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Abstract

We develop decision procedures based on proof tableaux for a number of non-

interleaving equivalences over processes. The processes considered are those which

can be described in a simple extension of BPP, Basic Parallel Processes, obtained

by omitting the restriction operator from CCS . Decision procedures are given

for both strong and weak versions of causal bisimulation, location equivalence and

ST-bisimulation.

1 Introduction

This paper is concerned with the development of automatic veri�cation techniques for

process description languages. Typically if P and Q are process descriptions we wish to

develop decision procedures for checking if P and Q are semantically equivalent. If P and

Q are expressions from process algebras or given in terms of labelled transition systems

then there are already a number of software systems which can automatically check

for such semantic identities, [CPS89, SV89]. The main semantic equivalences handled

by these tools are variations on bisimulation equivalence, [Mil89], and there is also the

major restriction that the processes to be checked must be �nite state.

More recently techniques have been developed for handling certain kinds of in�nite

state processes. For example in [CHS92] it was shown that strong bisimulation is decid-

able for context-free processes while [CHM93] contains a similar result for so-called Basic
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Parallel Processes, BPP ; these correspond essentially to the processes generated by the

standard syntax of CCS without the restriction operator. The decision procedures are

not particularly e�cient but at least they open up the possibility of the development of

feasible proof techniques for classes of in�nite state processes. The recent thesis, [Chr93],

provides an excellent overview. The basic underlying idea is the use of proof tableaux

to compare the behaviour of processes. Extending a tableau corresponds to \unwind-

ing" the processes in order to compare their future possible behaviours. By restricting

in various subtle ways the methods allowed for extending tableaux one can ensure that

they are always �nite. If in addition only a �nite number of tableaux can be produced

from a given pair of process descriptions then, provided the speci�c tableau method is

sound for a particular equivalence, we have a decision procedure for that equivalence.

This approach has been applied successfully to a number of in�nite state languages but

mostly for strong bisimulation equivalence. We wish to investigate the extent to which

these techniques can also be used to develop decision procedures for non-interleaving

semantic equivalences, [DD89, vGV87, DNM89].

We already know of one result of this kind. In [Chr92] a decision procedure, based

on a tableaux method, is presented for distributed bisimulation �

d

, [CH89], over the lan-

guage BPP . However the soundness of the procedure depends crucially on a separation

property which is part and parcel of the underlying transition system. The procedure

could be adapted if we had a cancellation property

P j Q � P j R implies Q � R

where j represents the binary parallel composition of processes. But most (if not all

other) standard non-interleaving equivalences such as causal bisimulation, [DD89], ST-

bisimulation, [vGV87] or location equivalence, [BCHK93] do not have this property. So

we show how to extend the more recent technique developed in [CHM93], to yield decision

procedures for

� location equivalence

� causal bisimulation

� ST-bisimulation

over BPP . We also show how the method can be adapted to provide in addition

decision procedures for weak versions of each of these equivalences over a large sub-

class of BPP , essentially those processes which can never evolve into states which are

divergent. Moreover we show that this property is itself decidable for BPP processes.
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Each of these three equivalences were originally de�ned using very di�erent meta-

languages for expressing and emphasising di�erent intentional features of the behaviour

of processes. In [Kie94] it is shown how at least the �rst two can be expressed in a

uniform framework and here we show that this framework can also be used to express ST-

bisimulation. This is central to our work. We develop one decision procedure based on a

tableau method for local cause bisimulation which from [Kie94] is known to be equivalent

to location equivalence, [BCHK93]. We then show how very simple modi�cations lead

to a decision procedure for global cause bisimulation, which is known to be equivalent

to causal bisimulation [DD89], and to our version of ST-bisimulation. Finally we show

how further modi�cations can be made so as to deal with weak versions of these three

equivalences.

We now briey outline the remainder of the paper. In the next section we de�ne

the language, BPP

l

, essentially the language of [CHM93] extended with sets of causes.

We also de�ne weak local cause bisimulation and state some of its properties which we

require. In the next section we develop some orderings on processes which are used in

the semantic tableaux which in turn are explained in Section 4. This section gives the

decision procedure for local cause bisimulation over BPP

l

. The last section shows how to

adapt this procedure to causal bisimulation and ST-bisimulation and to the weak version

of these equivalences for h-convergent processes.

2 Local Cause Bisimulation

As usual there is a countable set of atomic actions, Act = fa; b; c; : : : ; �a;

�

b; �c; : : :g, ranged

over by a, an invisible action � not in Act and Act

�

, ranged over by �, is used to denote

Act [ f�g. If X denotes a set of variables, ranged over by x, then the standard set of

processes, CCS(X), is obtained from the abstract syntax

t ::= nil j �:t j t+ t j t j t j x j rec x: t

In order to describe the non-interleaving theories of processes we extend this syntax

by introducing a countable set of causes, C, which we assume have the form fl

1

; l

2

; : : :g.

These will be used in three di�erent ways to describe the three di�erent equivalences

discussed in the paper. However for each of the equivalences we use exactly the same

extended syntax:

T ::= � � t j T j T

where t 2 CCS(X), and � is a cause set, i.e. a �nite subset of C. We use CS to denote

the set of possible cause sets which can occur in a term, i.e. CS is the collection of
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�nite subsets of C. Let BPP

l

(X) denote the set of extended processes. As usual the

variable x in rec x: t acts as a binder which leads in the standard manner to free and

bound occurrences of variables and a closed process is one with no free occurrence of any

variable. We also assume that all occurrences of x in rec x: t are guarded, (see [Mil89]

for a formal de�nition). We use p; q; : : : to range over CCS, the set of closed processes of

CCS(X) and P;Q : : : to range over BPP

l

, the set of closed processes in BPP

l

(X) . For

T 2 BPP

l

(X) let cau(T ) be the set of causes, i.e. elements of C, occurring in T and

cs(T ), the set of cause sets of T , i.e. the set of subsets of C occurring in T . Obviously

cau(T ) = f l 2 � j � 2 cs(T ) g. Within BPP

l

(X) we represent a CCS processes p as

; � p.

Throughout the paper we will use a structural congruence, � , over extended pro-

cesses. This is de�ned to be the least syntactic congruence generated by the equations

X j Y = Y j X;

X j (Y j Z) = (X j Y ) j Z;

� � (X j Y ) = � � X j � � Y;

� � (X + Y ) = � � X + � � Y:

In other words we work modulo the commutativity and associativity of j and we

assume that � � distributes over the two operators j and +.

In this section we give a transition system which formalises the \local causality"

between the actions of processes. The natural bisimulation equivalence de�ned using

this transition system is the same as location equivalence, at least for the processes in

CCS, [Kie94]. The transition system is given in Figures 1 and 2, and it de�nes two

relations over processes from BPP

l

. P

a

����!

�;l

(lc)

Q means that process P can perform the

visible action a, the causes of this action being all the causes in � and all future actions

which have this occurrence of a as a cause will have l in their set of causes. On the other

hand P

�

����!

(lc)

Qmeans that P can perform an internal computation and be transformed

into Q. Notice also that each visible action, resulting from the application of the rule

(LG1), introduces a new cause l. So as a computation proceeds the actions occurring

in the computation are recorded as distinct causes in the cause sets of the process. The

characteristic � rule for local cause transitions is the rule for communication (L4). This

means that the causes of communications are not accumulated in the cause sets. (L4)

uses the somewhat non-standard notation P [;=l] to denote the result of replacing each

cause set � occurring in P by the cause set � � flg. More generally we will use P [�=l]

to denote the result of replacing each � containing l in P by (� � flg) [�.
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For all a 2 Act , � 2 CS, l 2 C let

a

����!

�;l

(lc)

� ( BPP

l

� BPP

l

) be the least binary

relations which satisfy the following axiom and rules.

(LG1) � � a:p

a

����!

�;l

(lc)

� [ flg � p l 62 �

(LG2) P

a

����!

�;l

(lc)

P

0

; l 62 cau(Q) implies P +Q

a

����!

�;l

(lc)

P

0

Q+ P

a

����!

�;l

(lc)

P

0

(LG3) P

a

����!

�;l

(lc)

P

0

; l 62 cau(Q) implies P j Q

a

����!

�;l

(lc)

P

0

j Q

(LG4) � � p[rec x: p=x]

a

����!

�;l

(lc)

P

0

implies � � rec x: p

a

����!

�;l

(lc)

P

0

(LG5) P � P

0

; P

a

����!

�;l

(lc)

Q; implies P

0

a

����!

�;l

(lc)

Q

Figure 1: Visible Local Cause Transitions

The use of the structural congruence in the rules (LG5) and (L6) enables us to

have a relatively simple set of de�ning rules for the transition systems. For example

there is no rule which immediately applies to terms of the form � � (a:p j Q) by

virtue of its syntactic form. But (LG3) can be applied to � � a:p j � � Q and since

� � (a:p j Q) � � � a:p j � � Q the rule (LG5) can be used to infer the same transition

for � � (a:p j Q).

For every extended process P , every visible action a, location l and cause set � let

Der

�;l

(P; a) be de�ned as fQ j P

a

����!

�;l

(lc)

Qg. Because we assume that processes are

guarded these sets are always �nite. For exactly the same reason the set of � -derivatives,

Der(P; � ) = fQ j P

�

����!

(lc)

Qg, is �nite. We also let S(P ) denote the set of actions from

Act

�

which P can perform.

De�nition 2.1 [Local Cause Equivalence]

A symmetric relation R � BPP

l

� BPP

l

is called a local cause bisimulation i�

R � G(R) where

(P;Q) 2 G(R) i�

(i) P

�

����!

(lc)

P

0

implies Q

�

����!

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R

(ii) P

a

����!

A;l

(lc)

P

0

; l = new(cau(P ) [ cau(Q));

implies Q

a

����!

A;l

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R:
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Let

�

����!

(lc)

� ( BPP

l

� BPP

l

) be the least binary relation de�ned by the following

axiom and rules.

(L1) � � �:p

�

����!

(lc)

� � p

(L2) P

�

����!

(lc)

P

0

implies P +Q

�

����!

(lc)

P

0

Q+ P

�

����!

(lc)

P

0

(L3) P

�

����!

(lc)

P

0

implies P j Q

�

����!

(lc)

P

0

j Q

Q j P

�

����!

(lc)

Q j P

0

(L4) P

a

����!

�;l

(lc)

P

0

; Q

�a

����!

�;k

(lc)

Q

0

implies P j Q

�

����!

(lc)

P

0

[;=l] j Q

0

[;=k]

(L5) � � p[rec x: p=x]

�

����!

(lc)

P

0

implies � � rec x: p

�

����!

(lc)

P

0

(L6) P � P

0

; P

�

����!

(lc)

Q; implies P

0

�

����!

(lc)

Q

Figure 2: Invisible Local Cause Transitions

Two processes P and Q are local cause equivalent, P �

lc

Q, i� there is a local cause

bisimulation R such that (P;Q) 2 R. 2

Note that this de�nition uses the function new which when applied to a �nite set

of causes � returns a cause l not in �. In order to obtain a �nitely branching transition

system for our decision algorithm we assume that new(�) is the least cause in the

ordering l

0

; l

1

; : : : not in �. This assumption does not a�ect the equivalence as it is

closed under bijective cause renaming. We refer the reader to [Kie94] for a proof that

�

lc

coincides with location equivalence over CCS as de�ned in [BCHK94].

Our decision procedure depends on certain properties of the transition semantics

which we now discuss. The �rst states that the equivalence is largely independent of

the location sets of a process; it is preserved by uniformed renaming of cause sets. A

(uniform) cause set renaming is a any function �: CS �! CS.
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Lemma 2.2 Let P;Q;R 2 BPP

l

and let � be a cause set renaming which is bijective

over cs(P ) [ cs(Q). Then

1. P �

lc

Q if and only if �(P ) �

lc

�(Q),

2. P �

lc

Q implies P j R �

lc

Q j R.

2

In general processes in BPP

l

are not �nite-state in this transition system but the

state space of any process has a �nite basis, i.e. every element of a state space can be

viewed as a polynomial over a �nite set of generators. For any process t 2 CCS(X) we

associate the set of generators, Gen(t), de�ned as follows.

Gen(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

fxg if t := x

fnilg if t := nil

ftg [ Gen(t

1

) [ Gen(t

2

) if t := t

1

+ t

2

ftg [ Gen(t

1

) if t := �:t

1

Gen(t

1

) [ Gen(t

2

) if t := t

1

j t

2

ftg [ Gen(t

1

)[rec x: t

1

=x] if t := rec x: t

1

In this de�nition the two operators + and j are treated unequally. The reason for this is

that we will show how to represent any process as the \parallel product" of generators

as opposed to a \choice product". We use

Q

i2I

p

i

to denote the \parallel product"

p

i

1

j p

i

2

j : : : j p

i

k

where I is the �nite index set fi

1

; : : : ; i

k

g. Since we are working with

respect to structural congrunce � , which includes the associativity and commutativity

of j, this notation is consistent. But �rst an important syntactic property of the function

Gen:

Lemma 2.3 For every CCS term u and closed CCS term p, Gen(u[p=x]) � Gen(p) [

Gen(u)[p=x].

Proof By structural induction on u. We only give the case of u = rec y:w as the others

are straightforward. By �-conversion we may assume x 6= y.

Gen(rec y:w[p=x]) = Gen(rec y:(w[p=x]))

= frec y:(w[p=x])g [Gen(w[p=x])[rec y:w[p=x]=y]

By induction Gen(w[p=x]) � Gen(p) [Gen(w)[p=x] so the left hand side is contained in

frec y:(w[p=x])g [Gen(p)[rec y:w[p=x]=y] [ Gen(w)[p=x][rec y:w[p=x]=y]:
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But since p is closed this reduces to

frec y:(w[p=x])g [Gen(p) [Gen(w)[p=x][rec y:w[p=x]=y]:

For the right hand side we have

Gen(p) [Gen(rec y:w)[p=x] = Gen(p) [ (frec y:wg [ (Gen(w)[rec y:w=y]))[p=x]

Therefore it remains to show Gen(w)[p=x][rec y:w[p=x]=y] � Gen(w)[rec y:w=y][p=x].

However these two sets are equal because p is closed. 2

For an extended process P we use Gen(P ) to denote Gen(pure(P )) where pure(P )

is the CCS process obtained by erasing all cause sets from P . The next lemma shows

that the generators of extended processes are closed under transitions.

Lemma 2.4 If P

�

����!

(lc)

Q or P

a

����!

�;l

(lc)

Q then Gen(Q) � Gen(P ).

Proof By induction on the derivation of transitions. The only di�cult case is when

the transition is inferred using the rules (LG4) or (L5). An immediate corollary of the

previous lemma is that Gen(t[rec x: t=x]) � Gen(rec x: t) and both these cases will then

follow by an application of induction. 2

It is very easy to see that the set of generators of any extended process P is �nite and

therefore the previous lemma gives us a representation theorem for the \state space" of

processes reachable from P . If we ignore cause sets then every such state is equivalent

to a parallel product of the generators of P . This is summarised in the next proposition.

Proposition 2.5 Let p 2 CCS.

1. The set Gen(p) is �nite.

2. There is a set K = fi

1

; : : : ; i

n

g with p

i

j

2 Gen(p) for all j 2 f1; : : : ; ng such that

p �

Q

k2K

p

k

.

3. If G is a set of generators and P 2 BPP

l

then the following holds:

Gen(P ) � G and P

a

����!

�;l

(lc)

Q or P

�

����!

(lc)

Q imply Gen(Q) � G.

Proof The �rst two statements are easily shown by induction on the structure of p. The

third is a consequence of the previous lemma. 2
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This result also shows that the class of processes we consider may be represented

by Petri nets. To construct a net equivalent to P we use as places the elements of

Gen(P ). The transitions between places are de�ned using the operational semantics

of CCS. The initial marking is determined by parallel product of elements of Gen(P )

yielding P . Note, that this Petri net representation is not truly concurrent in the sense

of [Gol88] and [Tau89]. The term p � (a:nil j b:nil)+c:nil has as generator set Gen(p) =

fp; a:nil ; b:nil ; c:nil ;nilg. So the net for p contains initially one token on the place p

and none on the others. A truly concurrent Petri net for p would initially have at

least two tokens to enable the transitions for a and b concurrently. We use the Petri

net representation in a Section 5 to show that divergence of processes is decidable. As

this problem is independent of concurrent or dependent occurrences of transitions the

representation is su�cient for this purpose.

3 Ordering Processes

In this section we develop two distinct orderings on extended processes which will be used

in the decision procedure. Both are based on orderings on vectors of natural numbers.

Let IN

k

represent the set of vectors of length k of natural numbers. We use �; �; : : :

to range over these vectors with �

i

denoting the i

th

-component. The vectors can be

lexicographically ordered in the standard way by

� <

lex

� if there is a j such that �

j

< �

j

and �

k

= �

k

for all k < j.

This is a total and well-founded ordering on IN

k

and it can be used to induce a similar

ordering on the set of CCS processes obtained from a �nite set of generators.

For the moment letG be a �nite set of CCS generators and let us assume that they are

totally ordered as g

1

< g

2

< : : : < g

k

. This may be any set but in the next section where

we are trying to decide whether or not P and Q are equivalent we will choose as G the set

Gen(P ) [Gen(Q); from Lemma 2.5 we know that any process derived from P or Q will

also be a parallel product of elements from G, or polynomial over G. Therefore we are

interested in terms which are polynomials over G. For such a polynomial p let �

i

(p) be

the number of occurrences of g

i

in p and let �(p) 2 IN

jGj

be the vector h�

1

(p); �

2

(p); : : :i.

This enables us to de�ne a total well-founded ordering on polynomials over G by

p <

lex

q if �(p) <

lex

�(q).

This ordering can be in turn lifted to a subclass of extended terms, called G-parforms

provided we �rst order cause sets.
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Now C is ordered as l

1

< l

2

< l

3

< : : : and this extends naturally to cause sets, �nite

subsets of C, again lexicographically. Let

fl

n

1

; : : : l

n

k

g < fl

m

1

; : : : l

m

k

0

g, where i < j implies n

i

< n

j

and m

i

< m

j

, if

there exists some j 2 f1; : : : ; k

0

g such that

1. n

i

= m

i

for every i < j

2. if j � k then n

j

< m

j

.

This is a total well-founded ordering on cause sets.

De�nition 3.1 If G is a �nite set of generators then a G-parform is any extended term

of the form

Q

j2J

�

j

� p

j

, where each p

j

is a polynomial over G, which satis�es i < j

implies �

i

< �

j

. 2

Lemma 3.2 For every extended process P such that Gen(P ) � G there is a G-parform

Q such that P � Q.

Proof By structural induction on P . 2

Since the set of generators G is �xed for the remainder of the paper we will refer to

G-parforms as simply parforms and we use pf(P ) to denote the parform to which P can

be reduced. This is a slight abuse of notation as P may be reduced to two parforms

which are not syntactically identical. But they will be equivalent up to the associativity

and commutativity of j and therefore they are \essentially" the same.

We now extend the ordering <

lex

to parforms. For any parform P :=

Q

i2I

�

i

� p

i

and any cause set � the vector �(P ) is de�ned as follows:

�(P ) =

8

<

:

�(p

i

); � = �

i

0 otherwise.

(Here 0 is the vector which consists only of 0s.) Note that this is well-de�ned for parforms

since every cause set appears at most once in these terms. This notation is used in the

following de�nition.

De�nition 3.3 Let P , Q be parforms. P <

lex

Q if and only if there is a � such that

�(P ) <

lex

�(Q) and for every � < �; �(P ) = �(Q). 2

Proposition 3.4 The relation <

lex

is a total well-founded ordering on the set of G-

parforms. 2
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Proposition 3.5 Let P;Q;R be parforms with P <

lex

Q. Then

1. pf(P j R) <

lex

pf(Q j R),

2. if � is a cause set renaming preserving the natural order on cs(P ) [ cs(Q) then

�(P ) <

lex

�(Q). 2

This is the �rst ordering required in the decision procedure. The second also comes

from an ordering on IN

k

:

for �; � 2 IN

k

let � � � if �

i

� �

i

for every 1 � i � k.

However we �rst use this ordering to induce an ordering on words over IN

k

:

For each v;w 2 (IN

k

)

�

let v � w whenever there is an injection f :

f1; : : : ; jvjg ! f1; : : : ; jwjg such that i

1

< i

2

implies f(i

1

) < f(i

2

) and

v[i] � w[f(i)]

where w[i] denotes the i

th

letter of w. The main property of this ordering is given by

Theorem 3.6 Let (u

i

)

i2IN

, u

i

2 (IN

k

)

?

be an in�nite sequence of words over IN

k

. Then

there exists some i; j 2 IN such that u

i

� u

j

.

Proof This is a variation on Higman's Theorem, [Lot83]. Assume that there exist in�nite

sequences (u

i

)

i2IN

, u

i

2 (IN

k

)

?

, such that u

j

6� u

i

whenever j < i. Using the axiom

of choice we can select an \earliest" of such sequences (x

i

)

i2IN

that is x

1

is the shortest

word beginning such a sequence, x

2

is the shortest word such that x

1

, x

2

is beginning such

a sequence and so on. The sequence (x

i

)

i2IN

contains an in�nite subsequence (x

i

j

)

j2IN

with x

i

k

[1] � x

i

l

[1] whenever k < l. Let w[2 : : :] denote the word w with the �rst vector

chopped o�. Then

x

1

; x

2

; : : : ; x

i

1

�1

; x

i

1

[2 : : :]; x

i

2

[2 : : :]; x

i

3

[2 : : :]; : : :

is earlier than (x

i

)

i2IN

contradicting the choice of (x

i

)

i2IN

. 2

We now lift this ordering on words over IN

k

to G-parforms by associating in a systematic

manner a word over IN

k

with each G-parform. If P is the G-parform

Q

i2I

�

i

� p

i

then

let !(P ) denote the word �(p

1

)�(p

2

) : : : �(p

jIj

).

De�nition 3.7 For any pair of extended processes P;Q 2 BPP

l

with G-parforms P

0

,

Q

0

let P � Q if !(P

0

) � !(Q

0

). 2

11



For example

f1g � (a:p) j f1; 2g � (b:nil j a:p)

�

f1g � (a:p j a:p) j f1; 2g � (c:nil) j f2g � (a:p j b:nil j c:nil ):

because �(a:p) � �(a:p j a:p), �(b:nil j a:p) � �(a:p j b:nil j c:nil).

There is an alternative characterisation of this ordering:

Proposition 3.8 P � Q i� Q � Q

1

j Q

2

and there is a cause set bijection �: cs(P ) �!

cs(Q

1

) preserving the natural order on cs(P ) such that Q

1

� �(P ).

Proof Let P

0

:=

Q

i2I

�

i

� p

i

and Q

0

:=

Q

j2J

�

j

� q

j

be G-parforms of P and Q

respectively.

First suppose that P � Q, i.e. !(P

0

) � !(Q

0

). Then there is an injection f : I �! J

such that i

1

< i

2

implies f(i

1

) < f(i

2

) and �(p

i

) � �(q

f(i)

) This means for each i 2 I

that q

f(i)

� p

i

j r

i

for some r

i

.

Let Q

1

; Q

2

denote

Q

i2I

�

f(i)

� p

i

and

Q

i2I

�

f(i)

� r

i

j

Q

j2Jnf(I)

�

j

� q

j

respectively.

Then Q � Q

1

j Q

2

, and the required bijection � : f�

i

1

; : : : ;�

i

jIj

g �! f�

f(i

1

)

; : : : ;�

f(i

jIj

)

g

is given by �(�

i

) := �

f(i)

.

The converse is similar. 2

4 The Decidability Algorithm

In order to decide for two processes P;Q 2 BPP

l

,where cs(P ) = cs(Q), whether they

are local cause equivalent we build up a tableau T (P = Q). A tableau T (P = Q)

is a proof tree whose root is labelled P = Q and whose proper nodes (there are also

intermediate nodes, see below) are labelled with expressions of the form P

0

= Q

0

where

P

0

, Q

0

are extended processes whose generators are inGen(P )[Gen(Q) and which satisfy

cs(P

0

) = cs(Q

0

). Each rule for extending a tableau has the form

P = Q

P

1

= Q

1

; : : : ; P

n

= Q

n

with possible side conditions. Intuitively the premise of such a rule can be viewed as a

goal to achieve while the consequents represent su�cient subgoals to be established. We

distinguish between proper and intermediate nodes. All proper nodes in the proof tree

12



are either terminal or non-terminal and a proof tree can be extended by applying one of

the rules to a non-terminal node, thereby introducing n new nodes. It may be that the

application of a rule will violate the condition that labels must be of the form R = S

with cs(R) = cs(S). In such cases we can simply add a � � nil factor to R for each

� 2 cs(S) n cs(R) and similarly for S. Extended processes are considered up to �.

A node is terminal if it has one of the following forms:

� P = Q where P � Q; in which case the node is successful

� P = Q where S(P ) = S(Q) = ;; in which case the node is successful

� P = Q where either

1. there is some action a and some l such thatDer

�;l

(P; a) = ; andDer

�;l

(Q; a) 6=

; or Der

�;l

(P; a) 6= ; and Der

�;l

(Q; a) = ;

2. or

Der(P; � ) = ; and Der(Q; � ) 6= ; or Der(P; � ) 6= ; and Der(Q; � ) = ;.

In this case the terminal node is called unsuccessful.

The rules are similar in nature to those used in [CHM93] but a littlemore complicated.

UNWIND replaces a label P = Q with a collection of intermediate nodes each labelled

by expressions of the form S = T where S; T are �nite sets of extended processes. In

turn the rule SUM can be applied to each of these nodes labelled by S = T to obtain

once more nodes properly labelled by expressions P

0

= Q

0

where P

0

; Q

0

are extended

processes. Note that in the development of a tableau each application of UNWIND is

necessarily followed by an application of SUM.

The two SUB rules allow us to replace one subprocess by another provided suitably

relabelled versions of them appear higher up in the proof tree. However the replacement

can only be made under special circumstances referred to in the side conditions of the

rules. A node n dominates another node m if

� m appears higher up in the proof tree than n

� the rule UNWIND has been applied to the node m.

The side condition dictates that in order to apply a SUBL rule, for example, to a node

n

1. it must be labelled by an equation of the form �(P

1

) j P

2

= Q where � is some

order preserving cause set renaming which is bijective when restricted to cs(P

1

),

13



(UNWIND)

P = Q

fDer

�;l

(P; a) = Der

�;l

(Q; a)g Der(P; � ) = Der(Q; � )

where l = new(cau(P )) = new(cau(Q))

� 2 cs(P ) = cs(Q) and a 2 act(P ) [ act(Q)

(SUM)

fP

1

; : : : ; P

n

g = fQ

1

; : : : ; Q

m

g

fP

i

= Q

f(i)

g

i2f1;:::;ng

fP

g(j)

= Q

j

g

j2f1;:::;mg

where f and g are mappings f : f1; : : : ng �! f1; : : :mg

and g : f1; : : : ;mg �! f1; : : : ; ng

(SUBL)

�(P

1

) j P

2

= Q

�(P

0

1

) j P

2

= Q

where � is a cause set renaming which is

order preserving and bijective on cs(P

1

) = cs(P

0

1

) and there is a dominated

node labelled P

1

= P

0

1

or P

0

1

= P

1

with pf(P

0

1

) <

lex

pf(P

1

)

(SUBR)

Q = �(P

1

) j P

2

Q = �(P

0

1

) j P

2

where � is a cause set renaming which is

order preserving and bijective on cs(P

1

) = cs(P

0

1

) and there is a dominated

node labelled P

1

= P

0

1

or P

0

1

= P

1

with pf(P

0

1

) <

lex

pf(P

1

)

Figure 3: The Tableau Rules

14



2. it must dominate a node m labelled by P

1

= P

0

1

or P

0

1

= P

1

,

3. in the label on the dominated node it must be the case that pf(P

0

1

) <

lex

pf(P

1

).

The result of applying the rule is the generation of a new node labelled by �(P

0

1

) j P

2

= Q.

Note that as a result of the application of the rule the lexicographical order of the process

is decreased. This order, <

lex

, is de�ned as in the last section using as the �nite set G

the set Gen(P ) [ Gen(Q), where P = Q labels the root of the tree, and is based on

some �xed ordering on G.

There is a further constraint on use of the SUB rules or rather on the development

of a proof tree: the two SUB rules have precedence over UNWIND and SUM in that

the latter two may only be applied if SUBL and SUBR are not applicable. This extra

condition does not apply to the node n to which a SUB rule is being applied but to the

entire proof tree above n.

A proof tree is developed for P = Q by starting with a root labelled by P = Q and

systematically applying UNWIND, SUM and the SUB rules to non-terminal nodes,

subject to this constraint. A proof tree is said to be sucessful if every leaf is a successful

terminal node. An example of a complete tableau is as follows:

Example 4.1 Let P = rec x: (a:x j b) and Q = rec x: (b j a:x) + a:P j b with P <

lex

Q.

To decide P �

lc

Q we develop a tableau T (P = Q). Initially, rule UNWIND is applied

yielding the two nodes labelled

ff1g � P j bg = fb j f1g � Q; f1g � P j bg for the derivatives of a

fa:P j f1g � nilg = ff1g � nil j a:Q; a:P j f1g � nilg for the derivatives of b

For these two nodes the tableau is extended for the �rst node by

(SUM) ff1g � P j bg = fb j f1g � Q; f1g � P j bg

(SUBR) f1g � P j b = b j f1g � Q

f1g � P j b = b j f1g � P

f1g � P j b = f1g � P j b

and for the second by

(SUM) fa:P j f1g � nilg = ff1g � nil j a:Q; a:P j f1g � nilg

(UNWIND) a:P j f1g � nil = f1g � nil j a:Q

(SUM) ff2g � P j f1g � nilg = ff1g � nil j f2g � Qg

(SUBR) f2g � P j f1g � nil = f1g � nil j f2g � Q

f2g � P j f1g � nil = f1g � nil j f2g � P

A

15



where A is a:P j f1g � nil = a:P j f1g � nil and empty cause sets have been omitted.

Since all terminal nodes are successful the tableau is successful, hence P �

lc

Q.

Theorem 4.2 Let P;Q 2 BPP

l

. Every tableau for P = Q is �nite.

Proof Let X = Gen(P ) [ Gen(Q). If the tableau is not �nite then |as it is �nitely

branching| it must contain an in�nite path. By Proposition 3.5 every application of a

SUB rule preserves the order <

lex

and since this order is well-founded this in�nite path

can not eventually only consist of applications of SUB. So there are in�nitely many

nodes, (n

i

)

i2IN

along a path to which rule UNWIND is applied. Let (U

i

= V

i

)

i2IN

denote the sequence of labels on these nodes.

We now consider the words over IN

jX j

generated by each pair U

i

; V

i

; !(U

i

); !(V

i

)

respectively. In fact it will be convenient to use words over the slightly larger set IN

jX j+1

and identify any vector � 2 IN

jX j

as the vector in IN

jX j+1

obtained by setting the last

component to 0. If we then encode the equality symbol = as a vector � 2 IN

jX j+1

with

�(i) = 0 for each generator position (i.e. for i � jXj) and �(jXj + 1) = 1 for the new

component then U

i

= V

i

can be represented as the word !(U

i

)�!(V

i

) over the alphabet

IN

jX j+1

. For convenience let !

i

denote this word which labels the node n

i

.

Now consider two nodes n

j

;n

k

, where j < k, which are labelled by the equations

U

j

= V

j

and U

k

= V

k

respectively. We show, by contradiction, that !

j

6� !

k

. Suppose

this is not the case, i.e. !

j

� !

k

and therefore both U

j

� U

k

and V

j

� V

k

. Since <

lex

is a total order we can assume without loss of generality that pf(U

j

) <

lex

pf(V

j

). By

Proposition 3.8 we know that V

k

� �(V

j

) j R for some cause set renaming � which is

bijective when restricted to cs(V

j

). But we now have all of the conditions necessary to

apply the rule SUBR to the node n

k

. But by construction we know that UNWIND

has been applied, which contradicts the condition that UNWIND can only be applied

when a SUB rule is not applicable.

We have shown that !

j

6� !

k

for any pair of nodes n

j

;n

k

on the in�nite subpath.

We therefore have an in�nite sequence of words over IN

jX j+1

, namely (!

i

)

i2IN

with the

property that i < j implies !

i

6� !

j

. This contradicts Theorem 3.6.

Hence there is no in�nite path in the tableau. 2

Proposition 4.3 (Completeness)

Let P;Q 2 BPP

l

. If P �

lc

Q then there is a successful tableau T (P = Q).

16



Proof If P �

lc

Q then we can build up a tableau such that R �

lc

S for each proper

node labelled R = S. This is possible because the UNWIND rule directly reects the

operational semantics and when applying the SUM rules one can choose the functions

f; g in the appropriate way. Lemma 2.2 guarantees that the nodes introduced via an

application of the SUB rules also have this property. Hence the resulting tableau can

not contain unsuccessful nodes. Finally by Theorem 4.2 the tableau is �nite. 2

Proposition 4.4 (Soundness) If a tableau T (P = Q) is successful then P �

lc

Q.

Proof

Let R

�

denote the least set which contains � and

R = f(P;Q) j P = Q is the label of a proper node in the tableaug

and which is closed under the following operations:

1. (P;Q) 2 R

�

implies (P j R;Q j R) 2 R

�

for every R,

2. (P;Q) 2 R

�

implies (�(P ); �(Q)) 2 R

�

for every cause renaming � which is bijec-

tive on cs(P )(= cs(Q)),

3. (P;Q) 2 R

�

; (Q;R) 2 R

�

implies (P;R) 2 R

�

,

4. (P;Q) 2 R

�

implies (P j � � nil ; Q) 2 R

�

and (P;Q j � � nil ) 2 R

�

for any

� 2 CS.

Then R

�

is a local cause bisimulation. To prove this it is su�cient to check that for each

node label (P;Q) 2 R the moves from P can be matched by corresponding moves from

its partner, that is,

� P

�

����!

(lc)

P

0

implies Q

�

����!

(lc)

Q

0

for some Q

0

2 BPP

l

with (P

0

; Q

0

) 2 R

�

� P

a

����!

A;l

(lc)

P

0

; l = new(cau(P )[cau(Q)), impliesQ

a

����!

A;l

(lc)

Q

0

for someQ

0

2 BPP

l

with (P

0

; Q

0

) 2 R

�

.

This can be established by induction on the length of the sequence of uninterrupted

applications of SUB rules to a node.

17



case i = 0: In this case the node is either terminal |so we have P � Q and therefore

(P;Q) 2 R

�

| or rule UNWIND is applied to it in the next step. An application

of UNWIND is always followed by an application of rule SUM. The labels of

the nodes obtained from this application give the required matching moves (up to

adding � � nil components).

case i! i+ 1: Without loss of generality the label under consideration is of the form

(�(P

1

) j P

2

= Q) and there is a dominated node labelled P

1

= P

0

1

(or P

0

1

= P

1

).

By the de�nition of domination rule UNWIND is applied to P

1

= P

0

1

in the next

step, so by induction we know that both (�(P

0

1

) j P

2

; Q) and (P

1

; P

0

1

) satisfy the

requirement on matching moves above. By a simple but tedious case analysis one

can show that also (�(P

1

) j P

2

; Q) does so also.

2

Theorem 4.5 Local cause equivalence is decidable on all BPP

l

processes.

Proof There are only �nitely many di�erent tableaux T (R = S). 2

5 Other Equivalences

Reecting on the decidability algorithm of the last section we observe that it depends on

very few properties of the local cause transition system or the semantic equivalence. The

only direct use of the local cause transition system is to determine the sets of derivatives

Der

�;l

(P; a) and Der(P; � ) which are required to be �nite. Thus the algorithm can be

applied to other equivalences based on causes and cause sets provided they have the

properties described in Lemma 2.2 and they have �nite derivative sets. In the following

we consider two such candidates namely global cause equivalence and ST equivalence. We

then go on to outline how the algorithm can also be adapted to decide the corresponding

weak equivalences for a large subclass of BPP

l

.

Global cause equivalence �

gc

is an alternative formulation of causal bisimulations,

[DD89], [DD90] based on cause sets; see [Kie94] for a detailed exposition and a proof that

it does indeed coincide with causal bisimulation. Global cause equivalence is de�ned in
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the standard way, as a maximal bisimulation, but the underlying transition is a variation

on that given in Section 2. It is obtained from the transition rules given in Figure 1 and

Figure 2 replacing the rule for communication (L4) with

(L4

0

) P

a

����!

�;l

(gc)

P

0

; Q

�a

����!

�;k

(gc)

Q

0

implies P j Q

�

����!

(gc)

P

0

[�=l] j Q

0

[�=k]:

The intuition behind this rule is that a communication establishes causal links between

the communicating partners. This is formalised by the injection of a copy of the partner's

causes relevant to the communication. The equivalence is then de�ned in the same way as

local cause equivalence, by replacing all lc indices by gc in De�nition 2.1. Like local cause

equivalence �

gc

is preserved by bijective cause set renamings (Lemma 2.2). Moreover

�

gc

satis�es su�cient equations to ensure that extended processes can be transformed

to parforms and the derivative sets in the underlying transition system remain �nite.

Therefore the proofs of completeness and soundness of the tableau method remain valid

if �

lc

is replaced by �

gc

and we have:

Theorem 5.1 Global cause equivalence, and therefore causal bisimulation, is decidable

over BPP

l

. 2

We now turn our attention to ST-equivalence, introduced for Petri Nets in [vGV87]

and for process algebras in [AH93]. Here we follow the development in [AH93] and show

how it can be simulated by a variant of cause-based transition systems. ST-equivalence

is not motivated by localities or causes. Instead it takes the view that actions are non-

atomic and uses an underlying transition system based on sub-actions consisting of the

starting and the �nishing of actions. However this type of operational semantics can

easily be formulated as another variation on the local cause transition system. The

transition system for visible moves consists of the rules in Figure 1 where the axiom for

pre�xing is replaced by the two new axioms

(ST1a) ; � a:p

a

����!

;;l

(st)

flg � a:p;

(ST1b) fkg � a:p

a

����!

fkg;l

(st)

; � p:

Here the start of action a is simulated by performing action a with cause set ; while the

end of a is simulated by a with the cause set flg. Note that in (ST1b) the l cause is super-

uous as it is not inserted into the term. It is simply there to ensure that transitions and

terms of the ST transition system �t the general schema of our cause based operational

semantics. If we restrict our attention to processes from CCS these transitions will only

ever generate terms whose cause sets are either empty, ;, or a singleton, flg. Moreover,

because of the side-condition on the rule (LG3), for any particular label l there will only

be at most one occurrence of the cause set flg in a generated term.
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Let

�

����!

(st)

� (ST � ST ) be the least binary relation de�ned by the following axiom

and rules.

(L1) � � �:p

�

����!

(st)

� � p

(L2) P

�

����!

(st)

P

0

implies P +Q

�

����!

(st)

P

0

Q+ P

�

����!

(st)

P

0

(L3) P

�

����!

(st)

P

0

implies P j Q

�

����!

(st)

P

0

j Q

Q j P

�

����!

(st)

Q j P

0

(L4) P

a

����!

(st)

P

0

; Q

�a

����!

(st)

Q

0

implies P j Q

�

����!

(st)

P

0

j Q

0

(L5) � � p[rec x: p=x]

�

����!

(st)

P

0

implies � � rec x: p

�

����!

(st)

P

0

(L6) P � P

0

; P

�

����!

(st)

Q; implies P

0

�

����!

(st)

Q

Figure 4: Invisible ST Transitions

In the ST operational semantics of [AH93] communication consists of the simulta-

neous occurrence of complete actions and therefore we can not de�ne the required �

transitions using the rules in Figure 2; instead we need to de�ne it separately, along

the standard lines as in [Mil89]. As usual in order to de�ne the invisible transition,

�

����!

(st)

, it is necessary to de�ne the auxiliary relations

a

����!

(st)

for each action a. For

completeness these are given in Figure 4.

Let �

st

be the bisimulation equivalence obtained obtained in the standard way from

this transition system; note that only the transitions

a

����!

�;l

(st)

and

�

����!

(st)

are used in

the de�nition of �

st

. We show in the appendix that it coincides with ST-bisimulation as

introduced in [AH93]. However this new formulation ensures that the requirements for

the applicability of the decision procedure are satis�ed and we obtain:

Theorem 5.2 ST -equivalence is decidable on all BPP processes. 2

Let us now consider the weak versions of local cause, global cause and ST -equivalence.
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These are obtained by abstracting from internal moves. We only outline the development

for local cause equivalence but it can be easily adapted for the other two. The weak local

cause transitions are de�ned as follows:

For a 2 Act let

a

====)

�;l

(lc)

be the least relation which satis�es

� P

a

����!

�;l

(lc)

Q implies P

a

====)

�;l

(lc)

Q

� P

a

====)

�;l

(lc)

Q

0

and Q

0

�

����!

(lc)

Q implies P

a

====)

�;l

(lc)

Q

� P

�

����!

(lc)

P

0

and P

0

a

====)

�;l

(lc)

Q implies P

a

====)

�;l

(lc)

Q

We also use

"

====)

(lc)

to denote the reexive transitive closure of

�

����!

(lc)

.

Based on these transitions weak local cause equivalence is de�ned in the standard

way:

De�nition 5.3 [Weak Local Cause Equivalence]

A symmetric relation R � BPP � BPP is called a weak local cause bisimulation i�

R � G(R) where (p; q) 2 G(R) i�

(i) p

"

====)

(lc)

p

0

implies q

"

====)

(lc)

q

0

for some q

0

2 BPP

l

with (p

0

; q

0

) 2 R

(ii) p

a

====)

�;l

(lc)

p

0

; l = new(cau(p) [ cau(q)); implies q

a

====)

�;l

(lc)

q

0

for some q

0

2 BPP

l

with (p

0

; q

0

) 2 R:

Two processes p and q are weak local cause equivalent, p �

lc

q, i� there is a local cause

bisimulation R such that (p; q) 2 R. 2

It is fairly easy to see how in principle the tableau algorithm has to be adapted

in order to handle this new equivalence. The modi�cation concerns the unwinding of

processes and the sets of derivatives to be compared. These sets of derivatives are now

de�ned by:

WDer

�;l

(P; a) = fQ j P

a

====)

�;l

(lc)

Qg;

WDer(P; ") = fQ j P

"

====)

(lc)

Qg:

Unfortunately although we assume that processes are guarded these sets may still be

in�nite. So if we are to adapt the basic decision procedure we must restrict our attention

to a subclass where these are guaranteed to be �nite.

A process P 2 BPP

l

is said to be convergent if there is no in�nite sequence

P = P

1

�

����!

(lc)

P

2

�

����!

(lc)

P

3

�

����!

(lc)

: : :

and h-convergent if Q is convergent whenever P ! P

1

! P

2

: : : P

n

! Q where P

i

! P

i+1

stands for P

i

�

����!

(lc)

P

i+1

or P

i

a

����!

�;l

(lc)

P

i+1

for some a, �. Intuitively this means P will
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never evolve to a process which can diverge internally. Our decision procedure for the

weak equivalences will only apply to these terms. However at least this is a decidable

class:

Theorem 5.4 The predicate h-convergent is decidable over BPP

l

.

Proof

It is not too di�cult to see that P is h-convergent if and only if pure(P ) is h-convergent

under the standard operational semantics where labels and causes are not mentioned.

Therefore it is su�cient to consider CCS processes in BPP. Any such process p can be

represented by the Petri net PN(p) constructed as follows:

� take Gen(p) as the set of places

� for each transition g

�

! q introduce a Petri net transition labelled � with g as the

only input place and the generators g

1

; : : : ; g

n

as output places, where q is equivalent

to a polynomial over fg

1

; : : : ; g

n

g. The arcs to the output place g

i

are weighted

according to the number of occurrences of g

i

in the polynomial presentation of g

� for two Petri net transitions introduced by the previous item labelled a and �a

introduce a new transition labelled � with input and output places determined by

those of the two transitions being considered

� take as initial markingM

0

the multiset determined by the polynomial presentation

of g.

It is easily seen that the CCS process p is h-convergent if and only if the net PN(p)

has a reachable marking which enables an in�nite �ring sequence consisting of � -labelled

transitions only. The latter property has been shown to be decidable by Vogler in [Vog92]

(Theorem 3.2.9) using results of [VJ85]. 2

Proposition 5.5 If P 2 BPP

l

and P is h{convergent then Der

�;l

(P; a), Der(P; � ) and

Der(P; ") are �nite for all l 2 C, � 2 CS and a 2 Act .

Proof A simple application of K�onig's Lemma. 2
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(WeakUNWIND)

P = Q

fWDer

�;l

(P; a) = WDer

�;l

(Q; a)g WDer(P; ") = WDer(Q; ")

where l = new(cau(P )) = (cau(Q))

� 2 cs(P ) = cs(Q) and a 2 act(P ) [ act(Q)

Figure 5: Modi�ed Tableau Rule for Weak Equivalences

So we can adapt our decision procedure to decide �

lc

for the decidable sub-class of

h-convergent processes; we need only replace the UNWIND rule with the WeakUN-

WIND rule given in Figure 5. As in the strong case one can show that tableaux generated

by the new rules will be sound and that the algorithm is complete. With the modi�ed

rule the proofs in Section 4 can be easily modi�ed to obtain:

Theorem 5.6 Weak local cause equivalence is decidable on h{convergent BPP

l

pro-

cesses. 2

Moreover by changing in an appropriate manner the de�nition of the sets of derivatives

the decision also works for weak versions of the other two equivalences and therefore we

also obtain:

Theorem 5.7 Weak global cause equivalence and weak ST-equivalence are decidable on

h{convergent BPP

l

processes. 2

6 Conclusions

In this paper we have generalised the method of deciding bisimulation equivalence for

basic parallel processes of [CHM93] for three well-known non-interleaving equivalences.

We have followed closely the general strategy of that paper but because of the complex

nature of the equivalences, considerable modi�cations were required. The main di�culty

was in �nding a condition for the replacement of one process by a simpler one which

at the same time guaranteed termination of the tableaux. The chosen solution, which

uses cause set bijections, enabled us to guarantee termination employing the standard

theorem by Higman, [Lot83], from formal language theory.
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We also considered decidability of the corresponding weak equivalences but our results

only apply to a subclass of processes, namely those which can never diverge. For arbitrary

BPP processes these problems are still open, as it is for weak bisimulation equivalence.

However at least we have shown that the subclass of processes we can handle is decidable.

The results presented here also apply to Petri nets as basic parallel processes corre-

spond exactly to a certain class of Petri nets (cf. [Hir94] and [Esp94]). In fact in the

case of global cause equivalence the way we treat histories can be seen as a generalisation

of Vogler's work for safe nets and history preserving bisimulation ([Vog91b, Vog91a]).

Note that in general bisimulation equivalence is not decidable for arbitrary Petri nets

([Jan94]).
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7 Appendix

We here show that ST -equivalence which has been introduced in [vGV87] for Petri nets

and in [AH93] for process algebras indeed coincides with the formalization we have given

in Section 5. The proof is only for the set of processes BPP considered in this paper

but it can be extended to whole of CCS in a straightforward way. We �rst outline the

de�nition of ST-equivalence as given in [AH93] and then compare it to our formalisation

given in Section 5.

ST processes are generated by the abstract syntax

P := t j F (a

l

):t j P j P

where t 2 CCS, a 2 Act and each index l occurs at most once in a term. Let ST

denote the set of these processes. It is often called the set of con�gurations or states as
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it contains processes which have started some of their actions without having �nished

them. Each F (a

l

) stands for such an un�nished action. The index l serves to uniquely

identify particular executions of an action. For our comparison we simply choose l from

the set of causes C.

The transition systems for visible and invisible moves are given in Figure 7. Axiom

(S1) is only needed to be able to derive invisible action due to a communication. Transi-

tions of this kind are not directly considered when comparing processes. It is important

to note that these transition relations are only de�ned as relations over ST processes

where each index l occurs at most once. So, for example, the rule (S5) for parallel can

only be applied to an ST process whenever we are sure that the resulting term is also an

ST process.

The use of unique indices gives a slightly di�erent formulation than that in [AH93]

where it was only necessary to ensure that for each action a and each index l the pre�x

F (a

l

) occurs at most once. However our formulation enables us to give a much simpler

de�nition of ST-equivalence:

De�nition 7.1 [ST-quivalence]

A symmetric relation R � ST � ST is called a ST bisimulation i� R � S(R) where

(P;Q) 2 S(R) i�

(i) P

�

! P

0

implies Q

�

! Q

0

for some Q

0

2 ST such that (P

0

; Q

0

) 2 R

(ii) P

�

! P

0

; � 2 fS(a

l

); F (a

l

) j a 2 Act ; l 2 Cg; implies Q

�

! Q

0

for some Q

0

2 ST such that (P

0

; Q

0

) 2 R:

Two processes P and Q are ST equivalent, P � Q, if and only if there is a ST bisimulation

R such that (P;Q) 2 R.

2

In [AH93] in order to de�ne ST-equivalence it was necessary to parameterise the relations

R on partial bijections over the cause sets. This is unnecessary here because of each cause

has at most a unique occurrence in a process.

We now compare this equivalence with our version, �

st

, de�ned using cause sets. Let

BPP

ST

be the subset of BPP

l

consisting of all processes which (up to �)

1. have at most one occurrence of any particular cause

2. and only contains cause sets of the form ; or flg.

Note that this is the set which is reachable from BPP using

����!

(st)

transitions. To

simplify the comparison we strengthen the congruence � to the congruence obtained
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For each � 2 Act

�

and � 2 fS(a

l

); F (a

l

) j a 2 Act ; l 2 Cg let

�

!;

�

! � (ST � ST ) be

the least binary relations satisfying the following axioms and rules.

(S1) �:p

�

! p

(S2) a:p

S(a

l

)

! F (a

l

):p l 2 C

(S3) F (a

l

):p

F (a

l

)

! p

(S4) P

�

! P

0

implies P +Q

�

! P

0

Q+ P

�

! P

0

(S5) P

�

! P

0

implies P j Q

�

! P

0

j Q

Q j P

�

! Q j P

0

(S6) P

a

! P

0

; Q

�a

! Q

0

implies P j Q

�

! P

0

j Q

0

(S7) p[rec x: p=x]

�

! P

0

implies p

�

! P

0

Figure 6: ST Transitions

from the equations generating � without the equation for commutativity of j. In order

not to lose any transition due to this change we add the rule (ST3

0

)

(ST3

0

) P

a

����!

�;l

(st)

P

0

; l 62 cau(Q); implies Q j P

a

����!

�;l

(st)

Q j P

0

and modify the rule for � respectively. Similar changes are needed for � transitions.

Each term in BPP

ST

represents uniquely a term in ST and vice versa. To see this

let st : BPP

ST

! ST and lg : ST ! BPP

ST

be the mappings de�ned by

st(P ) =

8

>

>

>

<

>

>

>

:

p if P = ; � p

F (a

l

):p if P = flg � a:p

st(P

1

) j st(P

2

) if P = P

1

j P

2

lg(P ) =

8

>

>

>

<

>

>

>

:

; � p if P = p 2 CCS

flg � a:p if P = F (a

l

):p

lg(P

1

) j lg(P

2

) if P = P

1

j P

2

We have st � lg = id and lg � st = id where id is the identity mapping. Moreover it

is straightforward to verify that transitions are also preserved by these translations:
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Lemma 7.2 1. If P 2 ST then

(a) P

S(a

l

)

! P

0

implies lg(P )

a

����!

;;l

(st)

lg(P

0

),

(b) P

F (a

l

)

! P

0

implies lg(P )

a

����!

flg;k

(st)

lg(P

0

) for any k 2 C n cau(P ),

(c) P

�

! P

0

implies lg(P )

�

����!

(st)

lg(P

0

).

2. If P 2 BPP

ST

then

(a) P

a

����!

;;l

(st)

P

0

implies st(P )

S(a

l

)

! st(P

0

),

(b) P

a

����!

flg;k

(st)

P

0

implies st(P )

F (a

l

)

! st(P

0

),

(c) P

�

����!

(st)

P

0

implies st(P )

�

! st(P

0

).

Proof By induction on the length of the proof of a transition. 2

The invariance of the two formalizations of ST -equivalence is now easily established.

It is an immediate corollary of the �nal proposition since a CCS process p is represented

in BPP by ; � p.

Proposition 7.3 1. If P � P

0

, P;P

0

2 ST , then lg(P ) �

st

lg(P

0

),

2. if P �

st

P

0

, P;P

0

2 BPP

ST

, then st(P ) � st(P

0

).

Proof Using the mappings st and lg a bisimulation of one set up can be translated

into the other. The preceding lemma guarantees that the resulting relations are indeed

bisimulations. 2
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