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Abstract

This paper studies the decidability and small model property of process

equations of the form

(P j

n

Y

i=1

C

i

(X

i

))nL � (Qj

m

Y

j=1

D

j

(Y

j

))nK

where P;Q are �nite state processes, X

i

; Y

j

are process variables, and C

i

(X

i

);

D

j

(Y

j

) are process expressions linear in X

i

and Y

j

respectively. It shows

that, when n + m > 1, the equation problem is not decidable and does

not have small model property for any equivalence relation � which is at

least as strong as complete trace equivalence but not stronger than strong

bisimulation equivalence.

1 Introduction

This paper examines small model property and decidability of equations in process

algebras [Mil80, Mil89, Hoa85, BK85, Bou85, Hen88]. In general, process equations

have the following form

C(X

1

; : : : ;X

n

) � D(Y

1

; : : : ; Y

m

) (1)

where C;D are arbitrary process contexts, X

1

; : : : ;X

n

and Y

1

; : : : ; Y

m

are process

variables, � is some equivalence relation on processes. Some well studied equiva-

lence relations on processes are strong and weak bisimulation equivalences� and �

�
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[Mil80, Mil89], branching bisimulation equivalence�

b

[vGW89], testing equivalence

[dNH83], failure equivalence [BHR84], GSOS trace congruence or

2

3

{bisimulation

equivalence [BIM88, LS89], and 2{nested simulation equivalence [GV89]. Equation

(1) is said to be solved by processes P

1

; : : : ; P

n

and Q

1

; : : : ; Q

m

if the following

equivalence holds

C(P

1

; : : : ; P

n

) � D(Q

1

; : : : ; Q

m

)

In this case we say that (1) is solvable. A type of equation is said to be decidable

if the solvability of that type of equation is decidable. A type of equation is said

to have small model property if whenever an equation of that type is solvable

then it can be solved by a �nite state process. We are interested in these two

properties because decidability indicates the possibility of solving the problem by

automatic tools and small model property often suggests some simple method of

�nding solutions.

Throughout the paper it is assumed that the reader is familiar with Milner's

CCS [Mil80, Mil89]. We study the decidability and small model property of a class

of very natural process equations which take the following form

(P j

n

Y

i=1

C

i

(X

i

))nL � (Qj

m

Y

j=1

D

j

(Y

j

))nK (2)

where P;Q are �nite state processes, j and

Q

are the parallel operator and the

parallel product of CCS, nL and nK are restriction operators of CCS, � is some

equivalence relation, C

i

(X

i

) and D

j

(Y

j

) are CCS expressions linear in X

i

and Y

j

respectively. An expression C(X) is said to be linear in X if no two occurrences of

X are subexpressions of two parallel process. More precisely, for a given variable

X, the set LE(X) of the expressions linear in X is the smallest set such that

X 2 LE(X), P 2 LE(X), if C(X);D(X) 2 LE(X) then C(X) +D(X) 2 LE(X),

and if C(X) is in LE(X) then so are a:C(X); C(X)jP;P jC(X); C(X)nL;C(X)[f ],

where a is any action, P is any �nite state process expression not containing X,

f is any rename function, and L is any set of labels. Because some variables may

duplicate, the total number of variables in equation (2) may be less than m + n.

For convenience we will call equations of form (2) which satisfy these restrictions

k{ary n � m equations, where k is the number of variables in the equation.

Many 1 � 0 equations (unary of cause) have already been studied in the lit-

erature. In [Shi89, Par89, QL90], some subclasses of 1 � 0 equations of form

(P jX)nL � Q are studied with various restrictions on P;L, and Q. The results

show that these subclasses are all decidable with the small model property. Some

general results in [LL90b] show that the whole 1 � 0 class is decidable with the

small model property. Later in [Liu92], the whole 1 � 0 class and 1 �

b

0 class

are shown to be decidable with the small model property, thus this latter work

subsumes the previous results.

These references mainly concentrate on how to actually �nd a solution when-

ever solutions exist, rather than simply to decide whether the equation is solvable.

In fact, from the decidability and small model property of the modal �{calculus

[Koz82, KP83, SE89] one can also conclude the decidability and small model prop-

erty of many 1 � 0 equation problems. To see this, consider the following equation
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where Q is a �nite state process and C(X) is linear in X:

C(X) � Q (3)

Results in [ZIG87, SI91, Liu92] show that, for many equivalence relations � (in-

cluding �, �, and �

b

), Q has a characteristic formula F

�

Q

of the modal �{calculus

such that, for any process P , C(P ) � Q if and only if C(P ) satis�es F

�

Q

. According

to [LL90a], a formulaW(C;F

�

Q

) can be e�ectively constructed such that C(P ) sat-

is�es F

�

Q

just in case P satis�es W(C;F

�

Q

). Thus the solutions to equation (3) are

exactly those processes satisfying W(C;F

�

Q

). It is obvious that any 1 � 0 equation

has form (3), so the decidability and small model property of these 1 � 0 equations

are guaranteed by the fact that the satis�ability of a modal �{calculus formula is

decidable and that if such a formula is satis�able then it is satis�able by a �nite

state process.

Now it is tempting to try to obtain similar results for equation problems with

more variables. In [JJLL93], the problem of constructing processes P

1

; : : : ; P

n

such

that C(P

1

; : : : ; P

n

) satis�es F is considered, where C is an arbitrary context de-

scribed as an action transducer and F is a formula of model �{calculus with pure

maximal �xed point operators. In that paper, a procedure for constructing models

is presented. If this procedure terminates successfully then a �nite state model can

be constructed while if it terminates unsuccessfully it is guaranteed that no model

exists. It is conjectured in the paper that the method guarantees termination in

all circumstances. This conjecture implies that n{ary n � 0 equation problem is

decidable and has small model property. This is because for a n{ary n � 0 equation

(P j

n

Y

i=1

C

i

(X

i

))nL � Q

the left hand side can be expressed as C(X

1

; : : : ;X

n

) where C is a context described

as an action transducer, and the characteristic formula F

�

Q

is a formula with pure

maximal �xed point operators.

In summary, the picture as we see it at the moment is that, 1 � 0 equation

problems are decidable with the small model property for many useful equivalence

relations and the cases for k{ary n � m equations such that n + m > 1 are

not clear. In this paper, we show that for most of the interesting equivalence

relations � including those mentioned earlier, any k{ary n � m equation problem

is not decidable and does not have the small model property when n +m > 1. In

particular, we show that the unary and binary 1 � 1 equation problems, the unary

and binary 2 � 0 equation problems are already undecidable and do not have small

model property for those equivalence relations. This gives a negative answer to the

conjecture put forward in [JJLL93].

2 Some Useful CCS Processes and Contexts

A standard way to show undecidability is to demonstrate an e�ective reduction

from some known undecidable problem. The �rst undecidable problem to come to

3
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Figure 1: A cell and the tape

one's mind would probably be the halting problem of Turing machines. We will

show this kind of reduction to prove the undecidability of equation problems in

the next section. For this purpose, in this section we construct some useful CCS

processes and contexts and show some of their properties.

First we construct a process T which imitates a blank Turing machine tape. A

Turing machine tape can be seen as a row of cells, each holding a letter of a �nite

alphabet A or holding the blank symbol b. Each cell must be in one of the following

states according to its relative position to the read and write head and the letter

it holds:

1. It holds x with the head pointing to it. We write W (x) for this state and say

that the cell is awake.

2. It holds x with the head on its left. We write S

l

(x) for this state and say that

the cell is asleep and waiting to be awakened from the left.

3. It holds x with the head on its right. We write S

r

(x) for this state and say

that the cell is asleep and waiting to be awakened from the right.

When it is in W (x), that is awake and holding x, the following things are

possible. The environment can read out its contents by synchronizing on the port

�x. The environment can also change its contents by synchronizing on the port y

and there by changing its state to W (y). On receiving a signal on the port ml

(move to the left), the cell will wake its left side neighbor by signaling on the port

sl (signal left) and then enter the state S

l

(x). Likewise, on receiving a signal on the

port mr (move to the right), the cell will wake its right side neighbor by signaling

on the port sr (signal right) and then enter the state S

r

(x). When it is asleep in

S

l

(x) (S

r

(x)), the only possible action for a cell is to receive a signal on the port sl

(sr) and enter the state W (x). The precise behavior is expressed by the following

CCS expressions:

W (x)

d

= �x:W (x) +

P

y2A

y:W (y) +ml:sl:S

l

(x) +mr:sr:S

r

(x)

S

l

(x)

d

= sl:W (x)

S

r

(x)

d

= sr:W (x)
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Now, the blank tape in its initial state is just a row of cells in state S

l

(b). The

following recursive de�nition gives the blank tape T

T

d

= (S

l

(b)[link=sr]jT [link=sl])nlink

The construction is pictured in Figure 1, where A and A are in fact two sets of ports

named by the letters and barred letters in the alphabet of the Turing machine.

A Turing machine tape can also be described by the following in�nite set of

equations about B(s

1

; s

2

), where s

1

2 (A[fbg)

�

is the contents of the tape between

the end of the tape and the current position of the head, s

2

2 (A [ fbg)

�

fbg

!

is

the contents of the rest of the tape, hd; tl, and b are the usual head, tail and

concatenation functions on strings

B(s

1

; s

2

)

d

= hd(s

1

):B(s

1

; s

2

) +

P

y2A

y:B(y

b

tl(s

1

); s

2

)

+ml:�:B(tl(s

1

); hd(s

1

)

b

s

2

) +mr:�:B(hd(s

2

)

b

s

1

; tl(s

2

)) when s

1

6= �

B(�; s

2

)

d

= sl:I(s

2

)

I(s

2

)

d

= sl:B(hd(s

2

); tl(s

2

))

We can take I(b

!

) to be a blank tape in its initial state.

It is not di�cult to check that both I(b

!

) and T solve the following equation

for � being �

X � sl:(W (b)[link=sr]jX[link=sl])nlink (4)

(notice that the � actions in the de�nition of I(b

!

) are not necessary apart from

making I(b

!

) into a solution to that equation). Because this equation is weakly

guarded, it has unique solution modulo � [Mil89]. Thus T � I(b

!

), which is a

formal justi�cation that T indeed simulates a blank Turing machine tape. We will

talk more about this equation later, and in the rest of the paper, we will write

D(X) for sl:(W (b)[link=sr]jX[link=sl])nlink.

At this point we clarify some necessary notations. The reader is referred to

[Mil89] for a full account of the operational semantics of CCS processes. We follow

the notations [Mil89] and write P

a

�! Q to mean that the process P (in this

state) can perform action a and change its state to Q, P 6

a

�! to mean P is not

capable of any a action. Let a

1

; : : : ; a

n

be a sequence of visible actions (not � ), then

P

a

1

:::a

n

===) Q means that P can reach Q by performing action sequence a

1

; : : : ; a

n

with �nitely many � actions interleaved.

De�nition 2.1 A sequence of visible actions s is a trace of P if P

s

=) P

0

for

some P

0

. A sequence of visible actions s is a complete trace of P if P

s

=) P

0

for some P

0

with P

0

6

a

�! for any a. Let Tr(P ) and CTr(P ) denote the trace set

and complete trace set of P respectively, two processes P and Q are said to be

trace equivalent, write P �

t

Q, if Tr(P ) = Tr(Q), and two processes P and Q

are said to be complete trace equivalent, write P �

ct

Q, if Tr(P ) = Tr(Q) and

CTr(P ) = CTr(Q).

5



Lemma 2.2 When � is �

t

, equation (4) has unique solution modulo �

t

.

Proof For any process P , lets write D

n

(P ) for D(D

n�1

(P )) when n > 0 and

D

0

(P ) for P . Notice that if D

n

(P )

s

=) R and the number of mr's in s is less

than n, then the transitions must be independent of P . More precisely, in this

case R has the form HfP=Xg for some expression H such that for any process

Q, D

n

(Q)

s

=) HfQ=Xg. Now suppose P and Q are two solutions and P

s

=) P

0

for some P

0

. We can choose a su�ciently large n such that the number of mr's

in s is less than n. By the congruence property of �

t

[Mil89], P �

t

D(P ) implies

P �

t

D

n

(P ). Thus D

n

(P )

s

=) R for some R. By the above argument, there

exists an expression H such that D

n

(Q)

s

=) HfQ=Xg. So Q

s

=) Q

0

for some

Q

0

because Q �

t

D(Q) implies Q �

t

D

n

(Q). Thus Tr(P ) � Tr(Q). We can

show Tr(Q) � Tr(P ) in the same way, so P �

t

Q. It is interesting to observe

that equation (4) is not sequential, thus does not satisfy the su�cient condition for

having unique solution in [Mil89]. 2

Lemma 2.3 If P �

t

I(b

!

) then P is an in�nite state process.

Proof Assume that P has �nite states, then Tr(P ) is a regular set because by

treating each state of P as acceptance state and each � move as empty move we

obtain a �nite automaton which accepts Tr(P ). Since we start from P �

t

I(b

!

),

this implies that Tr(I(b

!

)) is a regular set which further implies that Tr(I(b

!

)) \

sl (ml+mr)

�

sl is also regular. However it is easy to see that the later is not regular,

because it consists of stings of the form sl

b

s

b

ml

b

sl where s is a sequence of mr and

ml balenced like left and right parenthesis. Thus P must have in�nite states. 2

Next, we construct a dyadic context C as a coordinator, which will deadlock if

one of the subprocesses cannot follow the actions of the other. Let

L = A [ A [ fml;mr; slg

where A is the �nite alphabet of the Turing machine. It is obvious that all possible

visible actions of T are contained in L. Let L

1

; L

2

be two disjoint sets of actions such

that they are both isomophic to L with f

1

; f

2

being the corresponding isomophic

maps (that is f

i

is one one and onto and f

i

(�a) = f

i

(a) for a 2 L). Let syn; err (for

synchronizing and error) be two labels not in L

1

[L

2

. Then f

1

; f

2

can be extended

to rename functions by de�ning f

1

(a) = f

2

(a) = err for any action a 62 L. Now

de�ne

R

d

=

P

a2L�fml;mrg

f

1

(a):Q

a

+ f

1

(ml):f

2

(ml):syn:R+ f

1

(mr):f

2

(mr):syn:R

Q

a

d

= f

2

(a):Q

1

+ �:f

2

(a):Q

2

a 2 L� fml;mrg

Q

1

d

= syn:�:�:R+ �:Q

2

Q

2

d

= syn:�:R+ �:syn:R

This de�nition of R is slightly complicated by the insertion of � actions in various

places. Basicly, R could be de�ned as R

d

=

P

a2L

f

1

(a):f

2

(a):syn:R, which may

6



still give a better idea how R actually works. However, these � 's are necessary in

order to satisfy the equation in the �rst part of Lemma 2.4 which enables us to

derive more general conclusions. Otherwise, using the simpler de�nition, we can

only show a weaker version of that equation with � in place of �. From now on

we will write C(X;Y ) for (X[f

1

]jRjY [f

2

])nL

1

[ L

2

. It is not di�cult to see that a

necessary condition for C(P;Q) to be always capable of doing syn and nothing else

(no err) is that whatever visible action P may perform, Q must be able to follow.

This and some other useful properties of C are stated in the following Lemma. In

the Lemma, as well as the rest of the paper, T

0

is a �nite state process de�ned by

T

0

d

= sl:T

0

+mr:�:T

0

.

Lemma 2.4 For C;T; and T

0

constructed above, the following hold

1. C(T; T ) � C(T

0

; T

0

), and

2. CTr(C(P;Q)) � CTr(C(T

0

; T

0

)) implies Tr(P ) � Tr(Q).

Proof Let Dir(I(b

!

)) = fP j 9s 2 L

�

:I(b

!

)

s

=) Pg be the set of derivatives of

I(b

!

). It is not di�cult to see that the following is a strong bisimulation relation

containing (C(I(b

!

); I(b

!

)); C(T

0

; T

0

)). Hence C(I(b

!

); I(b

!

)) � C(T

0

; T

0

) and

C(T; T ) � C(T

0

; T

0

).

f((P [f

1

]jQjP [f

2

])nL

1

[ L

2

; (T

0

[f

1

]jQjT

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); P 6

�

�!; Q 2 fR; �:R; �:�:R; syn:R; Q

1

; Q

2

gg[

f((P

0

[f

1

]jQ

a

jP [f

2

])nL

1

[ L

2

; (T

0

[f

1

]jQ

sl

jT

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); a 2 L� fml;mrg; P

a

�! P

0

g[

f((P

0

[f

1

]jf

2

(a):Q

2

jP [f

2

])nL

1

[ L

2

; (T

0

[f

1

]jf

2

(sl):Q

2

jT

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); a 2 L� fml;mrg; P

a

�! P

0

g[

f((P

0

[f

1

]jf

2

(a):syn:RjP [f

2

])nL

1

[ L

2

; (�:T

0

[f

1

]jf

2

(mr):syn:RjT

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); a 2 fml;mrg; P

a

�! P

0

g[

f((P

0

[f

1

]jf

2

(a):syn:RjP [f

2

])nL

1

[ L

2

; (T

0

[f

1

]jf

2

(mr):syn:RjT

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); a 2 fml;mrg; 9P

00

:P

a

�! P

00

; P

00

�

�! P

0

g[

f((P [f

1

]jQj�:P [f

2

])nL

1

[ L

2

; (T

0

[f

1

]jQj�:T

0

[f

2

])nL

1

[ L

2

) j

P 2 Dir(I(b

!

)); P 6

�

�!; Q 2 fR; syn:Rgg

Suppose CTr(C(P;Q)) � CTr(C(T

0

; T

0

)). Note C(T

0

; T

0

) �

ct

syn

!

, where

syn

!

is the process which performs syn for ever. It is easy to see that if P

a

=) P

0

for any action a, then a 2 L (otherwise f

1

(a) = err and C(P;Q)

err

=) C(P

0

; Q))

and Q

a

=) Q

0

for some Q

0

such that CTr(C(P

0

; Q

0

)) � CTr(syn

!

). From this it is

easy to see that CTr(C(P;Q)) � CTr(C(T

0

; T

0

)) implies Tr(P ) � Tr(Q). In fact

CTr(C(P;Q)) � CTr(C(T

0

; T

0

)) implies that (P;Q) is contained in a simulation

relation [Mil89]. 2

The processes T; T

0

; R, contexts C;D, and label sets L;L

1

; L

2

with rename

functions f

1

; f

2

de�ned here are referred in the proof of the main theorems in the

next section.
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3 Main Results

With the preparation in the last section, we are now ready to show the main results

of the paper, namely that many equation problems are undecidable and do not have

small model property.

Theorem 3.1 For any � such that �����

t

, both the unary 1 � 1 equation

problem and the binary 1 � 1 equation problem are not decidable and do not have

the small model property.

Proof It is su�cient to construct some e�ective reductions from the divergence

problem of Turing machines, which is well known to be not semi{decidable. There is

a systematic way of constructing a �nite state processM

i

which simulates the �nite{

state control mechanism of the i{th Turing machine for each i. Thus (M

i

jT )nL

will simulate the i{th Turing machine such that (M

i

jT )nL � �

!

if and only if

the i{th Turing machine does not halt on a blank tape, and also that (M

i

jT )nL

outputs something if and only if the i{th Turing machine halts, where �

!

is the

process which only performs internal actions for ever. Now we can show that the

i{th Turing machine diverges if and only if the following unary 1 � 1 equation is

solvable when �����

t

and a 6= b

a:(M

i

jX)nL+ b:X � a:�

!

+ b:D(X) (5)

For one direction, suppose the i{th Turing machine diverges, that is to say

(M

i

jT )nL � �

!

. Since T � D(T ), and ���, T solves equation (6).

For the converse direction, suppose T

0

solves equation (6). Because ���

t

and

a 6= b, in this case (M

i

jT

0

)nL �

t

�

!

and T

0

�

t

D(T

0

). By Lemma 2.2 T

0

�

t

T , thus

(M

i

jT )nL �

t

(M

i

jT

0

)nL �

t

�

!

, and the i{th Turing machine diverges on a blank

tape (otherwise (M

i

jT )nL should be able to output something).

Similarly, it is easy to work out that the i{th Turing machine diverges if and

only if the following binary 1 � 1 equation is solvable when �����

t

and a; b; c

are three di�erent actions

a:(M

i

jX)nL+ b:X + c:D(X) � a:�

!

+ b:Y + c:Y (6)

Thus we showed e�ective reductions from the divergence problem of Turing

machines to the unary and binary 1 � 1 equation problems. So the unary 1 � 1

equation problem and the binary 1 � 1 equation problem are not semi-decidable

and thus not decidable.

In order to prove that a type of equation does not have the small model property,

we only need to �nd a solvable equation of that type and show that any solution

to the equation has in�nite states. It is easy to see from Lemma 2.2 and Lemma

2.3 that, when ���

t

, equation (4) is a solvable unary 1 � 1 equation which only

has in�nite state solutions. Also for the same reason, when ���

t

and a 6= b, the

following is a solvable binary 1 � 1 equation which only has in�nite state solutions.

a:X + b:D(X) � a:Y + b:Y

8



Thus both unary and binary 1 � 1 equation problems do not have small model

property. 2

Theorem 3.2 For any� such that �����

ct

, both unary 2 � 0 equation problem

and binary 2 � 0 equation problem are not decidable and do not have small model

property.

Proof Again we will construct some e�ective reductions from the divergence prob-

lem of Turing machines. Lets say that M

i

is a �nite state process which simulates

the �nite{state control mechanism of the i{th Turing. Thus (M

i

jT )nL will simulate

the i{th Turing machine such that (M

i

jT )nL � �

!

if and only if the i{th Turing

machine does not halt on blank tape, and if and only if (M

i

jT )nL has no complete

trace. We will show that, when �����

ct

, the i{th Turing machine diverges if and

only if the following equation is solvable

�:(M

i

[f

2

]jX[f

2

])nL

1

[L

2

+ �:C(D(X);X)+ �:C(X;D(X)) � �

!

+ �:C(T

0

; T

0

) (7)

which, by the expansion theorem of [Mil89], has the exact solution set as the fol-

lowing unary 2 � 0 equation, where a; b 2 L

1

[ L

2

and a 6= b

((a:M

i

[f

2

] + a:(D(X)[f

1

])jR) + b:X[f

1

])

j(�a:X[f

2

] +

�

b:(RjD(X)[f

2

])))nL

1

[ L

2

� �

!

+ �:C(T

0

; T

0

)

For one direction, suppose the i{th Turing machine diverges, that is to say

(M

i

jT )nL � �

!

and therefor (M

i

[f

2

]jT [f

2

])nL

1

[ L

2

� ((M

i

jT )nL)[f

2

]nL

1

� �

!

.

Since T � D(T ) and by Lemma 2.4 C(T; T ) � C(T

0

; T

0

), thus T solves equation

(7) since ���.

For the converse direction, suppose equation (7) is solvable by T

0

. Because

���

ct

, this implies that (M

i

[f

2

]jT

0

[f

2

])nL

1

[ L

2

has no complete trace, and that

CTr(C(T

0

;D(T

0

))) and CTr(C(D(T

0

); T

0

)) are subsets of CTr(C(T

0

; T

0

)). By

Lemma 2.4, T

0

�

t

D(T

0

), and by Lemma 2.2 T

0

�

t

T . Thus (M

i

[f

2

]jT [f

2

])nL

1

[L

2

has no complete trace, nor has ((M

i

jT )nL)[f

2

]nL

1

nor (M

i

jT )nL. So the i{th Turing

machine diverges on a blank tape.

In a similarly way, we can work out that the i{th Turing machine diverges if

and only if the following binary 2 � 0 equation is solvable when �����

ct

and

a; b 2 L

1

[ L

2

; a 6= b

((a:M

i

[f

2

] + a:(X[f

1

]jR) + a:(D(X)[f

1

]jR) + b:X[f

2

]

+

�

b:D(X)[f

2

])j(�a:Y [f

2

] +

�

b:(Y [f

1

]jR))nL

1

[ L

2

� �

!

+ �:C(T

0

; T

0

)

Thus we showed e�ective reductions from the divergence problem of Turing

machine to the unary and binary 2 � 0 equation problems. So the unary 2 � 0 and

binary 2 � 0 equation problems are not semi-decidable and thus not decidable.

Using Lemma 2.2,2.3,2.4, it is not di�cult to work out that, when ���

ct

and

a; b 2 L

1

[L

2

; a 6= b, the following unary and binary 2 � 0 equations are all solvable

9



but only have in�nite state solutions

((a:(D(X)[f

1

])jR) + b:(X[f

1

]jR))j(�a:X[f

2

] +

�

b:D(X)[f

2

]))nL

1

[ L

2

� �:C(T

0

; T

0

)

((a:X[f

1

] + a:D(X)[f

1

] + b:X[f

2

] +

�

b:D(X)[f

2

])

j(�a:(RjY [f

2

]) +

�

b:(Y [f

1

]jR))nL

1

[ L

2

� �:C(T

0

; T

0

)

Thus both unary and binary 2 � 0 equation problems do not have small model

property. 2

4 Conclusion and Related Works

In the last section we showed that four types of n � m equation problems are

not decidable and do not have small model property for any equivalence relation

which is as least as strong as complete trace equivalence (this can be relaxed to

trace equivalence in the case of 1 � 1) but not stronger than strong bisimulation

equivalence. These four types of equation problems are the unary and binary 1 � 1

equation problems and the unary and binary 2 � 0 equation problems. Undecid-

ability of 1 � 1 equation problems is somewhat expected because recursion can be

coded into such an equation problem, but undecidability of 2 � 0 equation problems

is rather unexpected. This shows the computation power of communication.

The negative results about these four basic types of equation problems have very

general implications. Because any k{ary n � m equation problem with m+ n > 1

would have one of these basic problems as special case, such k{ary n � m equation

problem is surely undecidable and does not have the small model property if � is

at least as strong as complete trace equivalence but not stronger than bisimulation

equivalence. Also the range of equivalence relations from complete trace equivalence

to strong bisimulation equivalence covers the most interesting ones in the study of

concurrency, including all the equivalence relations mentioned in the beginning of

the Introduction. Indeed, one would expect a reasonable equivalence relation of

concurrent systems to be in this range. Although the constructions are speci�c for

CCS, similar reductions could be constructed to show similar results within other

process algebras.

Undecidability results show the limitation of automatic tools for solving process

equations. Lack of small model property means the need for more insight in order

to construct solutions for these equations. Thus machine assisted semi-automatic

tools such as the one proposed in [JJLL93] and techniques of constructing in�nite

state solutions seem to be the direction for future research.

Recently many decidability results about bisimilarity of in�nite state processes

have been established [HS91, CHS92, CHM93b, CHM93a]. This may give some

hope to push the decidability of 1 � 0 equations to equations of the form C(X) �

P where P is some type of in�nite state process. Although in this case small

model property fails immediately, results in [LL90b] already implies that the non{

solvability of these equations is semi{decidable. Thus we only need to show that

the solvability is also semi{decidable to show the decidability of such equations.

10



Another interesting line of research is to identify some decidable subclass of k{

ary n � m equation problems. Here the results of [MM90, Mol89, CHM93b] about

unique decomposition of processes may provide some clue. To be somewhat more

precise, results in [MM90, Mol89, CHM93b] show that for certain processes P , there

exists a unique decomposition P

1

jj : : : jjP

m

where jj is the merge operator which is

like j but without communication. Thus for such process P , we can decompose this

kind of k{ary n � 0 equation

C

1

(X

1

)jj : : : jjC

n

(X

n

) � P

into a set of 1 � 0 equations. It is easy to see that the possibility of such de-

compositions are �nite, thus methods of solving 1 � 0 equations can come into

play.

Instead of solving a particular type of equations in a general process algebra,

a di�erent approach is to consider arbitrary equations in some simpler process

algebra. Using the idea of uni�cation, two algorithms are devised in [Dro92] for

solving arbitrary equations in a very simple process algebra with choice operator as

the only operator. It is interesting to see how far this approach can go by adding

more operators into the algebra while still being able to �nd an algorithm to solve

arbitrary equations of the algebra. The undecidability results here show that there

is a limit for that.
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