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Abstract

We develop a noninterleaving semantic theory of processes based on testing.

We assume that all actions have a non-zero duration and the allowed tests take

advantage of this assumption. The result is a semantic theory in which concurrency

is di�erentiated from nondeterminism.

We show that the semantic preorder based on these tests is preserved by so-called

\stable" action re�nements and may be characterised as the largest such preorder

contained in the standard testing preorder.
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1 Introduction

In recent years there has been much research into semantic theories of processes which

distinguish nondeterminism from concurrency. See for example [DD89, DNM90, vGV87],

[BC89]. Most of these are based on some variation of bisimulation equivalence, [Mil89].

This is a well-established behavioural equivalence between processes based on their abil-

ity to perform actions. Roughly speaking two processes p; q are bisimulation equivalent

if whenever either can perform an action and be transformed into the process r then

the other can also perform the same action and be transformed into some r

0

which is

bisimulation equivalent to r. This equivalence leads to a so-called \interleaving" theory

of concurrency in that it reduces parallelism to nondeterminism. For example the pro-

cess which can perform the actions a and b in parallel is deemed to be equivalent to the

purely sequential but nondeterministic process which either can perform a followed by

b or b followed by a. However \non-interleaving" theories of concurrency, i.e. theories

which distinguish parallelism from concurrency, can be obtained by varying the basic

ingredients of the de�nition of bisimulation. For example the basic actions may be re-

placed by partial orders of actions where the order is induced by some idea of causality

as in [DNM90] or the structure of processes may be taken into account as in [BCHK91].

Another well-established \interleaving" theory of processes is based on testing,

[DH84]. Here processes are said to be equivalent if they are guaranteed to pass ex-

actly the same tests. Although the framework of testing equivalence is quite general,

apart from [MP91] it has only been applied, at least as far as the author is aware, to gen-

erate \interleaving theories". The purpose of this paper is use this framework to develop

a \non-interleaving theory" of processes and in particular to investigate the application

of this theory to action re�nement.

In the standard theory a test, which is usually itself a process, is applied to a process

by running both together in parallel. A particular run is considered to be successful

if the test reaches a certain designated successful state and the process guarantees the

test if every run is successful. The test and the process under observation interact by

communicating with each other or synchronising. In most process algebras synchroni-

sation is modelled as the simultaneous occurrence of complementary actions although

there is a variety of de�nitions of complementation. But regardless of the precise de�ni-

tion the actions which comprise the synchronisations are considered to be instantaneous

and indivisible. This of course is an idealisation and abstraction from reality but it has

proved to be most useful as it has lead to a range of elegant mathematical theories of

processes. Here we relax this restriction. Now we will assume that the synchronisations

take a non-zero but inde�nite amount of time. This is still an abstraction from reality as

we are not saying exactly what form the interaction takes; only that it takes time. For

example we could have in mind the rendez-vous mechanism of ADA or the existence of

some non-trivial communication medium connecting the tester and the process. Under

these assumptions we can see how the process performing a and b in parallel can be

di�erentiated from its sequential counterpart which performs the actions in either order.

Consider the test which requests a synchronisation via the action a and then will succeed

only if it can successfully initiate a second synchronisation via the action b before the

�rst synchronisation has terminated. The �rst process will always pass this test whereas

the second will always fail.

Let us now discuss how this intuitive idea of non-instantaneous actions can be for-
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malised. The simplest consequence is that each action a has a distinct beginning and

end, s(a) and f(a) respectively. If we are thinking of synchronisation over a communi-

cation network s(a) corresponds to the sending of a synchronisation signal while f(a)

corresponds to the receipt of a con�rmation that the signal has been received. The

elements of � may be viewed as virtual synchronisation channels or ports which are sup-

ported by the underlying communication network. But only using these two sub-events

we do not capture the idea that we have individual actions with duration, particularly if

two distinct occurrences of an action a can be active at the same time. In terms of the

communication network we have to assume that it is su�ciently intelligent to distinguish

distinct instances of the same virtual synchronisation channel. In this way we are lead to

view the behaviour of processes in terms of their ability to produce labeled beginning and

endings of actions. Such an operational semantics has been given for a process algebra

in [AH91b, AH91a] and a similar semantics had previously been developed in [vGV87]

for Petri nets which is used to de�ne a variation on bisimulation equivalence called ST-

bisimulation. So we will call this type of semantics ST-operational semantics and using

it we can easily apply the standard framework of testing to de�ne a behavioural equiva-

lence, or more generally a preorder, between processes which captures the intuitions of

concurrent testing described above: p

<

�

c

q if q guarantees every concurrent test guar-

anteed by p and p

�

c

q if they guarantee exactly the same set of concurrent tests. A

concurrent test will be a test which can demand of a process either the beginning of

a synchronisation along a speci�c instance of a communication channel or wait for the

end of such a synchronisation, i.e. await con�rmation that the synchronisation has been

successfully completed.

This theory is developed for a process algebra which is a slight extension to CCS,

essentially the language studied in [AH92]. It contains all of the operators of CCS

together with sequential composition and recursion. The �rst major result of the paper

is that

<

�

c

is preserved by all the operators in the language apart from, as usual,

the choice operator + from CCS. This is proved using an alternative characterisation

in terms of so-called st-sequences and Acceptance sets which is a generalisation of the

alternative characterisation of the standard testing preorder, [Hen88]. St-sequences are

simply sequences of labeled beginning and ending of actions where the actual labels

involved are not important; they are only a mechanism for describing sequences which

may contain a number of distinct occurrences of the sub-actions s(a) or f(a). They have

been used previously in a number of papers, such as [Ace91, Vog91a, AH91b, vGV87].

However the main result of the paper concerns action re�nement. We add to the

language a new operator which allows the re�nement of an action by a process: the

process p[a; q] is supposed to act like the process p where the action a is replaced by

the process q. We �rst make this notion precise and then show that

<

�

c

c

, the closure of

<

�

c

with respect to all + contexts, is also preserved by it, i.e. if p

<

�

c

c

p

0

and q

<

�

c

c

q

0

then, subject to some restrictions, p[a; q]

<

�

c

c

p

0

[a; q

0

].

The �nal result in the paper shows that

<

�

c

c

may in fact be characterised using action

re�nement and the standard testing preorder which we call

<

�

s

. The latter may be

de�ned using the standard operational semantics where actions are instantaneous and it

generates an \interleaving theory". We show that

<

�

c

c

is the largest preorder contained

in

<

�

s

c

which is preserved by these forms of action re�nement.
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We now give a more detailed account of the contents of each section of the paper.

In the next section we de�ne the language used in the paper and give the st-operational

semantics. The language is a very expressive process algebra; it has combinators or

operators for nondeterminism, parallelism, restriction, sequential composition and there

are also two forms of termination, deadlock and successful termination; in addition

recursion is allowed.

The operational semantics is similar in style to that used in [AH91a], although it is

formulated somewhat di�erently. This section also contains the formal de�nition of how

to apply a test to a process and of the concurrent testing preorder

<

�

c

. This involves

a language for tests which can demand of a process to start an action then interrogate

further the process before accepting con�rmation that the started action has �nished.

Tests also need the ability to detect successful termination.

Section 3 contains a number of alternative characterisations of this testing preorder.

The general idea is that the preorder can be determined essentially by the acceptance

sets of processes after performing st-sequences, although some information on divergence

and the ability to terminate successfully is also required. The results of this section allow

us to compare our work with that of [AE91], [Vog91a]. They are also used to show that

the preorder

<

�

c

c

is preserved by the operators in the language.

In section 4 we turn our attention to action re�nements. In general an action re�ne-

ment is a mapping � from actions to processes and the result of applying a re�nement

to a process is denoted by p�. (Above we used [a ; q] to represent a simple form of

re�nement which maps a to q and leaves all other actions untouched.) Formally p� is

de�ned to be the process which results from substituting �(a) for each occurrence of a

in p; the precise de�nition views restriction as an action \binder", which is natural as

restricted actions are in some sense hidden or similar to local variables in a conventional

programming language. (A similar approach is taken in [AH91a].) This de�nition of

action re�nement is very general. In p� we allow arbitrary interaction between the pro-

cesses �(a) and �(b) for any a and b and we also allow arbitrary interaction between the

parent process p and the re�ned process �(a).

The main result of this section, the re�nement theorem is that the testing preorder is

preserved by a large class of action re�nements, i. e. if p

<

�

c

q and �

<

�

c

� (pointwise)

then p�

<

�

c

q�. This result is subject to some restrictions on the re�nements. The �rst

states that in some sense the complementation on actions should be preserved by action

re�nements. Speci�cally �(a) in parallel with �(a) should be able to reach a properly

terminated state by a series of communications; these communications re
ect the ability

of a and a to perform a communication. The second restriction states that �(a) should

not be a properly terminated process. Re�nements which satisfy these constraints have

been called standard in [AH91a]. Here we need some further restrictions which in some

sense say that the re�nements are initially stable: we demand that no process �(a) can

initially perform an internal move and moreover if �(a) and �(b) can perform an ini-

tial communication then a = b. We call standard re�nements which satisfy these extra

constraints stable; we prove the re�nement theorem for stable re�nements.

The proof of this result involves a Whence theorem which decomposes a move from

p� into the contributions from p and � and a Whither theorem which shows how to

combine moves from p and � to form a move from p�. These must then be generalised to

arbitrary sequences of external actions and we must also characterise the ability of p� to

diverge in terms of properties of the behaviour of p and �. The latter is not particularly
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straightforward as p� can diverge although p and �(a), for every a, may be perfectly well

behaved.

In the �nal section we prove a characterisation theorem for the new preorder. First

we formulate a more standard testing preorder based on tests which can only demand

complete actions of processes. This is similar to the notion of testing on [Hen88] and we

denote it by

<

�

s

. As one would expect it is not preserved by action re�nement.

We show that

<

�

c

c

is contained in

<

�

s

c

and may be characterised as the largest preorder

contained in it which is preserved by stable action re�nements. To prove this we exhibit

a particular stable re�nement � with the property that p�

<

�

s

q� implies p

<

�

c

q.

The development of non-interleaving semantic theories for concurrent processes has

recently received much attention in the literature. See for example [DNM90], [TV87],

[vGV87], [BC89], [Vog91a]. However most of the semantic equivalences investigated in

these papers are based on modifying in some way the basic de�nition of bisimulation

equivalence, [Mil89]. There are exceptions such as [TV87] and [Vog91a] but as far as the

author is aware the present paper is the �rst attempt at applying the paradigm of testing

equivalence, [DH84], to process algebras so as to obtain a non-interleaving semantic

theory. However the properties of this equivalence, or preorder, have not been fully

investigated and the main contribution of the present paper is the re�nement theorem

and the characterisation theorem.

The research literature on the subject of action re�nements is also quite extensive.

The novelty of our results on this topic is in the conjunction of three characteristics:

the semantic theory and the de�nition of action re�nement applies directly to the syntax

of the process algebra, rather than some intermediate intensional model such as

event structures or causal trees

the semantic theory used is based on testing equivalence, rather than the much �ner

equivalence bisimulation equivalence

the class of allowed action re�nements is quite general, as is the manner in which these

re�nements are applied to processes.

However it does leave open the question of �nding a testing based equivalence between

processes which is preserved by the more general class of standard re�nements. We con-

jecture that this can be de�ned using a step-st-operational semantics in which processes

and tests interact via multi-sets of beginnings and endings of labeled actions.

In papers such as [DD91], [DD90], [vG90] [Vog90], restricted forms of action re�ne-

ments are de�ned on event structures, causal trees or synchronisation trees and related

re�nement theorems are proved with respect to causal bisimulation or st-bisimulation.

The last reference also contains characterisation theorems for a variety of equivalences

based on bisimulation. In [AH91a] re�nements are de�ned directly on a process algebra

and a re�nement theorem and characterisation theorem is given with respect to weak

bisimulation. But in the language considered there is no recursion so all processes are

necessarily �nite. In [AE91], failures equivalence is used and there are similar results.

However the language used is very restricted; all processes are �nite, there is no commu-

nication and no restriction. Nevertheless the results of the present paper may be viewed

as a direct generalisation of the results of [AE91] to a full process algebra. (However we

have not been able to generalise their results on fully-abstract models).
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The existing work which appears closest to our results is reported in [Vog91a] and

[JM92]. In [Vog91a] the author deals with safe Petri Nets and failure equivalence. A

restricted form of re�nement theorem is proved for a generalisation of failure equivalence

based on interval semi-words and there is a characterisation with respect to the standard

failures equivalence. As the author points out in a separate paper, [Vog91b], interval

semi-words are more or less equivalent to st-sequences; it therefore follows (from the

results of section three) that this equivalence is closely related to

�

c

. However the notion

of action re�nement used is more restrictive than what we allow. In particular when a

re�nement � is applied to a process there can be no interaction between occurrences of

�(a) and �(b) in the re�ned process. In [JM92] this work is extended to a more general

class of Petri Nets but the restrictions on the type of action re�nements remain.

2 The Language

In this section we describe the language, taken from [AH92], its st-operational semantics

and the testing preorder.

The language is parameterised on a set of actions Act which is ranged over by a; b; : : :.

We assume that there is a possibly partial complementation function de�ned over Act;

we write the complement of a, if it exists, as a and we asssume that a is a. We also

assume a special action symbol, � , di�erent from all symbols in Act and a set of recursion

variables X ranged over by x. Then the syntax of the language is given in the usual way

using a �nite set of process operators and a mechanism for recursive de�nitions:

t ::= 
 j nil j � j a j � j x

j t+ t j t j t j tna

j t; t j rec x: t

We have two kinds of terminated processes, nil the successfully terminated process and

� the deadlocked process, while 
 denotes a process which can only diverge internally

and rec x: t stands for the process de�ned recursively by the equation x = t. We use

the choice, parallel and restriction operators from CCS, j;+ and n , while ; represents

sequential composition. As usual rec x: t binds occurrences of x in t and we have free

and bound occurrences of variables in terms and an appropriate notion of substitution

of terms for free occurrences of variables : t[u=x]. Let BP

Act

denote the set of closed

terms, i.e. those terms with no free variables, which we often refer to as processes; this

set is ranged over by p; q, i. e. . Much of the development does not depend on the set of

actions Act and so we usually abbreviate BP

Act

to BP. But in later in the paper we will

have a need for particular instantiations of BP

Act

when we choose particular action sets

Act.

The st-operational semantics of the language is given in terms of a termination rela-

tion

p

and a next state relation with respect to labelled beginning and ending of actions.

We also need a relation to de�ne the e�ect of an internal move or communication between

subprocesses, which is represented in the language by the special action � . One way of

giving rise to such an action is by the simultaneous occurrence of two complementary

complete actions and therefore it will convenient to de�ne in addition a next state rela-

tion with respect to complete actions also although in principle these are derivable from
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those for sub-actions. Let L be an in�nite set of labels, ranged over by l, LSAct denote

the set of labelled sub-actions f s(a

l

); f(a

l

) j a 2 Act; l 2 L g and LAct denote the union

of all the external actions, LSAct [ Act. For any set S we use S

�

to denote S [ f�g. So

for example LSAct

�

; Act

�

, denote the sets LSAct [ f�g;Act[ f�g respectively. We let �

range over the set of all possible actions LAct

�

, � over the set of external actions LAct,

a over the set of complete actions Act and �nally e over LSAct, the set of (labelled)

sub-actions. The execution of the sub-actions will often lead to states of processes where

actions have started and not yet terminated and therefore we have to enrich the language

in order to de�ne such states. We call the more general terms con�gurations and they

are de�ned by

c ::= p j a

l

j c j c j c; p j cna

where we assume that in cna c contains no occurrences of any a

l

; a

l

and more importantly

that every occurrence of a labelled action a

l

is unique. An occurrence of a

l

is meant to

denote that there is an a action active and since we use the labels to distinguish di�erent

occurrences it is important that there is no duplication of labels. So for example the

con�guration a

l

; p j b

l

; q j a

k

; r describes a process which has three subprocesses, two

of which are performing an a action and one a b action. We let C denote the set of

con�gurations, ranged over by c, and for any c 2 C L(c) denotes f a

k

j a

k

occurs in c g.

De�nition 2.1 Let

p

be the least relation over con�gurations which satis�es

1. nil

p

2. p

p

; q

p

implies p + q

p

3. p

p

; c

p

implies p; c

p

4. c

p

; c

0

p

implies c j c

0

p

5. c

p

implies cna

p

6. t[rec x: t=t]

p

implies rec x: t

p

2

Since BP is contained in C this also gives a de�nition of

p

for the set of processes.

Because of the way in which recursion is handled we also need, in the de�nition of

testing, a \well-de�nedness" predicate on con�gurations, #.

De�nition 2.2 Let # be the least relation over con�gurations which satis�es

1. nil # and � #

2. p #; q # implies p + q #

3. p #; c # implies p; c #

4. c #; c

0

# implies c j c

0

#
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(O1) �

�

�! nil

a

s(a

l

)

�! a

l

for every label l

a

l

f(a

l

)

�! nil

(O2) p

�

�! c implies p+ q

�

�! c

(O3) c

1

�

�! c

0

1

implies c

1

j c

2

�

�! c

0

1

j c

2

provided c

0

1

j c

2

is in C

(O4) c

�

�! c

0

implies cna

�

�! c

0

na

provided a admits �

(O5) c

�

�! c

0

c; p

�

�! c

0

; p

c

p

; p

�

�! c

0

implies c; p

�

�! c

0

(O6) c

1

a

�! c

0

1

; c

2

a

�! c

0

2

implies c

1

j c

2

�

�! c

0

1

j c

0

2

(O8) t[rec x: t=x]

�

�! q implies rec x: t

�

�! q

(O9) 


�

�! 


Figure 1: Operational semantics

5. c # implies cna #

6. t[rec x: t=t] # implies rec x: t #

2

We often use " for the converse to #. So for example 
 " and rec x: a+ x ". The next

state relations

�

�!, for each � 2 LAct

�

are given in Figure 1. Many of the rules are

straightforward and do not require comment. The obvious symmetric components of

the rules (O2) and (O3) have been omitted and the predicate admits used in (O4) has

the obvious de�nition: a admits � unless � has one of the forms a; a; s(a

l

) or f(a

l

).

The main nonstandard rule is (O1) which allows the basic process a to perform not only

the complete action a but also simply start the action by performing the move s(a

l

) for

any label l to arrive at the state a

l

: this indicates that an instance of the action a is

running. The side condition in (O3) ensures that labels continue to be unique so that

the actual labels used in applications of (O1) will be restricted by the labels not already

occurring in the con�gurations which contain the process to which this rule is applied.
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The last three rules are concerned with the derivation of internal moves and (O6) is the

most important. It says that an internal move may occur because of a communication

between two subprocesses. The remaining rules are straightforward; 
 can only perform

internal moves and the moves of a recursive de�nition are determined by its body.

One can check that if c

�

�! c

0

and c 2 C then c

0

is also in C. One can also show that

the actual identity of the labels generated in the derivations are relatively unimportant.

Speci�cally if c

s(a

l

)

�! c

0

then for almost all labels k c

s(a

k

)

�! c

0

[k=l]; one can use any k

which does not occur already in c, which is a �nite set of labels. As stated previously

it is unnecessary to de�ne the operational semantics of complete actions as they can be

derived. This can be seen from the second part of the following lemma.

Lemma 2.3 for every con�guration c

1. c

s(a

l

)

�! c

0

f(a

l

)

�! d implies c

a

�! d

2. c

a

�! d implies there exists a con�guration c

0

such that for some l c

s(a

l

)

�! c

0

f(a

l

)

�! d

3. c

s(a

i

)

�!

s(a

j

)

�!

f(a

i

)

�!

f(a

j

)

�! d implies c

�

�! d.

2

Of slightly more interest is the fact that many pairs of moves can be permuted.

De�nition 2.4 Two elements, �; �

0

of LSAct

�

weakly commutes if for every pair of

con�gurations c; c

0

9d:c

�

�! d; d

�

0

�! c

0

implies 9d:c

�

0

�! d; d

�

�! c

0

. 2

The set of weakly commuting moves can be characterised as follows:

Proposition 2.5 A pair of moves < �; �

0

> is weakly commuting if and only if they are

of one of the forms the forms

1. < s(a

i

); � > where � is di�erent than f(a

i

)

2. < �; f(a

i

) > where � is di�erent than s(a

i

).

Proof: For pairs not of this form it is easy to think of counterexamples. If the pair

< �; �

0

> is of this form and c

�

�! d

�

0

�! c

0

then one can show by induction on the

derivation of c

�

�! d that there exists a d

0

such that c

�

0

�! d

0

�

�! c

0

The detailed case

analysis depends crucially on the allowed structure of con�gurations. 2

A stronger notion of commuting may be obtained by replacing the implication in the

above de�nition with \if and only if". Let us say that such a pair is strongly com-

muting". There are far fewer strongly commuting pairs; the only ones are of the form

< s(a

l

); s(b

k

) > and < f(a

l

); f(b

k

) >.

The reason for developing this st-operational semantics is to formalise the concur-

rent testing discussed in the introduction. However in order to be able to describe the

appropriate tests we need a language which is strictly more expressive than BP

Act

. This

is because in this form of testing we need to be able to test the ability of processes

to initiate new synchronisations before other previously initiated synchronisations have
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terminated. Such tests are not possible in the basic language BP

Act

. So we include in

our set of tests processes which can perform as fully-
edged actions the subactions of

the language BP

Act

. Speci�cally we use as the set of actions

� = f s(a

l

); s(a

l

); f(a

l

); f(a

l

) j a 2 Act g [ Act:

There is another problem which can not be resolved by mimicing the framework of

testing developed in [Hen88]. Here we have two forms of termination, in nil and � and it is

di�cult to see how they can be di�erentiated by purely computation means. Accordingly

we introduce into the testing language the ability to recognise proper termination; this

takes the form of a special action term which the test can execute only when the process

under observation is properly terminated. So we use as the set of tests, Tests, closed

terms in the language BP

�

where � is the set of actions

� [ fterm; !g:

Here the action ! will be used to report the successful completion of an experiment.

Of course there are many tests in this language which will not be used but, at least here,

it is not of great importance to characterise the collection of meaningful tests.

We now de�ne formally how tests and processes, or more generally con�gurations,

interact. An experimental state takes the form e k c where e is a test and c a con�gura-

tion. An experiment proceeds by moving from state to state and this is de�ned using a

transition relation of the form e k c 7! e

0

k c

0

.

De�nition 2.6 Let 7! be the least relation between experimental states which satis�es

1. e

�

�! e

0

; c

�

�! c

0

implies e k c 7! e

0

k c

0

for every � in LAct

2. e

�

�! e

0

implies e k c 7! e

0

k c

3. c

�

�! c

0

implies e k c 7! e k c

0

4. e

term

�! e

0

; c

p

implies e k c 7! e

0

k c. 2.

We can now de�ne in the standard way when processes guarantee tests. A computation

from the state e k p is a maximal sequence of the form

e k p � e

0

k c

0

7! e

1

k c

1

: : : 7! e

n

k c

n

7! : : :

that is, it is either in�nite or has a maximal element e

m

k c

m

from which no further

derivation can be made. A state e

m

k c

m

in such a computation is successful if e

m

can

perform the action ! and for every n < m p

n

#. We say p guarantees e or p must e

if every computation from e k p is successful. Finally we write p

<

�

c

q if for every test

e p must e implies q must e. The associated equivalence relation, the kernel of

<

�

c

, is

denoted by

�

c

.

Example 2.7 The two processes nil and � are incomparable. On the one hand

nil must term;! while � m6 ust term;! and therefore nil

6<

�

c

� and on the other �

6<

�

c

nil

because of the test � ;! + term. 2
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Example 2.8 The processes a j b and a; b+ b; a are also incomparable: a j b guarantees

the test s(a

l

); s(b

l

);! whereas we have the unsuccessful computation

s(a

l

); s(b

l

);! k a; b+ b; a 7! s(b

l

);! k a

l

; b:

In the other direction a; b + b; a guarantees the test s(a

l

); (� ;! + s(b

l

)) whereas a j b

generates an unsuccessful computation:

s(a

l

); (� ;! + s(b

l

)) k a j b 7! � ;! + s(b

l

) k a

l

j b 7! nil k a

l

j b

l

:

2

Example 2.9 The operator + does not in general distribute over the parallel operator

j. For example a j (b+ c) guarantees the test s(a

l

); s(b

l

);! whereas

s(a

l

); s(b

l

);! k a j b+ a j c 7! s(b

l

);! k a

l

j c

is an unsuccessful computation. However it turns out that a j b + a j c

<

�

c

a j (b + c)

as we will be able to check in a straightforward manner using the results of the next

section. 2

Example 2.10 In the theory of testing presented in [Hen88] a+ a; (b+ c)

<

�

a+ a; b+

a; c) but here this is no longer the case because of the ability of processes to check for

termination. These processes can now be distinguished by the test a; (term;!+ b;!). 2

Example 2.11 On page 51 of [AH91b] the owl example of R. van Glabbeek is described

in CCS and discussed in detail. The two terms used there, P and Q, are also in the lan-

guage BP but we refrain from reproducing them here. However the interested reader can

check that P must e; Q m6 ust e where e is the test b; s(c

l

); a; s(c

k

); f(c

l

); s(d);!. Since

the processes are symmetric one can also easily �nd a test which establishes Q

6<

�

c

P .

This example shows that the labelling of active actions is essential. For P and Q are

\timed equivalent" - an variation on bisimulation equivalence where unlabelled begin-

nings and endings of actions are used - and this ensures that there are also equivalent in

a version of testing equivalence which uses unlabelled beginnings and endings. 2

In the next section we give an alternative characterisation of

<

�

c

which will enable

us to develop its properties more easily.

3 ST-Acceptance sets

Here we outline the properties of processes which determine their ability to to guarantee

tests. They are essentially the st-sequences they can produce and their acceptance sets

after these sequences. These acceptance sets are �nite collections of �nite subsets of Act

but because of the ability to test for proper termination they have to be de�ned slightly

di�erently than in [Hen88]. First some notation.

The single arrow relations

�

�! are extended in the natural way to abstract from

internal moves. For each s 2 LAct

�

�

we de�ne the relation

s

=) between con�gurations as

follows:

11



1. c

"

=) c

2. c

s

=) d; d

�

�! d

0

implies c

s:�

=) d

0

for every � in LAct

�

3. c

s

=) d; d

�

�! d

0

implies c

s

=) d

0

.

Note the subtlety in this de�nition; c

�

n

=) d means that c can move to d by performing

at least n internal moves. For any c let S(c) = f a 2 Act j c

a

=) g; S(c) only contains

complete actions which are by de�nition unlabelled.

We say c is stable if c # and c

�

�! c

0

for no c

0

and it is live if c

p

is not true. i.e. if it has

not properly terminated. We also say it converges, written c +, if intuitively it can not

diverge, i.e. every sequence of the form

c = c

0

�

�! c

1

�

�! c

2

: : :

is �nite and for every con�guration c

k

in such a sequence c

k

#. The set of acceptance

sets of p after s, for s 2 LAct

�

, is de�ned by

A(p; s) = fS(c) j p

s

=) c; c stable and live g:

In this de�nition the requirement that c be live is crucial. Acceptance sets are compared

as in [Hen88], using a slight variation on subset inclusion; We write A(p; s)�A(q; s) if

for every A 2 A(q; s) there is a B 2 A(p; s) such that B � A.

To obtain the alternative characterisation of

<

�

c

we need to parameterise both the

proper termination and the convergence predicates to sequences of actions from LAct.

We say c (weakly) terminates with respect to s if there exists a c

0

such that c

s

=) c

0

and

c

p

. The generalisation of + is much stronger; c + s guarantees that c will never diverge

when performing any subsequence of s. It is de�ned by induction on s:

1. c + " if p +

2. c + �:s if c + and for every c

0

such that c

�

=) c; ; c

0

+ s.

We will sometimes use c * s to indicate the negation of c + s.

De�nition 3.1 (The alternative preorder) For processes p; q we write p �

st

q if for

every s 2 LAct

�

p + s implies i) q + s

ii) q

p

s implies p

p

s

iii) A(p; s)� A(q; s)

2

The main result of this section is that

<

�

c

and �

st

coincide on processes.

We �rst need some simple lemmas about the permanency of �nish moves. We say

f(a

l

) is active in c if c

f(a

l

)

�! and it is active in the sequence s from LAct

�

if s has the

form s

1

:s(a

l

):s

2

where f(a

l

) does not occur in s

2

.

Lemma 3.2 If f(a

l

) is active in c

12



1. c

�

�! d and � is di�erent from f(a

l

) imply f(a

l

) is active in d

2. d

�

�! c and � is di�erent from s(a

l

) imply f(a

l

) is active in d

Proof: Each case is an easy induction on the derivation of

�

�!. 2

Lemma 3.3 If c

s

=) d and f(a

l

) is active in s then it is also active in d.

Proof: The proof is by induction on the derivation of c

s

=) d. There are two cases:

1. c

"

=) c: Vacuous

2. c

s

=) c

0

�

�! d: If � is s(a

l

) then one can show by induction on the derivation of

c

0

s(a

l

)

�! d that f(a

l

) is active in d. Otherwise we may apply induction to obtain that

f(a

l

) is active in c

0

and then, since � can not be f(a

l

), apply the previous lemma.

2

In a similar manner we can prove

Lemma 3.4 If c

s

=) d and f(a

l

) is active in d then it is active in c or in s. 2

With these lemmas we can now derive one part of the required characterisation.

Proposition 3.5 For all processes p; q; p�

st

q implies p

<

�

c

q.

Proof: Suppose p must e. To show q must e we consider an arbitrary computation

e k q � e

0

k q

0

7! e

1

k q

1

: : : (1)

We must show that some e

k

is successful. The computation (1) can be decomposed into

the individual contributions from e and q

e

i

o

e

i

1

e

i

2

: : :

q

i

o

q

i

1

q

i

2

: : :

where for each k either e

i

k

term

�! e

i

k+1

and q

i

k

p

or e

i

k

�

=) e

i

k+1

and q

i

k

�

=) q

i

k+1

for

some � 2 LAct. For the moment let us assume that the former does not occur and let

s

k

2 LAct denote the sequence �

1

: : : �

k

. We may assume that q + s

k

for otherwise we

would have p * s

k

and we would be able to recombine the diverging computation from

p with that above from e and since p must e there would be some successful e

k

.

The decomposition above may either be �nite or in�nite. In the latter case we can follow

the standard proof, Lemma 4.4.13 from [Hen88], and so we may assume that (1) above

is �nite with maximal element e

n

k q

n

. There are two possibilities.

i) term 2 S(e

n

): Then we know that not q

n

p

and therefore S(q

n

) 2 A(q; s

n

). Since

p �

st

q it follows that p

s

n

=) p

0

for some stable and live p

0

such that S(p

0

) � S(q

n

). So

the derivation p

s

n

=) p

0

can be combined with that from e above to obtain a computation
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from e k p to e

n

k p

0

which contains only the test states from the original computation

(1). The result would now follow if we can show that this is a maximal computation.

The only possible way for e

n

k p

0

to make a further step is for f(a

l

) to be active in both

e

n

and p

0

. Applying Lemma 3.4 f(a

l

) must be active in s

n

and by Lemma 3.3 this would

imply that f(a

l

) is active in q

n

which contradicts the fact that e

n

k q

n

can not make

another step.

ii) term 62 S(e

n

): If not q

n

p

then we can proceed as in the previous case. So suppose

q

n

p

. Then since p �

st

q it follows that p

p

s

n

and therefore p

s

n

=) p

0

for some p

0

such

that p

0

p

. It is easy to check that any r such that r

p

is stable and can make no move.

Therefore we can recombine p

s

n

=) p

0

with the derivation from e as before to obtain a

computation from e k p with maximal element e

n

k p

0

.

This leaves the case when at some point in the decomposition of (1) we have q

i

n

p

and e

i

n

term

�! e

i

n+1

for some n. However if we consider the �rst such occurrence we can

proceed as in case ii) above. 2

The converse is more straightforward in that the proof is much the same as the

corresponding proof in [Hen88], Lemma 4.4.9.

Proposition 3.6 For all processes p; q p

<

�

c

q implies p �

st

q.

Proof: The idea of the proof is to de�ne particular tests which capture the behaviour

of processes which determine the properties used in the de�nition of �

st

.

For each s 2 LAct let conv(s) be de�ned by

conv(") = � ;!

conv(�:s) = � ;! + �; conv(s)

Then p + s if and only if p must conv(s).

Similarly we can de�ne a test for weak termination. For every s 2 Act let notterm(s)

be de�ned by

notterm(") = � ;! + term

noterm(�:s) = (� ;!) + �;notterm(s)

Then if p + s one can check that p must notterm(s) if and only if not p

p

s.

Finally we can check the acceptance sets of a process by the following tests: for each

�nite B � Act let acc(s;B) be de�ned by

acc(";B) = term;! +

X

f a;! j a 2 B g

acc(�:s;B) = � + �; acc(s;B)

Again if p + s it follows that p must acc(s;B) if and only if for everyA 2 A(p; s) A\B 6=

;.

Using these three sets of tests the result now follows easily. 2

Putting these two results together we obtain the main result of the section:

Theorem 3.7 (Alternative Characterisation) For all processes p; q p

<

�

c

q if and only

if p�

st

q. 2
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This alternative characterisation makes the behavioural preorder much more

amenable to investigation. For example one can now easily check the examples in the

previous section. One can also prove that the preorder is preserved by all the operators

of the language other than +:

Proposition 3.8 For each operator in the language op except +; p

<

�

c

q implies that

op(: : : ; p; : : :)

<

�

c

op(: : : ; q; : : :).

Proof: It is a matter of checking each of the operators in turn but this is made much

more manageable if �

st

is used in place of

<

�

c

. 2

It is not preserved by + for the usual reasons: a

<

�

c

� ; a but a + b guarantees the test

b;! which may be failed by � ; a + b. However it is very easy to adapt it so that it is

preserved by +; Let p

<

�

c

c

q if

1. p

<

�

c

q

2. p stable implies q stable

and let

�

c

c

be the associated equivalence. We state without proof:

Proposition 3.9 The relation

<

�

c

c

is the largest relation contained in

<

�

c

which is

preserved by all the operators in the language. 2

We will also use of the alternative characterisation in the next section to show that

<

�

c

c

is preserved by action re�nement. However in the de�nition of�

st

there is a tremendous

amount of redundant information. This is principally caused by the fact that many of

the sequences in LAct

�

can not be generated by processes and the fact the the individual

identity of the labels are unimportant. In the remainder of this section we outline

how some of this redundancy can be removed but the uninterested reader by proceed

immediately to the next section.

De�nition 3.10 A sequence s in LAct is called and st-sequence if it satis�es the following

conditions:

1. each e 2 LSAct has at most one occurrence in s

2. every occurrence of a subaction of the form f(a

l

) is preceded by an occurrence of

s(a

l

).

2

In these sequences labels are not reused and the begins and ends are in the proper

order. We could also eliminate all occurrences of complete actions by replacing a with

s(a

l

); f(a

l

) for an arbitrary label l. However in the next section it will be convenient to

have an alternative characterisation in which they are retained. Let �

0

st

be de�ned by

restricting attention in the de�nition of �

st

to st-sequences. Then

Proposition 3.11 For all processes p; q p�

st

q if and only if p�

0

st

q.
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Proof: (Outline) The proof relies on the fact that if s 2 LAct

�

p

s

=) p

1

then the starts

and �nishes in s are in the proper order and p

s

=) p

1

if and only if p

s

0

=) p

0

1

where

s

0

2 LAct

�

is obtained from s by some systematic renaming to the duplicate labels in

the resulting sequence to ensure uniqueness and p

0

1

is obtained from p

0

by the same label

renaming. Note that S(p

1

; s) = S(p

0

1

; s

0

). 2

We can go even further by abstracting away from the actual label names in the st-

sequences. An association h is a �nite subset of Act� L� L which satis�es

(< a; i; j >;< a; i; j

0

>) 2 h implies j = j

0

(< a; i; j >;< a; i

0

; j >) 2 h implies i = i

0

So h sets up a one-one correspondence between two �nite subsets of L for each action a.

Let us restrict our attention to st-sequences which contain no complete actions, which

we call st-sequences. Then �

h

is de�ned on st-sequences as follows:

1. " �

;

"

2. s �

h

s

0

implies s:s(a

l

) �

h[f<a;l;k>g

s

0

:s(a

k

)

3. s �

h

s

0

implies s:f(a

l

) �

h

s

0

:f(a

k

) provided < a; l; k >2 h

If s �

h

s

0

then intuitively s and s

0

are the same sequence of moves up to a renaming

via h. Now let s � s

0

if s �

h

s

0

for some h. One can check that � is an equivalence

relation over st-sequences; it is essentially the equivalence used in [AE91]. Moreover it is

su�cient to consider the behaviour of processes with respect to arbitrary representatives

from the equivalence clauses rather than all st-sequences. One can check that if s � s

0

then

p + s () p + s

0

p

p

s () p

p

s

0

A(p; s) = A(p; s

0

):

So one can unambiguously de�ne

1. p + [s] if for any s

0

� s p + s

0

2. p

p

[s] if for any s

0

� s p

p

s

0

3. A(p; [s]) = A(p; s

0

) where s

0

is an arbitrary element of [s].

Now let �

00

st

be de�ned by modifying the original de�nition of �

st

so that equivalence

classes are used rather than sequences over LAct. Speci�cally

De�nition 3.12 For processes p; q we write p�

00

st

q if for every st-sequence s

p + [s] implies i) q + [s]

ii) A(p; [s])� A(q; [s])

iii) q

p

[s] implies p

p

[s]

2
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It follows more or less immediately that

Proposition 3.13 For all processes p; q p�

st

q if and only if p�

00

st

q. 2

One could go even further and show how these equivalence classes can be interpreted

as labelled partial orders. But the connection between st-sequences and labelled partial

orders has been extensively studied in [Vog91b]. In particular he has pointed out that

st-sequences can be viewed as representing a restricted class of labelled partial orders

where the underlying partial order is an interval order.

4 Action Re�nement

The aim of this section is to show that the behavioural preorder

<

�

c

is preserved by

action re�nement and we use the approach and notation from [AH91a]. An action

re�nement is a mapping

�:Act 7�! BP:

It associates with each action a a process �(a). The application of an action re�nement

� to the process p will be denoted by p�. This is to be considered as a process which

behaves like the process p where the action a has been replaced by the process �(a).

We will not give a direct operational semantics to p�; instead we will simply de�ne a

substitution operator sub which gives the e�ect of substituting �(a) for a and then say

that p� behaves in exactly the same way the process sub(�; p) 2 BP. The de�nition of

substitution is straightforward except that we wish to consider the restriction operator

na as a binding operator on actions. This is reasonable because, for example, the

behaviour of (a; p j c; q)na does not depend on the particular action a; it has the same

behaviour as (b; p j c; q)nb assuming a; b does not appear in p; c; q. We would also expect

(a; p j c; q)na � to have the same behaviour as (b; p j a; q)nb �. Now consider a � which

maps a to rec x: a;x. If we simply used syntactic substitution we would require that

(a; p j (rec x: a;x); q)na and (a; p j (rec x: a;x); q)nb have the same behaviour, and they

are obviously di�erent; the latter can perform a a move which the former can not. The

problem occurs because in the former the free occurrence of a in �(a) is captured by

the restriction in (a; p j c; q)na. So in order to avoid this we need to rename the actions

being restricted so that no capturing occurs.

We assume that the reader is familiar with the usual treatment of binding operators,

(see for example [Sto88]), and here we only sketch the details. Precise de�nitions and

the proofs of associated properties for the treatment of restriction as a binder may be

found in [AH91a]. We use FA(t) to denote the set of free actions occurring in the term

t (an occurrence of a is considered to be an occurernce of a also ) and =

�

to denote

the associated �-conversion; this is the least equivalence relation preserved by all the

operators of the language and rec x: which satis�es

b 62 FA(t) and tid[a 7! b] =

�

u imply tna =

�

unb:

Here id represents the identity re�nement and �[a 7! p] is the re�nement which is

identical to � except that a and a are mapped to p and p respectively, where p is

obtained from p by replacing each action a with its complement a.
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De�nition 4.1 For each action re�nement � and term t let sub(�; t) be the term de�ned

by

1. sub(�; a) = �(a)

2. sub(�; (tna)) = sub(�[a 7! a

0

]; t)na

0

where a

0

is di�erent than all action names in

FA(�(a)) for each a occurring free in t.

3. sub(�; op(: : : ; t; : : :)) = op(: : : ; sub(�; t); : : :)

4. sub(�; x) = x

5. sub(�; rec x: t) = rec x: sub(�; t).

2

For each process p and action re�nement � sub(�; p) is also a process and we take the

behaviour of p� to be that of sub(�; p). Via this reduction we may view p� as a process

in BP and in what follows we will take this for granted.

We wish to investigate under circumstances the new semantic preorder is preserved

by action re�nement. Speci�cally let �

<

�

c

c

� if �(a)

<

�

c

c

�(a) for every a. Then we wish

to know under what circumstances

p

<

�

c

c

q and �

<

�

c

c

� imply p�

<

�

c

c

q�;

or speaking more strictly p

<

�

c

c

q and �

<

�

c

c

� imply sub(�; p)

<

�

c

c

sub(�; q).

In [AH91a] a similar problem was posed for bisimulation equivalence and it was shown

to be true for standard re�nements.

De�nition 4.2 An action re�nement � is standard if it satis�es

1. for each a �(a) j �(a)

"

=) r for some r such that r

p

.

2. for each a not �(a)

p

.

2

The �rst condition says that after the re�nement the resulting process should be able to

mimic the complete synchronisation between a and a and the second says that an action

can not be re�ned to a process which is properly terminated. These conditions are also

necessary if we wish

<

�

c

to be preserved by re�nements.

Example 4.3 Let p be (a + d) j d; b and q be p + � ; b. Then p

�

c

c

q but if �(d) =

c; �(d) = e then p� 6

�

c

q�; the former guarantees the test a;!. Note that this re�nement

does not satisfy the �rst requirement of standard. 2

Example 4.4 Let p; q be ((c + a; d) j d; b)nd; c + a; b respectively. Then p

�

c

c

q but if

�(a) = nil, a re�nement which does not satisfy the second condition, then p� 6

�

c

q�. 2

However more restrictions are neccessary as can be seen from the next example.
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Example 4.5 Let p be a j (b; c) + a + b, q be a + b and � a standard re�nement such

that �(a) = d and �(b) = d. Then p

<

�

c

q but p guarantees the test c! whereas q fails

it. 2

Example 4.6 An standard action re�nemant is called stable if

1. �(a) 6

�

�!for every action a

2. if �(a) j �(b)

�

�! implies a = b

2

The example just discussed violates the second condition but we conjecture that the �rst

is unnecessary.

Theorem 4.7 (The Re�nement Theorem) For every pair of stable re�nements

�; �; p

<

�

c

c

q and �

<

�

c

c

� imply p�

<

�

c

c

q�.

Before beginning the proof of this theorem we should point out that it depends on the

syntax of the language used. In particular it does not hold for the language EPL, [Hen88],

with respect to which much of the previous work on testing has been developed. The

following example has been pointed out by L. Jategoankar, [Jat92]. The main di�erence

between EPL and CCS is that � is replaced by a binary \internal choice operator" �

with the operational semantics determined by the rules

p � q

�

�! p and p � q

�

�! q:

The relation

�

�! is much the same as

�

�! except that it does not decide the choice in

p + q. Speci�cally it satis�es

p

�

�! p

0

implies p + q

�

�! p

0

+ q

and the obvious symmetric couterpart.

Using this di�erent operational semantics on can check that a j b + a; b + b; a

<

�

c

a j b

but if we apply the action re�nement � which is the identity except that it maps b to a

then they can be distingushed by the test a;!.

The remainder of this section is devoted to proving this theorem. Most of intermedi-

ate results only depend on re�nements being standard; the extra conditions are needed

is one place, the proof of Theorem 4.22. So we only assume that all re�nements are

standard and we will explicitly mention stability when it is required.

We use the characterisation theorem of the previous section and therefore much of

the proof is concerned with �

st

instead of

<

�

c

. The proof depends on the ability to

break down a sequence of moves from p� into the contributions made by p and each �(a)

and conversely the ability to recombine appropriate sequences of moves from p and each

�(a) in order to obtain a sequence from p�. The �rst step is to analyse single moves from

p� or more generally from the con�gurations which can occur when such processes start

making moves. So we need to generalise the de�nition of re�nements from processes to

con�gurations.
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De�nition 4.8 An (extended) action re�nement is a mapping

�:Act [ f a

i

j a 2 Act g 7�! C

such that �(a) 2 BP for all a 2 Act. 2

We say that a pair of such re�nements are compatible if they agree on all the unlabelled

actions, i. e. for all a 2 Act; �(a) = �

0

(a). A pair (c; �) is compatible if sub(�; c), de�ned

in the same way as above for terms, is a con�guration. This simply means that the

labels used in �(a

i

); �(b

j

) where a

i

; b

j

occur in c must be distinct. We will assume that

whenever we write c� in the pair is actually compatible. We will also say the pair is

proper if it is compatible and �(a

i

)

p

if and only if a

i

62 L(c). We will identify an action

re�nement � with its automatic extension, de�ned by letting �(a

i

) = nil for each a

i

. For

extended action re�nements obtained in this way every pair (p; �) is proper and we tend

to refer to \extended action re�nements" simply as \action re�nements".

Because substitution in general changes the names of restricted channels it is con-

venient to work modulo =

�

or even a slightly more general relation which includes =

�

.

Let � denote strong bisimulation de�ned over con�gurations using labelled sub-actions.

Speci�cally it is the largest equivalence relation over C such if c � d then

1. c

p

implies c

p

2. for all � 2 LAct

�

c

�

�! c

0

implies there exists a d

0

such that d

�

�! d

0

where c

0

� d

0

.

This is quite a strong relation as even the labels in the moves must be matched. One

can show that p =

�

q implies that p � q and that � satis�es the equations

nil; p = nil

nil + p = p

p j nil = p

We will use these equations freely throughout the following proofs. As an example of

the identities allowed using � we show

Lemma 4.9 If c

f(a

i

)

�! c

0

and �(a

i

)

p

then c� � c

0

�.

Proof: By induction on the derivation of c

f(a

i

)

�! c

0

. 2

We �rst consider the proper termination of c�.

Proposition 4.10 For every con�guration c and re�nement �

1. c

p

implies c�

p

2. c�

p

implies either c

p

(in which case c is a process) or c

f(a

i

)

�! c

0

for some f(a

i

); c

0

such that �(a

i

)

p

and c

0

�

p

3. if (c; �) is proper then c�

p

implies c

p
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Proof: The �rst statement may be proved by induction on why c

p

. The second uses

structural induction on c from which the last statement follows immediately. For the

second statement to be true it is essential for � to be standard. 2

We now analyse the moves from processes of the form c�. The �rst result, the

Whence theorem, decomposes a move of the form c�

�

�! c into the contributions from

c and the individual processes �(a). This theorem was originally stated in [AH91a] for

�nite processes although here we simplify the statement of the �nal possibility.

Proposition 4.11 (The Whence Theorem) If c�

�

�! c then one of the following holds:

� starting moves

1. c

s(a

i

)

�! c

0

; �(a)

�

�! x and c � c

0

�[a

i

7! x]

2. c

s(a

i

)

�! c

00

s(b

j

)

�! c

0

; a

i

6= b

j

; �(a)

a

0

�! x; �(b)

a

0

�! y and � = �; c � c

0

�[a

i

7!

x; b

j

7! y]

3. b

j

occurs in c, c

s(a

i

)

�! c

0

; �(a)

a

0

�! x; �(b

j

)

a

0

�! y and � = �; c � c

0

�[a

i

7!

x; b

j

7! y]

� continuing moves

4. a

i

occurs in c; �(a

i

)

�

�! x and c � c�[a

i

7! x]

5. a

i

; b

j

occur in c, a

i

6= b

j

�(a

i

)

a

0

�! x; �(b

j

)

a

0

�! y and � = �; c � c

0

�[a

i

7!

x; b

j

7! y]

� only c moving

6. c

�

�! c

0

and � = �; c � c

0

�

7. a

i

occurs in c; c

f(a

i

)

�! c

0

; �(a

i

)

p

and c

0

�

�

�! c:

Proof: The proof is by induction on the length of the derivation of c�

�

�! c and

is carried out by a case analysis on the structure of c. The only case not covered by

Theorem 4.2 of [AH91a] is when c has the form rec x: t.

Now rec x: t� � rec x: t� and since rec x: t�

�

�! c it follows that (up to the �-conversion)

t�[rec x: t�=x]

�

�! c and moreover the proof of the latter is shorter than that of the

former. Accordingly we can apply induction since t�[rec x: t�=x] = t[rec x: t=x]� and

because t[rec x: t=x] is a process there are only three possibilities, (1); (2) and (6). As

an example consider the second. Here t[rec x: t=x]

s(a

i

)

�! c

00

s(b

j

)

�! c

0

; �(a)

a

0

�! x; �(a)

a

0

�!

y; � = � and c � c

0

�[a

i

7! x; b

j

7! y]. This means that rec x: t

s(a

i

)

�! c

00

s(b

j

)

�! c

0

and

therefore case (2) applies. 2

There is a converse theorem, again a generalisation of the corresponding theorem from

[AH91a], for recombining appropriate moves from c and � to obtain a single move from

c�. There are six possibilities corresponding to the �rst six methods for decomposing a

move from c� in the Whither theorem. The last method will not be of interest.
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Proposition 4.12 (The Whither theorem) Let c be a con�guration and � a re�nement.

Then

� starting moves

1. c

s(a

i

)

�! c

0

; �(a)

�

=) x implies c�

�

=) c

0

�[a

i

7! x]

2. if a

i

6= b

j

then c

s(a

i

)

�!

s(b

j

)

�! c

0

; �(a

i

)

a

0

=) x; �(b

j

)

a

0

=) y implies c�

�

=) c

0

�[a

i

7!

x; b

j

7! y]

3. if b

j

occurs in c then c

s(a

i

)

�! c

0

; �(a)

a

0

=) x; �(b

j

)

a

0

=) y implies c�

�

=) c

0

�[a

i

7!

x; b

j

7! y]

� continuing moves

4. if a

j

occurs in c then �(a

j

)

�

=) x implies c�

�

=) c�[a

i

7! x]

5. If a

i

; b

j

occur in c and a

i

6= b

j

then �(a

i

)

a

0

=) x; �(b

i

)

a

0

=) y imply c�

�

=)

c�[a

i

7! x; b

j

7! y]

� only c moving

6. c

�

�! c

0

implies c�

�

=) c

0

�.

Proof: The �rst two statements are proved directly by induction on the length of the

proof of c

s(a

i

)

�! c

0

; however the �rst is needed to prove the second. The fourth statement

is proved by structural induction on c and note that in this case c can not be of the

form rec x: t. Statements (3) and (5) are also proved by structural induction on c and

(1) and (4) are needed in the proof of (3) while only (4) is used in that of (5). The �nal

statement is proved by induction on the length of the proof of the derivation c

�

�! c

0

.

However in this last case an auxilary lemma is required, namely: c

a

�! c

0

; �(a)

s

=) r

p

implies c�

s

=) c

0

� and for this to be true it is essential that � be standard.

In each case the details follows those in Theorem 4.3 of [AH91a]. 2

As an example of the use of these results we can show that stability is preserved by

re�nement.

Theorem 4.13 If p

<

�

c

c

q and �

<

�

c

c

� then p� stable implies q� stable.

Proof: We show that q�

�

�! implies p�

�

�!. By the Whence theorem if q�

�

�! then,

since q� is a process, there are only three possibilities, (1); (2) or (6). As an example

consider the second possibility where q

s(a

i

)

�!

s(b

j

)

�! ; a

i

6= b

j

; �(a)

a

0

�! and �(b)

a

0

�!. Since

p

<

�

c

c

q it follows that p

s(a

i

)

=)

s(b

j

)

=) and since �

<

�

c

c

� we also have that �(a)

a

0

=) and �(b)

a

0

=).

Applying Proposition 2.5 we may assume p

�

=)

s(a

i

)

�!

s(b

j

)

�! and if p

�

�! then the last case

of the Whither Theorem gives p�

�

�! immediately. So we may assume p

s(a

i

)

�!

s(b

j

)

�! and

the second case of the Whither theorem also gives p�

�

�!. 2
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Since �

st

is de�ned in terms of sequences the Whence and Whither theorems must

be generalised to sequences. This is not particularly easy but it helps somewhat if we

con�ne our interest to st-sequences. The idea is to de�ne a predicate which relates tuples

of sequences of contributions from the action re�nement � and the underlying process

p to the sequence produced by the re�ned process p�. However in the production of a

sequence of moves from p� we may have used the fact that for some a �(a) can successfully

terminate after certain sequences of moves. (Recall that in order to derive moves from

p; q it is necessary to know if p has successfully terminated.) So in general the merge

predicate, M

T

, is parameterised by a termination set T which is a set of pairs of the

form (a; s). Each action re�nement gives rise to a particular termination set T (�) de�ned

by f (a; s) j �(a)

p

s g. M

T

will have three components:

< u; r; s >

where

1. u 2 LAct

�

records the contribution from the process being re�ned

2. s 2 LAct

�

is the sequence produced by the re�ned process

3. r is a partial function from Act�N to LAct

+

�

r(a

i

) records the contribution of �(a

i

) to the computation of s which may be a

non-empty sequence of elements from LAct or simply � , representing the some

unknown internal activity.

The de�nition of this predicate is obtained by reading o� from the Whence theorem the

possible ways in which derivations from c� can be extended. To make the de�nition

more readable we assume that, since the relation is only de�ned over st-sequences, the

clauses in the de�nition can only be applied if the components in the resulting tuple are

also st-sequences. We also use the same approach to appending � to a sequence s; when

� = � it acts like a right unit both when applied to elements of LAct

�

and LAct

+

�

. We

use r[a

i

+�] to denote the function which results from modifying r so the new function

now maps a

i

to the result of appending � to r(a

i

); it is only de�ned when a

i

is in the

domain of r. However we use r[a

i

 �], where a

i

is not in the domain of r, to denote the

extension of r, which now maps a

i

to �.

De�nition 4.14 Let M

T

be the least predicate such that < "; ;; " >2 M

;

and when-

ever < u; r; s >2 M

T

then

1. < u:s(a

i

); r[a

i

 �]; s:� >2 M

T

2. < u:s(a

i

):s(b

j

); r[a

i

 a

0

; b

j

 a

0

]; s >2 M

T

3. if b

j

active in u then < u:s(a

i

); r[a

i

 a

0

; b

j

+a

0

]; s >2 M

T

4. if a

i

active in u then < u; r[a

i

+�]; s:� >2 M

T

5. if a

i

; b

j

active in u, for a

i

6= b

j

, then < u; r[a

i

+a

0

; b

j

+a

0

]; s >2 M

T

6. < u:f(a

i

); r; s >2 M

T[f(a;r(a

i

))g
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2

One can prove various properties of M

T

by induction on its de�nition. For example

if < u; r; s >2 M

T

then a

i

is in the domain of r if and only if s(a

i

) appears in u.

Also if < u; r; s >2 M

T

then (a; s

0

) 2 T if and only if there is some f(a

i

) in u such

that r(a

i

) = s

0

. The main property of M

T

is that it can record the manner in which

derivations are made from processes of the form p�. The next two theorems state that

p� can perform a sequence s from LAct

�

essentially if and only if < u; r; s >2 M

T

for

some T � T (�) where u and r record the contributions of p and � to the computation

of s. The many extra conditions in both theorems are required in order to carry out the

proofs using induction.

Theorem 4.15 (The Decomposition Theorem)

If (p; �) is proper and p�

s

=) c then there exists a con�guration c, a re�nement �

0

and a

tuple < u; r; s >2 M

T

such that

1. c � c�

0

2. p

u

=) c

3. �(a)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(c)

4. T � T (�)

5. (c; �

0

) is proper and � and �

0

are compatible.

Proof: The proof is by induction on the size of the derivation p�

s

=) c i.e. the to-

tal number of inference rules in the proofs of all the individual moves which make

up the derivation. If the number is zero then the theorem is trivially satis�ed since

< "; ;; " >2 M

;

. So we can assume that for some con�guration c

1

p�

s

0

=) c

1

�

�! c. By

considering the derivation p�

s

0

=) c

1

we may apply induction to obtain a con�guration

d

1

, a re�nement �

1

and a tuple < u

0

; r

0

; s

0

>2 M

T

0

such that

1. c

1

� d�

1

2. p

u

0

=) d

3. �(a)

r

0

(a

i

)

=) �

1

(a

i

) for every a

i

2 L(d)

4. T

0

� T (�)

5. (d; �

1

) is proper and �; �

1

are compatible.

We can assume d�

1

�

�! c and we examine the way in which this �nal move can be

inferred. The Whence theorem gives us seven possibilities for this move but in fact the

last one is not possible because the pair (d; �

1

) is proper and in the sixth case the existing

element of M

T

< u

0

; r

0

; s

0

> will satisfy the requirements of the theorem. In each of

the other cases we employ a corresponding clause in the de�nition of M

T

. However in

certain cases there may be some tidying up to do, using the �nal clause in the de�nition
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of M

T

, to ensure that the pair (c; �

0

) is proper.

As an example suppose that clause (1) of the Whence theorem applies, d

s(a

i

)

�!

d

00

; �

1

(a)

�

�! x and c � d

00

�

1

[a

i

7! x]. Here we apply clause (1) in the de�nition of

M

T

to obtain < u

0

:s(a

i

); r

0

[a

i

 �]; s

0

:� >2 M

T

0

and one can check that the requirements

are satis�ed with c = d

00

; u = u

0

:s(a

i

); s = s

0

:�; �

0

= �

1

[a

i

7! x] and r = r

0

[a

i

 �], except

possibly that (d

00

; �

0

) is not proper because x

p

. In this case let d

0

be such that d

00

f(a

i

)

�! d

0

.

By Lemma 4.9 we have c � d

0

�

0

and employing the last clause in the de�nition of M

T

we have < u

0

:s(a

i

):f(a

i

); r; s >2 M

T

0

[f(a;r(a

i

))g

. In this case the requirements are also

satis�ed since T

0

[ f(a; r(a

i

))g � T (�). 2

Not only mayM

T

be used to record the derivation of sequences of moves from terms of

the form p� but it captures precisely when such sequences can be made; the decomposi-

tion theorem has a converse:

Theorem 4.16 (The Composition Theorem)

Suppose < u; r; s >2 M

T

where T � T (�). If

1. p

u

=) c where c 2 C

2. for every a

i

2 L(c) �(a)

r(a

i

)

=) �

0

(a

i

)

3. (p; �); (c; �

0

) and �; �

0

are all compatible

then p�

s

=) c�

0

.

Proof: This time we use induction on the proof that < u; r; s >2 M

T

.

First consider the base case, < "; ;; " >2 M

;

.

Here p

"

=) c and cmust be a process and therefore �must coincide with �

0

. So p�

"

=) c

0

�

0

follows by possibly more than one application of the �nal clause of the Whither theorem.

Otherwise there are six cases depending on how membership in M

T

is inferred. In

all but the last case we can apply induction followed by a corresponding clause in the

Whither theorem; the last case is treated separately using clause (6). As examples we

look at two cases.

1. if a

i

; b

j

active in u, a

i

6= b

j

, then < u; r[a

i

+a; b

j

+a]; s >2 M

T

because < u; r; s >2

M

T

.

Let the derivations from �(a); �(b) be of the form

�(a)

r(a

i

)

=) x

a

0

=) �

0

(a

i

)

�(b)

r(b

j

)

=) y

a

0

=) �

0

(b

j

)

and let �

1

denote �

0

[a

i

7! x; b

j

7! y]: By induction we have p�

s

=) c�

1

. By

Lemma 3.3 we can apply clause (5) of the Whither Theorem to obtain c�

1

�

=) c�

0

and therefore p�

s

=) c�

0

.

2. < u:f(a

i

); r; s >2 M

T[(a;r(a

i

))

because < u; r; s >2 M

T

.

Let c

1

; c

2

be such that p

u

=) c

1

f(a

i

)

�! c

2

"

=) c. Now by the statement of the theorem
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�(a)

p

r(a

i

). So let �

0

1

be the re�nement �

0

[a

i

7! x] where x is any process such that

�(a)

r(a

i

)

�! x

p

. Then by induction p�

s

=) c

1

�

0

1

. by Lemma 4.9 c

1

�

0

1

� c

2

�

0

1

� c

2

�

0

and by repeated application of clause (6) of the Whither Theorem c

2

�

0

"

=) c�

0

. It

follows that (up to �) p�

s

=) c�

0

. 2

These composition and decomposition results enable us to analyse and compare ar-

bitrary sequences of external moves from processes of the form p� but we also need to

be able to analyse why such processes diverge internally. The following proposition tells

us conditions under which we can expect p� * s. These conditions seem rather special

but they occur in various places during the proof of the re�nement theorem.

First some notation. Let us write T � T (�) if (a; s) 2 T implies that either (a; s) 2 T (�)

or �(a) * s. One can check that if T � T (�) and �

<

�

c

� then T � T (�).

Proposition 4.17 Suppose < u; r; s >2 M

T

where T � T (�) and suppose that for

some c

1. p * u or p

u

=) c

2. for every a

i

2 L(c) either �(a) * r(a

i

) or �(a)

r(a

i

)

=)

3. one of the following holds:

(a) for some a 2 S(c) �(a) *

(b) for some a

i

2 L(c) �(a) * r(a

i

)

(c) p * u

Then p� * s.

Proof: By induction on why < u; r; s >2 M

T

. The base case < "; ;; " >2 M

;

is trivial.

For the induction step there are six cases, one for each way of inferring membership in

M

T

. As an example we consider one case:

< u:s(a

i

); r[a

i

 �]; s:� >2 M

T

because < u; r; s >2 M

T

:

If p * u or �(a) * r(a

j

) for any j then we can apply induction to obtain p� * s and

therefore p� * s:�. Otherwise we have p

u

=) c

0

s(a

i

)

�! c

00

for some c

0

; c

00

and �(a)

r(a

j

)

=) x

a

j

for every a

j

2 L(c). Under these circumstances if �(a) * s

0

for some (a; s

0

) 2 T then one

can show by induction on why < u; r; s >2 M

T

that p� * s. So we can assume that

T � T (�) and therefore apply the Composition theorem to obtain p�

s

=) c

0

�

0

where �

0

is de�ned so as to be compatible with � and such that �

0

(a

j

) = x

a

j

for each a

j

in the

domain of r.

We know that c

0

s(a

i

)

�! c

00

and �

0

(a

i

)

�

=) x for some x. Applying clause (1) of the Whither

theorem we obtain c

0

�

�

=) c

00

�

0

[a

i

7! x]. Now if x * or c

00

* again the Whither theorem

shows that c

00

�

0

[a

i

7! x] * and therefore p� * s:�. The only remaining possibility is

that �(a) * for some a 2 S(c

00

) in which case since �(a) = �

0

(a) it again follows that

c

00

�

0

[a

i

7! x] * and so p� * s:�. 2
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Unfortunately this is not the only result we need about divergence. This is because

c� may diverge although c and �(a), for every a, are well behaved processes which

never diverge. As a simple example let c be rec x: a;x j rec x: b;x with � the standard

re�nement de�ned by �(a) = a+ a

0

; �(b) = b+ a

0

. Note that � is not stable. There are

similar forms of divergence for stable re�nements although the behaviour is not quite

as complicated. For example let c be a j b and � the stable re�nement de�ned by

�(a) = c; rec x: d;x and �(b) = c

0

; rec x: d;x. It is this form of divergence from c� which

requires the most careful analysis.

De�nition 4.18 The pair (c; �) weakly converges, written (c; �) +, if for every c such

that c�

"

=) c and pair (c

0

; �

0

) such that c � c

0

�

0

c

0

+ and �

0

(a

i

) +; �(a) + for every

a

i

2 L(c

0

); a 2 S(c

0

) respectively. 2

We examine why c� diverges for weakly convergent pairs (c; �). For the sake of

generality this analysis is carried out for standard � although the situation is slightly

less complicatied when � is assumed to be in addition stable. The labelled transition

system which de�nes the operational semantics of BP is �nite branching and therefore

a term diverges if and only if it can produce the sequence of moves �

n

for every n � 0.

So in analogy with the predicateM

T

we de�ne a predicateN

T

which characterises when

terms of the form c� can perform the sequence �

n

. Speci�cally c�

�

n

=) if and only if

there is a triple < u; r; n >2 N

T

for some particular T such that c

u

=) and �(a)

r(a

i

)

=) for

every a

i

in the domain of r.

De�nition 4.19 Let N

T

be the least predicate such that < "; ;; 0 >2 N

;

and whenever

< u; r; n >2 N

T

then

1. < u:s(a

i

); r[a

i

 �; n+ 1 >2 N

T

2. < u:s(a

i

):s(b

j

); r[a

i

 a

0

; b

j

 a

0

]; n+ 1 >2 N

T

3. if b

j

is active in u then < u:s(a

i

); r[a

i

 a

0

; b

j

+a

0

]; n+ 1 >2 N

T

4. if a

i

; b

j

are active in u, for a

i

6= b

j

, then < u; r[a

i

+a

0

; b

j

+a

0

]; n+ 1 >2 N

T

5. < u:f(a

i

); r; n >2 N

T[f(a;r(a

i

))g

2

The corresponding composition theorem for N

T

is:

Theorem 4.20 (The Composition Theorem for N

T

)

Suppose < u; r; n >2 N

T

where T � T (�). If

1. c

u

=) c

0

2. for every a

i

2 L(c

0

)� L(c) �(a)

r(a

i

)

=) �

0

(a

i

)

3. for every a

i

2 L(c

0

) \ L(c) \ domain(r) �(a

i

)

r(a

i

)

=) �

0

(a

i

)

4. (p; �); (c; �

0

) and �; �

0

are all compatible

then c�

�

n

=) c�

0

.
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Proof: Similar to that of Theorem 4.16. 2

The decomposition theorem for N

T

applies to weakly convergent pairs and is slightly

di�erent in form from that for M

T

. It basically says that if d� * then for every n there

exists some < u; r; n >2 N

T

where u records the contribution of d and r that of � to

some internal computation of length at least n. The other components in the statement

of the theorem are required for the inductive proof.

Theorem 4.21 (The Decomposition Theorem for N

T

)

Suppose (d; �) is proper and weakly convergent. If d� * then for every n � 0 there exists

a con�guration d

0

, a re�nement �

0

and a tuple < u; r; n >2 N

T

such that

1. d

0

�

0

*

2. d�

�

n

=) d

0

�

0

3. d

u

=) d

0

4. �(a)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(d

0

) � L(d)

and �(a

i

)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(d

0

) \ L(d) \ domain(r).

5. T � T (�)

6. (d

0

; �

0

) is proper and � and �

0

are compatible.

Proof: By induction on n. If n = 0 the required tuple is < "; ;; 0 >2 N

;

and the pair

(d

0

; �

0

) is (d; �) itself. So assume the result is true for k; we prove it true for k + 1.

By induction we know that d�

�

k

=) d

1

�

1

for some d

1

; �

1

and there exists some< u; r; s >2

N

T

such that

1. d

1

�

1

*

2. d�

�

n

=) d

1

�

1

3. �(a)

r(a

i

)

=) �

1

(a

i

) for every a

i

2 L(d

1

)� L(d)

and �(a

i

)

r(a

i

)

=) �

1

(a

i

) for every a

i

2 L(d

1

) \ L(d) \ domain(r)

4. T � T (�)

5. (d

1

; �

1

) is proper and � and �

1

are compatible.

To prove the result it is su�cient to show that exists a (d

0

; �

0

) and a T

0

such that

1. d

1

�

1

�

=) d

0

�

0

2. d

0

�

0

*

3. there exists an extension u

0

of u and an extension r

0

of r such that

(a) < u

0

; r

0

; k + 1 >2 N

T

0
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(b) d

1

u

0

=u

=) d

0

(c) �(a)

r

0

(a

i

)

=) �

0

(a

i

) for all a

i

2 L(d

0

)� L(d)

and �(a

i

)

r

0

(a

i

)

=) �

0

(a

i

) for all a

i

2 L(d

0

) \ L(d) \ domain(r

0

)

4. T � T

0

� T (�)

5. (d

0

; �

0

) is proper and �; �

0

are compatible.

This ensures that the requirements of the theorem are satis�ed for k + 1.

We show that the required d

0

; �

0

exist by using induction on a measure of the length of

the internal derivations which d

1

and the relevant �

1

(�) can perform. For any convergent

con�guration d let � (d) be the length of the longest � -derivation it can perform and for

� of the form a or a

i

let occ(�; d) be the number of top-level occurrences of � in d. We

then de�ne size(d; �) to be

� (d) +

X

�

focc(�; d) � � (�(name(�)))g

where name(a) = name(a

i

) = a. If (d; �) + then size(d; �) is �nite and we use induction

on this measure.

Since d

1

�

1

* we know that d

1

�

1

�

�! c for some c such that c *. If we apply theWhence

theorem to this derivation there are six possibilities; the last is ruled out because (d

1

; �

1

)

is proper. For each of these six possibilities we can either use induction on size or else

we can apply an appropriate clause in the de�nition of N

T

. We consider two example

cases.

1. a

i

occurs in c, �

1

(a)

�

=) x and c � d

1

�

0

1

where �

0

1

denotes �

1

[a

i

7! x].

Here size(d

1

; �

0

1

) < size(d

1

; �

1

) and therefore if (d

1

; �

0

1

) is proper we may apply

induction to obtain a d

0

; �

0

which satisfy the requirements for d

1

; �

0

1

; however they

will also satisy them for d

1

; �. If (d

1

; �

0

1

) is not proper then it is because x

p

.

Let d

1

f(a

i

)

�! d

0

. Then by Lemma 4.9 d

1

�

1

[a

i

7! x] � d

0

�

1

and < u:f(a

i

); r; k >2

N

T[f(a;r(a

i

))g

. Since �(a)

r(a

i

)

=) �

1

(a

i

)

�

�! x it follows that T [ f(a; r(a

i

))g � T (�)

and therefore the requirements are satis�ed.

2. d

1

s(a

i

)

�!

s(b

j

)

�! d

0

1

; �

1

(a)

a

0

�! x; �

1

(b)

a

0

�! y, and c � d

0

1

�

1

[a

i

7! x; b

j

7! y].

It follows that < u:s(a

i

):s(a

j

); r[a

i

 a

0

; b

j

 a

0

]; k + 1 >2 N

T

, from clause (2) of

the de�nition of N

T

. The required u

0

; r

0

are u; r[a

i

 a

0

; b

j

 a

0

] respectively and the

Whither theorem gives d

1

�

1

i

�! d

0

1

�

1

[a

i

7! x; b

j

7! y]). But (d

0

1

; �

1

[a

i

7! x; b

j

7! y])

may not be proper; for example it may be that x

p

. In this case let d

0

be such

that d

0

1

f(a

i

)

�! d

0

. Then by Lemma 4.9 d

0

�

1

[a

i

7! x; b

j

7! y] � d

0

1

�

1

[a

i

7! x; b

j

7! y].

In this way, by applying the last clause of the de�nition of N

T

, as in the previous

case, we can be sure of obtaining a proper pair satisfying the requirements. 2

With these results we now have all the required information to prove the main theo-

rem of this section.

Theorem 4.22 (The Re�nement Theorem) For every pair of stable re�nements

�; �; p

<

�

c

c

q and �

<

�

c

c

� imply p�

<

�

c

c

q�.
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Proof: We use the alternative characterisation of

<

�

c

c

, expressed in terms of st-

sequences and stability. In view of Proposition 4.13 it is su�cient to show p� �

st

q�.

This will follow from p�

st

q and �

<

�

c

c

�.

Now for any st-sequence s suppose p� + s. We have to prove three statements:

1. q� + s.

We prove the contrapositive: assuming q� * s we prove p� * s. If q� * s then for

some pre�x s

0

of s q�

s

0

=) c such that c *. To avoid unnecessary complexity we

just assume that s

0

is s.

To any derivation q�

s

=) c we can apply the Decomposition theorem to obtain

< u; r; s >2 M

T

for some T � T (�) such that

(a) c � c

0

�

0

(b) T � T (�)

(c) q

u

=) c

0

(d) for every a

i

2 L(c

0

) �(a)

r(a

i

)

=) �

0

(a

i

).

In order to prove p� * s we will try to apply Proposition 4.17 and in most cases we

will be successful. Note that becasue �

<

�

c

� we can always assume that for such

a decomposition T � T (�). There are three possibilities:

� There exist some c such that q�

s

=) c and the above decomposition gives a

c

0

such that c

0

*.

In this case since p

<

�

c

q it follows that p * u. From �

<

�

c

� it then follows

that all the requirements of Proposition 4.17 hold and we can conclude p� *.

� There exist some c such that q�

s

=) c and the above decomposition gives

either some a

i

2 L(c

0

) such that �

0

(a

i

) * or some a 2 S(c

0

) such that �(a) *.

Again one can show that all the requirements of Proposition 4.17 are satis�ed.

� Otherwise we can assume that in the decomposition above that (d; �

0

) +.

Here we use the predicate N

T

. By its decomposition theorem we obtain for

each n � 0, < u

1

; r

1

; n >2 N

T

1

for some T

1

� T (�) such that

c

0

u

1

=) c

n

�

0

(a

i

)

r

1

(a

i

)

=) for each a

i

2 L(c

0

) \ L(c

n

) \ domain(r

1

)

�

0

(a)

r

1

(a

i

)

=) for each a

i

2 L(c

n

)� L(c

0

):

Let u

0

; T

0

; r

0

denote u:u

1

; T [ T

1

and r � r

1

respectively.

Then since p

<

�

c

q and �

<

�

c

� it follows that conditions i) and ii) of Proposi-

tion 4.17 are true. If for some n condition iii) is also true then, since one can

show (using the de�nitions of M

T

and N

T

) that < u

0

; r

0

; s >2 M

T

, we can

apply this proposition to obtain p� * s.

So we may assume �(a) + r

0

(a

i

) for each a

i

2 L(c

n

) and since (a; s

0

) 2 T

0

implies s

0

= r

0

(a

j

) for some j it follows that T

0

� T (�). So we may apply

the Composition theorem for M

T

followed by that for N

T

to obtain p�

s�

n

=) .

Since this is true for each n it follows that p� * s.

2. If q

p

s then p

p

s.

We leave this to the reader.
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3. If A 2 A(q�; s) then B � A for some B 2 A(p�; s).

If A 2 A(q�; s) then q�

s

=) c for some live and stable c such that A = S(c).

Applying the decomposition theorem to this derivation we obtain < u; r; s >2 M

T

for some T � T (�) and c � d�

0

, where (d; �

0

) is proper, such that q

u

=) d and

�(a)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(d). In view of Proposition 4.17 and the fact

that p� + s we may assume that p + u and �(a) + r(a

i

), �(a) + for each a 2 S(d)

and T � T (�).

Since d�

0

is stable it follows that d; �

0

(a

i

); �

0

(a) are all stable, for each a

i

2 L(d)

and a 2 S(d). These are also live because d�

0

is live and (d; �

0

) is proper.

So from p

<

�

c

c

q and �

<

�

c

� we can obtain stable and live c and x

a

i

such that p

u

=)

c; �(a)

r(a

i

)

=) x

a

i

and S(c) � S(d); S(x

a

i

) � S(�

0

(a

i

)). Applying the Composition

theorem for M

T

we obtain p�

s

=) c�

1

where �

1

denotes �[a

i

7! x

a

i

].

We show that c�

1

is stable and for this we need the fact that the re�nements are

stable. Suppose c�

1

�

�! . We use the Whence theorem to derive a contradiction.

This theorem gives seven di�erent possible decompositions for this internal move

and examining each in turn we see that none of them are possible. The �rst is not

possible since � is stable. In the second decomposition the stability of � implies

that a = b and so by Lemma 2.3 c

�

�! which contradicts the fact that c is stable.

In the third case since S(c) � S(d) we can use the third clause of the Whither

theorem to show that d�

0

�

�! which contradicts the stability of d�

0

. A similar

arguement rules out the �fth case while the fourth is impossible because each x

a

i

is stable. The stabilty of c rules out the sixth case and �nally the last case is not

possible since each x

a

i

is live.

One can also check that c�

1

is live and by construction S(c�

1

) � A. The result

now follows since p�

s

=) c�

1

.

2

5 Characterising ST-Testing

The more standard notion of testing, based on complete, non-divisible actions as in

[Hen88] may also be applied to our language; we denote the resulting preorder by

<

�

s

.

Because only complete actions are used this equivalence does not distinguish between

nondeterminism and concurrency. It is also not preserved by action re�nement.

In this section we examine the relationship between

<

�

c

and

<

�

s

. The main result is

that

<

�

c

c

may be characterised by

<

�

s

c

and action re�nement. Speci�cally

<

�

c

c

satis�es

the properties

1. it is contained in

<

�

s

c

2. it is preserved by stable action re�nements.

We prove that

<

�

c

c

is the largest relation with these two properties.
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Let us �rst de�ne the testing relation

<

�

s

. Although it may be obtained by restrict-

ing the tests in section 2 it makes the development clearer if we reiterate the various

de�nitions. For each � 2 Act

�

let

�

�!

s

be the least relation over BP which satis�es

all of the requirements (O1) to (O7) in Figure 1 with the single change that in (O1)

the second and third conditions are dropped. So in

�

�!

s

only complete actions are

ever used. Sequential testing is now de�ned using this operational semantics. We use as

sequential tests the set of processes BP

�

where

� = Act [ fterm; !g:

So the tests are also only able to perform complete actions although they can still detect

the successful termination of a process.

De�nition 5.1 Let 7!

s

be the least relation between experimental states of the form

e k p where e is a sequential test and p a process which satis�es

1. e

a

�!

s

e

0

; p

a

�!

s

p

0

implies e k p 7!

s

e

0

k p

0

for every a in Act

2. e

�

�!

s

e

0

implies e k p 7!

s

e

0

k p

3. p

�

�!

s

p

0

implies e k p 7!

s

e k p

0

4. e

term

�!

s

e

0

; p

p

implies e k p 7!

s

e

0

k p

2

A sequential computation is then a maximal sequence of the form

e k p � e

0

k p

0

7!

s

e

1

k p

1

7!

s

: : :

and it is successful if, as usual, it contains a successful state. Then p must

s

e if every

computation from e k p is successful. Finally p

<

�

s

q if for all sequential tests e p must

s

e

implies q must

s

e.

We will not develop to any great extent the theory of this behavioural preorder; it is

similar to that in [DH84] except that here it is applied to a slightly more general language

which has two kinds of termination and sequential composition. However it can be

characterised in terms of acceptance sets along the lines of the alternative characterisation

of

<

�

c

given in section 3; it is su�cient to restrict attention to sequences from Act:

De�nition 5.2 For processes p; q we write p� q if for every s 2 Act

�

p # s implies i) q # s

iii) q

p

s implies p

p

s

ii) A(p; s)� A(q; s):

2

We state without proof:

Theorem 5.3 (Alternative Characterisation for sequential testing)

For all processes p; q p

<

�

s

q if and only if p� q. 2

As an immediate corollary we have
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Corollary 5.4 For all processes p; q p

<

�

c

q implies p

<

�

s

q. 2

Let

<

�

s

c

be de�ned in the obvious way from

<

�

s

: p

<

�

s

c

q if p

<

�

s

q and

p stable implies q stable. It follows trivially that

<

�

c

c

�

<

�

s

c

. We also know

that

<

�

c

c

is preserved by action re�nement and therefore the main result of this section

will follow if we can construct a particular stable re�nement � with the property that

for all processes p; q; p� � q� implies p�

st

q. We de�ne � as a mapping

�:Act 7�! BP

�

where � is the set of actions de�ned in section 3; it contains all the elements of Act and

all labelled begin and end actions together with their complements. Then � is de�ned

by

�(a) = a+

X

f s(a

k

); f(a

k

) j k 2 K g for K � L a su�ciently large �nite set:

Note that � is a stable re�nement. The use of the alphabet � leads to some blurring of

the distinction between processes and con�gurations as a con�guration for the process

language BP

Act

is a process for the language BP

�

. However this is the basic reason

why the concurrent behaviour of processes in BP

Act

can be simulated by the sequential

behaviour of proceses in BP

�

.

We proceed by proving a sequence of lemmas which relate the sequential operational

semantics of p� to the st-operational semantics of p.

For any st-sequence u let r

u

, a partial function from Act � N to LAct

+

be de�ned

by

r

u

(a

i

) = u j fs(a

i

); f(a

i

)g if s(a

i

) or f(a

i

) appear in u.

Also let T

s

= f (a; s(a

i

); f(a

i

)) j i 2 N; a 2 Act g.

Lemma 5.5 For every st-sequence u there exists a �nite subset T of T

s

such that

< u; r

u

; u >2 M

T

.

Proof: By induction on u. 2

For any con�guration c we say that the action re�nement �

0

is an extension of � com-

patible with c if it is compatible with �, i. e. coincides with � on all the elements of Act,

and otherwise is characterised by

�

0

(a) =

(

f(a

j

) for some j a

i

2 L(c)

nil a

i

62 L(c)

A particular extension of � compatible with c, �

c

, may be de�ned by letting �

c

(a

i

) = f(a

i

)

for each a

i

2 L(c). Then as an immediate corollary we have

Corollary 5.6 For any st-sequence u if p

u

=) c then p�

u

=)

s

c�

c

.
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Proof: We use the Composition theorem for M

T

and we have to assume that the K

used in the de�nition of � contains any index used in u.

By the previous lemma there exists a T � T

s

such that < u; r

u

; u >2 M

T

and by

de�nition T � T (�). So all the requirements of the composition theorem hold and we

may conclude p

u

=)

s

c�

c

. 2

We now examine sequential derivations from processes in BP

�

of the form p�.

Lemma 5.7 For any st-sequence s if p�

s

=)

s

c then there exists an st-sequence u such

the s � u; p

u

=) c and c � c�

0

where �

0

is an extension of � compatible with c and (c; �

0

)

is proper.

Proof: By induction on the length of the derivation p�

s

=)

s

c. If the derivation is

empty, i. e. c is p�, then the requirements are trivially satisi�ed. Otherwise it has the

form

p�

s

0

=)

s

c

1

�

�!

s

c:

By induction there exists u

0

; c

1

; �

1

and an association h such that s

0

�

h

u

0

; p

u

0

=) c

1

and

c

1

� c

1

�

1

. We now apply the Whence theorem to the move c

1

�

1

�

�!

s

c and there are

only three possible results; third and �fth are ruled out because of the de�nition of �

while the last is not possible because (c

1

; �

1

) is proper. We examine two representative

cases.

1. c

1

s(a

i

)

�!

s(b

j

)

�! c; a

i

6= b

j

; �

1

(a)

a

0

�!

s

x; �

1

(b)

a

0

�!

s

y and c � c�

1

[a

i

7! x; b

j

7! y].

Now by the de�nition of � a must be a

0

and b must be a

0

and therefore we have

p

u

0

=)

s(a

0

i

)

�!

s(a

0

j

)

�! c. Let c

0

be such that

p

u

0

=)

s(a

0

i

)

�!

s(a

0

j

)

�!

f(a

0

i

)

�!

f(a

0

j

)

�! c

0

:

Then by Lemma 2.3 p

u

0

=) c. Also by Lemma 4.9, since both x and y must be nil,

c�

1

[a

i

7! x; b

j

7! y] � c

0

�

1

.

2. c

1

s(a

i

)

�! c; �(a)

�

�!

s

x and c = �

1

[a

i

7! x].

Here � must be s(a

j

) for some j and so x must be f(a

j

). Then let �

0

be

�

1

[a

i

7! f(a

j

)] which is an extension of � compatible with c and by de�nition

s:s(a

i

) �

h[f<a;i;j>g

u

0

:s(a

j

). So the required association is h [ f< a; i; j >g.

2

Lemma 5.8 If �

0

is an extension of � compatible with c and c�

0

* then c *.

Proof: It is su�cient to show that if c; �

0

satisfy the conditions of the lemma then

either c " or c

�

�! c

0

such that c

0

�

00

* for some extension of �; �

00

compatible with c

0

.

If c�

0

* then either c�

0

" or c�

0

�

�!

s

c for some c such that c *. In the former case we

can conclude c " because of the form of �

0

while in the latter we can apply the Whence

theorem to the move. Because of the de�nition of � only two of the possibilities can
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actually occur, clauses (2) and (6). In each case it is straightforward to �nd the required

c

0

and �

00

. 2

As an immediate corollary we have

Corollary 5.9 For every st-sequence s; p * s if and only if p� * s.

Proof: First suppose p * s. Without loss of generality we can assume p

s

=) c such

that c *. By Corollary 5.6 p�

s

=)

s

c�

c

and by the Whither theorem c * implies c�

c

*.

Conversely suppose p� * s, say p�

s

=)

s

c such that c *. Applying Lemma 5.7 c � c�

0

for some extension �

0

of � compatible with c and p

s

0

=) c for some s

0

� s. By the previous

lemma it follows that c *, i. e. p * s

0

and so p * s. 2

We also have the following properties of the re�nement �.

Lemma 5.10 For every extension �

0

of � compatible with c

1. c

p

if and only if c�

0

p

2. c is stable if and only if c�

0

is stable

3. if c is stable S(c) = S(c�

0

).

Proof: Straighforward using Proposition 4.10 and the Whither and Whence theorems.

2

Finally we can prove the crucial property of the re�nement �.

Theorem 5.11 p�

<

�

s

q� implies p

<

�

c

q.

Proof: Suppose q * s where s is an st-sequence. By the previous corollary q� * s.

This in turn implies p� * s from which p * s follows, again by the corollary.

We leave the reader to check q

p

s implies p

p

s and we check the condition on accep-

tance sets. Suppose A 2 A(q; s), i. e. q

s

=) c such that c is live and stable and A = S(c).

By Corollary 5.6 q�

s

=)

s

c�

c

and by the previous lemma c�

c

is also live and stable and

A = S(c�

c

). So p�

s

=)

s

c for some live and stable c such that S(c) � A. Applying

Lemma 5.7 c � c�

0

for some extension �

0

compatible with c and p

s

0

=) c for some s

0

such

that s � s

0

. Again by the previous lemma c is live and stable and S(c) = S(c�

0

) = S(c).

So S(c) 2 A(p; s

0

) = A(p; s). 2

As a corollary we have the main result of the section:

Corollary 5.12 The relation

<

�

c

c

is the largest preorder contained in

<

�

s

c

which is

preserved by stable action re�nements. 2
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