysis of each axiom, x is in whnf in H, so

x is in whnf in E.

67

4. From the above:

D+c
x

) tagx D!�

c E;x is in whnf in E (Defn of +c
x)

) tagx D!� E;x is in whnf in E (!c �!)

) D+x (Defn of +x)

) tagx D!� E;x is in whnf in E (Defn of +x)

) tagx D!�

c F !�

γ G�? E;x is in whnf in E (Propn 27.7)

) tagx D!�

c F !�

γ G�? E;x is in whnf in G (Part 1)

) tagx D!�

c F !�

γ G�? E;x is in whnf in F (Part 2)

) D+c
x (Defn of +c

x)

Thus!c is convergent. 2

We can use the fact that!c is convergent to show that convergence is not affected
by local variables:

PROPOSITION 29. For closed D, if w 6= x then D+x iff νw:D+x.

PROOF.

) If D+x then we can find E such that tagx D!� E and x is in whnf in E, so

tagx(νw:D)!

� νw:E, and x is in whnf in νw:E. Thus νw:D+x.

(If νw:D+x then since!c is convergent, tagx(νw:D)!

�

c E, and x is in whnf

in E, so by Proposition 26 E � νw:F and tagx D!�

c F . Since x is in whnf in

E, x is in whnf in F , and so D+x. 2

PROPOSITION 30. For closed D:

1. If D� (D0

;x := ! recG in M)!c E then E � (D0

; localG in x := !M)

or E � (E 0;x := ! recG in M) and 8N : (D0

;x := !N)!c (E

0

;x := !N).

2. If D� (D0

;x := !∇y)!c E

then D0

� ν~x : (D00

;y := ?M) and E � ν~x : (D00

;y := !M;x := !∇y)

or D0

� ν~x : (D00

;y := !λw:M) and E � ν~x : (D00

;y := !λw:M;x := !λw:M)

or E � (E 0;x := !∇y) and 8M : (D0

;x := !M)!c (E

0

;x := !M).

3. If D� (D0

;x := !y@z)!c E

then D0

� ν~x : (D00

;y := ?M) and E � ν~x : (D00

;y := !M;x := !y@z)

or D0

� ν~x : (D00

;y := !λw:M) and E � ν~x : (D00

;y := !λw:M;x := !M[z=w])

or E � (E 0;x := !y@z) and 8M : (D0

;x := !M)!c (E

0

;x := !M).

4. If D� (D0

;x := !y_z)!c E

then D0

� ν~x : (D00

;y := ?M) and E � ν~x : (D00

;y := !M;x := !y_z)

or D0

� ν~x : (D00

; z := ?M) and E � ν~x : (D00

; z := !M;x := !y_z)

or D0

� ν~x : (D00

;y := !λw:M) and E � ν~x : (D00

;y := !λw:M;x := ! I)

or D0

� ν~x : (D00

; z := !λw:M) and E � ν~x : (D00

; z := !λw:M;x := ! I)

or E � (E 0;x := !y_z) and 8M : (D0

;x := !M)!c (E

0

;x := !M).

68

5. If D� (D0

;x := !λw:M)!c E then E 0 � (E 0;x := !λw:M).

6. If D� (D0

;x := ?M)!c E then E � (D0

;x := !M)

or E � (E 0;x := ?M) and D0

!c E 0.

PROOF. These all have similar proofs, we shall prove part 1 as an example. If

(D0

;x := ! recG in M)!c E then by Proposition 25.1 we have:

(D0

;x := ! recG in M)� ν~x : (H; I)

E � ν~x : (H;J) I 7! J is an axiom
(10)

Then by Propositions 22.3 and 22.5:

D0

� ν~x :D00

(D00

;x := ! recG in M)� (H; I) (11)

So by Propositions 22.1 and 22.2 either:

� we have:

H � (K;x := ! recG in M) D00

� (K; I) (12)

and so:

E

� ν~x : (H;J) (Eqn 10)

� ν~x : (K;x := ! recG in M;J) (Eqn 12)

� ν~x : (K;J);x := ! recG in M (νMIG)

and for any N:

D0

;x := !N

� ν~x :D00

;x := !N (Eqn 11)

� ν~x : (K; I);x := !N (Eqn 12)

!c ν~x : (K;J);x := !N (I 7!c J)

� or we have:

I � (K;x := ! recG in M) D00

� (H;K) (13)

so the axiom is either:

(build) so we have:

x := ! recG in M 7! localG in x := !M

in which case:

I � x := ! recG in M J � localG in x := !M K � ε (14)

and so:

E

� ν~x : (H;J) (Eqn 10)

� ν~x : (H; localG in x := !M) (Eqn 14)

69

� (ν~x :H; localG in x := !M) (νMIG)

� (ν~x : (H;K); localG in x := !M) (Eqn 14)

� (ν~x : (D00

); localG in x := !M) (Eqn 13)

� (D0

; localG in x := !M) (Eqn 11)

(_upda) We have:

z := !y_x;y := !λw:N;x := ! recG in M

7! z := ! I;y := !λw:N;x := ! recG in M

in which case:

I � z := !y_x;y := !λw:N;x := ! recG in M

J � z := ! I;y := !λw:N;x := ! recG in M

K � z := !y_x;y := !λw:N

(15)

and so:

E

� ν~x : (H;J) (Eqn 10)

� ν~x : (H; z := ! I;y := !λw:N;x := ! recG in M) (Eqn 15)

� ν~x : (H; z := ! I;y := !λw:N);x := ! recG in M (νMIG)

and for any N:

D0

;x := !N

� ν~x :D00

;x := !N (Eqn 11)

� ν~x : (H;K);x := !N (Eqn 13)
� ν~x : (H; z := !y_x;y := !λw:N);x := !N (Eqn 15)
� ν~x : (H; z := !y_x;y := !λw:N;x := !N) (νMIG)
!c ν~x : (H; z := ! I;y := !λw:N;x := !N) (_upda)

� ν~x : (H; z := ! I;y := !λw:N);x := !N (νMIG)

The other propositions are proved similarly. 2

PROPOSITION 31. !�1
c is confluent.

PROOF. If D!�1
c E and D!�1

c F then either D � E, D � F , or D!c E and

D!c F. The first two cases are trivial.

If D!c E and D!c F then by Propositions 25.1 we can find:

D� ν~x : (G; I) E � ν~x : (G;J) I 7! J is an axiom (16)

and by 26 we can find:

F � ν~x :H (G; I)!c H (17)

Then we proceed by case analysis on which axiom was used to show I 7! J. These

all have similar proofs, so we shall just show the case for (build). We have:

I � x := ! recK in M J � localK in (x := !M) (18)

70

Then by Proposition 30.1 either:

� we have:

H � (G; localK in x := !M) (19)

in which case:

E

� ν~x : (G;J) (Eqn 16)

� ν~x : (G; localK in x := !M) (Eqn 18)

� ν~x :H (Eqn 19)

� F (Eqn 17)

� or we have:

H � (L;x := ! recK in M (20)

and for any N:

(G;x := !N)!c (L;x := !N) (21)

Then let~y be wvK and let~z be fresh so:

E

� ν~x : (G;J) (Eqn 16)

� ν~x : (G; localK in x := !M) (Eqn 18)

� ν~x : (G;ν~z : ([~z=~y]K[~z=~y];x := !M[~z=~y])) (Defn of local)

� ν~x~z : (G; [~z=~y]K[~z=~y];x := !M[~z=~y]) (νMIG)

!c ν~x~z : (L; [~z=~y]K[~z=~y];x := !M[~z=~y]) (Eqn 21)

� ν~x : (L;νz : ([~z=~y]K[~z=~y];x := !M[~z=~y])) (νMIG)

� ν~x : (L; localK in x := !M) (Defn of local)

 c ν~x : (L;x := ! recK in M) (BUILD)

� ν~x :H (Eqn 20)

� F (Above)

The other cases are similar, and so!�1
c is confluent. 2

PROPOSITION 32. For closed D, if D!c E then D+x iff E+x.

PROOF.

) If D!c E then we have the following diagram:

D!c � � �!c F

#c

E

71

where x is in whnf in F. Then since!�1
c is confluent we can complete the

diagram as:

D !c � � � !c F

#c #

�1
c #

�1
c #

�1
c

E !�1
c � � � !

�1
c G

Since x is in whnf in F, x is in whnf in G, and so E+x.

(Follows from the definition of D!x. 2

3.7 Operational properties: independence from tagging

The denotational semantics for tagged declarations (x := !M) and untagged dec-
larations (x := ?M) is the same, despite the fact that tagged and untagged decla-

rations have very different operational behaviour. For example the declaration:

νy : (x := ! I;y := !Ω)

can diverge, whereas the declaration:

νy : (x := ! I;y := ?Ω)

cannot. However, both of them can reach whnf at x, and since the testing equiv-

alence is based on reaching whnf, they are testing equivalent. In this section, we

will show that convergence is independent of tagging, that is:

D+x iff tagy D+x

and that this means that convergence is independent of reduction, that is:

if D! E then D+x, E+x

For example, even though the declaration:

νy : (x := ! I;y := !Ω)

can diverge, and the declaration:

x := ! I

cannot, they have the same convergent behaviour, since:

νy : (x := ! I;y := !Ω)! (x := ! I)

In order to show that convergence is independent of tagging, we shall present a

reduction strategy!x, where a reduction D!x E will take place only when the

72

reduction is needed in order to evaluate x. For example, we will allow:

?M

!∇!∇

?
q

q
q

?N

q
q
q
?

x

!@

�

��

q

q

q

�

�	

@

@R

�

��

�

��

�

��

�

��

!x

!M

!∇!∇

?
q

q
q

?N

q
q
q
?

x

!@

�

��

q

q

q

�

�	

@

@R

�

��

�

��

�

��

�

��

since we need to evaluate M in order to evaluate x, but:

?M

!∇!∇

?
q

q
q

?N

q
q
q
?

x

!@

�

��

q

q

q

�

�	

@

@R

�

��

�

��

�

��

�

��

6!x

!N

�

��

�

��

�

��

@

@R

�

�	

q

q

q

�

��

!@

x

?
q

q
qq

q
q
?

!∇ !∇

?M

�

��

since we may not need to evaluate N in order to evaluate x. In the rest of this

section we will:

� Define the reduction strategy!x

� Show that D+x iff tagx D!�

x E and x is in whnf in E.

� Show that if D�? E!�

x F and x is tagged in D then D!�

x�? F .

� From this, show that if D�? E then D+x iff E+x.

� Show that if D γ!x E then D!x γ E.

� From this, show that if D! E then D+x iff E+x.

First we can define the reduction strategy!x �!c:

DEFINITION. !x is given by axioms:

(build) D;x := ! recE in M !x D; localE in (x := !M)

(∇trav) D;x := !∇y;y := ?M !x D;x := !∇y;y := !M

(@trav) D;x := !y@z;y := ?M !x D;x := !y@z;y := !M

(_trav) D;x := !y_z;y := ?M !x D;x := !y_z;y := !M

(∇upd) D;x := !∇y;y := !λw:M !x D;x := !λw:M;y := !λw:M

(@upd) D;x := !y@z;y := !λw:M !x D;x := !M[z=w];y := !λw:M

(_upda) D;x := !y_z;y := !λw:M; z := !N !x D;x := ! I;y := !λw:M; z := !N

(_updb) D;x := !y_y;y := !λw:M !x D;x := ! I;y := !λw:M

(_updc) D;x := !y_x;y := !λw:M !x D;x := ! I;y := !λw:M

and structural rules:

73

(∇ind) D;x := !∇y!y E

D;x := !∇y!x E

(@ind)

D;x := !y@z!y E

D;x := !y@z!x E

(_ind)

D;x := !y_z!y E

D;x := !y_z!x E

(�)

D�!x� E

D!x E

(ν) D!x E

νy :D!x νy :E

[x 6= y]

Let D!
:x E iff D!c E and D 6!x E. 2

PROPOSITION 33. If D!x E then D;F !x E;F.

PROOF. An induction on the proof of D!x E. 2

Informally, D!x E if the reduction D!c E takes place on the x-spine of D, for

example:

q

?λw:M

�

�	

?@

�

��

q

q

q

p

p

p

�

�	

�

�	

x

q

q

q

!@

�

��

?@

�

��

q

q

q

�

�	

@

@R

@

@R

@

@R

�

�
	

!

�

x

!λw:M

�

�
	

q

�

��

!@

q

q

q

�

��

!@

q

q

q

@

@R

@

@R

@

@R

�

�	

�

��

!@

q

q

q

x

�

�	

�

�	

p

p

p

�

�	

since each of the nodes that are tagged are on the x-spine. More formally, we can

define the x-spine of D to be all the variables where D ` x� y:

DEFINITION. D ` x� y is given by axioms:

(refl) D ` x � x

(∇ind) D;x := !∇y ` x � y

(@ind) D;x := !y@z ` x � y

(_ind) D;x := !y_z ` x � y

and structural rules:

(trans)

D ` x� y� z

D ` x� z

(�)

D� E ` x� y

D ` x� y

(ν) D ` x� y

νz :D ` x� y

[x 6= z 6= y]

D ` x � y is pronounced ‘In D, x spines to y’. 2

PROPOSITION 34.

74

1. If D ` x� y then D;E ` x� y.

2. If νx :D ` y� z then D ` y� z.

3. If x 6= y 6= z, w is fresh and D ` x � z then [w=y]D[w=y] ` x� z.

PROOF. Inductions on the proof of�. 2

Then we can show that D!x E iff there is a reduction on the x-spine of D:

PROPOSITION 35. D!x E iff D� ν~x :F, E � ν~x :G, F!y G is an axiom, and

F ` x � y.

PROOF.

) An induction on the proof of D!x E.

(An induction on the proof of F ` x� y. 2

PROPOSITION 36. If D ` x� y and D!y E then D!x E.

PROOF. By Proposition 35, D � ν~x :F, E � ν~x :G, F ` y � z and F !z G is an
axiom. Then by Proposition 34.2, F ` x � y, so by (trans), F ` x � z, so by

Proposition 35, D!x E. 2

PROPOSITION 37.

1. If D� (D0

;D00

), D ` x� z, x 2 wvD0 and z 2 wvD00

then 9y 2 rvD0

\wvD00

:D0

` x� y.

2. If D� (D0

;D00

), D ` x� z, and x; z 2 wvD0 then D0

` x� z

or 9y 2 rvD0

\wvD00

:D0

` x� y.

PROOF. An induction on the proof of D ` x� z.

1. The only difficult cases are (ν) and (trans). In the case of (ν) we have:

D = νw:E E ` x� z x 6= w 6= z

Then by Proposition 22.3 either:

� D0

� νw:E 0 and E � (E 0;D00

) so by induction we can find

y 2 rvE 0\wvD00 such that E 0 ` x� y. Then y 2 wvD00 so y 6= w, so
y 2 rvD0

\wvD00 and by (ν) D0

` x� y.

� D00

� νw:E 00 and E � (D0

;E 00) so by induction we can find

y 2 rvD0

\wvE 00 such that D0

` x� y. Then y 2 rvD0 so y 6= w, so
y 2 rvD0

\wvD00.

In the case of (trans) we have:

D ` x � w� z

Then either:

� w 2 wvD0 so by induction on Part 2 either:

75

� D0

` x � w, and by induction we can find y 2 rvD0

\wvD00 such that

D0

` w� y, so by (trans), D0

` x� y.

� 9y 2 rvD0

\wvD00

:D0

` x� y.

� w 2 wvD00 so by induction we can find y 2 rvD0

\wvD00 such that
D0

` x� y.

The other cases are simpler.

2. Is similar. 2

DEFINITION.

� x is tagged in x := !M.

� x is untagged in x := ?M.

� x is (un)tagged in D;E iff x is (un)tagged in D or E.

� x is (un)tagged in νy :D iff x 6= y and x is (un)tagged in D. 2

PROPOSITION 38. For closed D:

1. If D!c (E

0

;y := ?M) � E then D� (D0

;y := ?M) and D0

!c E 0.

2. If D!c E, y is untagged in D and tagged in E then D� ν~x : (F;y := ?M)

and E � ν~x : (F;y := !M).

3. If D!x E then x is tagged in D.

4. If D!c E � (E 0;x := !M) and x is tagged in D then D� (D0

;x := !M)

or D!x E.

5. If D!c E � νy :E 0 then D� νy :D0 and D0

!c E 0

or D� ν~x : (D0

; z := ! recF in M), E � ν~x : (D0

; localF in z := !M),

E 0 � ν~x : (D0

;F 0) and νy :F0 � localF in z := !M.

6. If D� (D0

;x := !M)!c (E

0

;x := !M) � E then D!x E

or 8N : (D0

;x := !N)!c (E

0

;x := !N).

7. If νx :D0

�D!y E then E � νx :E 0 and D0

!y E 0.

8. If D� (D0

;D00

)!x E then E � (E 0;D00

) and D0

!x E 0

or 9y 2 wvD00

:D0

` x� y.

PROOF.

1. By Proposition 25.1 we have:

D� ν~x : (F;G) E � ν~x : (F;H) G 7!c H is an axiom (22)

Then by Propositions 22.3 and 22.5 we have:

E 0 � ν~x :E 00 (F;H)� (E 00;y := ?M) (23)

Then by Propositions 22.2 and 22.1 either:

� we have:

F � (F 0

;y := ?M) (F 0;H) � E 00 (24)

76

and so:

D

� ν~x : (F;G) (Eqn 22)

� ν~x : (F 0

;y := ?M;G) (Eqn 24)

� ν~x : (F 0

;G);y := ?M (νmig)

and:

ν~x : (F 0;G)

!c ν~x : (F 0

;H) (Eqn 22)

� ν~x :E 00 (Eqn 24)

� E 0 (Eqn 23)

� or we have:

H � (H0

;y := ?M) (F;H0

) � E 00

but by analysis of each axiom, there is no axiom G 7!c H where H con-
tains an untagged node, and so we have a contradiction.

2. By Proposition 25.1 we have:

D� ν~x : (G;H) E � ν~x : (G; I) H 7!c I is an axiom

Then since y is untagged in D and tagged in E, this means y must be tagged

in H and untagged in I, so the only axioms which could give H 7!c I are the
axioms for spine traversal. Thus we can find J such that H � (J;y := ?M) and

I � (J;y := !M). The result follows from setting F to be (G;J).

3. An induction on the proof of D!x E.

4. By Proposition 25.1:

D� ν~x : (F;G) E � ν~x : (F;H) G 7!c H is an axiom (25)

Then by Propositions 22.3 and 22.5:

E 0 � ν~x :E 00 E 00;x := !M � F;H (26)

Then by Propositions 22.2 and 22.1, either:

� we have:

F � (F 0

;x := !M) E 00 � (F 0

;H) (27)

so:

D

� ν~x : (F;G) (Eqn 25)

� ν~x : (F 0

;x := !M;G) (Eqn 27)

� ν~x : (F 0

;G);x := !M (νMIG)

77

� or we have:

H � (H0

;x := !M) E 00 � (F;H0

) (28)

so by case analysis on which axiom could give G 7!c H, either:

� we have G!x H and so:

G!x H

) F;G!x F;H (Propn 33)

) ν~x : (F;G)!x~x : (F;H) (ν)

) D!x E (Eqn 25)

� we have G� (G0

;x := !M) and so:

G� (G0

;x := !M)

) ν~x : (F;G)� ν~x : (F;G0

;x := !M) ((l), (r) and (ν))

) D� ν~x : (F;G0

;x := !M) (Eqn 25)

) D� ν~x : (F;G0

);x := !M (νMIG)

5. By Proposition 25.1:

D� ν~w : (G;H) E � ν~w : (G; I) H 7!c I is an axiom (29)

Then we can α-convert so that y 62~y, and by Propositions 22.4 and 22.3 either:

� we have:

~w =~yw~z E 0 � ν~y~z : [y=w](G; I)[y=w] (30)

so:

D

� ν~w : (G;H) (Eqn 29)

� ν~yw~z : (G;H) (Eqn 30)

� ν~yy~z : [y=w](G;H)[y=w] (α)

� νy~y~z : [y=w](G;H)[y=w] (νswap)

and:

ν~y~z : [y=w](G;H)[y=w]

!c ν~y~z : [y=w](G; I)[y=w] (Eqn 29 and Propn 24.1)

� E 0 (Eqn 30)

� or we have:

G� νy :G0 E 0 � ν~w : (G0

; I) (31)

so:

D

� ν~w : (G;H) (Eqn 29)

� ν~w : (νy :G0

;H) (Eqn 31)

78

� νy~w : (G0

;H) ((νmig) and (νswap))

and:

ν~w : (G0

;H)

!c ν~w : (G0

; I) (Eqn 29)

� E 0 (Eqn 31)

� or we have:

I � νy : I0 E 0 � ν~w : (G; I0)

so by analysis of each axiom that could give H 7!c I, we find that the only

possibility is (build) in which case:

D � ν~w : (G; z := ! recF in M)

E � ν~w : (G; localF in z := !M)

E 0 � ν~w : (G; I0)

νy : I0 � localF in z := !M

6. By Proposition 25.1:

D� ν~y : (G;H) E � ν~y : (G; I) H 7!c I is an axiom (32)

Then by Propositions 22.3 and 22.5 we have:

D0

� ν~y :D00

(D00

;x := !M) � (G;H)

E 0 � ν~y :E 00

(E 00;x := !M) � (G; I)

(33)

Then by Propositions 22.2 and 22.1 either:

� we have:

G� (G0

;x := !M) D00

� (G0

;H) E 00 � (G0

; I) (34)

so for any N:

D0

;x := !N

� (ν~y :D00

);x := !N (Eqn 33)

� (ν~y : (G0

;H));x := !N (Eqn 34)

7!c (ν~y : (G0

; I));x := !N (Eqn 32)

� (ν~y :E 00);x := !N (Eqn 34)

� E 0;x := !N (Eqn 33)

� or we have:

H � (H0

;x := !M) D00

� (G;H0

) I � (I0;x := !M) E 00 � (G; I0)

79

and by case analysis of each axiom which could give H!c I, we find that

either:

� G;H!x G; I and so D!x E.

� For any N, H0

;x := !N! I0;x := !N,
and so D0

;x := !N! E 0;x := !N.

7. By Proposition 35:

D� ν~x :F E � ν~x :G F ` y� z F !z G is an axiom (35)

and we can α-convert so that x 62~x. Then by Proposition 22.4 either:

� we have:

~x =~yw~z D0

� ν~y~z : [x=w]F[x=w] (36)

and so:

E

� ν~x :G (Eqn 35)

� ν~yw~z :G (Eqn 36)

� νx~y~z : [x=w]G[x=w] ((α) and (νswap))

by Proposition 24.1:

[x=w]F[x=w]!z [x=w]G[x=w]

by Proposition 34.3:

[x=w]F[x=w] ` y� z

and so:

D0

� ν~y~z : [x=w]F[x=w] (Eqn 36)

!y ν~y~z : [x=w]G[x=w] (Propn 35)
� or we have:

F � νx :F 0 D0

� ν~x :F0 (37)

so by analysis of each axiom:

G� νx :G0 F 0

!z G0 (38)

so:

E

� ν~x :G (Eqn 35)

� ν~xx :G0 (Eqn 38)

� νx~x :G0 (νswap)

80

by Proposition 34.2:

F 0 ` y� z

and so:

D0

� ν~x :F 0 (Eqn 37)

!y ν~x :G0 (Propn 35)

8. An induction on the proof of D!x E. The only difficult case is (ν), in which

case:

D� νz :F E � νz :G F !x G

So by Proposition 22.3 either:

� D0

� νz :F 0 and F � (F 0

;D00

) so by induction either:

� G� (G0

;D00

) and F 0!x G0, so D0

� νz :F 0

!x νz :G0 and
E � νz :G� νz : (G0

;D00

)� (νz :G0

;D00

).

� 9y 2 wvD00

:F 0 ` x� y so by (ν), D0

` x� y.

� D00

� νz :F 00 and F � (D0

;F00) so by induction either:

� G� (G0

;F 00) and D0

!x G0 so E � νz :G� νz : (G0

;F 00) � (G0

;D00

).

� 9y 2 wvF 00

:D0

` x� y. Then either:

2 x 2 wvD0 so by Proposition 37.1 we can find a variable
w 2 rvD0

\wvF 00 such that D0

` x� w. Then since w 2 rvD0,

w 2 rvD and so w 6= z, and so by (ν), D ` x� w.

2 x 2 wvD00 and by (sym), D ` x� x. 2

PROPOSITION 39. For closed D, if D!c!x F and x is tagged in D, then we

have D!x!c F.

PROOF. Assume D!c E !x F. Then we proceed by induction on the proof of

E!x F .

(build) We have:

E = E 0;x := ! recG in M F = E 0; localG in x := !M (39)

We can α-convert G so that wvG\ fvE 0 = /0. Then by Proposition 38.4 either:

� we have:

D� (D0

;x := ! recG in M) (40)

so by Proposition 38.6 either:

� we have D!x E, and so D!x!c F .

81

� or we have:

8N : (D0

;x := !N)!c (E

0

;x := !N) (41)

and so:

D

� D0

;x := ! recG in M (Eqn 40)

!x D0

; localG in x := !M (BUILD)

� localG in (D0

;x := !M) (νMIG)

!c localG in (E 0;x := !M) (Eqn 41)

� E 0; localG in x := !M (νMIG)

� F (Eqn 39)

� D!x E and so D!x!c F.

(∇trav) We have:

E = E 0;x := !∇y;y := ?M F = E 0;x := !∇y;y := !M (42)

By Proposition 38.1:

D�D0

;y := ?M D0

!c E 0;x := !∇y (43)

Then by Proposition 38.4 either:

� we have:

D0

�D00

;x := !∇y (44)

and so:

D

� D0

;y := ?M (Eqn 43)

� D00

;x := !∇y;y := ?M (Eqn 44)

!x D00

;x := !∇y;y := !M (∇trav)

� D0

;y := !M (Eqn 44)

!c E 0;x := !∇y;y := !M (Eqn 43)

� F (Eqn 42)

� or we have D0

!x E 0;x := !∇y, so by Proposition 33 D !x E, and so

D!x!c F.

(@trav) Is similar.

(_trav) Is similar.

(∇upd) We have:

E = E 0;x := !∇y;y := !λw:M F = E 0;x := !λw:M;y := !λw:M (45)

Then by Proposition 38.4 either:

82

� D�D0

;x := !∇y, so by Proposition 38.4 either:

� D� D00

;y := !λw:M, so by Propositions 22.2 and 22.1:

D � D000

;x := !∇y;y := !λw:M

Then by Proposition 38.6 either:

2 we have D!x E, and so D!x!c F.

2 or we have:

8N : (D000

;x := !N;y := !λw:M)!c (E

0

;x := !N;y := !λw:M)

(46)

and so:

D

� (D000

;x := !∇y;y := !λw:M) (Eqn 46)

!x (D000

;x := !λw:M;y := !λw:M) (∇upd)

!c (E 0;x := !λw:M;y := !λw:M) (Eqn 46)

� F (Eqn 45)

� D!y E, so by ∇ind D!x E, and so D!x!c F.

� D!x E, and so D!x!c F .

(@upd) Is similar.

(_upda) Is similar.

(_updb) Is similar.

(_updc) Is similar.

(�) We have E � E 0 !x F 0 � F so D !c E 0 !x F 0, and so by induction

D!x!c F 0 � F .

(ν) We have:

E = νy :E 0 F = νy :F0 E 0!x F 0 (47)

Then by Proposition 38.5 either:

� we have D� νy:D0 and D0

!c E 0. Then x is tagged in D0, so by induction

D0

!x!c F 0, and so D!x!c F .

� or we have:

D � ν~x : (D0

; z := ! recG in M)

E � ν~x : (D0

; localG in z := !M)

E 0 � ν~x : (D0

;G0

)

νy :G0

� localG in z := !M

(48)

83

Then:

E 0!x F 0

) ν~x : (D0

;G0

)!x F 0 (Eqn 47)

) νy~x : (D0

;G0

)!x νy :F0 (ν)

) ν~x : (D0

;νy :G0

)!x νy :F0 (νMIG)

Then by Proposition 38.7:

νy :F0 � ν~x :F 00 (D0

;νy :G0

)!x F 00 (49)

so by Proposition 38.8 either:

� we have:

F 00

� (F 000;νy :G0

) D0

!x F 000 (50)

Then:

D

� ν~x : (D0

; z := ! recG in M) (Eqn 48)

!x ν~x : (F 000

; z := ! recG in M) (Eqn 50)

!x ν~x : (F 000

; localG in z := !M) (BUILD)

� ν~x : (F 000

;νy :G0

) (Eqn 48)

� ν~x :F 00 (Eqn 50)

� νy :F0 (Eqn 49)
� F (Eqn 47)

� or we can find w 2 wv(νy : G0

) such that D0

` x � w, and since

wv(νy :G0

) = fzg, this means w = z, so D0

` x� z. Then:

true

) (D0

; z := ! recG in M)!z (D

0

; localG in z := !M) (BUILD)

) (D0

; z := ! recG in M)!x (D

0

; localG in z := !M) (Propn 36)

) ν~x : (D0

; z := ! recG in M)!x ν~x : (D0

; localG in z := !M) (ν)

) D!x E (Eqn 48)
(∇ind) We have:

E = E 0;x := !∇y E !y F

Then by Proposition 38.4 either:

� D�D0

;x := !∇y, so either:

� y is tagged in D, so by induction D !y!c F, and so by (∇ind)

D!x!c F .

� y is untagged in D, so by Propositions 22.2, 22.1 and 38.2:

D� (D00

;x := !∇y;y := ?M) E � (D00

;x := !∇y;y := !M)

84

so by (∇ind), D!x E, and so D!x!c F.

� D!x E, and so D!x!c F .

(@ind) Is similar.

(_ind) Is similar. 2

PROPOSITION 40. For closed D, if x is tagged in D and D!�

c E then D!�

x!

�
:x E.

PROOF. Let D!n
c E, and proceed by induction on n.

� If n = 0 then D� E so D!�

x!

�
:x E.

� If n > 0 then D !c F !n�1
c E, and by Proposition 23.4 x is tagged in F

so by induction F !�

x!

�
:x E, so by Proposition 39 D!�

x!c!

�
:x E, and so

D!�

x!

�
:x E. 2

PROPOSITION 41. For closed D, if x is tagged in D, D!
:x E and x is in whnf

in E then x is in whnf in D.

PROOF. By Proposition 25.1 we have:

D� ν~x : (F;G) E � ν~x : (F;H) G 7!c H is an axiom

Then by the definition of whnf, x 62~x and either:

� x is in whnf in F , so x is in whnf in D.

� x is in whnf in H, and by inspection of the axioms which could result in

G 7!c H we have either:

� G!x H and so D!x E which is a contradiction.

� x is in whnf in G and so x is in whnf in D. 2

PROPOSITION 42. For closed D, D+x iff tagx D!�

x E and x is in whnf in E.

PROOF.

) We have tagx D!�

c F and x is in whnf in F. By Proposition 40 we know that

tagx D!�

x E !�
:x F. By Proposition 23.4 x is tagged in E, so by Proposi-

tion 41 x is in whnf in E.

(We have tagx D!�

x E and so tagx D!� E. Thus D+x. 2

PROPOSITION 43. If tagy D0

= D !x E and x 6= y then E = tagy E 0 and

D0

!

�

x E 0.

PROOF. An induction on the proof of D!x E. 2

PROPOSITION 44. D+x iff tagy D+x.

PROOF.

85

) We have:

D+x

) tagx D!� E;x is in whnf in E (Defn of +x)

) tagy(tagx D)!

�

tagy E;x is in whnf in E (Propn 23.4)

) tagy(tagx D)!

�

tagy E;x is in whnf in tagy E (Propn 23.5)

) tagx(tagy D)!

�

tagy E;x is in whnf in tagy E (Propn 23.1)

) tagy D+x (Defn of +x)

(If x = y then:

tagy D+x

) tagx D+x (x = y)

) tagx(tagx D)!

� E;x is in whnf in E (Defn of +x)

) tagx D!� E;x is in whnf in E (Propn 23.2)

) D+x (Defn of +x)

If x 6= y then:

tagy D+x

) tagx(tagy D)!

�

x E;x is in whnf in E (Propn 42)

) tagy(tagx D)!

�

x E;x is in whnf in E (Propn 23.1)

) tagx D!�

x F;E � tagy F;x is in whnf in E (Propn 43)

) tagx D!�

x F;E � tagy F;x is in whnf in F (Propn 23.6)

) D+x (Propn 42)

Thus tagy D+x iff D+x. 2

COROLLARY 45. If D�? E then D+x iff E+x.

PROPOSITION 46. If D γ!x E then D!x γ E.

PROOF. By Proposition 25.1 we can find F and G such that:

D� ν~x :F ν~x : (F;ν(wvG) :G)!x E (51)

Then by Proposition 38.7 we can find H such that:

E � ν~x :H (F;ν(wvG) :G)!H (52)

Then by Proposition 38.8 we can find I such that:

H � (I;ν(wvG) :G) F ! I (53)

Thus:

D

� ν~x :F (Eqn 51)

!x ν~x : I (Eqn 53)

86

 γ ν~x : (I;ν(wvG) :G) (γ)

� ν~x :H (Eqn 53)

� E (Eqn 53)

Thus D!x γ E. 2

PROPOSITION 47. For closed D, if D! E then D+x iff E+x.

PROOF.

) If D!c E, then by Proposition 32, E+x.
If D!γ E, then by Propositions 42 and 23.4:

tagx D!x � � � !x F

#

�1
γ

tagx E

and x is in whnf in F, so by Proposition 46:

tagx D!x � � � !x F

#

�1
γ #

�1
γ #

�1
γ #

�1
γ

tagx E !x � � � !x G

and by Proposition 28.3 x is in whnf in G, and so E+x.
Otherwise D! E from (_upd) and since D 6!c E and D is closed:

D � ν~x : (F;w := !y_z;y := !λw:M; z := ?N) (54)

E � ν~x : (F;w := ! I;y := !λw:M; z := ?N) (55)

and so:

D

� ν~x : (F;w := !y_z;y := !λw:M; z := ?N) (Eqn 54)

�? ν~x : (F;w := !y_z;y := !λw:M; z := !N) (Defn of�?)

!c ν~x : (F;w := ! I;y := !λw:M; z := !N) (_upda)

�? ν~x : (F;w := ! I;y := !λw:M; z := ?N) (Defn of�?)

� E (Eqn 55)

Thus by Proposition 32 and Corollary 45, E+x.

(Follows from the definition of D!x. 2

For example, we can use this to show that extending a closed declaration does not

affect its convergence.

PROPOSITION 48. If Dv E, x 2 wvD, and D is closed, then D+x iff E+x.

PROOF. We can show by induction on the proof of v that:

D� ν~x :F E � ν~x : (F;G) wvG\ fvF =

/0

Then:

87

) If D+x then since!c is convergent, tagx(ν~x :F)!

�

c H and x is in whnf in H,

so by Proposition 26 tagx F !�

c I and H � ν~x : I, so x is in whnf in I. Then

tagx(ν~x : (F;G))!

�

c ν~x : (I;G), and so E+x.

(If E+x then by Proposition 29, ν(wvG) :E+x, so ν(wvG) :ν~x : (F;G)+x, so by

(νmig), ν~x : (F;ν(wvG) :G)+x, so by Proposition 47 ν~x :F+x, so D+x. 2

3.8 Operational properties: referential transparency

Referential transparency was introduced by EVANS (1968) to mean that the se-
mantics of a term should be the same as the semantics of a pointer to a term. In

our semantics this is the same as saying:

[[x := !∇y;y := !M]] = [[x := !M;y := !M]]

Denotationally, this is quite simple to prove (although it does require some non-

trivial reasoning about fixed points). But to prove this operationally is much

harder. We need to show that copying a section of graph is equivalent to making
a pointer into a section of graph. Much of the work in showing this turns out to

be in showing that if two variables point to the same term, then we can substitute

one for the other, that is:

[[(D;x := !M;y := !M)[x=z]]] = [[(D;x := !M;y := !M)[y=z]]]

In order to prove this operationally, we need to find some property of a declaration

(D;x := !M;y := M) which we can use as an operational invariant, so:

� If D satisfies the invariant and D[x=z]!c E then we can find an F such that

E!�

c F [x=z], and D[y=z]!�

c F [y=z], and F satisfies the invariant.

We can then use this to show that if D[x=z]+w then D[y=z]+w. Unfortunately, we

cannot use ‘x and y point to syntactically identical terms’ as the invariant, since:

x := !(recw := !M in ∇w);y := !(recw := !M in ∇w)

!

2 νvw: (v := !M[v=w];w := !M;x := !∇v;y := !∇w)

and although x and y are syntactically identical in the LHS, they are not syntacti-

cally identical in the RHS. However, they are identical up to α-conversion, and we
can use this as the basis of an invariant: simulation, based on MILNER’s (1989)

definition of bisimulation between processes. Informally, two variables x and y

are similar iff x points to M, y points to N, and M and N are identical, up to substi-

tution of similar variables. More formally, we can define a simulation for ν-less
declarations as:

DEFINITION. R � wvD�wvD is a ν-less D-simulation iff D is ν-less, and for
any x R y:

� If Dw (x := !M) then Dw (y := !N[~y=~z]), M = N[~x=~z], and~x R ~y.

88

� If Dw (x := ?M) then Dw (y := ?N[~y=~z]), M = N[~x=~z], and~x R ~y.

where~x R ~y iff 8i : xi R yi. 2

For example, if E is ν-less, and D is the declaration:

x := !M;y := !M;E

then one ν-less D-simulation is:

f(x;y)g

and so x is D-similar to y. If D is the declaration:

w := !y@z;x := !z@z;y := ! I; z := I

then one ν-less D-simulation is:

f(w;x); (y; z); (z; z)g

and so w is D-similar to x. If D is:

x := !∇x;y := !∇z; z := !∇y

then one ν-less D-simulation is:

f(x;y); (x; z)g

and so x is D-similar to y. We can generalize simulation to any declaration D by
converting it into the form ν~x :E, and finding a ν-less E-simulation:

DEFINITION.

� νx :R = f(y; z) j x 6= y R z 6= xg.

� R is a D-simulation iff D� ν~x :E, R 0 is a ν-less E-simulation, and R = ν~x :R 0.

� D ` x� y iff there is a D-simulation R with x R y. 2

For example, for any E, if D is the declaration:

x := !M;y := !M;E

then we can find a ν-less F such that E � ν~z : F, and we can α-convert E so

D � ν~z : (x := !M;y := !M;F), and f(x;y)g is a ν-less (x := !M;y := !M;F)-
simulation, so f(x;y)g is a D-simulation, and so:

(x := !M;y := !M;E) ` x � y

The rest of this section shows that:

� If D[x=z] ` x � y then D[x=z]+w iff D[y=z]+w.

� If D ` x� y then D+x iff D+y.

� We can use this to show referential transparency.

DEFINITION. Define ‘D is (un)tagged’ as:

89

� ε is tagged.

� x := !M is tagged.

� x := ?M is untagged.

� D;E is (un)tagged iff D and E are (un)tagged.

� νx :D is (un)tagged iff D is (un)tagged.

Define tagD as:

� tag ε = ε

� tag(x := !M) = (x := !M)

� tag(x := ?M) = (x := !M)

� tag(D;E) = tagD; tagE

� tag(νx :D) = νx : (tagD) 2

PROPOSITION 49.

1. If D `~x�~y then tagD `~x �~y.

2. If ν~w :D `~x�~y then D `~x�~y.

PROOF.

1. From the definition, if R is a ν-less D-simulation, then R is a ν-less tagD-
simulation. Thus, if R is a D-simulation, then R is a tagD-simulation. Thus,

if D `~x�~y then tagD `~x �~y.

2. If ν~w :D `~x�~y then let D� ν~v :E, and R be a ν-less E-simulation such that

~x R ~y. Then ν~v :R is a D-simulation, and so D `~x R ~y. 2

PROPOSITION 50. If D is ν-less, closed and tagged, D[~x=~z] `~x�~y,

and D[~x=~z]!c E, then E!�

c F[~x=~z], F[~x=~z] `~x�~y, and D[~y=~z]!�

c F[~y=~z].

PROOF. We proceed by analysis on which axiom gave D[~x=~z]!c E. We shall

prove the case for (build), since the others are simpler. Since D is ν-less and
tagged, we have:

D � ((x := ! recG in M);x1 := !M1; : : :;xn := !Mn)

E � ((localG in x := !M);x1 := !M1; : : :;xn := !Mn)[~x=~z]

and we can α-convert G so that wvG\ fvD =

/0. Then let ~w = wvG, and define

F � ν~w~w1 : : :~wn : (G;x := !M;F1; : : :;Fn) as:

� If D[~x=~z] ` x � xi then we can find M0

i ,~xi,~yi and~zi such that:

recG in M[~x=~z] = M0

i [~xi=~zi] Mi[~x=~z] = M0

i [~yi=~zi] ~xi R ~yi

Thus we can find Gi and Ni such that:

(recGi in Ni)[~xi=~zi] = recG in M (recGi in Ni)[~yi=~zi] = Mi

Let ~wi be fresh, and define:

Fi � ([~wi=~w]Gi[~wi=~w];x := !Ni[~wi=~w])

90

� Otherwise Fi = (xi := !Mi), and wi = ε.

Then:

� For each i such that D[~x=~z] ` x � xi, (xi := !Mi[~x=~z])!c ν~wi :Fi[~x=~z] and so

E!�

c F [~x=~z].

� Similarly, D[~y=~z]!�

c F [~y=~z].

� Let R be a ν-less D[~x=~z]-simulation such that~x R ~y. Then let R 0 be the small-

est relation containing R such that ~w~w~wi~wi R ~w~w j~w j~w. We can show R 0 is
a ν-less (G;x := !M;F1; : : :;Fn)[~x=~z]-simulation, and so F[~x=~z] `~x�~y. 2

PROPOSITION 51. For closed D:

1. If D[~x=~z] `~x�~y and D[~x=~z]+x then D[~y=~z]+x.

2. If D ` x� y then D+x iff D+y.

PROOF.

1. By Proposition 28.4 tagx D[~x=~z]!n
c E and x is in whnf in E. We now show

by induction on n that if D[~x=~z]!n
c E, x is in whnf in E, and D[~x=~z] `~x �~y

then D[~y=~z]+x.

By Proposition 20 we can find ν-less D0 such that tagD � ν~w :D0, and by

Propositions 27.4 and 26, D0

[~x=~z]!m
c E 0, m� n, and x is in whnf in E 0. Then:

� If m= 0 then x is in whnf in D0

[~x=~z], so x is in whnf in D[~y=~z], so D[~y=~z]+x.

� If m > 0 then D0

[~x=~z]!c F!m�1
c E 0 so by Proposition 50 F!�

c F 0[~x=~z],

F 0[~x=~z] `~x�~y and D0

[~y=~z]!�

c F 0[~y=~z]. Thus we have:

D0

[~x=~z]!c F !

m�1
c E 0

#

�

c

F 0[~x=~z]

so by confluence:

D0

[~x=~z]!c F !

m�1
c E 0

#

�

c #

�

c

F 0[~x=~z]!�m�1
c E 00

Since x is in whnf in E 0, x is in whnf in E 00, so by induction D0

[~y=~z]+x, so
by (ν), ν~w :D0

[~y=~z]+x, and so by Corollary 45, D[~y=~z]+x.

2. Is similar. 2

We can use this to show referential transparency:

PROPOSITION 52. For closed declarations:

1. (D;x := !∇y)+x iff (D;x := !∇y)+y.

2. (D;x := !M;y := !M)+z iff (D;x := !∇y;y := !M)+z.

91

PROOF.

1.) Show by induction on n that if ν~x : (D;x := !∇y)!n
c E and x is in whnf in

E, then ν~x : (D;x := !∇y)+y.
If n = 0 then we have a contradiction.

If n> 0 then we have ν~x :(D;x := !∇y)!c F!n�1
c E, and so by Propo-

sition 30.2 either:

F � ν~y : (D0

;x := !∇y)

and so by induction ν~x : (D;x := !∇y)+y, or:

F � ν~x : (D;x := !M;y := !M) M � λw:N

and so ν~x : (D;x := !∇y)+y.

(Is similar.

2.) Show by induction on n that if:

ν~x : (D;x := !M;y := !N) ` x� y

ν~x : (D;x := !M;y := !N)!

n
c E

z is in whnf in E

then ν~x : (D;x := !∇y;y := !N)+z.

If n = 0 then z is in whnf in ν~x : (D;x := !M;y := !N) and so:

ν~x : (D;x := !∇y;y := !N)+z

If n > 0 then we have:

ν~x : (D;x := !M;y := !N)!c F!<n
c E

We proceed by case analysis of the axiom for 7! used. Most of the cases

are similar, so we shall prove the case for (build) when:

M = recG in M0

N = recH in N 0

F � ν~x : (D;x := ! recG in M0

; localH in y := !N 0

)

(56)

We shall α-convert so thatwvD[fx;yg,wvG andwvH are disjoint. Then

we have:

ν~x : (D;x := ! recG in M0

; localH in y := !N 0

) !

<n
c E

#c

ν~x : (D; localG in x := !M0

; localH in y := !N 0

)

and so by confluence:

ν~x : (D;x := ! recG in M0

; localH in y := !N 0

) !

<n
c E

#c #

�1
c

ν~x : (D; localG in x := !M0

; localH in y := !N 0

)!

<n
c I

92

and by (νmig):

ν~x : (D; localG in x := !M0

; localH in y := !N 0

)

� ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !M0

;y := !N 0

)

and from the definition of simulation:

ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !M0

;y := !N 0

) ` x � y

so by induction:

ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !∇y;y := !N 0

)+z (57)

and so:

ν~x : (D;x := !∇y;y := !N)

� ν~x : (D;x := !∇y;y := ! recH in N 0

) (Eqn 56)

! ν~x : (D;x := !∇y; localH in y := !N 0

) (BUILD)

 ν~x : (D; localG in ε;x := !∇y; localH in y := !N 0

) (γ)

� ν~x :ν(wvG) :ν(wvH) : (D;G;H;x := !∇y;y := !N 0

) (νmig)

and so by Equation 57 and Proposition 47:

ν~x : (D;x := !∇y;y := !N)+z

The other cases are similar.

(Is similar. 2

3.9 Denotational properties

This section looks at some properties of the denotational semantics presented in

Section 3.3. In particular, we shall show that:

� wvD can be determined from [[D]].

� Concatenation is a commutative monoid, so [[D; (E;F)]] = [[(D;E);F]],

[[D;ε]] = [[D]] and [[D;E]] = [[E;D]].

� Syntactic renaming corresponds to semantic renaming, for example

[[M[y=x]]] = [[M]]� (x := ready).

� α-conversion is sound, so [[νx :D]] = [[νy : ([y=x]D[y=x])]] for fresh y.

We can use readx to make reasoning about this semantics easier:

PROPOSITION 53. f = g iff 8x : readx� f = readx�g

PROOF. Follows from the definition of readx. 2

For example, this means we could have used the following proposition as the def-
inition of newx f , (x := f), and setX f g:

93

PROPOSITION 54. If x 2 X and y 62 X then:

1. readx�newx f = readx

2. ready�newx f = ready� f

3. readx� (x := f) = f

4. ready� (x := f) = ready

5. readx� (setX f g) = readx� f �g

6. ready� (setX f g) = ready

PROOF. Follows from the definition of readx, newx f , (x := f), and setX f g. 2

Another useful property of �x is uniformity:

PROPOSITION 55. If 8i : f (gi) = h(f i) and f? =? then f (�xg) = �xh.

PROOF.

f (�xg)

= f (
W

fgn

? j n in ωg) (Defn of �x)

=

W

f f (gn

?) j n in ωg (f is continuous)

=

W

fhn

(f?) j n in ωg (Hypothesis)

=

W

fhn

? j n in ωg (Hypothesis)

= �xh (Defn of �x)

2

The written variables of a semantic function f can be defined as wv f :

DEFINITION. wv f = fx j readx� f 6= readxg. 2

For example (when h 6= readx):

wv(x := h) = fxg

wv(x := readx) = /0

wv(newx f) = (wv f)nfxg

wv(setX f g) � X

wv(f �g) � wv f [wvg

We can show that the semantic and syntactic definitions of ‘written variable’ co-
incide.

PROPOSITION 56.

1. If wv f � wvD then [[D]] = [[D]]� f .

2. wvD = wv[[D]]

PROOF.

1. We can show that if wv f � X then:

8i : (setXgi)� f = setXg(i� f)

94

?� f = ?

and so by uniformity:

�x(setXg)� f = �x(setXg)

From this it is easy to show by induction on D that [[D]] = [[D]]� f .

2. (wv[[D]]� wvD) An induction on D.

(wv[[D]]� wvD) If wv[[D]]wvD then find x 2 wvD and x 62 wv[[D]]. Then:

>

= readx� (x :=>) (Propn 54.3)

= readx� [[D]]� (x :=>) (x 62 wv[[D]])

= readx� [[D]]� (x :=?)� (x :=>) (Part 1)

= readx� (x :=?)� (x :=>) (x 62 wv[[D]])

= ?� (x :=>) (Propn 54.3)

= ? (?� f =?)

This is a contradiction, and so wv[[D]] � wvD. 2

We can now show that concatenation is a commutative monoid.

PROPOSITION 57. If wv f � X, wvg�Y , wvh� X, and X \Y =

/0 then:

1. setX f h = f �h

2. �x(setX f) = f ��x(setX f)

3. �x(set(X [Y)(f �g)) = g��x(set(X [Y)(f �g))

4. �x(set(X [Y)(g� f)) = �x(set(X [Y)(f �g))

5. �x(set(X [Y)(�x(setX f)��x(setY g))) = �x(set(X [Y)(f �g))

6. [[D]] = �x(set(wvD)[[D]])

7. [[D;ε]] = [[D]]

8. [[D;E]] = [[E;D]]

9. [[D; (E;F)]] = [[(D;E);F]]

PROOF.

1. For any x 2 X :

readx� setX f h

= readx� f �h (Propn 54.5)

For any x 62 X :

readx� setX f h

= readx (Propn 54.6)

= readx� f �h (x 62 wv f [wvh)

So by Proposition 53 setX f h = f �h.

95

2. Follows from part 1.

3. For any x 2Y :

readx��x(set(X [Y)(f �g))

= readx� f �g��x(set(X [Y)(f �g)) (Part 1)

= readx�g��x(set(X [Y)(f �g)) (x 62 wv f)

For any x 62Y :

readx��x(set(X [Y)(f �g))

= readx�g��x(set(X [Y)(f �g)) (x 62 wvg)

So by Proposition 53:

�x(set(X [Y)(f �g)) = g��x(set(X [Y)(f �g))

4. For any x 2 X [Y :

readx� set(X [Y)(g� f)(�x(set(X [Y)(f �g)))

= readx�g� f ��x(set(X [Y)(f �g)) (Propn 54.5)

= readx�g� f �g�x(set(X [Y)(f �g)) (Part 3)

= readx�g��x(set(X [Y)(f �g)) (Propn 57.2)

= readx��x(set(X [Y)(f �g)) (Part 3)

and for any x 62 X [Y :

readx� set(X [Y)(g� f)(�x(set(X [Y)(f �g)))

= readx (Propn 54.6)
= readx��x(set(X [Y)(f �g)) (Propn 54.6)

and so by Proposition 53:

set(X [Y)(g� f)(�x(set(X [Y)(f �g))) = �x(set(X [Y)(f �g))

and since �x f is the least fixed point of f :

�x(set(X [Y)(g� f)) � �x(set(X [Y)(f �g))

and so by a symmetrical argument:

�x(set(X [Y)(g� f)) = �x(set(X [Y)(f �g))

5. If f = g� f , we can show by induction on n that (setXg)n

?� f � f :

� (setXg)0

?� f =?� f � f .

� If x 2 X then:

readx� (setXg)n+1

?� f

= readx� (setXg)((setXg)n

?)� f (Defn of f n)

= readx�g� (setXg)n

?� f (Propn 54.5)

� readx�g� f (Indn)

96

= readx� f (f = g� f)

If x 62 X then:

readx� (setXg)n+1

?� f

= readx� (setXg)((setXg)n

?)� f (Defn of f n)

= readx� f (Propn 54.6)

Thus (setXg)n+1

?� f � f .

Thus:

f = g� f

)

W

f(setXg)n

?� f j n in ωg � f (Above)

)

W

f(setXg)n

? j n in ωg� f � f (� is continuous)

) �x(setXg)� f � f (Defn of �x)

For example, if wv f = X , wvg =Y and X \Y =

/0 then we have by part 3:

�x(set(X [Y)(f �g)) = f ��x(set(X [Y)(f �g))

and so by the above:

�x(setX f)��x(set(X [Y)(f �g)) � �x(set(X [Y)(f �g)) (58)

Similarly:

�x(setYg)��x(set(X [Y)(f �g)) � �x(set(X [Y)(f �g)) (59)

Thus:

set(X [Y)(�x(setX f)��x(setYg))(�x(set(X [Y)(f �g)))

= �x(setX f)��x(setY g)��x(set(X [Y)(f �g)) (Propn 57.1)

� �x(setX f)��x(set(X [Y)(f �g)) (Eqn 58)

� �x(set(X [Y)(f �g)) (Eqn 59)

And so since g f � f) �xg� f :

�x(set(X [Y)(�x(setX f)��x(setY g))) � �x(set(X [Y)(f �g)) (60)

Similarly, we can show:

�x(set(X [Y)(�x(setX f)��x(setY g)))

= �x(set(X [Y)(�x(setYg)��x(setX f))) (Propn 57.4)

= �x(setX f)��x(set(X [Y)(�x(setY g)��x(setX f))) (Propn 57.3)

= f ��x(setX f)��x(set(X [Y)(�x(setY g)��x(setX f))) (Propn 57.2)

= f ��x(set(X [Y)(�x(setY g)��x(setX f))) (Propn 57.3)

= f �g��x(set(X [Y)(�x(setX f)��x(setY g))) (Similar)

= set(X [Y)(f �g)(�x(set(X [Y)

(�x(setX f)��x(setYg)))) (Propn 57.1)

97

and so, since f = g f) �xg� f :

�x(set(X [Y)(�x(setX f)��x(setY g))) � �x(set(X [Y)(f �g))

which, together with Equation 60 gives:

�x(set(X [Y)(�x(setX f)��x(setY g))) = �x(set(X [Y)(f �g))
6. We have:

�x(setX f)

= �x(setX(f � id)) (Identity)

= �x(setX(�x(setX f)��x(set /0 id))) (Part 5)

= �x(setX(�x(setX f)� set /0 id(�x(set /0 id)))) (Unfold)

= �x(setX(�x(setX f)� id)) (set /0 f g = id)

= �x(setX(�x(setX f))) (Identity)

so we can show by induction on D that [[D]] = �x(set(wvD)[[D]]).

7. Follows immediately from the definition of [[D;ε]].
8. Follows immediately from part 4.

9. We have:

[[D; (E;F)]]

= �x(set(wv(D;E;F))([[D]]

��x(wv(E;F))([[E]]� [[F]]))) (Defn of [[D;E]])

= �x(set(wv(D;E;F))(�x(set(wvD)[[D]])

��x(wv(E;F))([[E]]� [[F]]))) (Part 6)

= �x(set(wv(D;E;F))([[D]]� [[E]]� [[F]])) (Part 5)

= [[(D;E);F]] (Similar)

Thus concatenation is a commuatative monoid. 2

Finally, we can show the relationship between semantic and syntactic relabelling

of free variables, and thus show the soundness of α-conversion.

PROPOSITION 58. If z is fresh and x 62 fvE then:

1. [[M[y=x]]] = [[M]]� (x := ready)

2. (x := ready)� [[D[y=x]]] = [[D]]� (x := ready) for any x;y 62 wvD

3. (x := read z)� [[[z=x]D[z=x]]] = (z := readx)� [[D]]� (x := read z)

4. [[νx :D]] = [[νz : ([z=x]D[z=x])]]

5. [[νx :νy :D]] = [[νy :νx :D]]

6. [[D;νx :E]] = [[νx : (D;E)]]

PROOF. An induction on the size of D and M.

1. The difficult case is to show:

[[(recD in M)[y=x]]] = [[recD in M]]� (x := ready)

98

If x 2 wvD then:

[[(recD in M)[y=x]]]

= [[recD in M]] (Defn of substitution)

= [[M]]� [[D]] (Defn of [[recD in M]])

= [[M]]� [[D]]� (x := ready) (Propn 56.1)

= [[recD in M]]� (x := ready) (Defn of [[recD in M]])

Otherwise, if y 2 wvD then, for fresh z:

[[(recD in M)[y=x]]]

= [[rec[z=y]D[z=y][y=x] in M[z=y][y=x]]] (Defn of substitution)

= [[M[z=y][y=x]]]� [[[z=y]D[z=y][y=x]]] (Defn of [[recD in M]])

= [[M]]� (y := read z)� (x := ready)� [[[z=y]D[z=y][y=x]]] (Indn on 1)

= [[M]]� (y := read z)� [[[z=y]D[z=y]]]� (x := ready) (Indn on 2)

= [[M]]� (z := ready)� [[D]]� (y := read z)� (x := ready) (Indn on 3)

= [[M[y=z]]]� [[D]]� (y := read z)� (x := ready) (Indn on 1)

= [[M]]� [[D]]� (y := read z)� (x := ready) (z is fresh)

= [[M]]� [[D]]� (x := ready) (Propn 56.1)

= [[recD in M]]� (x := ready) (Defn of [[recD in M]])

Otherwise:

[[(recD in M)[y=x]]]

= [[recD[y=x] in M[y=x]]] (Defn of substitution)

= [[M[y=x]]]� [[D[y=x]]] (Defn of [[recD in M]])

= [[M]]� (x := ready)� [[D[y=x]]] (Indn on 1)

= [[M]]� [[D]]� (x := ready) (Indn on 2)

= [[recD in M]]� (x := ready) (Defn of [[recD in M]])

The other cases are simpler.

2. The difficult cases are those involving �x, for example to show:

(x := ready)� [[z := !M[y=x]]] = [[z := !M]]� (x := ready)

We first show:

8i : (x := ready)� setfzg((z := [[M]])� (x := ready))i

= (setfx; zg(x := ready)�fzg(z := [[M]]))((x := ready)� i)

(x := ready)�? =?

(61)

and:

8i : setfzg(z := [[M]])i� (x := ready)

= (setfx; zg(x := ready)�fzg(z := [[M]]))(i� (x := ready))

?� (x := ready) =?

(62)

99

Then we can use uniformity twice to show:

(x := ready)� [[z := !M[y=x]]]

= (x := ready)��x(setfzg(z := [[M[y=x]]])) (Defn of [[x := !M]])

= (x := ready)��x(setfzg((z := [[M]])� (x := ready))) (Indn on 1)

= �x(setfx; zg(x := ready)� setfzg(z := [[M]])) (Unif on Eqn 61)

= �x(setfzg(z := [[M]]))� (x := ready) (Unif on Eqn 62)

= [[z := !M]]� (x := ready) (Defn of [[x := !M]])

The other cases are similar.

3. This has a similar proof to part 2.

4. If y 62 wv(νx :D) then:

ready� [[νx :D]]

= ready (y 62 wv[[νx :D]])

= ready� [[νz : ([z=x]D[z=x])]] (y 62 wv[[νz : ([z=x]D[z=x])]])

Otherwise:

ready� [[νx :D]]

= ready�newx[[D]] (Defn of [[νx :D]])

= ready� [[D]] (Propn 54.2)

= ready� (z := readx)� [[D]] (Propn 54.4)

= ready� (z := readx)� [[D]]� (x := read z) (Propn 56.1)

= ready� (x := read z)� [[[z=x]D[z=x]]] (Indn on 3)

= ready� [[[z=x]D[z=x]]] (Propn 54.4)

= ready�newz[[[z=x]D[z=x]]] (Propn 54.2)

= ready� [[νz : [z=x]D[z=x]]] (Defn of [[νx :D]])

Thus for any y:

ready� [[νx :D]] = ready� [[νz : [z=x]D[z=x]]]

and so [[νx :D]] = [[νz : [z=x]D[z=x]]].

5. Follows from the definition of new.

6. To begin with, we can show by induction on D that if x 62 fvD then:

(x :=?� [[D]]) = ([[D]]� x :=?) (63)

We can also show that:

(x :=?� f) = (x :=?�newx f) (64)

Then for any i:

x :=?� (set(wv(D;E))([[D]]� [[E]])i)

= x :=?� [[D]]� [[E]]� i (Propn 57.1)

100

= [[D]]� x :=?� [[E]]� i (Eqn 63)

= [[D]]� x :=?� [[E]]� x :=?� i (Propn 56.1)

= [[D]]� x :=?�newx[[E]]� x :=?� i (Eqn 64)

= x :=?� [[D]]�newx[[E]]� x :=?� i (Eqn 63)

= set(wv(D;E))(x :=?� [[D]]�newx[[E]])(x :=?� i) (Eqn 57.1)

Thus, since x :=?�?=?, we can apply unification and get:

x :=?��x(set(wv(D;E))([[D]]� [[E]]))

= �x(set(wv(D;E))(x :=?� [[D]]�newx[[E]]))

(65)

Similarly, we can show:

x :=?��x(set(wv(D;νx :E))([[D]]�newx[[E]]))

= �x(set(wv(D;E))(x :=?� [[D]]�newx[[E]]))

(66)

And so:

x :=?� [[νx : (D;E)]]

= x :=?�newx(�x(set(wv(D;E))([[D]]� [[E]]))) (Defn of [[νx : (D;E)]])

= x :=?��x(set(wv(D;E))([[D]]� [[E]])) (Eqn 64)

= �x(set(wv(D;E))(x :=?� [[D]]�newx[[E]])) (Eqn 65)

= x :=?��x(set(wv(D;νxstE))([[D]]�new x[[E]])) (Eqn 66)

= x :=?� [[D;νx :E]] (Defn of [[D;νx :E]])

From this, it is easy to show that [[νx : (D;E)]] = [[D;νx :E]]. 2

3.10 Logical properites

This section looks at some properties of the operational characterization of the
program logic given in Section 3.4. In particular, we shall show that:

� The logic respects duplication, so j= (D;x := !M;y := !M)[x=z] : ∆ iff

j= (D;x := !M;y := !M)[y=z] : ∆.

� The logic is referentially transparent, so j= (D;x := !∇y)[x=z] : ∆ iff

j= (D;x := !∇y)[y=z] : ∆.

� The logic is unaffected by local variables, so if x 62 wv∆ then j= D : ∆ iff

j= νx :D : νx :∆.

� The logic respects reduction, so if D! E then j= D : ∆ iff j= E : ∆.

PROPOSITION 59.

1. If y is fresh and j= D : ∆ then j= [y=x]D[y=x] : [y=x]∆.

2. If y is fresh and Γ j= D : ∆ then [y=x]Γ j= [y=x]D[y=x] : [y=x]∆.

3. If y is fresh and Γ j= M : φ then [y=x]Γ j= M[y=x] : φ.

PROOF. Follows from Proposition 24. 2

101

PROPOSITION 60. If D is closed andwvE\wv∆ =

/0 then j=D : ∆ iff j=(D;E) : ∆.

PROOF. We show by induction on φ that j= D : (x : φ) iff j= (D;E) : (x : φ). The

only difficult case is when φ = ψ!χ:

) Assume j= D : (x : ψ!χ). Then D+x so by Proposition 48 we have (D;E)+x.
Then for any (z := !x@y)v F w (D;E) wD, by induction:

j= F : (y : ψ)) j= F : (z : χ)

and so j= (D;E) : (x : ψ!χ).

(Assume j= (D;E) : (x : ψ!χ). Then (D;E)+x so by Proposition 48 we have
D+x. Then for any (z := !x@y)v F w D, let ~w = wvE, and~v be fresh, so:

j= (F; z := !x@y) : (y : ψ)

) j= [~v=~w](F; z := !x@y)[~v=~w] : [~v=~w](y : ψ) (Propn 59)

) j= ([~v=~w](F; z := !x@y)[~v=~w];E) : [~v=~w](y : ψ) (Indn)

) j= ([~v=~w](F; z := !x@y)[~v=~w];E) : [~v=~w](z : χ) (Hypothesis)

) j= [~v=~w](F; z := !x@y)[~v=~w] : [~v=~w](z : χ) (Indn)

) j= (F; z := !x@y) : (z : χ) (Propn 59)

and so j= D : (x : ψ!χ).

Then by induction on ∆, j= D : ∆ iff j= (D;w := !M) : ∆. 2

PROPOSITION 61. For closed declarations:

1. If j= (D;w := !M;x := !M) : (w : φ)

then j= (D;w := !M;x := !M) : (x : φ).
2. If j= (D;w := !M;x := !M; z := !w@y) : ∆

then j= (D;w := !M;x := !M; z := !x@y) : ∆.

3. j= (D;x := !∇w) : (x : φ) iff j= (D;x := !∇w) : (w : φ).
4. j= (D;x := !∇w; z := !x@y) : ∆ iff j= (D;x := !∇w; z := !w@y) : ∆.

5. j= (D;x := !M;y := !M)[x=z] : ∆ iff j= (D;x := !M;y := !M)[y=z] : ∆.

6. j= (D;x := !∇y)[x=z] : ∆ iff j= (D;x := !∇y)[y=z] : ∆.

7. j= (D;x := ?M) : ∆ iff j= (D;x := !M) : ∆

PROOF. These all have similar proofs, so we shall show parts 1 and 2 as an ex-

ample. We shall show by induction on φ that:

1. If j= (D;w := !M;x := !M) : (w : φ)

then j= (D;w := !M;x := !M) : (x : φ).
2. If j= (D;w := !M;x := !M; z := !w@y) : (v : φ)

then j= (D;w := !M;x := !M; z := !x@y) : (v : φ).

From this it is easy to show parts 1 and 2. The only difficult case is when
φ = ψ!χ.

102

1. Assume:

j= (D;w := !M;x := !M) : (w : ψ!χ) (67)

Then (D;w := !M;x := !M)+w so by Proposition 51.2:

(D;w := !M;x := !M)+x

For any (z := !x@y) v E w (D;w := !M;x := !M) either:

� z = w or z = x, so M = x@y, so (D;w := !M;x := !M)*x, which is a con-

tradiction.

� w 6= z 6= x, so by Proposition 22, we can find F such that:

(F;w := !M;x := !M; z := !x@y) � E (F; z := !x@y) wD (68)

Then, for fresh v:

j= E : (y : ψ)

) j= (F;w := !M;x := !M; z := !x@y) : (y : ψ) (Eqn 68)

) j= (F;w := !M;x := !M; z := !x@y;v := !x@y) : (y : ψ)(Propn 60)

) j= (F;w := !M;x := !M; z := !x@y;v := !w@y) : (y : ψ)(Indn on 2)

) j= (F;w := !M;x := !M; z := !x@y;v := !w@y) : (v : χ) (Eqn 67)

) j= (F;w := !M;x := !M; z := !x@y;v := !x@y) : (v : χ)(Indn on 2)

) j= (F;w := !M;x := !M; z := !x@y;v := !x@y) : (z : χ)(Indn on 1)

) j= (F;w := !M;x := !M; z := !x@y) : (z : χ) (Propn 60)

) E : (z : χ) (Above)

Thus for any (z := !x@y) v E w (D;w := !M;x := !M):

j= E : (y : ψ)) j= E : (z : χ)

and so j= (D;w := !M;x := !M) : (x : ψ!χ).

2. Assume:

j= (D;w := !M;x := !M; z := !w@y) : (v : ψ!χ) (69)

Then (D;w := !M;x := !M; z := !w@y)+v, and so by Proposition 51.1, we

have (D;w := !M;x := !M; z := !x@y)+v.

For any (t := !v@u)v E w (D;w := !M;x := !M; z := !x@y) either:

� t = z, so v = w and u = y. Then:

j= (D;w := !M;x := !M; z := !w@y) : (v : ψ!χ)

) j= (D;w := !M;x := !M; z := !w@y) : (w : ψ!χ) (v = w)

) j= (D;w := !M;x := !M; z := !w@y) : (x : ψ!χ) (Part 1)

and so, since (z := !w@y) v E w (D;w := !M;x := !M; z := !w@y):

j= E : (u : ψ)

103

) j= E : (y : ψ) (u = y)

) j= E : (z : χ) (Above)

) j= E : (t : χ) (t = z)

� t 6= z so by Proposition 22, we can find F such that:

E � (F;x := !M;y := !M; z := !x@y) F wD F w (t := !v@u) (70)

and so:

j= E : (u : ψ)

) j= (F;x := !M;y := !M; z := !x@y) : (u : ψ) (Eqn 70)

) j= (F;w := !M;x := !M; z := !w@y) : (u : ψ) (Indn on 2)

) j= (F;w := !M;x := !M; z := !w@y) : (t : χ) (Eqn 69)

) j= (F;w := !M;x := !M; z := !x@y) : (t : χ) (Indn on 2)

) j= E : (t : χ) (Indn on 2)

Thus for any (t := !v@u)v E w (D;w := !M;x := !M; z := !x@y):

j= E : (u : ψ)) j= E : (t : χ)

and so j= (D;w := !M;x := !M; z := !x@y) : (v : ψ!χ). 2

PROPOSITION 62. If (Γ;w : φ) j= M : ψ then (Γ^ y : φ) j= M[y=w] : ψ.

PROOF. For any D and x, find a fresh z, and so by Proposition 59 we have:
(Γ; z : φ) j= M[z=w] : ψ (71)

and:

j= (D;x := !M[y=w]) : Γ^ (y : φ)

) (D;x := !M[z=w][y=z]) : Γ^ (y : φ) (Substitution)
) (D;x := !M[z=w][y=z]; z := !∇y) : Γ^ (y : φ) (Propn 60)
) (D;x := !M[z=w]; z := !∇y) : Γ^ (y : φ) (Propn 61.6)

) (D;x := !M[z=w]; z := !∇y) : Γ^ (z : φ) (Propn 61.3)

) (D;x := !M[z=w]; z := !∇y) : (Γ; z : φ) (z is fresh)

) (D;x := !M[z=w]; z := !∇y) : (x : ψ) (Eqn 71)

) (D;x := !M[z=w][y=z]; z := !∇y) : (x : ψ) (Propn 61.6)

) (D;x := !M[z=w][y=z]) : (x : ψ) (Propn 60)

) (D;x := !M[y=w]) : (x : ψ) (Substitution)

Thus Γ^ (y : φ) j= M[y=w] : ψ. 2

PROPOSITION 63. For closed D:

1. If w 6= x then j= D : (x : φ) iff j= νw:D : (x : φ).
2. If j= D : ∆ then j= νw:D : νw:∆.

3. If j= νw:D : ∆ then j= D : ∆.

104

PROOF.

1. An induction on φ. The only difficult case is when φ = ψ!χ.

) If j= D : (x : ψ! χ) then D+x so by Proposition 29 νw :D+x. For any

(z := !x@y)v E w (νw:D), let v be fresh, by Proposition 22, we can find
F w (z := !x@y) such that:

E � νv:F F w [v=w]D[v=w] (72)

so by Proposition 59:

j= [v=w]D[v=w] : (x : ψ!χ) (73)

and so:

j= E : (y : ψ)

) j= νv:F : (y : ψ) (Eqn 72)

) j= F : (y : ψ) (Indn)

) j= F : (z : χ) (Eqn 73)

) j= νv:F : (z : χ) (Indn)

) j= E : (z : χ) (Eqn 72)

Thus j= νw:D : (x : ψ!χ).

(If:

j= νw:D : (x : ψ!χ) (74)

then νw:D+x so by Proposition 29 D+x.
For any (z := !x@y)v E wD, we can find F such that:

E � (F; z := !x@y) (75)

Then νw: (F; z := !x@y) w νw:D, so for fresh u and v:

j= E : (y : ψ)

) (F; z := !x@y) : (y : ψ) (Eqn 75)

) j= (F; z := !x@y;u := !∇y;v := !x@u) : (y : ψ) (Propn 60)

) j= (F; z := !x@y;u := !∇y;v := !x@u) : (u : ψ) (Propn 61.3)

) j= νw: (F; z := !x@y;u := !∇y;v := !x@u) : (u : ψ) (Indn)

) j= (νw: (F; z := !x@y);u := !∇y;v := !x@u) : (u : ψ) (νmig)

) j= (νw: (F; z := !x@y);u := !∇y;v := !x@u) : (v : χ) (Eqn 74)

) j= νw: (F; z := !x@y;u := !∇y;v := !x@u) : (v : χ) (νmig)

) j= (F; z := !x@y;u := !∇y;v := !x@u) : (v : χ) (Indn)

) j= (F; z := !x@y;u := !∇y;v := !x@y) : (v : χ) (Propn 61.6)

) j= (F; z := !x@y;u := !∇y;v := !x@y) : (z : χ) (Propn 61.1)

) j= (F; z := !x@y) : (z : χ) (Propn 60)

) j= E : (z : χ) (Eqn 75)

105

Thus j= D : (x : ψ!χ).

2. An induction on ∆, using part 1.

3. An induction on ∆, using part 1. 2

PROPOSITION 64.

1. If ` φ� ψ and j= D : (x : φ) then j= D : (x : ψ).

2. If ` Γ� ∆ and j= D : Γ then j= D : ∆.

3. If Γ� Γ0, Γ0 j= D : ∆0 and ` ∆0 � ∆ then Γ j= D : ∆.

4. If Γ� ∆, ∆ j= M : φ and ` φ� ψ then Γ j= M : ψ.

PROOF.

1. An induction on the proof of ` φ� ψ.

2. An induction on the proof of j= D : Γ.
3. Follows from part 2.

4. Follows from part 2. 2

PROPOSITION 65. For closed D:

1. If D� E then j= D : ∆ iff j= E : ∆.

2. If Dv E and j= D : ∆ then j= E : ∆.

3. If D!c E then j= D : ∆ iff j= E : ∆.

Thus, if E!�

c F then Γ j= E : ∆ iff Γ j= F : ∆.

PROOF.

1. A simple induction on ∆.

2. Follows from Propositions 60 and 63.

3. Show by induction on φ that D : (x : φ) iff E : (x : φ). The only difficult case
is when φ = ψ!χ. We then have two cases, depending on the axiom used in

proving D!c E:
(build). We shall show that if D : (x : ψ!χ) then E : (x : ψ!χ) since the

other direction is easier.

By Proposition 25.2 we can find ν-less F such that:

D � ν~x : (F;w := ! recG in M)

E � ν~x~y : (F;G;w := !M)

~y = wvG

For simplicity, we assume G is ν-less, and that the declaration (F;G) is
well-formed, as the general case is no more interesting. Then for any

(z := !x@y) vH w E:

� If w = z then D*x, which is a contradiction.

106

� If w = x then we can find fresh~y and I such that:

H � ν~x~y : (F;G; I;w := !M; z := !w@y) (76)

so let ~w=wvG, and let v and~v be fresh. Then since j= D : (x : ψ!χ),
by Proposition 59:

ν~x : (F;v := ! recG in M)[v=w] : (v : ψ!χ) (77)

and, from the definition of v:

(z := !v@y)

v ν~x : (F[v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y)

w ν~x : (F;v := ! recG in M)[v=w]

(78)

Then:

j= H : (y : ψ)

) j= ν~x~y : (F;G; I;w := !M; z := !w@y) : (y : ψ) (Eqn 76)

) j= (F;G; I;w := !M; z := !w@y) : (y : ψ) (Propn 63)

) j= (F;G; I; [v~v=w~w]G[v~v=w~w];

v := !M;w := !M; z := !w@y) : (y : ψ) (Propn 60)

) j= (F [v=w];G; I; [v~v=w~w]G[v~v=w~w];

v := !M[v=w];w := !M[v=w]; z := !v@y) : (y : ψ) (Propn 61.5)

) j= (F [v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y) : (y : ψ) (Indn)

) j= (F [v=w];G; I;v := !(recG in M)[v=w];

w := !M[v=w]; z := !v@y) : (z : χ) (Eqns 77 and 78)

) j= H : (z : χ) (Similarly)

Thus j= E : (x : ψ!χ).

� If x 6= w 6= z then the proof is similar.

(other) If D!c E is proved without (BUILD) then we can show that:

DvD0 implies D0

!c E 0 w E

E v E 0 implies DvD0

!c E 0

Then if j= D : (x : ψ!χ) then D+x so by Proposition 32, E+x. Then for

any (z := !x@y) v F w E, we can find G such that:

F � (G; z := !x@y) (79)

Then let w be fresh, so:

(w := !x@y) v (G;w := !x@y; z := !x@y)w E

107

and we can find H wD such that:

H!c F

Then:

j= F : (y : ψ)

) j= (G; z := !x@y) : (y : ψ) (Eqn 79)

) j= (G; z := !x@y;w := !x@y) : (y : ψ) (Propn 60)

) j= (H;w := !x@y) : (y : ψ) (Indn)

) j= (H;w := !x@y) : (w : χ) (j= D : (x : ψ!χ))

) j= (G; z := !x@y;w := !x@y) : (w : χ) (Indn)

) j= (G; z := !x@y;w := !x@y) : (z : χ) (Propn 61.1)

) j= (G; z := !x@y) : (z : χ) (Propn 60)

) j= F : (z : χ) (Eqn 79)

Thus for any (z := !x@y)v F w E:

j= F : (y : ψ)) j= F : (z : χ)

so j= E : (x : ψ!χ).
The other direction is shown similarly. 2

3.11 Full abstraction

In this section, we show that the model D is fully abstract for concurrent graph
reduction. This means that concurrent graph reduction has the same fully abstract

model as leftmost-outermost reduction, and so concurrent graph reduction has ex-

actly the same computational power as leftmost-outermost reduction.
This proof follows the same structure as Section 2.7

� We show that Γ`D : ∆ iff [[∆]]� [[D]][[Γ]], thus showing that the proof system

is sound and complete for the denotational semantics. This is Proposition 66,

the graph reduction equivalent of Proposition 15.

� We then show that if Γ ` D : ∆ then Γ j= D : ∆, and that if Γ j= D : ∆ then

[[∆]]� [[D]][[Γ]]. Thus the three presentations of the logic are equivalent. This

is Proposition 69, the graph reduction equivalent of Proposition 18.

� Finally, we show that full abstraction is gained by proving the three logical

presentations to be equivalent. This is Proposition 70, the graph reduction
equivalent of Proposition 19.

Thus, ABRAMSKY and ONG’s techniques can be adapted to graph reduction.

PROPOSITION 66.

1. Γ `M : φ iff [[φ]]� [[M]][[Γ]].
2. Γ `D : ∆ iff [[∆]]� [[D]][[Γ]].

108

PROOF.

SOUNDNESS ()) We have to prove the rules of Γ `M : φ and Γ `D : ∆ be

sound. For example, to prove (!), if [[∆]]� [[x := !M]][[Γ]] and [[φ]]� [[M]][[∆]]

then:

[[x : φ]]
� (x := [[M]])[[∆]] (Hypothesis)

� (x := [[M]])([[x := !M]][[Γ]]) (Hypothesis)

= [[x := !M]][[Γ]] (Propn 57.2)

The other cases are similar.

COMPLETENESS (() An induction on M and D. For example, if x 6= y and:

[[φ]]� [[x@y]][[Γ]]

then either [[φ]] =?, so ` φ = ω and so Γ ` x@y : φ, or:

[[φ]]� [[x@y]][[Γ]]

) [[φ]]� apply[[Γ(x)]][[Γ(y)]] (Defn of [[x@y]])

) [[Γ(y)!φ]]� [[Γ(x)]] (Propn 9.1)

) ` Γ(x) � Γ(y)!φ (Propn 12)

) ` Γ� x : Γ(y)!φ;y : Γ(y) (Defn of�)

) Γ ` x@y : φ ((�) and (@a))

The proofs for x@x, ∇x, x_y and x_x are similar. The proof for λx :M is
similar to that of Proposition 15. If:

[[φ]]� [[recD in M]][[Γ]] (80)

then:

[[φ]]
� [[recD in M]][[Γ]] (Eqn 80)

= [[M]]([[D]][[Γ]]) (Defn of [[recD in M]])

= [[M]](

W

f[[∆]] j [[∆]]� [[D]][[Γ]]g) (Propn 14)

=

W

f[[M]][[∆]] j [[∆]]� [[D]][[Γ]]g) (Continuity)

so since [[φ]] is compact we can find a ∆ such that:

[[φ]]� [[M]][[∆]] [[∆]]� [[D]][[Γ]]

so by induction:

∆ `M : φ Γ `D : ∆

and so by (rec):

Γ ` recD in M : φ

109

If [[∆]]� [[(x := !M)]][[Γ]] then:

[[∆]]
� [[(x := !M)]][[Γ]] (Hypothesis)

= �x(setfxg(x := [[M]]))[[Γ]] (Defn of [[x := !M]])

=

W

f(setfxg(x := [[M]]))

n

? j n in ωg[[Γ]] (Defn of �x)

=

W

f(setfxg(x := [[M]]))

n

?[[Γ]] j n in ωg (Continuity)

so since [[∆]] is compact, we can find an n such that:

[[∆]]� (setfxg(x := [[M]]))

n

?[[Γ]]
then we can show by induction on n that Γ ` (x := !M) : ∆:

� If [[∆]] � (setfxg(x := [[M]]))

0

?[[Γ]] then [[∆]] = ? so by Proposition 12

` ∆ = ε, so by (�) and (?) Γ ` (x := !M) : ∆.

� If [[∆]]� (setfxg(x := [[M]]))

n+1

?[[Γ]] then:

[[∆(x)]]
� (setfxg(x := [[M]]))

n+1

?[[Γ]]x (Hypothesis)

= [[M]]((setfxg(x := [[M]]))

n
?[[Γ]]) (Defn of set)

= [[M]](

W

f[[Θ]] j [[Θ]]� (setfxg(x := [[M]]))

n

?[[Γ]]g) (Propn 14)

=

W

f[[M]][[Θ]] j [[Θ]]� (setfxg(x := [[M]]))

n

?[[Γ]]g (Continuity)

so since [[∆(x)]] is compact we can find a Θ such that:

[[∆(x)]]� [[M]][[Θ]] [[Θ]]� (setfxg(x := [[M]]))

n

?[[Γ]]

so by induction:

Θ `M : ∆(x) Γ ` (x := !M) : Θ
and so by (!):

Γ ` (x := !M) : (x : ∆(x))

For any y 6= x:

true

) [[∆(y)]] = [[∆]]y (Defn of [[∆]])

) [[∆(y)]]� (setfxg(x := [[M]]))

n+1

?[[Γ]]y (Hypothesis)

) [[∆(y)]]� [[Γ]]y (Defn of set)

) [[∆(y)]]� [[Γ(y)]] (Defn of [[Γ]])

) ` Γ(y) � ∆(y) (Propn 12)

) ` νx :Γ� y : ∆(y) (Defn of�)

) Γ ` (x := !M) : (y : ∆(y)) ((?) and (�))

Thus 8y :Γ ` (x := !M) : (y : ∆(y)) and so Γ ` (x := !M) : ∆.

The proofs for x := ?M and D;E are similar, and the proof for νx :D is much

simpler. 2

110

PROPOSITION 67. If D! E then [[D]] = [[E]].

PROOF. This is a matter of proving each of the axioms for� and 7! to be sound.
The axioms for � are covered in Propositions 57 and 58.

Of the axioms for 7!, the axiom for graph building can be shown from Propo-

sition 58. The axioms for spine traversal are simple since [[y := ?M]] = [[y := !M]].
Garbage collection is equally simple, from the definition of new. This leaves the

axioms for updating which all have similar proofs, so we shall consider the case

of an indirection node. For any z 6= x:

read z� (x := ready)� [[y := !M]]

= read z� [[y := !M]] (Propn 54.4)

= read z� (x := [[M]])� [[y := !M]] (Propn 54.4)

and:

readx� (x := ready)� [[y := !M]]

= ready� [[y := !M]] (Propn 54.3)

= ready� (y := [[M]])� [[y := !M]] (Propn 57.2)

= [[M]]� [[y := !M]] (Propn 54.3)

= readx� (x := [[M]])� [[y := !M]] (Propn 54.3)

Thus for any z:

read z� (x := ready)� [[y := !M]] = read z� (x := [[M]])� [[y := !M]]

and so:

(x := ready)� [[y := !M]] = (x := [[M]])� [[y := !M]] (81)

Then:

[[x := !∇y;y := !λw:M]]

= �x(setfx;yg(�x(setfxg(x := ready))� [[y := !λw:M]])) (Defn of [[M]])

= �x(setfx;yg(�x(setfxg(x := ready))

��x(setfyg[[y := !λw:M]]))) (Propn 57.6)

= �x(setfx;yg(x := ready� [[y := !λw:M]])) (Propn 57.5)

= �x(setfx;yg(x := [[λw:M]]� [[y := !λw:M]])) (Eqn 81)

= �x(setfx;yg(�x(setfxg(x := [[λw:M]]))

��x(setfyg[[y := !λw:M]]))) (Propn 57.5)

= �x(setfx;yg(�x(setfxg(x := [[λw:M]]))� [[y := !λw:M]])) (Propn 57.6)

= [[x := !λw:M;y := !λw:M]] (Defn of [[M]])

The other cases are similar. 2

COROLLARY 68. If D+x then [[D]]σx 6= ?.

PROPOSITION 69.

� (Γ `M : φ)) (Γ j= M : φ)) ([[φ]]� [[M]][[Γ]]).

111

� (Γ `D : ∆)) (Γ j= D : ∆)) ([[∆]]� [[D]][[Γ]]).

PROOF.

SOUNDNESS (1) 2) This is a matter of proving each of the rules of Γ `M : φ
and Γ `D : ∆ sound.

(?) For any D and z, if j= (D; z := !M) : ε then by Proposition 64 we know
that j= (D; z := !M) : (z : ω). Thus j= M : ω.

(id) For any D and z, if j= (D; z := !∇x) : (x : φ) then by Proposition 61.4,

j= (D; z := !∇x) : (z : φ). Thus x : φ j= ∇x : φ.

(!e) For any D and z, if j= (D; z := !x@y) : (x : φ!ψ^ y : φ) then

j= (D; z := !x@y) : (x : φ!ψ) and j= (D; z := !x@y) : (y : φ), so

j= (D; z := !x@y) : (z : ψ). Thus x : φ!ψ^ y : φ j= x@y : ψ.

(_a) For any D and z, assume (D; z := !x_y) : (x : γ), so:

tagx(D; z := !x_y)!�

c E (82)

and x is in whnf in E, so:

(D; z := !x_y)

!

�1
c tagx(D; z := !x_y) (_trav)

!

�

c E (Eqn 82)

and by Propositions 30.4 and 30.5 either E � (F; z := ! I), or

E � (F; z := !x_y) and since x is in whnf in E, E!c (F; z := ! I). Thus:

(D; z := !x_y)!�

c (F; z := ! I)

and:

j= (F; z := ! I) : (z : φ!φ)

so by Proposition 65:

j= (D; z := !x_y) : (z : φ!φ)

Thus (x : γ) j= (x_y : φ!φ).

(_b) y : γ j= x_y : φ!φ is proved similarly.

(^) Assume Γ j= M : φ and Γ j= M : ψ.
Then for any D and z, if j= (D; z := !M) : Γ
then j= (D; z := !M) : (z : φ) and j= (D; z := !M) : (z : ψ)

so j= (D; z := !M) : (z : φ^ψ). Thus Γ j= M : (φ^ψ).

(�) Follows from Proposition 64.

(!) Assume Γ;w : φ j= M : ψ. Then for any D and x, assume

j= (D;x := !λw:M) : Γ. Then (D;x := !λw:M)+x, and for any

112

(z := !x@y) v E w (D;x := !λw:M), by Proposition 22 we can find F

such that:

(F;x := !λw:M; z := !x@y) � E (83)

so:

j= (D;x := !λw:M) : Γ

) j= E : Γ (Propn 60)

) j= (F;x := !λw:M; z := !x@y) : Γ (Eqn 83)

) j= (F;x := !λw:M; z := !M[y=w]) : Γ (@upd)

Thus:

j= E : (y : φ)

) j= (F;x := !λw:M; z := !x@y) : (y : φ) (Eqn 83)

) j= (F;x := !λw:M; z := !M[y=w]) : (y : φ) (@upd)

) j= (F;x := !λw:M; z := !M[y=w]) : Γ^ (y : φ) (^)

) j= (F;x := !λw:M; z := !M[y=w]) : (z : ψ) (Propn 62)

) j= (F;x := !λw:M; z := !x@y) : (z : ψ) (@upd)

) j= E : (z : ψ) (Eqn 83)

Thus (D;x := !λw:M) : (x : φ!ψ), and so Γ j= λw:M : φ!ψ.

(rec) Assume Γ j= D : ∆ and ∆ j= M : φ. Let~x = wvD and let~y be fresh.

Then by Proposition 59:

Γ j= [~y=~x]D[~y=~x] : [~y=~x]∆ (84)

[~y=~x]∆ j= M[~y=~x] : φ (85)

so for any E and z:

j= E; z := !(recD in M) : Γ

) j= E; localD in z := !M : Γ (BUILD)

) j= E;ν~y : (z := !M[~y=~x]; [~y=~x]D[~y=~x]) : Γ (Defn of local)

) j= ν~y : (E; z := !M[~y=~x]; [~y=~x]D[~y=~x]) : Γ (νmig)

) j= (E; z := !M[~y=~x]; [~y=~x]D[~y=~x]) : Γ (Propn 63)

) j= (E; z := !M[~y=~x]; [~y=~x]D[~y=~x]) : [~y=~x]∆ (Eqn 84)

) j= (E; z := !M[~y=~x]; [~y=~x]D[~y=~x]) : (z : φ) (Eqn 85)

) j= ν~y : (E; z := !M[~y=~x]; [~y=~x]D[~y=~x]) : (z : φ) (Propn 63)

) j= E;ν~y : (z := !M[~y=~x]; [~y=~x]D[~y=~x]) : (z : φ) (νmig)

) j= E; localD in z := !M : (z : φ) (Defn of local)

) j= E; z := ! recD in M : (z : φ) (BUILD)

Thus Γ j= recD in M : φ.

(?) For any E, if j= D;E : ν(wvD) :Γ then j= D;E : ν(wvD) :Γ. Thus

Γ j= D : ν(wvD) :Γ.

113

(^) Assume Γ j= D : ∆ and Γ j= D : Θ. Then for any E,

if j= D;E : ν(wvD) :Γ then j= D;E : ∆ and j= D;E : Θ,

so j= D;E : ∆^Θ. Thus Γ j= D : ∆^Θ.

(�) Follows from Proposition 64.

(!) Assume Γ j= (x := !M) : ∆ and ∆ j= M : φ. Then for any E, if

j= (x := !M);E : νx :Γ then j= (x := !M);E : ∆ so j= (x := !M);E : Θ.

Thus Γ j= (x := !M) : Θ.

(?) Follows from (!) and Proposition 61.7.

(l) Assume Γ j= D;E : ∆ and ∆ j= D : Θ. Then for any F, if

j= D;E;F : ν(wv(D;E)) :Γ then j= D;E;F : ∆ so j= D;E;F : Θ. Thus
Γ j= D;E : Θ.

(r) Assume Γ j= D;E : ∆ and ∆ j= D : Θ. Then Γ j= D;E : Θ follows

similarly.

(ν) Assume νx :Γ j= D : ∆. Then for any fresh y, by Proposition 59:

νx :Γ j= [y=x]D[y=x] : [y=x]∆ (86)

Then for any E and fresh y:

j= (νx :D);E : ν(wv(νx :D)) :Γ

) j= (νy : [y=x]D[y=x]);E : ν(wv(νx :D)) :Γ (α)

) j= νy : ([y=x]D[y=x];E) : ν(wv(νx :D)) :Γ (νmig)

) j= [y=x]D[y=x];E : ν(wv(νx :D)) :Γ (Propn 63)

) j= [y=x]D[y=x];E : ν(wv([y=x]D[y=x])) :νx :Γ (Defn of νx :Γ)

) j= [y=x]D[y=x];E : [y=x]∆ (Eqn 86)
) j= νy : ([y=x]D[y=x];E) : νy : [y=x]∆ (Propn 63)
) j= (νy : [y=x]D[y=x]);E : νy : [y=x]∆ (νmig)

) j= (νx :D);E : νx :∆ (α)

Thus Γ j= νx :D : νx :∆.

Thus the proof system is operationally consistent.

COMPLETENESS (2) 3) We first show by induction on ∆ that if D is closed and

j= D : ∆ then [[∆]]� [[D]]σ.

� If j= D : ε then [[ε]] = ?� [[D]]σ.

� If j= D : ∆;Γ then j= D : ∆ and j= D : Γ, so by induction [[Γ]]� [[D]]σ and

[[∆]]� [[D]]σ, so [[Γ;∆]] = [[Γ]]_ [[∆]]� [[D]]σ.

� If j= D : (x : ω) then [[x : ω]] =?� [[D]]σ.

� If j= D : (x : φ^ψ) then j= D : (x : φ) and j= D : (x : ψ) so by induction

[[x : φ]]� [[D]]σ and [[x : ψ]]� [[D]]σ, so [[x : φ^ψ]]� [[D]]σ.

114

� If j= D : (x : φ!ψ) then D+x so by Corollary 68 [[D]]σx 6= ?. Also, for

fresh y and z:

true

) [[y : φ]] = [[Dy:φ]]? (Defn of D∆)

) `Dy:φ : (y : φ) (Propn 66)

) `D;Dy:φ; z := !x@y : (y : φ) ((l) and (r))

) j= D;Dy:φ; z := !x@y : (y : φ) (Soundness)

) j= D;Dy:φ; z := !x@y : (z : ψ) (Defn of j=)

) [[z : ψ]]� [[D;Dy:φ; z := !x@y]]σ (Induction)

) [[ψ]]� [[D;Dy:φ; z := !x@y]]σz (Application)

) [[ψ]]� apply([[D]]σx)([[Dy:φ]]σy) (Defn of [[x@y]])

) [[ψ]]� apply([[D]]σx)[[φ]] (Defn of D∆)

) [[φ!ψ]]� [[D]]σx (Propn 9.1)

) [[x : φ!ψ]]� [[D]]σ (Defn of [[x : φ!ψ]])

Thus [[φ!ψ]]� [[D]]σ.

Thus we have:

j= D : ∆) [[∆]]� [[D]]σ (87)

If Γ j= D : ∆ then:

true

) [[ν(wvD) :Γ]] = [[Dν(wvD):Γ]]? (Defn of D∆)

) `Dν(wvD):Γ : ν(wvD) :Γ (Propn 66)

) `D;Dν(wvD):Γ : ν(wvD) :Γ ((?) and (r))

) j= D;Dν(wvD):Γ : ν(wvD) :Γ (Soundness)

) j= D;Dν(wvD):Γ : ∆ (Defn of j=)

) [[∆]]� [[D;Dν(wvD):Γ]]? (Eqn 87)

) [[∆]]� [[D]][[Γ]] (Defn of D∆)

If Γ j= M : φ then for fresh z:

true

) [[Γ]] = [[DΓ]]? (Defn of D∆)

) `DΓ : Γ (Propn 66)

) `DΓ; z := !M : Γ (L)

) j= DΓ; z := !M : Γ (Soundness)

) j= DΓ; z := !M : (z : φ) (Defn of j=)

) [[z : φ]]� [[DΓ; z := !M]]? (Eqn 87)

) [[z : φ]]� [[z := !M]][[Γ]] (Defn of D∆)

) [[φ]]� [[M]][[Γ]] (Application)

Thus the semantics is operationally complete. 2

115

PROPOSITION 70.

1. DvO E iff DvS E iff DvD E.

2. M vO N iff M vS N iff M vD N.

PROOF. Similar to Proposition 19. 2

Thus we have shown that D is fully abstract for concurrent graph

116

4 Conclusions

In this paper, we have investigated the relationship between the semantic notion of
full abstraction and the implementation technique of concurrent graph reduction.

We have shown that:

� Concurrent graph reduction can be given a simple operational presentation
in the style of BERRY and BOUDOL’s (1990) chemical abstract machine, and

MILNER’s (1991) polyadic π-calculus.

� The techniques of ABRAMSKY (1989) and ONG’s (1988) lazy λ-calculus can
be used to show that the fully abstract model for leftmost-outermost reduction

is also fully abstract for concurrent graph reduction.

� To show full abstraction, we discussed a confluent reduction strategy, the rela-
tionship between concurrent and sequential reduction, and referential trans-

parency. These properties are also important in implementations, and it is

reassuring that showing full abstraction and writing compilers have so many
issues in common.

This Chapter will discuss related work in the semantics of graph reduction, and

possible future work.

4.1 Related work

In this section, we discuss some related work on the relationship between denota-

tional or operational models of the λ-calculus. The papers described here are only
those most directly related to models of concurrent graph reduction. For a discus-

sion of models of tree reduction for the λ-calculus, see (BARENDREGT, 1984); for

a discussion of implementation of graph reduction, see (PEYTON JONES, 1987).

ABRAMSKY AND ONG. This paper is based on ABRAMSKY (1989) and ONG’s

(1988) Lazy λ-calculus, which is summarized in Chapter 2.

The main difference between their approach and that outlined here is that their
operational semantics is for tree reduction rather than graph reduction, and so

models β-reduction by substitution rather than sharing.

In addition, ABRAMSKY and ONG investigate applicative simulation as an al-
ternative characterization of the operational order. For closed terms from the λ-

calculus, M vA N iff:

� If M+ then N+.

� For any closed O, MOvA NO.

This can be adapted to the λ-calculus with rec as D j= xvA y iff:

� If D+x then D+y.

� For any closed E, if (x0 := !x@z;y0 := !y@z) v E w D then E j= x0 vA y0.

However, this definition does not relate directly to the proof of full abstraction,

in the way that ABRAMSKY and ONG’s definition does, and so was not used in
Chapter 3.

BOUDOL. Another paper based on leftmost-outermost reduction of the untyped

λ-calculus is BOUDOL’s (1992) λ-calculi for (strict) parallel functions. This pre-
sents an operational and denotational semantics for the λ-calculus extended with

call-by-value abstraction (λvx :M) and concurrency (M k N, which we wrote as

MMN). The decision to extend the λ-calculus with with P or with λv

:M and

M k N is somewhat arbitrary, since both are inter-definable:

λvx :M = λx :PxxM

M k N = Y(λx :λy :λz : (Pyz(λw: x(yw)(zw))))MN

PMN = ((λvx : I)M) k ((λvx : I)M)

In this paper we used P, since it has a simpler graph-reduction semantics, and

corresponds very closely to AUGUSTSSON’s oracular choice discussed below.
BOUDOL’s syntax allows for declarations, letD in λx :M, but his reduction

rule for declarations is by substitution rather than sharing, and so he models tree

reduction rather than graph reduction. Indeed, the main result of his paper is to
find a fully abstract model for the strict λ-calculus with parallelism, and it is dif-

ficult to see how such a result could be applied to graph reduction, since graph

reduction is usually used to evaluate non-strict languages.

ROSE. Another approach to cyclic declarations of the form recD in M is taken

by ROSE (1993), who defines an operational semantics for the λ-calculus ex-

tended with rec. He then shows that the λ-calculus with rec is a model for the

λ-calculus.
However, his semantics for declarations allows non-whnf declarations to be

copied, for example (in our syntax):

(recx := !M in x)) (recx := !M in M)

Thus his operational semantics does not correspond to graph reduction. However,
his techniques are useful for showing that the λ-calculus with rec is a model for

the λ-calculus, and it would be interesting to see if they could be applied to a

semantics with sharing. This is mentioned as being ‘current work’.

WADSWORTH. The study of graph reduction began with WADSWORTHs’ (1971)

thesis. He presents the notion of graph reduction, and shows that graph reduction

is correct for tree reduction of the untyped λ-calculus. His graphs are similar to

ours, but are rooted, do not include tagging information, and do not contain re-

118

cursive declarations, local variables or cycles. WADSWORTH also investigates the

relationship between graph reduction and the D∞ model of the untyped λ-calculus

(see (BARENDREGT, 1984) for more details), a topic which was later picked up
by LESTER (1989) and ABRAMSKY (1989) and ONG (1988).

BARANDREGT et al. There is a large body of work on term graph rewriting,

introduced by BARANDREGT et al. (1987), and surveyed by KENNAWAY et al.

(1993b) and the other papers in SLEEP et al.’s (SLEEP et al., 1993) book. Term
graphs are very similar to declarations, but are rooted, and do not include tagging

information, recursive declarations or local variables.

Term graphs are parameterized by a signature of combinators, and so model
combinator graph reduction, that is graph reduction with a fixed set of combina-

tors, such as S, K and I. Combinator graph reduction was used by TURNER (1979,

1985) in the implementation of SASL and Miranda.
Since term graphs do not have a fixed signature, they allow for more general

reduction strategies than ours. In particular they allow for a natural presentation

of type constructors and deconstructors.

However, since term graphs are so general, it is difficult to find denotational
models for term graph reduction. BARANDREGT et al. (1987) and KENNAWAY

et al. (1993a) show that term graph reduction is adequate for term tree reduction,

but it is not obvious whether more abstract models for term graph reduction be
developed.

LESTER. After WADSWORTH’s thesis, one of the first papers to investigate de-

notational semantics for graph reduction was LESTER’s (1989). He presents a
typed λ-calculus, and gives it three semantics:

� A denotational semantics based on STOY’s (1977) semantics for a typed λ-

calculus.

� An abstract operational semantics for graph reduction using digraphs, which
are very similar to our declarations.

� A concrete operational semantics for graph reduction based on JOHNSSON’s

(1984) G-machine.

He then shows that the denotational semantics is correct for the abstract opera-
tional semantics, which is in turn correct for the concrete operational semantics.

It is possible that the same techniques could be applied to our work, to find a fully

abstract semantics for the G-machine.

LAUNCHBURY. The approach most like ours is LAUNCHBURY’s (1993) natural

semantics for lazy evaluation. The differences between his operational semantics

and ours are:

119

� He presents a ‘large-step’ operational semantics ‘M+N’ rather than a ‘small-

step’ semantics ‘M! N’.

� He presents sequential rather than concurrent reduction, so at each stage there

is one node where reduction can take place. This allows him to give his reduc-

tions between terms of the form ‘recD in M’, where M is the term currently

being reduced.

� His syntax does not include local variables ‘νx :D’, does not distinguish be-

tween tagged and untagged nodes, and does not include fork nodes ‘y_z’. It
does allow applications of the form ‘Mx’ rather than just ‘x@y’.

His semantics is (rewritten in our syntax):

(recD in λx :M) + (recD in λx :M)

(recD in x) + (recE in λz :N) (recE in N[y=z]) + (recF in O)

(recD in x@y) + (recF in O)

(recD in M) + (recE in N)

(recD;x := !M in x) + (recE;x := !N in N)

(recD;E in M) + (recF in N)

(recD in recE in M) + (recF in N)

[fvD\wvE =

/0]

Then it is easy to see that LAUNCHBURY’s semantics is a subset of ours, in that

if:

(recD in M) + (recE in N)

then:

(localD in x := !M)!

�

(localE in x := !N)

However, since LAUNCHBURY’s semantics is designed to model sequential rather

than concurrent reduction, our semantics has some reductions which cannot be

matched by his, for example:

(localy := ! I I in x := ! I)! (local y := ! I in x := ! I)

But since the main result of LAUNCHBURY’s paper is to show that D is an ade-

quate model for his semantics, we have for free that our semantics is adequate for

his. Thus by showing that D is fully abstract for concurrent graph reduction, we

have also shown that concurrent graph reduction is adequate for LAUNCHBURY’s
model of sequential graph reduction.

LAUNCHBURY has investigated a number of properties of his semantics which

have not been covered here, such as space- and time-complexity, update analy-
sis (LAUNCHBURY et al., 1992), and combinators. It is an open problem as to

whether these approaches can be directly translated into our semantics.

120

PURUSHOTHAMAN AND SEAMAN. Another approach to the operational se-

mantics of graph reduction is PURUSHOTHAMAN and SEAMAN’s (1992) LAZY-

PCF+SHAR, which extends PLOTKIN’s (1977) PCF with let declarations. This is
given a big-step operational semantics of the form (in our syntax):

(letD in M) + (letE in N)

This semantics is similar to ours and LAUNCHBURY’s, except that:

� LAZY-PCF+SHAR is a typed language, and has constructors and deconstruc-

tors for booleans and natural numbers.

� Since let-expressions are being used rather than rec-expressions, the seman-

tics for fixed points lose some sharing information:

(letD in letx := !(µx :M) in M) + (letE in N)

(letD in µx :M) + (letE in N)

Extending the semantics to deal with rec-expressions is ongoing work.

� Garbage collection is not modelled, except in the case when an expression is

of ground type (Bool or Int). If M is a function, then their reduction rule for

let is:

(letD;x := !N in M) + (letD0

;x := !N 0

in M0

)

(letD in letx := !N in M) + (letD0

in letx := !N 0

in M0

)

But if M is of ground type, then it has no free variables, and so garbage col-

lection can be performed:

(letD;x := !N in M) + (letD0

;x := !N 0

in M0

)

(letD in letx := !N in M) + (letD0

in M0

)

This is the only form of garbage collection given for LAZY-PCF+SHAR.

PURUSHOTHAMAN and SEAMAN show that LAZY-PCF+SHAR can be given an

adequate semantics in the same domain as PCF. It is an open problem as to

whether LAZY-PCF+SHAR with parallel conditionals can be given a fully abstract
semantics in the same domain as PCF with parallel conditionals.

ARIOLA AND ARVIND. The Graph Rewriting Systems (GRS’s) of ARIOLA and
ARVIND (1993) are very similar to the declarations introduced in this paper. The

only differences are:

� GRS’s are not explicitly designed for parallel evaluation, and so do not distin-
guish between tagged and untagged nodes.

� Local variables are provided by a declaration localD inE rather than by νx :D.

� GRS’s allow for arbitrary term rewriting, rather than being specific to the un-

typed λ-calculus.

121

� GRS’s have a term ‘�’ to denote black holes such as recx := !x in x.

The operational semantics for GRS’s is very similar to ours and LAUNCHBURY’s,

for example one of their rules is (in our syntax):

(recD in (recE in M))! (recD;E in M)

This is the same as our (build) except that reduction is between terms rather than

declarations.

ARIOLA and ARVIND present an adequate model for GRS’s in terms of sets

of normal forms. Since GRS’s are independent of the term reductions, it is not
obvious whether a fully abstract semantics could be found.

THE AUTHOR. In a previous paper, the author (1993) presents an operational

semantics for concurrent graph reduction, and shows that graph reduction is cor-
rect for tree reduction. The improvements given in this paper are:

� The proof that the denotational model D is fully abstract for concurrent graph

reduction.

� The use of ABRAMSKY’s (1991) domain theory in logical form to structure
the proof of full abstraction.

� The presentation of the operational semantics directly in terms of declara-

tions, rather than introducing a new type of chemical solutions.

� The graphical presentation of graphs has been improved.

The translation of graph reduction into MILNER’s (1991) polyadic π-calculus has
been omitted, and is further work.

4.2 Future work

There are a number of open problems raised by this work.

SIMPLIFICATION. The operational proofs in Sections 3.6–3.8 are long and
rather tedious case analysis. To a degree, this is to be expected, since any

verification of a practical implementation technique is likely to involve extended

case analysis. However, it would be useful if a presentation could be found

which simplified and generalized the proofs given here.
An analogy can be drawn between the presentation of graph reduction by

WADSWORTH (1971) and BARENDREGT et al. (1987). The former makes explicit

mention of application and abstraction nodes, where the latter is a general theory
of graph and tree reduction.

Unfortunately, full abstraction results are often very syntax-dependent—for

example PLOTKIN’s (1977) proof of full abstraction for PCF with parallel condi-
tionals is very dependent on the syntax and operational semantics of PCF.

122

Finding a proof technique that is powerful enough to show full abstraction for

concurrent graph reduction, but does not rely on long case analysis is likely to be

quite difficult.

TYPED λ-CALCULI. The proofs given in this paper are only for the untyped λ-
calculus with recursive declarations. The non-strict functional languages which

are used in practice are typed, and have type constructors and deconstructors (usu-

ally in the form of pattern-matching).
Such constructors and deconstructors could be added to the λ-calculus with

recursive declarations. For example, the product type T �U with constructors

and deconstructors:

pair : T!U! (T �U) fst : (T �U)!T snd : (T �U)!U

could be added to the λ-calculus with recursive declarations as:

M ::= � � � j pair xy j fstx j sndx

with the operational semantics for fst given:

w := ! fstx;x := ?M 7! w := ! fstx;x := !M

w := ! fstx;x := !pair yz 7! w := !∇y;x := !pair yz

Unfortunately, this leaves the problem of giving a semantics for when x is a func-

tion:

x := ! fsty;y := !λw:M 7! x := !Something;y := !λw:M

One possibility would be to use a type system to bar such declarations, but this

would make the proof dependent on a choice of type system.

Another problem is that the proofs in Chapter 3 rely on the fact that D is a
lattice. If the boolean type were to be allowed, the model would no longer be a

lattice, and so the proofs would require the techniques of ABRAMSKY’s (1991)

domain theory in logical form, rather than the simpler logic of Chapter 2.

OTHER PARALLEL COMBINATORS. The parallel mechanisms given in this pa-

per are:

� Parallel evaluation of the form recx := !M in N.

� Parallel convergence of the form x_y.

Neither of these introduce any nondeterminism, which is one reason why con-

current graph reduction has the same fully abstract model as leftmost-outermost

reduction. In practice, languages often require a more powerful form of parallel

convergence, which returns the value of the term which reached whnf first. For
example, if we have a term:

pick : α!α!Bool

123

which says which of its arguments reached whnf, then we can write a function

which merges two lists as:

mergexsys = if(pickxsys)

then(merge

0

xsys)

else(merge

0 ysxs)

merge

0

[]ys = ys

merge

0

(x :: xs)ys = x :: (mergexsys)

The merge function can then be used, for example, in I/O routines which need to

merge two event streams.
The pick function could be added to the λ-calculus with rec as:

M ::= � � � j pickxy

with the operational semantics given:

x := !pickyz;y := ?M 7! x := !pickyz;y := !M

x := !pickyz; z := ?M 7! x := !pickyz; z := !M

x := !pickyz;y := !λw:M 7! x := ! true;y := !λw:M

x := !pickyz; z := !λw:M 7! x := ! false; z := !λw:M

This is the same operational semantics as y_z, except that we return true (λxy:x)

or false (λxy : y) rather than I.

Although it is simple to give an operational semantics for the λ-calculus with
recursive declarations and pick, finding a fully abstract model is non-trivial. For

example, pick is not referentially transparent, since:
[[rec(x := ?pick I I) in (x, x)]] = [[true]]

[[pick I I, pick I I]] = [[pick I I]]

This lack of referential transparency is caused by non-determinism, so one would
expect to need a model based on powersets. One open problem is to show that

any fully abstract model for leftmost-outermost reduction of the λ-calculus with

nondeterminism is also fully abstract for concurrent graph reduction with nonde-
terminism. One would then be able to apply the techniques of ONG (1993) or DE

’LIGUORO and PIPERNO (1992) to concurrent graph reduction.

Another approach, which is still nondeterministic, but retains referential

transparency, is AUGUSTSSON’s (1989) oracles, which have been implemented
in Lazy ML. This replaces pick with a choose function, that as a side-effect sets

an oracle variable recording the result.

In AUGUSTSSON’s implementation there are an unbounded number of ora-
cles, but we can simply model the case where there is only one oracle variable

called o. This is initially declared as o := !?, and can have one of three states:

124

?, l or r. The choose function could be added to the λ-calculus with recursive

declarations as:

M ::= � � � j choosexy

D ::= � � � j o := !? j o := ! l j o := ! r

with the operational semantics given:

x := !chooseyz;y := ?M 7! x := !chooseyz;y := !M

x := !chooseyz; z := ?M 7! x := !chooseyz; z := !M

o := !?;x := !chooseyz;y := !λw:M 7! o := ! l;x := !chooseyz;y := !λw:M

o := !?;x := !chooseyz; z := !λw:M 7! o := ! r;x := !chooseyz; z := !λw:M

o := ! l;x := !chooseyz 7! o := ! l;x := ! true

o := ! r;x := !chooseyz 7! o := ! r;x := ! false

This is the same operational semantics as pick as long as the o variable is ?.

Once the o variable has been set, choosexy always returns the same result. Thus,

choose is nondeterministic, but is referentially transparent, for example:

[[rec(x := ?choose I I) in (x, x)]] = [[true]]

[[choose I I, choose I I]] = [[true]]

It is an open problem to find a model for such an operator, which is referentially

transparent, but which may have side-effects.

References

ABRAMSKY, S. (1989). The lazy lambda calculus. In TURNER, D., editor, Declarative Programming.
Addison-Wesley.

ABRAMSKY, S. (1991). Domain theory in logical form. Ann. Pure Appl. Logic, 51:1–77.

ARIOLA, Z. M. and ARVIND (1993). Graph rewriting systems for efficient compliation. In SLEEP,
M. R., PLASMEIJER, M. J., and VAN EEKELEN, M. C. J. D., editors, Term Graph Rewriting: The-

ory and Practice, chapter 6. John Wiley and Sons.

AUGUSTSSON, L. (1984). A compiler for lazy ML. In Proc. ACM Symp. Lisp and Functional Pro-

gramming, pages 218–227.

AUGUSTSSON, L. (1989). Non-deterministic programming in a deterministic functional language.
Memo 66, Programming Methodology Group, Chalmers University.

BARANDREGT, H. P., COPPO, M., and DEZANI-CIANCAGLINI, M. (1983). A filter lambda model and
the completeness of type assignment. J. Symbolic Logic, 48(4):931–940.

BARENDREGT, H. P. (1984). The Lambda Calculus. North-Holland. Studies in logic 103.

BARENDREGT, H. P., VAN EEKELEN, M. C. J. D., GLAUERT, J. R. W., KENNAWAY, J. R., PLASMEIJER,
M. J., and SLEEP, M. R. (1987). Term graph rewriting. In Proc. PARLE 87, volume 2, pages 141–
158. Springer-Verlag. LNCS 259.

BERRY, G. and BOUDOL, G. (1990). The chemical abstract machine. In Proc. 17th Ann. Symp. Prin-

ciples of Programming Languages.

125

BOUDOL, G. (1992). Lambda-calculi for (strict) parallel functions. Technical report 1387, INRIA
Sophia-Antipolis.

BROOKES, S. D., HOARE, C. A. R., and ROSCOE, A. W. (1984). A theory of communicating sequential
processes. J. Assoc. Comput. Mach., 31(3):560–599.

CLEAVELAND, R., PARROW, J., and STEFFEN, B. (1989). The concurrency workbench. In Proc.

Workshop Automatic Verification Methods for Finite-State Systems. Springer-Verlag. LNCS.

DAVEY, B. A. and PRIESTLEY, H. A. (1990). Introduction to Lattices and Order. Cambridge Univer-

sity Press.

DE ’LIGUORO, U. and PIPERNO, A. (1992). Non deterministic extensions of untyped λ-calculus. In
RAOULT, J.-C., editor, Proc. CAAP 92. Springer-Verlag. LNCS 581.

DE NICOLA, R. (1985). Testing Equivalences and Fully Abstract Models for Communicating Pro-

cesses. Ph.D. thesis, University of Edinburgh.

EVANS JR, A. (1968). PAL—a language for teaching programming linguistics. In Proc. ACM 23rd

Natl. Conf. Brandon/Systems Press.

FAIRBURN, J. (1982). Ponder and its type system. Technical report 31, Cambridge University Com-
puter Lab.

HENNESSY, M. (1988). Algebraic Theory of Processes. MIT Press.

HENNESSY, M. and MILNER, R. (1980). On observing nondeterminism and concurrency. In
DE BAKKER, J. W. and VAN LEEUWEN, J., editors, Proc. ICALP 80. Springer-Verlag. LNCS
85.

HOARE, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

HUDAK, P., PEYTON JONES, S. L., WADLER, P., et al.(1992). A report on the functional language
Haskell. SIGPLAN Notices.

HUGHES, J. (1984). The Design and Implementation of Programming Languages. D.Phil thesis,
Oxford University.

JEFFREY, A. (1993). A chemical abstract machine for graph reduction. In Proc. MFPS 93. Springer-

Verlag. LNCS.

JOHNNSON, T. (1984). Effecient compilation of lazy evaluation. In Proc. Sigplan 84 Symp. Compiler

Construction, pages 58–69.

JONES, M. (1992). The Gofer technical manual. Part of the Gofer distribution.

KENNAWAY, J. R., KLOP, J. W., SLEEP, M. R., and DE VRIES, F. J. (1993a). The adequacy of term

graph rewriting for simulating term rewriting. In SLEEP, M. R., PLASMEIJER, M. J., and VAN

EEKELEN, M. C. J. D., editors, Term Graph Rewriting: Theory and Practice, chapter 12. John
Wiley and Sons.

KENNAWAY, J. R., KLOP, J. W., SLEEP, M. R., and DE VRIES, F. J. (1993b). An introduction to term

graph rewriting. In SLEEP, M. R., PLASMEIJER, M. J., and VAN EEKELEN, M. C. J. D., editors,
Term Graph Rewriting: Theory and Practice, chapter 1. John Wiley and Sons.

LARSEN, K. G., GODSKESEN, J. C., and ZEEBERG, M. (1989). TAV, tools for automatic verification,
user manual. Technical report R 89–19, Dept Math. and Comp. Sci., Ålborg University.

LASSEZ, J. L., NGUYEN, V. L., and SONENBERG, E. A. (1982). Fixed point theorems and semantics:
A folk tale. Information Processing Letters, 14(3):112–116.

LAUNCHBURY, J. (1993). A natural semantics for lazy evaluation. In Proc. ACM Sigplan–Sigact

POPL.

LAUNCHBURY, J., GILL, A., HUGHES, J., MARLOW, S., PEYTON JONES, S. L., and WADLER, P.
(1992). Avoiding unnecessary updates. In Proc. Glasgow Functional Programming Workshop,

Dept. Comp. Sci., Glasgow University.

126

LESTER, D. (1989). Combinator Graph Reduction: A Congruence and its Applications. D.Phil thesis,
Oxford University.

MAC LANE, S. (1971). Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer-Verlag.

MILNER, R. (1977). Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci., 4:1–22.

MILNER, R. (1989). Communication and Concurrency. Prentice-Hall.

MILNER, R. (1991). The polyadic π-calculus: a tutorial. In Proc. International Summer School on

Logic and Algebra of Specification, Marktoberdorf.

MORRIS, J.-H. (1968). Lambda calculus models of programming languages. Dissertation, M.I.T.

MYCROFT, A. (1981). Abstract Interpretation and Optimising Transformations for Applicative Pro-

grams. PhD thesis, Edinburgh University Dept. Computer Science.

ONG, C.-H. L. (1988). The Lazy Lambda Calculus: An Investigation into the Foundations of Func-

tional Programming. PhD thesis, Imperial College, London University.

ONG, C.-H. L. (1993). Non-determinism in a functional setting. In Proc. LICS 93, pages 275–286.
IEEE Computer Soc. Press.

PEYTON JONES, S. L. (1987). The Implementation of Functional Programming Languages. Prentice-
Hall.

PIERCE, B. C. (1991). Basic Category Theory for Computer Scientists. MIT press.

PLOTKIN, G. (1977). LCF considered as a programming language. Theoret. Comput. Sci., 5:223–256.

PLOTKIN, G. (1983). Domains. available by anonymous ftp.

PURUSHOTHAMAN, S. and SEAMAN, J. (1992). An adequate operational semantics of sharing in lazy
evaluation. In Proc. ESOP 92.

ROSE, K. H. (1993). Explicit cyclic substitution. Semantics note D–166, DIKU, University of Copen-

hagen.

SCOTT, D. S. (1982). Domains for denotational semantics. In NEILSEN, M. and SCHMIDT, E. M.,
editors, Proc. ICALP 82, pages 577–613. Springer-Verlag. LNCS 140.

SLEEP, M. R., PLASMEIJER, M. J., and VAN EEKELEN, M. C. J. D., editors (1993). Term Graph Rewrit-

ing: Theory and Practice. John Wiley and Sons.

STOY, J. E. (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory. MIT Press.

TURNER, D. (1979). A new implementation technique for applicative languages. Software: Practice

and Experience, 9:31–49.

TURNER, D. (1985). Miranda: A non-strict functional language with polymorphic types. In Proc.

IFIP Conf. Functional Programming Languages and Computer Architecture. Springer-Verlag.
LNCS 201.

WADSWORTH, C. P. (1971). Semantics and Pragmatics of the Lambda Calculus. D.Phil thesis, Oxford
University.

127

Index of authors

Abramsky, S., 1, 2, 4, 10, 13, 26, 32, 117,
119, 122, 123

Ariola, Z. M., 121
Arvind, 121
Augustsson, L., 4, 13, 124

Barandregt, H. P., 3, 13
Barendregt, H. P., 3, 10, 13, 14, 117, 119, 122

Berry, G., 10, 36, 41, 117
Boudol, G., 10, 13, 36, 41, 117, 118
Brookes, S. D., 2

Cleaveland, R., 12
Coppo, M., 3, 13

Davey, B. A., 24

Dezani-Ciancaglini, M., 3, 13
de ’Liguoro, U., 124
de Bakker, J. W., 3
De Nicola, R., 2
de Vries, F. J., 10, 119

Evans Jr, A., 88

Fairburn, J., 4, 13

Gill, A., 120
Glauert, J. R. W., 10, 119, 122
Godskesen, J. C., 12

Hennessy, M., 2, 3
Hoare, C. A. R., 2

Hudak, P., 4, 13
Hughes, J., 37, 120

Jeffrey, A., 8, 10, 52, 122
Johnnson, T., 10, 11, 119
Jones, M., 4, 13

Kennaway, J. R., 10, 119, 122

Klop, J. W., 10, 119

Larsen, K. G., 12
Lassez, J. L., 24
Launchbury, J., 10, 119, 120
Lester, D., 10, 119

Mac Lane, S., 21
Marlow, S., 120
Milner, R., 1–3, 37, 40, 41, 57, 88, 117, 122
Morris, J.-H., 3

Mycroft, A., 11

Neilsen, M., 26
Nguyen, V. L., 24

Ong, C.-H. L., 1, 2, 13, 117, 119, 124

Parrow, J., 12

Peyton Jones, S. L., 1, 4, 7, 8, 11, 13, 37, 117,
120

Pierce, B. C., 13, 20, 21
Piperno, A., 124
Plasmeijer, M. J., 10, 119, 121, 122
Plotkin, G., 1, 13, 20, 21, 121, 122
Priestley, H. A., 24
Purushothaman, S., 10, 121

Raoult, J.-C., 124
Roscoe, A. W., 2
Rose, K. H., 118

Schmidt, E. M., 26
Scott, D. S., 26
Seaman, J., 10, 121

Sleep, M. R., 10, 119, 121, 122
Sonenberg, E. A., 24
Steffen, B., 12
Stoy, J. E., 119

Turner, D., 1, 2, 4, 10, 13, 117, 119

van Eekelen, M. C. J. D., 10, 119, 121, 122

van Leeuwen, J., 3

Wadler, P., 4, 13, 120
Wadsworth, C. P., 5, 9, 118, 122

Zeeberg, M., 12

Index of definitions

A, 14
abstract declaration ∂[[D]], 58
algebraic, 27

apply, 16
assignment x := f , 52

category, 22
ωcpoe, 25

ωcpo, 24
POSET, 23
SET, 22
lifted c

?

, 22
product c�d, 22

ω-chain, 23
closed declaration, 39
closed term, 14

closing context, 14
cocone, 23
colimit, 23
ω-colimit, 24
ω-compact, 27
complete lattice, 27
complete model, 1
confluent, 59

context
application Γ(x), 18
closing C[�], 14
local νx :Γ, 56
logical Γ, 18
semantics [[Γ]], 18
syntactic C[�], 14

ω-continuous, 24
convergent reduction strategy, 60
correct model, 1

D, 16
DΓ, 53

Dec, 38
declaration, 38

ν-less, 58
abstract ∂[[D]], 58
concatenation D;E, 38
empty ε, 38
equivalence D� E, 42
expressive DΓ , 53
extension Dv E, 55
local ν~x :D, 38

local νx :D, 38
recursive localD in E, 40
standard, 58
tagged node x := !M, 38
untagged node x := ?M, 38

denotational
preorder DvD E, 53
preorder M vD N, 17, 53

semantics [[D]], 52
semantics [[M]], 16, 52
semantics [[Γ]], 18
semantics [[φ]], 18
semantics [[ρ]], 17

depth, 28
determined cocone, 25
directed, 28

embedding, 24
environment Σ, 16

factored proposition, 30
filter, 26

FiltΦ, 26

�x, 53

fn, 16

fork, 16
fully abstract model, 1
functor, 23

diagonal ∆, 25
function space (!), 25
lifting ()

?

, 25

fvD, 39

fvM, 14

garbage collection D!γ E, 64

I, 14
initial fixed point, 24
initial object, 23

isomorphism A' B, 24

J, 14

K, 14

ka, 27

kpa, 28

Lam, 38
λ-calculus with rec, 38

λ-calculus with P, 14

lift, 22

logical
context Γ, 18
interpretation Γ j= M : φ, 18
interpretation Γ j= D : ∆, 55
preorder φ� ψ, 19
preorder DvS E, 56
preorder M vS N, 20, 56

proof system Γ `M : φ, 19
proof system Γ `D : ∆, 56
proof system Γ `M : φ, 56
semantics [[φ]], 18

Mφ, 19

M, 14
monotone, 23

new, 52

operational
convergence D+x, 51
convergence D+R

x , 60
convergence D +x E, 51
convergence M+, 15

convergence M + N, 15
divergence M*, 15
equivalence D� E, 42
interpretation Γ j= M : φ, 18
interpretation Γ j= D : ∆, 55
preorder DvO E, 51
preorder M vO N, 15, 51
semantics D 7! E, 45

semantics D 7!c E, 61
semantics D! E, 45
semantics D!γ E, 64
semantics D!

:x E, 74
semantics D!c E, 61
semantics D!x E, 73
semantics M ! N, 15

pointed, 23
poset, 22

0, 22
1, 22
2, 22
ω, 22
ω+1, 22

algebraic, 27
bottom ?, 16
ω-chain, 24
complete lattice, 27
ω-continuous, 24

ω-cpo, 24
directed, 28

join a_b, 16
join

W

C, 24
least fixed point, 24
meet a^b, 16
prime algebraic, 28
top>, 16

POSET, 23

preorder, 22
denotational DvD E, 53
denotational M vD N, 17, 53
extension Dv E, 55
logical φ� ψ, 19
logical DvS E, 56
logical M vS N, 20, 56
operational DvO E, 51

operational M vO N, 15, 51
simulation D ` x � y, 89
spine D ` x� y, 74
tagging D�? E, 64

prime algebraic, 28
prime element, 28
prime proposition, 30
program, 14

proposition
Φ, 18
γ, 17
ω, 18
φ!ψ, 18
φ^ψ, 18

read, 16

reduction strategy, 60
renaming M[ρ], 39

rvD, 39

semantics
denotational [[D]], 52
denotational [[M]], 16, 52

denotational [[Γ]], 18
denotational [[φ]], 18
denotational [[ρ]], 17
operational D 7! E, 45
operational D 7!c E, 61
operational D! E, 45
operational D!γ E, 64
operational D!

:x E, 74

operational D!c E, 61
operational D!x E, 73
operational M ! N, 15

set, 53

130

SET, 22
simulation, 89

simulation, ν-less, 88
small category, 22

split, 16
standard declaration, 58
step function a 7!b, 18
structural equivalence D� E, 42
substitution M[ρ], 14

syntax

Dec, 38

Lam, 38
Λ

P

, 14
Φ, 18

tagD, 90

tagx D, 51

tagged declaration, 89
tagged variable, 76
term

abstraction λx :M, 14, 38
application MN, 14
application x@y, 38
arrow A, 14
black hole 0, 38

constant K, 14
diagonal ∆, 14
divergent Ω, 14
expressive Mφ , 19
fixed point YM, 14
fork PMN, 14
fork x_y, 38
identity I, 14

indirection ∇x, 38
join J, 14
meet M, 14
ogre ϒ, 14
recursion recD in M, 38
strict abstraction λvx :M, 14
variable x, 14

uniformity, 94
untagged declaration, 89
untagged variable, 76

update, 16

V , 14

weak head normal form (whnf), 14, 51
well-formed expression, 38

wvD, 38

wvΓ, 18

wv f , 94

YM, 14

131

