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Abstract. There has been considerable controversy in concurrency theory between the

`interleaving' and `true concurrency' schools. The former school advocates associating a

transition system with a process which captures concurrent execution via the interleaving of

occurrences; the latter adopts more complex semantic structures to avoid reducing concurrency

to interleaving.

In this paper we show that the two approaches are not irreconcilable. We de�ne a timed

process algebra where occurrences are associated with intervals of time, and give it a transition

system semantics. This semantics has many of the advantages of the interleaving approach;

the algebra admits an expansion theorem, and bisimulation semantics can be used as usual.

Our transition systems, however, incorporate timing information, and this enables us to express

concurrency: merely adding timing appropriately generalises transition systems to asynchronous

transition systems, showing that time gives a link between true concurrency and interleaving.

Moreover, we can provide a complete axiomatisation of bisimulation for our algebra; a result

that is often problematic in a timed setting.

Another advantage of incorporating timing information into the calculus is that it allows a

particularly simple de�nition of action re�nement; this we present. The paper concludes with a

comparison of the equivalence we present with those in the literature, and an example system

speci�cation in our formalism.

1. Introduction

The process algebra community is divided between those who favour interleaving, and those

who do not. The former school reduce a process like a .Nil jj b .Nil to the choice between the

alternative interleavings (a . b .Nil) + (b .a .Nil), enabling them to associate a labeled tree with

a process, while the latter use more sophisticated semantic structures, such as partial orders, to

distinguish between `true' concurrency and interleaving. These structures have the advantage of

being more expressive than labeled trees, but the disadvantage of often being more complex and

di�cult to reason with.

The correct choice of semantic structure for concurrency becomes even more problematic

when we move to timed process algebra. Many of the classic interleaving algebras, such as BPA

[6], `theoretical' CSP [29] or CCS [35] have timed analogues ([5], [15] and [38] respectively),

and these inherit many of the features of the interleaved originals. However, timing adds a new

element: in an untimed algebra, we would associate the traces

ha; b; ci; ha; c; bi and hc; a; bi
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with the process (a . b .Nil) jj c .Nil. If we add timing, writing a@t for an a at time t, and

assume that b happens 2 time-units after a, then merely generalising the traces above gives us

ha@0; b@2; c@0i; ha@0; c@0; b@2i and hc@0; a@0; b@2i

Many authors [5, 28, 38] argue that the �rst trace, ha@0; b@2; c@0i, is inconsistent or ill{timed,

since the trace order does not re
ect the order given by time; they claim that we cannot observe

a c at time 0 after observing a b at time 2. This position allows them to reduce the allowed traces

in their timed models, but at a considerable cost: expansion theorems, which are often a great

aid in manipulating expressions, establishing normal forms etc., rarely follow in this setting, as

Godskesen and Larsen [23] point out. Moreover, considerable trouble needs to be taken in the

semantics of the calculus to ensure that such ill{timed traces do not arise, with the result that

it is often possible to write processes which do not allow time to pass. This is well known in the

timed process algebra community; cf. [28, 30, 45].

Here we will argue that it is not necessary to ban ill{timed traces provided they are well{

caused. There is no causal connection between b and c in the process (a . b .Nil) jj c .Nil, so

we claim that it is unreasonable for c to in
uence the presence or absence of b in a semantic

structure. Thus we will allow ill{timed traces, provided they come about through parallelism.

This novel approach has a number of advantages; �rstly it allows us to keep many of the

advantages of the classic interleaving approach, such as the existence of an expansion theorem.

Secondly, it allows us to capture concurrency information purely through timing, so that we can

record the di�erence between interleaving and concurrency without using a semantic structure

more complex than a labeled tree. Finally it allows us to de�ne a timed process algebra that is

both implementable (our calculus will su�er from no pathological processes such as those which

do not allow time to pass) and fairly expressive.

We will proceed thus: �rstly we de�ne the process algebra cIpa (for `closed interval process

algebra') that will be our main object of study. This is a subalgebra of the second author's

Ipa introduced in [39]. An operational semantics is given to the algebra cIpa which allows us

to associate an action-timed transition system with a process. This semantics has several novel

features:

� we have urgent actions: things happen as soon as they can. This allows us to reason

compositionally about timing properties;

� we introduce local clocks to record the evolution of di�erent parts of a distributed

state. This, together with our treatment of synchronisation (which ensures that process

synchronisation implies clocks synchronisation), allows us to treat parallelism smoothly.

A congruence is then de�ned over the action-timed transition systems given by the opera-

tional semantics, and is axiomatised. We prove that it remains a congruence under a de�nition

of semantic action re�nement. These results rely on a careful analysis of timing information.

The paper concludes with a comparison of our notion of equivalence with others in the

literature, and an example of the use of cIpa. We aim to show the usefulness of timed process

algebra not just as speci�cation calculi for timed systems, but also as possessing inherent semantic

advantages over untimed calculi. Timing, for instance, increases the expressiveness of the calculus

without going beyond an interleaving setting. It also simpli�es the de�nition of action re�nement,

as we show.

2. A Timed Process Algebra

In this section we de�ne a timed process algebra, giving its syntax, investigating its timing

properties, and presenting an operational semantics. We show that our semantics captures

concurrency information in a natural way.
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2.1. Syntax

We will use a syntax derived from both CSP [29] and CCS [35], assuming as given some set

of actions, A, with � (which will be used for internal actions of a process) not in A. We also

assume a bijection : A! A (giving the complementary action of a), extend such that x = x

for all x 2 A [ A, and write Act for A [ A. We will use a; b; c; d etc. to range over Act , and

write R

+

for the positive reals. The syntax of cIpa is then de�ned by

P :: = a .P j Wait t .P j P + P j PnC j Nil j P jj P

with a ranging over Act , t 2 R

+

, and C � A.

The set of all processes generated by this syntax over a �xed set of actions A will be written

cIpa. The operators are intended to have the following informal meaning:

a .P An action a 2 Act followed by the process P .

Wait t .P A process that can do nothing but wait for time t and then become P .

P +Q This is the choice between P and Q; P + Q can perform either an action from

P , in which case it behaves like the rest of P , or one from Q, in which case the

remainder of Q follows.

PnC This restriction operator allows us to force some of P 's actions not to occur; all

of the actions in the set C are prohibited.

Nil This is the empty process which does nothing.

P jj Q This is parallel composition. Each process is allowed to proceed asynchronously,

with synchronisations between a and a sometimes being possible; see subsection

2.6 for details.

We will often omit the terminal Nil, writing for instance a . b for a .(b .Nil). Moreover, we

assume that . binds more strongly than + or jj, so that a . b + c should be read as the process

(a . b .Nil) + c .Nil.

2.2. Duration and Nonatomicity

Consider the process a . b. In any realistic system there must be a delay between a and b.

Clearly we have two alternatives; either to imbue operators with delay, so that a and b are atomic

and time passes `between' them, or to view actions as compound happenings having duration.

We shall take the latter course, giving a function � : A! R

+

which assigns durations to actions.

The duration �(a) for any a 2 A will be assumed to be nonzero and, for technical convenience,

constant over all occurrences of a. We extend � to Act by de�ning �(a) = �(a).

Our approach of giving durations to actions is novel but not entirely new; Lamport assumes

nonatomicity [32] in his discussions of distributed systems, as do Best and Koutny [9] when

discussing priority. Related process algebraic work with explicit starts and �nishes is due to

Hennessy and the �rst author [2, 27], while the second author's [40] treats a partial order model

with duration. Both van Glabbeek (in his de�nition of ST{bisimulation [18, 20]) and Gorrieri

[25] imply that durational information is necessary in the consideration of action re�nement and

hence in properly structuring the descriptions of systems, a view we concur with.

2.3. Urgency and Timing Properties

A key notion in cIpa is that of urgency; an action happens as soon as possible. Thus if a

has duration �, the P in a .P will de�nitely start executing exactly 3:141 : : : units of time after

a has started.

�

The urgency of cIpa allows us to de�ne the set of all times a process without

�

Note that the issue of urgency is di�erent from that of liveness. The term `maximal liveness', which

intuitively should mean things happening as quickly as possible, is in fact used in much of the literature
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restriction can last, dur(P ) 2 }

�n

(R

+

[ f0g). (Here }

�n

(X) is the set of �nite subsets of X .)

dur(Nil) = f0g dur(Wait t .P ) = ft

0

+ t j t

0

2 dur(P )g

dur(P + Q) = dur(P ) [ dur(Q) dur(a .P ) = ft

0

+ �(a) j t

0

2 dur(P )g

dur(P jj Q) = fmax(t; t

0

) j t 2 dur(P ); t

0

2 dur(Q)g

Note that dur(P ) for a cIpa process P , if it is de�ned, is indeed a �nite set.

The existence of this function means that the restriction-free sublanguage of cIpa has

compositional timing properties: we can reason about the timing of a cIpa process given

knowledge of those of its subcomponents and how they are combined.

2.4. Action-Timed Transition Systems

We shall present the operational semantics of cIpa in the usual SOS style [42], associating

a rooted transition system (or process graph) (S;E;!; s

0

) with a cIpa process. This transition

system represents the possible steps in executing P , so S will be the set of reachable con�gur-

ations of P , E a set of actions, ! an evolution or transition relation (which indicates which

action is associated with a given state change), and s

0

2 S the starting con�guration. In what

follows, � will range over Act [ f�g.

Timed process algebra usually assumes the existence of an observer's clock. This is a

conceptual clock which accompanies an observer of the system, and is used to time{stamp

observations; its presence does not necessarily constitute a global clocks assumption. Indeed, we

shall show in this paper how to give an operational semantics for cIpa in which di�erent parallel

sub-processes have an independent local clock which they use to time{stamp observations.

To introduce time{stamps, we need to generalise

the rules of operational semantics slightly. A

conventional untimed transition rule takes the

form opposite

s

i

�

i

���! s

0

i

(i 2 I)

u

�

���! u

0

indicating that if every con�guration s

i

can

evolve by �

i

to s

0

i

then u can evolve by � to

u

0

. We want to capture both the timing of an

action (�@t, read `� occurs at time t') and its

duration (�), so we shall write timed transition

rules in the form opposite

s

i

�

i

@t

i

���!

�

i

s

0

i

(i 2 I)

u

�@t

���!

�

u

0

De�nition 1. An action-timed transition system or Atts is a tuple G = (S;E;!; s

0

) consisting

of a set of con�gurations S, a set of timed, durationful events E � (Act [ f�g) � R

+

� R

+

(together with a duration map � : Act ! R

+

), a relation ! : S � E � S and an initial

con�guration s

0

. We usually write s

�@t

���!

�

u rather than (s; (�; t; �); u) 2 !, and require that �

is the only action whose duration can vary

s

�@t

���!

�

u and s

0

�@t

0

���!

�

0

u

0

implies (� = �

0

_ � = �)

For the sake of convenience, we shall only consider Attss with the following properties:

lack of cycles Let !

�

be the re
exive and transitive closure of !. Then we require:

s

e

�! u implies u 6!

�

s

to mean � actions happening as quickly as possible. In the absence of duration information, this can cause

e�ects, such as the a in � .a happening immediately,which are not present in cIpa. As illustration, consider

(a . b jj a)nfag; in cIpa the b will happen at time �(a) after the process has begun, not immediately. We

take the view that there is no reason for hidden actions to lose their durations.
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reachability All states mentioned are reachable from the initial con�guration, and all events

label some transition:

s 2 S implies s

0

!

�

s

and e 2 E implies 9s; u 2 S such that s

e

�! u

Note that the Attss we consider are root unwound in the sense of [18, chapter 3], i.e. they

have no incoming edges at the root:

:(s

�@t

���!

�

s

0

)

2.5. Con�gurations

Consider the general timed transition rule of the last section. In keeping with the idea of

urgency, we want P to begin as soon as a has ended in a .P , i.e. at time �(a) assuming that a .P

started at time 0. However, if con�gurations are just process fragments, we have no convenient

syntactic means of knowing the time of occurrence of an action. Thus we de�ne the set C(cIpa)

of con�gurations as follows:

s :: = P t j s+ s j s jj s j snC

The idea is that P t is the process P started at time t; we conventionally identify P with P 0.

(Note that, with this convention, we can regard cIpa as a sublanguage of C(cIpa),| indeed

we have identi�ed cIpa with a subset of the set of generators of C(cIpa).) The con�guration

(P t) jj (P

0

t

0

) is P with local clock at t in parallel with P

0

whose local clock reads t

0

. This

use of local clocks enables us to treat the simultaneous execution of actions in parallel processes

smoothly. It is important to emphasise here that our local clocks are conceptual; they are an

aid in recording distributed state, rather than a precise model of an implementation.

For the sake of simplicity, we shall follow the example of [14] and consider con�gurations

in canonical form with respect to the operators t. In particular, it will be assumed that

the operators t distribute over nondeterministic choice, restriction and parallel composition.

Formally, let � denote the least congruence over these operators which satis�es the following

axioms:

(P + Q) t = P t+ Q t

(PnC) t = (P t)nC

(P jj Q) t = (P t) jj (Q t)

Applying these axioms as rewrite rules from left to right, it is easy to see that for each s 2 C(cIpa)

there exists a canonical term generated by the grammar

s :: = Nil t j (a .P ) t j (Wait t

0

.P ) t j s+ s j snC j s jj s

such that s is always � to a canonical term. In what follows, C(cIpa) will always be considered

modulo �.

Notice, incidentally, that there are some con�gurations that do not correspond to processes

in any recognisable sense; (a 2) + (b 3), for instance, is not an implementable choice. Such

con�gurations are needed for semantic reasons, (allowing us to show completeness, for instance)

and should not be thought as corresponding to (the state of) a process which o�ers such a choice.

We shall write transition rules between con�gurations, a typical example being

s

�@t

���!

�

s

0

which means that starting from the con�guration s, the con�guration s

0

is reachable by the

action � happening at time t with duration �.
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De�nition 2 (Internal transition relation). In a given Atts , (S;E;!; s

0

), we say that there is

an internal transition from s 2 S to u 2 S, written s) u, i� there is a sequence of �{transitions

s

�@t

1

���!

�

1

� � �

�@t

n

���!

�

n

u.

Note that we do not associate a duration with internal transitions. The reason for this choice

is essentially technical. The notion of behavioural equivalence we shall impose on cIpa processes

will, to a certain extent, abstract from their internal evolution, and all the information about

the changes in the local clocks of processes which occur in the transition s) u will be recorded

in the target con�guration u|ready to be used to associate the appropriate time-stamp with

the next observable action.

2.6. Atts Semantics

In this subsection, we shall de�ne the Atts associated with a cIpa expression; see displays 1

and 2. Our timed semantics will be rather di�erent from the usual ones in the literature [5, 28, 38,

44] in that we do not explicitly allow time to pass. Rather, we merely say when actions happen.

This means that processes will not be able to refuse to let time pass. Moreover, our association

of a non{zero duration with each action means that we cannot build Zeno machines|machines

that do more than a �nite number of actions in a �nite interval of time. These two features

mean that all processes in our calculus will be implementable [31, 41].

A few comments on the rules in displays 1 and 2 are now in order. First primitive happenings;

the rule Act. Actions �re as soon as they are ready, passing control to their su�xes once their

duration is over.

Waits (rule Wait) just wait the speci�ed time with a � transition, passing control to their

su�xes at the end of their wait. We want to think of Wait t .P as being a timed version of

CCS's �:P rather than timed CSP's wait t! P . This is because we think the timing of choices

is important; we want to make a distinction between a choice followed by a wait and a wait

followed by a choice, i.e. between

(Wait 2 .P + Wait 2 .Q) and Wait 2 .(P + Q)

This is just the timed version of the distinction between �:P + �:Q and �:(P +Q). (In contrast,

some algebras, such as Hennessy and Regan's [28], do not allow `the passage of time to decide

a choice', and hence have an equality between wait-then-choice and choice-then-wait situations,

which means that moments of choice cannot be clearly distinguished.)

Act

(a .P ) t

a@t

���!

�(a)

P (t+�(a))

Wait

(Wait t

0

.P ) t

�@t

���!

t

0

P (t+ t

0

)

HC1

s

a@t

���!

�

s

0

(snC)

a@t

���!

�

(s

0

nC)

a; a =2 C HC2

s

�@t

���!

�

s

0

(snC)

�@t

���!

�

(s

0

nC)

CL

s

1

�@t

���!

�

s

1

0

s

1

+ s

2

�@t

���!

�

s

1

0

CR

s

1

�@t

���!

�

s

1

0

s

2

+ s

1

�@t

���!

�

s

1

0

Display 1. The timed operational semantics for cIPA without parallelism.

The rules for restriction are HC1 and HC2 : restriction just stops the restricted actions

from happening; �s can always proceed since C � A, and � =2 A.

The rules for parallelism are PAL, PAR and Sync. The idea of a con�guration P t jj Q t

0

is that t and t

0

are the local clocks at P and Q. Notice that the two clocks never interact during
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PAL

s

1

�@t

���!

�

s

1

0

s

1

jj s

2

�@t

���!

�

s

1

0

jj s

2

PAR

s

1

�@t

���!

�

s

1

0

s

2

jj s

1

�@t

���!

�

s

2

jj s

1

0

Sync

s

1

a@t

���!

�

s

1

0

s

2

a@t

���!

�

s

2

0

s

1

jj s

2

�@t

���!

�

s

1

0

jj s

2

0

Display 2. The timed operational semantics of parallelism.

the execution of P jj Q, except during synchronisation, so they are genuinely local. Notice too

that synchronisation is only allowed provided the local clocks of the synchronising actions match

exactly (rule Sync). This seems reasonable, as any protocol which implements synchronisation

requires a set-up phase before the synchronisation can be said to have happened, during which

what e�ectively happens is a synchronisation of clocks [3]. Moreover, our clocks are not supposed

to model all of the features of physical clocks in actual implementations, so abstracting away

from the details of clock synchronisation is not unreasonable. Note, though, that our assignment

of clocks to each parallel process is rather close to Matthern's notion of vector time [33] in which

setting a comprehensive account of Lamport's clock synchronisation procedure can be given [32].

The choice of allowing synchronisation only if the local clocks of the synchronising processes

match exactly, however, is not without consequences. Consider the process (a . b jj b . c)nfbg. In

the presence of rule Sync, this process will perform an a-action at time 0 and then deadlock,

because b@�(a) and b@0 cannot synchronise. The point here is that achieving synchronisation

is a responsibility of the implementer of a system, not an automatic right; one has to insert

waits in processes to make sure that the desired synchronisations take place. It is this feature of

low{level implementations (rather than higher{level descriptions of them) that we model here.

3. The Meanings of Processes

The rules of the last section allow us to associate an Atts with a con�guration of a cIpa

process. Here we identify the meaning of a process P as the Atts generated by the con�guration

P 0, and present a suitable notion of equivalence over such transition systems. This equivalence

is shown, through an analysis of its interaction with timing information, to be a congruence.

This analysis is then extended, showing how timing captures concurrency information.

De�nition 3. We will write JP K for the process graph G = (S;E;!; s

0

) generated by a cIpa

process P starting at time 0 from the rules in displays 1 and 2.

3.1. Rooted Branching Bisimulation

We want to de�ne a notion of equivalence overAttss that will tell us when two cIpa processes

should be regarded as equal. The notion we pick should re
ect our interest in the precise timing of

choices discussed above, and thus should respect the branching structure of processes. Given this

preoccupation, we shall pick the notion of branching bisimulation introduced by van Glabbeek

and Weijland [21]. This equivalence is stronger than weak bisimulation, and accurately captures

branching structure.

De�nition 4. A timed branching bisimulation from an Atts G = (S;E;!; s

0

) to another H =

(S

0

; E

0

;!

0

; s

0

0

) is a symmetric relation R : (S � S

0

) [ (S

0

� S) such that

(i) The roots are related; s

0

R s

0

0

.

(ii) If two con�gurations are related and an observable timed transition with a given duration

is possible from one of them, then it is possible from the other with the same time and
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duration: if we have s R u and s

�@t

���!

�

s

0

then exactly one of the following applies

� = � . In this case we require that either s

0

R u or u) u

0

�@t

0

���!

�

0

u

00

, for some u

0

; u

00

such

that s R u

0

and s

0

R u

00

.

� = a. Here we require that u) u

0

a@t

���!

�

u

00

for some u

0

; u

00

such that s R u

0

and s

0

R u

00

.

If there is a timed branching bisimulation between G and H , we say that that G and H

are branching bisimilar. If R is a branching bisimulation and additionally it only relates root

nodes to root nodes, we will call it `rooted'. Since `rooted branching bisimulation' is a somewhat

cumbersome term, we will abbreviate such relations by `Rbb's. We write R : G � H to indicate

that G and H are rooted branching bisimilar, and that this fact is witnessed by the relation R;

the R is sometimes dropped. Finally, two cIpa processes P and Q are rooted branching bisimilar

i� JP K and JQK are.

The reader will have noticed that, in the de�nition of timed branching bisimulation, we

abstract from the duration and start time of internal transitions. This is in agreement with

De�nition 2. However, as previously remarked, the duration of internal transitions is not simply

forgotten. In fact, internal transitions change the local clocks in a con�guration, and so their

duration may in
uence the start time of observable transitions and hence bisimilarity: in the

de�nition of bisimulation we are only allowed to match observable actions which have the same

start time. We return to this point in subsection 3.2.

Examples. To provide some intuition, we give the meanings of some processes, and present some

equations between processes which do and do not hold relative to Rbb. As usual, we write

P = Q for JP K � JQK.

Interleaving Consider a jj b. This generates the traditional diamond with paths

(a jj b) 0

a@0

���!

�(a)

(Nil�(a)) jj (b 0)

b@0

���!

�(b)

(Nil�(a)) jj (Nil�(b))

and

(a jj b) 0

b@0

���!

�(b)

(a 0) jj (Nil�(b))

a@0

���!

�(a)

(Nil�(a)) jj (Nil�(b))

In contrast,

(a . b + b .a) 0

a@0

���!

�(a)

b �(a)

b@�(a)

���!

�(b)

Nil (�(a) + �(b))

and

(a . b + b .a) 0

b@0

���!

�(b)

a �(b)

a@�(b)

���!

�(a)

Nil (�(a) + �(b))

clearly indicating the use of local clocks in di�erentiating between these two

processes.

Restriction Consider P = (a . b jj a)nfag and Q = (c . b jj c)nfcg. Then it is easy to see

that P � Q i� �(a) = �(c) despite the fact that both processes are somehow

semantically sequential. This shows that, in general, Rbb is even �ner than

strong bisimulation over semantically �nite sequential processes, which is not

surprising given the rôle played by timing information in cIpa. Another similar

example is (a . c . b jj Wait �(a) . c)nfcg and (a .d . b jj Wait �(a) .d)nfdg; two

processes which are only equated by our theory if �(c) = �(d).

Law 1 The usual equations P + P = P and P + Nil = P hold for our notion of

equivalence.

NonLaw It is interesting that none of the � laws in [21] immediately generalises to our

setting. For instance, the restriction example above generalises to a .Wait t . b 6�

a . b. We also haveWait t .a 6� Wait t . a + a since the latter can begin a earlier

than the former.
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Note, however, that a .Wait t � a as the only behaviour that can be observed

of both processes is that they can execute action a at time 0 with duration �(a).

Law 2 There are some nontrivial relationships between processes with �s, e.g.

a .Wait t .Wait t

0

.P = a .Wait (t+ t

0

) .P

Indeed, it is easy to see that a .Wait t � a .Wait t

0

and Wait t � Wait t

0

for

all t; t

0

2 R

+

. Moreover, we have that a .(Wait t jj b) � a . b.

3.2. Compositionality and Timing

We will now show that rooted branching bisimulation is a congruence, and discuss the

timing{dependence of our results. More precisely, we relate the compositionally de�ned duration

function dur(P ) (which was de�ned for restriction-free processes in section 2.3) and the opera-

tional semantics given above, showing that for each such process, t 2 dur(P ) i� the con�guration

P 0 can evolve to a terminal con�guration s with maximum time t according to the operational

semantics. This then allows us to prove the compositionality result.

De�nition 5. Let maxtime(s) denote the largest clock time t occurring in s, and, for each t � 0,

s%

t

denote the con�guration obtained by adding t to each clock time occurring in s, i.e. %

t

is

the unique homomorphism satisfying

Nil t

0

%

t

= Nil (t

0

+ t)

(a .P ) t

0

%

t

= (a .P ) (t

0

+ t)

(Wait t

00

.P ) t

0

%

t

= (Wait t

00

.P ) (t

0

+ t)

The following lemma can then be easily shown by structural induction on s:

Lemma 6. For all s 2 C(cIpa) and t 2 R

+

, the following statements hold:

(i) s

�@t

0

���!

�

s

0

implies s%

t

�@(t

0

+t)

���!

�

s

0

%

t

;

(ii) s%

t

�@t

1

���!

�

s

1

implies s

�@t

0

���!

�

s

0

for some s

0

2 C(cIpa) and t

0

2 R

+

such that s

1

= s

0

%

t

and t

1

= t

0

+ t;

(iii) maxtime(s%

t

) = t +maxtime(s).

This gives us that the function dur is indeed in agreement with the operational semantics:

Proposition 7. For all restriction-free cIpa processes P and times t 2 R

+

, t 2 dur(P ) i� there

exists s 2 C(cIpa) such that P !

?

s 6! and maxtime(s) = t.

Proof. A straightforward induction on the structure of P , using Lemma 6 in the cases dealing

with action and Wait t pre�xing.

We can now tackle the compositionality of Rbb:

Theorem 8. Rooted branching bisimulation is compositional; JP K � JQK implies

JP 	RK � JQ	 RK

for 	 2 f+; jjg. Furthermore, for any t 2 R

+

and a 2 Act ,

Ja .P K � Ja .QK , JWait t .P K � JWait t .QK and JPnCK � JQnCK

Proof. This is an extension to cIpa of van Glabbeek and Weijland's for BPA [21]. The only cases

which depart slightly from the standard proof are those for action andWait t pre�xing. To show

that � is preserved by these operations, we prove that if R : JP K � JQK, then the symmetric

closure of the relations

R

pre

= f(a .P; a .Q)g [ f(s

1

%

�(a)

; s

2

%

�(a)

) j s

1

R s

2

g

R

wait

= f(Wait t .P;Wait t .Q)g [ f(s

1

%

t

; s

2

%

t

) j s

1

R s

2

g
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are rooted branching bisimulations between the relevant process graphs. This can be easily

veri�ed using Lemma 6.

3.3. Time Uniformity

The reals are often problematic in computer science because they admit unrealisable features:

the function that takes value a at the rationals and b at the irrationals, for instance, does not

correspond to the timed execution of a process we can build. In the last subsection we showed

that our semantics is uniformly parameterised by the reals; lemma 6 states that we can add t

to all the clocks in any con�guration, and the e�ect will just be to shift all of the transitions

from that con�guration forward t in time. Thus our semantics varies smoothly rather than

pathologically with time.

Here we examine another facet of the interaction of timing and behaviour |how � varies as

the duration function is changed. Clearly, the identi�cations made by the congruence � depend

on the particular choice of �. For instance, an equality like

(a . b jj a)na � Wait t . b

holds i� �(a) = t.

If for all a, �(a) = � for some � > 0, we recover some of the identi�cations of an untimed

equivalence from �; here, for instance, we have

(a . b jj a)na � (c . b jj c)nc

However, the presence of timing information still allows us to make distinctions which are not

made by untimed equivalences. For example, we would still di�erentiate the processes (a . b jj

a)na and (a .a . b jj a .a)na, which are identi�ed by all the untimed equivalences which abstract

from the internal evolution of processes we are aware of.

We shall now show that, if we restrict ourselves to constant duration functions, � does not

depend on the choice of duration for the actions over Wait t{free processes. First, we introduce

some notation that will be useful in the proof of this result. For each � 2 R

+

, we shall write �

�

for

the rooted branching bisimulation over Wait t{free processes induced by the duration function

which assigns duration � to each action; using such a duration function, all the transitions

between Wait t{free con�gurations will have duration �. Furthermore, we write

�@t

���!

�

for the

�-transition relation induced by such a duration function, and JP K

�

for the Atts associated with

a process P by the operational semantics in this setting.

De�nition 9. Let � 2 R

+

. A cIpa con�guration s is consistent with � i� for each clock t occurring

in s, t = n� for some non-negative integer n.

An induction on the depth of the proof of the relevant transition now shows that:

Lemma 10. Let s be a Wait t{free cIpa con�guration which is consistent with �. Suppose that

�(a) = � for each action a and that s

�@t

���!

�

s

0

. Then t = n� for some non-negative integer n,

and s

0

is a Wait t{free cIpa con�guration which is consistent with �.

As an immediate corollary of the above lemma, we have that, for each Wait t{free cIpa

process P , each state s in the Atts JP K

�

is a cIpa con�guration which is consistent with �.

Corollary 11. Let P be a Wait t{free cIpa process and assume that �(a) = � for each action a.

Then P 0!

?

s implies that s is a Wait t{free cIpa con�guration which is consistent with �.

For each cIpa con�guration s which is consistent with �, we de�ne its translation to a time

scale with unit of measure �

0

2 R

+

as the con�guration s[� 7! �

0

] obtained by changing each

clock t = n� in s to t

0

= n�

0

. Note that (P 0)[� 7! �

0

] = P 0 for each cIpa process P and �

0

2 R

+

.

The following important lemma relates the operational semantics of a Wait t{free cIpa

con�guration which is consistent with � with that of its translation in time s[� 7! �

0

].
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Lemma 12. Let s be a Wait t{free con�guration which is consistent with �, and let �

0

2 R

+

.

Then the following statements hold:

(i) s

�@(n�)

���!

�

s

0

implies s[� 7! �

0

]

�@(n�

0

)

���!

�

0

s

0

[� 7! �

0

] and

(ii) s[� 7! �

0

]

�@t

���!

�

0

s

00

implies t = n�

0

for some non-negative integer n, and s

�@(n�)

���!

�

s

0

for

some s

0

such that s

00

= s

0

[� 7! �

0

].

We are now in a position to prove that Rbb is independent of the choice of a constant

duration function over Wait t-free processes.

Proposition 13. For all Wait t-free cIpa processes P and Q, and positive reals � and �

0

, P �

�

Q

i� P �

�

0

Q.

Proof. By symmetry, it is su�cient to prove that P �

�

Q implies P �

�

0
Q. Assume then that

P �

�

Q and that P and Q areWait t-free cIpa processes. Then there exists a rooted branching

bisimulation R between JP K

�

and JQK

�

. Our aim is to use R to de�ne a Rbb between JP K

�

0

and

JQK

�

0

proving P �

�

0

Q. Consider the relation R

0

given by

R

0

= f(s

1

[� 7! �

0

]; s

2

[� 7! �

0

]) j s

1

R s

2

g

First of all, note that P 0 R

0

Q0 as P 0 R Q0. To establish the claim it is thus su�cient to prove

that R

0

is a branching bisimulation between JP K

�

0

and JQK

�

0

, which follows from Corollary 11

and Lemma 12.

Thus, all of the �

�

s coincide, and it is this equivalence that should be thought of as the untimed

version of �. (In fact, our results carry over with little modi�cation to processes with (suitably

translated) Wait �s, so the presence of �s does not alter the results of this section.)

3.4. Ill{Timed Paths

Suppose that we have the following path in an Atts, G:

s

�

1

@t

1

���!

�

1

s

0

�

2

@t

2

���!

�

2

s

00

Since our actions are urgent,| they happen as quickly as they can,| we expect �

2

to have

started immediately after �

1

has ended, and so we have

t

2

= t

1

+ �

1

Any path which does not obey this property will be called ill{timed; note that ill{timed paths

include those that have gaps in their time (t

2

> t

1

+ �

1

) and those that run backwards in time

(t

2

< t

1

+ �

1

).

Before we analyse how ill{timed paths occur, we need a little more notation. We will

introduce the non-negative integer clocks(s) for a con�guration s, which will be the maximum

number of local clocks of parallel processes which can be initially active in s.

De�nition 14. De�ne by structural induction on (the canonical form of) con�gurations, s,

clocks(Nil t) = 0

clocks((a .P ) t) = 1

clocks((Wait t

0

.P ) t) = 1

clocks(s+ s

0

) = max(clocks(s); clocks(s

0

))

clocks(s jj s

0

) = clocks(s) + clocks(s

0

)

clocks(snC) = clocks(s)

Next, an important lemma on the clocks in con�gurations;

Lemma 15 (The Clocks Lemma). Suppose that s

�@t

���!

�

s

0

in JP K for some process P . Then

there is a clock in s reading t and t+ � in s

0

.
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Proof. By induction over the rules in displays 1 and 2 given above.

Our next proposition shows that ill{timed paths precisely arise through concurrency:

Proposition 16. Suppose that P is a cIpa process without restriction. Then there is a con�gur-

ation s in JP K with clocks(s) > 1 if and only if JP K contains an ill{timed path.

Proof. We �rst prove the `if' direction of the statement. Suppose that P 0 !

?

s and s

�

1

@t

1

���!

�

1

s

0

�

2

@t

2

���!

�

2

s

00

is ill{timed. Then, by the clocks lemma, there are clocks in s and s

0

reading t

1

and

t

2

respectively. But t

1

+ � 6= t

2

, hence, by the clocks lemma, s

0

has at least one clock reading

t

1

+ � and one reading t

2

. However, inspection of the only clock introduction rules (PAL and

PAR) shows that we can only introduce a clock with the same time as an extant one. So s must

have a clock reading t

1

and one reading t

2

. But the subprocesses with both of these clocks are

each capable of transitions, namely �

1

and �

2

respectively, so clocks(s) > 1.

In the other direction, suppose that clocks(s) > 1 for some s in JP K. Let P 0 !

?

s be

the shortest sequence of transitions leading to a con�guration s with clocks(s) > 1. A simple

induction on the length of this derivation shows that all clocks in s must read the same value

t. As clocks(s) > 1, a structural induction on s now shows that s

�

1

@t

���!

�

1

s

1

0

�

2

@t

���!

�

2

s

1

, for some

actions �

1

; �

2

and con�gurations s

1

0

and s

1

. This is the required ill{timed path.

3.5. Independency in Attss

The concept of independency has been proposed by several authors, notably Bednarczyk

[7], and Mazurkiewicz [34] as capturing concurrency information in a natural way. The idea is

to give a relation � over events, interpreting � � � as `� and � are independent', i.e. could take

place in parallel. We have a similar notion closely related to ill-timedness; suppose in an Atts

s

�

1

@t

1

���!

�

1

s

1

�

2

@t

2

���!

�

2

u and t

2

< t

1

+ �

1

then the occurrence of �

1

in the transition s

�

1

@t

1

���!

�

1

s

1

must be independent from that of �

2

in

s

1

�

2

@t

2

���!

�

2

u since it began before the other terminated. Thus in particular the path

s

�

2

@t

2

���!

�

2

u

1

�

1

@t

1

���!

�

1

u

should also be possible, for some u

1

; this is called the diamond property by Bednarczyk, and

motivates the following.

De�nition 17. Suppose that G = (S;E;!; s

0

) is an Atts. Then we say that G is well{caused if

all ill{timed paths are due to concurrency, i.e. i� we can commute all independent actions

s

�

1

@t

1

���!

�

1

s

1

�

2

@t

2

���!

�

2

u and t

2

6= t

1

+ �

1

implies 9s

0

1

2 S : s

�

2

@t

2

���!

�

2

s

0

1

�

1

@t

1

���!

�

1

u

For a cIpa process all time happens `during' a transition, so there are no gaps in time; this

is just urgency (and the reason we have 6= rather than < above). Hence we de�ne

De�nition 18. Suppose that G = (S;E;!; s

0

) is an Atts . Then we say that G is timeful i� the

following conditions are all met.

(i) Its starting transitions all begin at time 0: s

0

�@t

���!

�

u =) t = 0.

(ii) While the process is running, something (perhaps a �) is happening all the time: s

0

!

� � �

�

0

@t

0

���!

�

0

s implies that for 0 � t � (t

0

+ �

0

) there exists a � such that

s

0

! � � �

�@t

00

���!

�

s

0

! � � �s and t 2 [t

00

; t

00

+ �]

We can now show which class of Attss are the meanings of cIpa processes:
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Proposition 19. If P is a cIpa process, then JP K is a timeful, well{caused, �nite Atts.

Proof. Timefulness can be easily shown by structural induction on P . In order to prove that the

well{caused property holds, it is su�cient to show that for all s 2 C(cIpa),

s

�

1

@t

1

���!

�

1

s

1

�

2

@t

2

���!

�

2

u and t

2

6= t

1

+ �

1

implies 9s

0

1

2 S : s

�

2

@t

2

���!

�

2

s

0

1

�

1

@t

1

���!

�

1

u

Again, a structural induction on s su�ces.

4. Action Re�nement

Action re�nement,|the operation of replacing an action by a process,|has recently been

the object of much interest in concurrency theory. Here we show that our durationful actions

allow a particularly simple de�nition of action re�nement. The technical development we present

is inspired by [22] and [18, x3.6].

We shall, following Gorrieri [25], think of action re�nement as a tool for structuring the

meanings of processes; a high-level description of a complete process can be given, then further

detail can be exposed by action re�nement. Thus our notion of action re�nement will be a

semantic one.

De�nition 20. A process P is a valid re�nement of an action a, written P re�nes a, i� (every

execution of) the process lasts the same time as the action: dur(P ) = f�(a)g.

This is rather a strict notion of re�nement; we even forbid processes that are always quicker

than an action from being valid re�nements of it. We do this partly for technical reasons, and

partly to emphasise that speed{up is not always desirable; there are protocols which work at

some speeds and fail at faster rates [3]. Note that we do not allow for re�nement of actions

by cIpa processes which are rooted branching bisimilar to Nil (since �(a) > 0 for all a, and

such processes have f0g for their dur). Moreover, we do not consider re�nements for processes

including restriction (as here dur is not de�ned); this is eminently reasonable, as restriction is

non-compositional with respect to timing. Finally, notice that, following [18, 22], internal actions

are not re�ned.

De�nition 21 (Semantic Substitution). Let F : A ! cIpa be a mapping from actions to cIpa

processes with the property that

F (a) = P implies P re�nes a

Then, we call F a semantic substitution, and for a Atts G we de�ne the re�ned graph F (G) as

follows: for every edge s

a@t

���!

�

s

0

in G, take a copy F (a)

i

of JF (a)%

t

K. Identify s with the root

node of F (a)

i

and s

0

with the end nodes of F (a)

i

, and remove the edge s

a@t

���!

�

s

0

.

Example. Consider the process a . b jj c. The meaning of this process as a process graph is

depicted below:

?

? ? ?

c@0 c@0 c@0

��

a@0

b@�(a)

��

a@0

b@�(a)
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Now suppose that �(b) = �(a) + �(c) and consider the mapping F : A ! cIpa which

maps b to a . c, and acts like the identity on all the other actions. This is clearly a well{de�ned

semantic substitution: the result of applying it to the process graph above is shown below.

?

? ? ?

c@0 c@0 c@0

���

a@0

a@�(a)c@2�(a)

���

a@0

a@�(a)c@2�(a)

Note that this process graph is indeed the result of the semantic substitution of a graph,

namely

q

a . c%

�(a)

y

, for the arcs corresponding to occurrences of action b in the original process

graph.

The reader will have noticed that the process graph obtained by applying a semantic substitution

F to a timeful, well-caused Atts is timeful, but not necessarily well-caused. (Indeed, the

above process graph provides an example of this phenomenon.) Hence, well-caused high-level

descriptions of processes may turn out not to be well-caused when further details about their

computations are unveiled by means of semantic substitutions. This is only to be expected

because the de�nition of semantic substitution we use preserves the non-interference property of

atomic actions, i.e. actions have no intermediate state for other activities [10, 12].

Our aim is to show that Rbb is a congruence of semantic substitution. To do this, we need

to see how to de�ne a rooted branching bisimulation between re�ned process graphs.

De�nition 22. Suppose that G;H are Attss and that R is a Rbb witnessing G � H . Suppose

further that we re�ne both G and H using some semantic substitution F . We de�ne the re�ned

Rbb F (R) as the smallest relation satisfying the conditions

(i) R � F (R).

(ii) If s

a@t

���!

�

s

0

and u

a@t

���!

�

u

0

are edges in G and H respectively, s.t. s R u and s

0

R u

0

,

and both edges are replaced by copies F (a)

1

and F (a)

2

of JF (a)%

t

K respectively, then

nodes from F (a)

1

and F (a)

2

are related by F (R) i� they are copies of the same node in

JF (a)%

t

K.

Theorem 23. If R : G � H is a Rbb between process graphs G and H , and F is a semantic

substitution, then F (R) is a branching bisimulation between F (G) and F (H).

Proof. We check that F (R) is indeed a Rbb by an analysis of the cases in De�nition 4:

(i) The root nodes of F (G) and F (H) are related by F (R). It is easy to see that F (R) only

relates root nodes to root nodes, as this holds of R.

(ii) Assume that F (R) relates s to u, and there is an edge s

�@t

���!

�

s

0

in F (G). Then there

are two cases:

(1.) The nodes s and u originate from G and H . Then s R u, and we �nd either

� = � and s

�@t

���!

�

s

0

was already an edge in G, or G has an edge s

a@t

���!

�

0

s

00

and

s

�@t

���!

�

s

0

is a copy of an initial edge from JF (a)%

t

K.

In the �rst case, either s

0

R u and hence s

0

F (R) u or there is a path in H

u ) u

1

�@t

00

���!

�

00

u

0

s.t. s R u

1

and s

0

R u

0

. This path also exists in F (H) by

de�nition, so s F (R) u

1

and s

0

F (R) u

0

as required.
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In the second case there must be a corresponding path u ) u

1

a@t

���!

�

0

u

00

in H

s.t. s R u

1

and s

00

R u

00

. Then, in F (H) we �nd a path u) u

1

�@t

���!

�

u

0

s.t. s F (R)

u

1

and s

0

F (R) u

0

.

(2.) The nodes s and u originate from related copies F (a)

i

and F (a)

j

of some substituted

graph

q

F (a)%

t

0

y

. Then s

�@t

���!

�

s

0

is an edge in F (a)

i

and s and u are copies of

the same node in

q

F (a)%

t

0

y

. So, there is an edge u

�@t

���!

�

u

0

in F (a)

j

where u

0

is

a copy of the same node in

q

F (a)%

t

0

y

that s

0

is a copy of, and s

0

F (R) u

0

.

(iii) The case of an edge in R(H) follows symmetrically.

5. An Algebraic Characterization of �

The purpose of this section is to axiomatize the congruence relation � de�ned in the previous

section over the language cIpa. Given the fundamental rôle played by con�gurations in de�ning

the semantics of cIpa processes, we shall provide a complete axiomatization of � over the set of

con�gurations C(cIpa). The key to the axiomatization presented in this section is the realization

that the interpretation of processes given by an action-timed transition system is just an ordinary

labeled transition system over a set of actions. The only di�erence being that the actions are

structured, as they carry information on the timing of their occurrence and their duration.

Following van Glabbeek and Weijland [18, 19], there is a standard way of axiomatizing rooted

branching bisimulation-like relations over ordinary, �nite, acyclic labeled transition systems. The

application of their method to cIpa involves the reduction of terms to (some syntactic notation

for) trees over the set of actions into consideration. However, in our Atts semantics processes

evolve by performing events in E and these are not in the signature for con�gurations, so this

method is not directly applicable to the language C(cIpa). In order to apply van Glabbeek and

Weijland's algebraic characterization to provide an axiomatization for � over C(cIpa), we thus

need to extend the language C(cIpa) to EC(cIpa), where EC(cIpa) is built as C(cIpa) with the

additional formation rule:

� 2 E and s 2 EC(cIpa) =) � : s 2 EC(cIpa)

Thus the signature of the language C(cIpa) has been extended by allowing pre�xing operators

of the form � : , for � 2 E. The language EC(cIpa) thus allows one to pre�x timed, durationful

events to con�gurations and this is what will be needed to de�ne a suitable notation for trees.

The extended set of con�gurations EC(cIpa) inherits the structural congruence � from its

sublanguage C(cIpa), and in what follows EC(cIpa) will always be considered modulo �. We shall

use s; u; w; s

0

; : : : to range over EC(cIpa) and �; � to range over E. The operational semantics

for EC(cIpa) is obtained by extending the rules in displays 1 and 2 with the axiom

Pre

(�; t; �) : s

�@t

���!

�

s

It is easy to see that � can be conservatively extended to the language EC(cIpa) and that

the following proposition holds:

Proposition 24. � is a congruence over EC(cIpa).

Proof. A straightforward extension to EC(cIpa) of the proof of Proposition 8.

De�nition 25 (Sumforms). The set of sumforms over E is the least subset of EC(cIpa) such that

the following hold:

(i) Nil is a sumform (recall that we identify Nil with Nil 0);
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s+ u = u+ s (A1)

(s+ u) + w = s + (u+ w) (A2)

s+ s = s (A3)

s+ Nil = s (A4)

� : (� : (s+ u) + s) = � : (s+ u) (H)

(P + Q) t = P t+ Q t (S1)

(PnC) t = (P t)nC (S2)

(P jj Q) t = (P t) jj (Q t) (S3)

(a .P ) t = (a; t;�(a)) : (P (t+�(a))) (R1)

(Wait t

0

.P ) t = � : (P (t+ t

0

)) (R2)

Nil t = Nil (R3)

(s+ u)nC = snC + unC (R4)

((�; t; �) : s)nC = Nil if � 2 C [ C (R5)

((�; t; �) : s)nC = (�; t; �) : snC if � =2 C [ C (R6)

 

X

i2I

(�

i

; t

i

; �

i

) : s

i

!

�

�

�

�

�

�

0

@

X

j2J

(�

0

j

; t

0

j

; �

0

j

) : u

j

1

A

= (Int)

X

i2I

(�

i

; t

i

; �

i

) :

0

@

s

i

�

�

�

�

�

�

0

@

X

j2J

(�

0

j

; t

0

j

; �

0

j

) : u

j

1

A

1

A

+

X

j2J

(�

0

j

; t

0

j

; �

0

j

) :

  

X

i2I

(�

i

; t

i

; �

i

) : s

i

!

�

�

�

�

�

�
u

j

!

+

X

(i;j): �

i

=�

j

;t

i

=t

j

� : (s

i

jj u

j

)

Display 3. Equations over con�gurations.

(ii) if � 2 E and s is a sumform then � : s is a sumform;

(iii) if s and u are sumforms, so is s + u.

In order to give a complete axiomatization for Rbb over EC(cIpa) (and, consequently, over

cIpa), it will be su�cient to devise a set of axioms which allow us to reduce terms in EC(cIpa) to

sumforms and which are complete for � over sumforms, i.e. over �nite E-labeled trees. Formally,

the theory we shall consider is the two-sorted theory consisting of the set of axioms Eq over

EC(cIpa) given in display 3 together with the following Tau axiom over E

Tau (�; t; �) = (�; t

0

; �

0

)

In view of the above axiom, we shall abbreviate all timed, durationful � -actions to � . The

equivalence relation over E generated by Tau axiom will be denoted by �

E

.

The interplay between the equational theory of actions and that for processes is stated by

the following substitutivity rule:

Sub � �

E

� and s = u implies � : s = � : u

We shall write, for s; u extended con�gurations, s =

C

u i� the equality s = u can be derived

using equational logic from the equations in display 3 and the rule Sub.

A few comments on the axioms in display 3 are now in order. Axioms (A1){(A4) and (H)

are all that is needed to completely axiomatize rooted branching bisimulation over E-labeled

�nite trees [18, 19]. Axioms (S1){(S3) are the structural axioms over the set of generators of

C(cIpa) and EC(cIpa). These axioms, together with (R1){(R6) and (Int), are used to reduce

con�gurations to �nite E-labeled trees.
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We can now state the promised completeness theorem:

Theorem 26. For all s; u 2 EC(cIpa), s � u i� s =

C

u. In particular, for all cIpa processes P;Q,

P � Q i� P 0 =

C

Q 0.

Proof. (Outline.) The proof of this result can be given following standard lines. Indeed the

result follows from the following statements:

Soundness: For all s; u 2 EC(cIpa), s =

C

u implies s � u;

Completeness for sumforms [18, 19]: For all sumforms s; u, s � u implies s =

C

u can be proved

using axioms (A1)-(A4) and (H); and

Normalization: Every s 2 EC(cIpa) is provably equal to a sumform, i.e. for each s 2 EC(cIpa)

there exists a sumform s

0

such that s =

C

s

0

.

The soundness of the equations in display 3 can be easily shown by exhibiting appropriate

rooted branching bisimulations. Indeed, all the equations but (H) are sound with respect to

strong bisimulation equivalence [35].

The completeness of axioms (A1)-(A4) and (H) for branching bisimulation over �nite trees

has been proven by van Glabbeek and Weijland in [18, 19].

Finally, the normalization result can be proved in standard fashion by applying equations

(S1){(S3), (R1){(R6) and (Int) as rewrite rules from left to right.

Other authors, notably Ferrari et al. [17], have noted that expansion theorems often hold in

the noninterleaving setting when the algebraic structure of transitions is taken into account;

here we have shown that timing and duration are su�cient provided that we express the

relationship between con�gurations rather than processes. Our account (Int) is a straightforward

adaptation of Milner's interleaving law to our setting. Indeed, we could treat a di�erent notion

of synchronisation merely by presenting the appropriate operational rule and modifying (Int);

this would, for instance, allow us to treat the loose notion of timed synchronisation given in

[24]. It should be noted, however [op cit.], that Rbb would not then be a congruence, so such

modi�cations are not always wholly propitious.

6. ATTS s and Other Models of Concurrency

In this section we �rst give a broad overview of the relationship between the work reported

here and salient other models in the literature. We then, to make a precise connection, relate

our equivalence � for a class of concrete processes to several other noninterleaving equivalences

proposed in the literature. To reinforce our claim that timing information captures independency,

we show how a class of well{behaved Attss can be translated into the asynchronous transition

systems of Bednarczyk.

It is possible to classify noninterleaving behavioural theories for process algebras by means

of the information they use to distinguish parallel processes from purely sequential ones. To

begin with, we indicate some of the main notions in the process{algebraic literature and their

relationship to our own, making no claim of completeness. As an aid to this discussion, we

shall make use of the standard example in the literature, namely the processes P = a jj b and

Q = a . b+ b .a.

� Boudol et al. [11] argue for the use of distribution information to distinguish parallelism

from sequential nondeterminism. The processes P and Q are distinguished in this

approach because there are two locations in P and only one in Q.

� Hennessy and the �rst author [2, 27] use abstract duration information to distinguish

parallel processes from sequential ones. In this approach, P is distinguished from Q since

it can start b before a has ended whereas Q cannot.
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� Darondeau and Degano [14] use information about the causal structure of processes to

distinguish P (which has no causal structure) from Q (where a causes b or b causes a).

Our position is rather complex in this classi�cation; using timing and duration enables us to

discover which states are independent. Thus our Attss, like various `true concurrency' versions

of transition systems [7, 43], incorporate independency information, as we have shown. To

generate these transition systems, we have used the notion of local time, which is clearly related

to that of location.

Notice, incidentally, that both the location and causal approaches use annotated tree struc-

tures, as do we. We are clearly seeing the renaissance of tree{based approaches to concurrency

semantics, as workers discover how to abandon the strictures of pure interleaving without leaving

the convenience of trees. Indeed, this is the essence of our complete axiomatisation: we lift an

untimed result to our setting. Many more such liftings are possible|for instance, we could use

the e�cient algorithm for deciding branching bisimulation of [26] in our setting.

6.1. Rbb over concrete processes

The class of concrete processes (i.e. processes without internal transitions [4]) built from the

operatorsNil, action-pre�xing, choice and parallelism (without synchronization) is a particularly

well{behaved one; it is already known that causal bisimulation equivalence [14], t-observational

equivalence [2, 27], ST-bisimulation equivalence [18] and location equivalence [11] coincide for

these processes. Here we show that these equivalences also coincide with �. (Note that, over

concrete processes, � is just standard strong bisimulation equivalence over the associated Attss.)

In view of the results in [1], it is su�cient to show that � shares the same �nite axiomatiza-

tion of the above-mentioned congruences over concrete processes. To carry out this programme,

it is necessary to extend the language for concrete processes with Bergstra and Klop's left-merge

operator [8]. The syntax of concrete cIpa is then de�ned by

P :: = a .P j P + P j Nil j P jj P j P T P

and its associated set of concrete con�gurations is de�ned as follows:

s :: = P t j s+ s j s jj s j s T s

The reader will have no trouble in convincing himself/herself that a suitable notion of canonical

term can be easily de�ned over concrete con�gurations by assuming that the operators t

distribute over the left-merge operator, as well as choice and parallel composition. (See section 2.5

for details.)

The operational semantics of concrete cIpa is obtained by adding the following rule to rules

Act, CL, CR, PAL and PAR in displays 1 and 2:

Left

s

1

a@t

���!

�

s

1

0

s

1

T s

2

a@t

���!

�

s

1

0

jj s

2

We will now show that the axioms that completely axiomatize causal bisimulation equi-

valence, location equivalence, t-observational equivalence and ST-bisimulation equivalence over

concrete cIpa (see [1, Figure 3]) are also sound and complete for �. For ease of reference, the

set of equations we will consider is listed in display 4.

Let

:

= denote the least congruence over concrete cIpa processes which satis�es the equations

in display 4.

Proposition 27. For all concrete cIpa processes P;Q, P

:

= Q implies P � Q.

In the proof of completeness of

:

= with respect to � over concrete processes, we will follow

the lines of similar results in [1, 2, 13], and will make a fundamental use of the following key



Timing and Causality in Process Algebra Page 19

P + Q = Q+ P (A1)

(P + Q) + R = P + (Q+R) (A2)

P + P = P (A3)

P + Nil = P (A4)

(P + Q) T R = P T R+ Q T R (LM1)

(P T Q) T R = P T (Q jj R) (LM2)

P T Nil = P (LM3)

Nil T P = Nil (LM3)

P jj Q = P T Q+ Q T P (PAR)

Display 4. Equations over concrete processes.

decomposition property: for t > 0

Dec P t jj P

0

0 � Q t jj Q

0

0 implies P � Q and P

0

� Q

0

An elegant proof of statement Dec can be given by adapting the unique factorisation result

presented in [37, Theorem 4.2.2] to our setting. This we now present, referring the reader to

[2, 36, 37] for more details and intuition on unique factorization results.

De�nition 28. Let s be a concrete con�guration. Then s is said to be:

� irreducible if s � s

1

jj s

2

implies s

1

� Nil or s

2

� Nil;

� prime if s is irreducible and s 6� Nil.

For each concrete con�guration s, a parallel factorization for s modulo � is given by a set

fs

1

; : : : ; s

k

g, k � 0, of primes such that

s � s

1

jj � � � jj s

k

where, by convention, s

1

jj � � � jj s

k

is Nil if k = 0.

Proposition 29. Each concrete con�guration s may be expressed, modulo �, as a unique parallel

composition of primes.

Proof. A straightforward adaptation of the proof of Theorem 4.2.2 in [37]. The proof makes an

essential use of the following version of the so-called simpli�cation lemma, a result �rst proved

in [13] for distributed bisimulation equivalence and subsequently adapted to strong bisimulation

in [37, Lemma 4.2.1]:

s

1

jj s � s

2

jj s implies s

1

� s

2

We can now prove the promised decomposition result Dec.

Proposition 30. For all concrete cIpa processes P; P

0

; Q;Q

0

and t 2 R

+

,

P t jj P

0

0 � Q t jj Q

0

0 implies P � Q and P

0

� Q

0

Proof. The claim is easily seen to hold if any of the processes P; P

0

; Q;Q

0

is equivalent to Nil.

Assume then that P; P

0

; Q;Q

0

are not equivalent to Nil. By Proposition 29, there exist

unique parallel factorizations for P t, P

0

0, Q t and Q

0

0. Let us assume that these are given by

P t � s

t

1

jj � � � jj s

t

k

P

0

0 � s

1

jj � � � jj s

h

Q t � w

t

1

jj � � � jj w

t

m

Q

0

0 � w

1

jj � � � jj w

n
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By the proviso of the proposition, substitutivity and Proposition 29, we have that, modulo �,

fs

t

1

; : : : ; s

t

k

; s

1

; : : : ; s

h

g = fw

t

1

; : : : ; w

t

m

; w

1

; : : : ; w

n

g

It is now easy to see that none of the prime factors for P t, s

t

i

, is equivalent to any of the w

j

's.

In fact, any initial transition from s

t

i

will start at time t > 0, whilst all the transitions from w

j

will start at time 0. Moreover, as P 6� Nil, P as at least one transition, and so does each s

t

i

.

Similarly, none of the prime factors for Q t is equivalent to any of the s

j

's. This implies that

fs

t

1

; : : : ; s

t

k

g and fw

t

1

; : : : ; w

t

m

g are identical parallel factorizations, and so are fs

1

; : : : ; s

h

g and

fw

1

; : : : ; w

n

g. By substitutivity, we then have that P t � Q t and P

0

0 � Q

0

0.

To complete the proof, we are thus left to show that P t � Q t implies P 0 � Q 0. However,

this is easily seen to hold using Lemma 6.

We now have enough technical machinery to prove the completeness result for concrete cIpa.

The proof of this result relies, as usual, on the isolation of suitable normal forms for processes.

These take the form

X

i2I

a

i

.P

i

T P

0

i

where I is a �nite index set, and P

i

; P

0

i

are themselves normal forms.

Theorem 31. For all concrete cIpa processes P;Q, P

:

= Q i� P � Q.

Proof. The `only if' implication (soundness) is just Proposition 27. To prove the `if' implication

(completeness), we proceed by induction on the combined size of P and Q. By standard

normalization results for concrete processes, such as Lemma 1.3.5 in [13], we can safely restrict

ourselves to proving completeness for normal forms.

Assume then that P =

P

i2I

a

i

.P

i

T P

0

i

�

P

j2J

b

j

.Q

j

T Q

0

j

= Q. We will now show that

Q+ P

:

= Q. The claim will then follow by symmetry and transitivity.

To prove Q+ P

:

= Q, it is su�cient to show that for each summand a

i

.P

i

T P

0

i

of P ,

Q+ a

i

.P

i

T P

0

i

:

= Q

To see that this is indeed the case, note that P 0

a

i

@0

���!

�(a

i

)

P

i

�(a

i

) jj P

0

i

0. As P � Q, there exists

j 2 J such that Q 0

b

j

@0

���!

�(b

j

)

Q

j

�(b

j

) jj Q

0

j

0, P

i

�(a

i

) jj P

0

i

0 � Q

j

�(b

j

) jj Q

0

j

0, and a

i

= b

j

. By

Proposition 30 and induction, we now have that P

i

:

= Q

j

and P

0

i

:

= Q

0

j

. The claim now follows

immediately by substitutivity and equations (A1){(A4).

As an immediate corollary of this result, we now have that:

Corollary 32. For concrete processes, � coincides with causal bisimulation equivalence [14], ST-

bisimulation equivalence [18], t-observational equivalence [2, 27] and location equivalence [11].

Proof. By the results in [1] and Theorem 31, � shares the same �nite axiomatization of the

above-mentioned congruences over concrete processes.

It is worth noting that, by the above result, � does not depend on the choice of duration

function over concrete processes, regardless of whether the duration function is constant or not.

Proposition 13 thus holds in a sharpened version over concrete processes.

Further comparison is slightly hindered by our decision to use branching bisimulation

rather than ordinary strong bisimulation; this makes it harder to extract the features of our

equivalence that are due to timing, and those that arise through our sensitive treatment of

branching structure. However, we can state that for processes with internal transitions and

an appropriate choice of duration function, � distinguishes more purely sequential processes

than strong bisimulation equivalence (see the restriction example in section 3.1) and, a fortiori,

than all of the noninterleaving equivalences we are aware of. Moreover, it is incomparable with
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location equivalence. In fact, regardless of the duration of actions a and b, it would identify the

processes

P = (a .� . c jj b .� .d)nf�g and Q = (a .� .d jj b .� . c)nf�g

which are distinguished by location equivalence. Thus we have:

Proposition 33. For full CCS, � is, in general, incomparable with the weak versions of causal

bisimulation equivalence, location equivalence and ST-bisimulation equivalence.

Proof. Consider P = (a . b jj a)nfag and Q = (c . b jj c)nfcg. Then, if �(a) 6= �(c), we have that

P 6� Q. On the other hand, P and Q are related by causal bisimulation equivalence, location

equivalence and ST-bisimulation equivalence.

Conversely, consider the processes P = (a . b jj b . c)nfbg and Q = a .Nil. Then P � Q,

whilst P and Q are distinguished by causal bisimulation equivalence, location equivalence and

ST-bisimulation equivalence.

6.2. Translating ATTS s into ATSs

We aim to show that timing information alone allows us to deduce the causal structure of

transitions. We do this by presenting a relation ./ de�ned over Attss which captures which

transitions are independent, noting en passant that timing information, like the annotated

transitions of [16], is also su�cient for an analysis of causality. We show in detail that ./

does indeed allow us to de�ne an asynchronous transition system from a suitably well{behaved

Atts.

To begin the account of how timing information captures the idea of independency, we recall

the formal de�nition of the asynchronous transition systems (or ATSs) of [7]:

De�nition 34. A �nite rooted asynchronous transition system Q is a tuple (Q; T;); q

0

; �) where

� (Q; T;); q

0

) is a rooted transition system with Q and T �nite sets, and root q

0

;

� � � T � T is a symmetric, irre
exive relation satisfying the diamond property [7]:

s

e

�! u

f

�! s

0

and e � f implies 9u

0

2 Q such that s

f

�! u

0

e

�! s

0

We will, as usual, con�ne attention to ATSs satisfying the following conditions:

unambiguity This property essentially says that the same transition cannot take us to di�erent

places:

s

e

�! u and s

e

�! u

0

implies u = u

0

forward stability This says that if we have two independent actions possible next, then that

is as a result of parallelism, so after taking one the other must still be possible:

s

e

�! u and s

e

0

�! u

0

and e � e

0

together imply

9s

0

such that u

e

0

�! s

0

and u

0

e

�! s

0

lack of cycles This is essentially the same property as was required for Attss in de�nition 1.

reachability Likewise.

We are now ready to translate an Atts into an ATS. Suppose S = (S;E;!; s

0

) is a well-

caused, timeful Atts . The events e 2 E are non-unique in the sense that we can have s

e

�! s

0

and u

e

�! u

0

without s = u and s

0

= u

0

. Moreover, even if s = u, we do not necessarily have

s

0

= u

0

. Thus consider the structure S

0

= (S;E

0

;!

0

; s

0

) where

E

0

=! � S �E � S

is the set of transitions in S, and

s

(u;e;u

0

)

���!

0

s

0

i� s

e

�! s

0

and u = s and u

0

= s

0
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Immediately we have that S

0

is a rooted transition system, which is deterministic, acyclic and

satis�es the reachability property.

Our next task is to de�ne a suitable notion of independence over this transition system.

Clearly, if e

0

= (s; e; s

0

), f

0

= (s

0

; f; u

0

) and there exists an ill-timed path s

e

�! s

0

f

�! u

0

in S,

then e

0

and f

0

should be independent. But this relation is not symmetric, for two reasons; �rstly

the commuted path (which we know exists as S is well-caused)

s

(s;f;u)

���!

0

u

(u;e;u

0

)

���!

0

u

0

may (fortuitously) not be ill{timed, and secondly, the `events' (s; e; s

0

) and (u; e; u

0

) are di�erent,

while we want them to be the same in the generated ATS. Our solution is to quotient E

0

by a

suitable congruence:

De�nition 35. De�ne for S

0

the relation � � E

0

� E

0

as e

0

� f

0

i� e

0

= (s; e; s

0

), f

0

= (s

0

; f; u

0

)

and there exists an ill-timed path s

e

�! s

0

f

�! u

0

in S. Suppose s

(s;f;u)

���!

0

u

(u;e;u

0

)

���!

0

u

0

is the

diamond guaranteed by well-causedness or vice versa. Extend � and de�ne � � E

0

�E

0

by saying

(s; f; u) � (u; e; u

0

), (s; f; u) � (s

0

; f; u

0

) and (s; e; s

0

) � (u; e; u

0

) whenever this happens, and write

�

�

for the re
exive and transitive closure of �.

Proposition 36. The relation �

�

is an equivalence relation, and ./ de�ned over �

�

{equivalence

classes by [e

0

] ./ [f

0

] i� 9e

00

2 [e

0

]; f

00

2 [f

0

] such that e

00

� f

00

is a symmetric and irre
exive

relation.

Proof. That �

�

is an ER is trivial. To show that ./ is an independence relation, �rst note that

e

00

� f

00

implies :(e

00

�

�

f

00

) and e

00

�

�

f

00

implies :(e

00

� f

00

), as a simple geometrical argument

reveals. Thus ./ is irre
exive. Symmetry then follows from the de�nitions of �.

De�nition 37. The asynchronous transition system associated with S, written U(S), is de�ned

as (S;E

0

=�

�

;!

0

; s

0

; ./), where !

0

is de�ned as (s; e

0

; s

0

) 2 !

0

if and only if (s; e

00

; s

0

) 2 ! and

e

0

= [e

00

]=�

�

.

Proposition 38. If S is an Atts, then U(S) is an ATS.

Proof. We have to verify:

(i) That ./ is a symmetric, irre
exive relation; this is just proposition 36.

(ii) The diamond property. This follows as the generating Atts is well-caused.

(iii) Unambiguity. This follows by construction of E

0

.

(iv) Forward stability. By the de�nition of ./, if two actions are independent, then a diamond

exists between them.

(v) Lack of cycles and reachability. Again, clearly true by construction.

7. An Example

As an extended example of the use of cIpa, we present the speci�cation of a remote data-gathering

unit in the calculus. This arose through a collaboration of the second author with Patrick Peglar

of Delta T Devices Ltd., and thus is a (simpli�cation of a) real industrial example rather than

one contrived just for presentation purposes.
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7.1. The Problem

The purpose of a data-gatherer is to take measurements at prespeci�ed times. In usual

applications, a number of sensors are attached to a data-gatherer. Each sensor must be turned on

at some given time before the measurement it takes can be made (typically so that thermocouples

have time to stabilise). The sensor then takes a measurement and hands the data back to the

data-gatherer. Sensors are often cheap and unsophisticated devices, without internal clocks or

bu�ering, so the data-gatherer must ensure that the sensor is turned on at the right time, and

that it is ready to receive the data when it is ready. Thus a sensor can be speci�ed as

Sensor1

def

= Wait t

1

.Start1 .Wait t

0

1

.Read1 .Write1

which is to say that it is a device that waits some unspeci�ed time t

1

until it is turned on

by a Start1 action. After being turned on by this action, it waits time t

0

1

before taking a

measurement, which it then Writes.

The data-gatherer, then, will be responsible for doing a Start1 with the correct t

0

1

, which

will ensure that the sensor does a Read1 when required. It must also be ready t

0

1

+�(Read1)

units of time after �nishing the Start1 to do a Write1 , allowing the sensor to transfer data

back to it. Finally, it Processes the data.

The design of the data-gatherer is only non-trivial when more than one sensor is considered,

so suppose we also have

Sensor2

def

= Wait t

2

.Start2 .Wait t

0

2

.Read2 .Write2

(In a real application, the requirement is recurrent; we have to make a series of measurements

at each sensor, rather than just one. However, our design will extend smoothly to this setting,

so we avoid the use of recursion to keep the complexity of the design down.)

7.2. Timing Analysis

Suppose that the twomeasurements Read1 and Read2 have deadlines d

1

and d

2

respectively,

i.e. Readi must happen at t = d

i

. Clearly, then, we must have the deadline equation

d

i

= t

i

+�(Start i) + t

0

i

in order for the deadlines to be met.

Now, clearly the design of the data-gatherer will depend on the speci�c deadlines. For

instance, Write i starts at time d

i

+ �(Readi), so if the intervals

[d

1

+�(Read1); d

1

+�(Read1) + �(Write1)]

and

[d

2

+�(Read2); d

2

+�(Read2) + �(Write2)]

overlap, then a purely sequential implementation is not possible, as the data-gatherer will need

to do both a Write1 and a Write2 simultaneously. Similarly, if we need to turn on both

sensors simultaneously, we will end up needing a parallel implementation. Suppose, then, for

the moment, that the intervals above do not overlap, and neither do

[t

1

; t

1

+ �(Start1)] and [t

2

; t

2

+�(Start2)]

(which is eminently reasonable, as the Start actions are usually of very short duration).

Then we can implement the data-gather in a sequential fashion (which is useful, as the

resources for a parallel implementation are often not available). For convenience, suppose also

that d

1

< d

2

.

The data-gatherer waits until it needs to start the sensor with the smallest value of t

i

, 2

say, switches that on, waits until it must start 1, switches that on, waits for the �rst bit of

data, collects that, waits for the second, gets that, and then processes the data. A simple bit of



Page 24 Version dated 4th August 1993

arithmetic (and the use of dur) reveals that correct functioning depends on the behaviour shown

in display 5.

Time Sensor1 Action Sensor2 Action Data-Gatherer Action

0 Waiting Waiting Waiting

t

2

Waiting Start2 Start2

t

2

+�(Start2) Waiting

y

Waiting Waiting

t

1

Start1 Waiting Start1

t

1

+�(Start1) Waiting Waiting Waiting

d

1

Read1 Waiting Waiting

d

1

+ �(Read1) Write1 ? Write1

d

2

? Read2 ?

d

2

+ �(Read2) ? Write2 Write2

Display 5. The timing constraints on the Data-Gatherer.

The ? occur because we do not know where warming up the second sensor occurs relative

to taking the �rst measurement. This is a scheduling issue that depends on the relationship

between the d

i

and the times Start s happen. But the time between being activated and taking a

measurement is a �xed (presumably physical) property of each sensor; call it warm

i

. Immediately

the urgency of Reads gives

warm

i

= �(Start i) + t

0

i

which �xes t

0

i

. Together with the deadline equation, it also �xes the order of the Starts and

Reads, for

d

i

= t

i

+ warm

i

which �xes t

i

as d

i

is given. Finally, suppose that the warm

i

s are such that

0 < t

2

< t

1

< d

1

< d

2

This will allow us to give a sequential implementation to the data-gatherer.

7.3. Implementation

In this section we give the promised implementation:

DataGatherer

def

= Wait t

2

. Start2 .Wait r

1

.Start1 .Wait r

2

.

Write1 .Wait r

3

.Write2 .Process

where r

1

= t

1

� t

2

� �(Start2), r

2

= t

0

1

+ �(Read1) and r

3

= (d

2

+ �(Read2)) � (d

1

+

�(Read1) + �(Write1)). In practice it would be helpful to make r

1

as short and r

2

as long

as possible, by selecting sensors with appropriate warm

i

s, so that we can shut (much of) the

data-gatherer down, and save power, between the Starts and the Reads.

y

Implicitly assuming that t

2

+ �(Start2) < t

1

, which follows as the intervals [t

1

; t

1

+ �(Start1)] and

[t

2

; t

2

+�(Start2)] were assumed not to overlap in time. Note that Start actions typically have very

small durations.
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Our description of this, sequential version of the system, is then

System

def

= (DataGatherer jj Sensor1 jj Sensor2)nfStarti;Writeig

Thus far, the example has demonstrated a feature of the cIpa synchronisation discipline;

often we write a process including Wait t for some unspeci�ed t, as we did with the Sensoris

and t

i

s, and then �x the value of t so that some desired synchronisation can happen. In the

above, we have also derived assumptions necessary on timing constraints to allow a sequential

implementation. This practice corresponds well with informal design procedures in real{time

systems, where delays are often inserted to allow some desired rendez-vous

z

and timing properties

exploited in an implementation.

7.4. Correctness

The correctness of the implementation (at least as far as it is captured by cIpa) can be

demonstrated by showing that it is equivalent to a process which does a Readi at d

i

for each i,

and then, suitably later, Processes the data. However, our implementation is predicated on a

set of timing assumptions that allow a sequential implementation, and these must be built into

our speci�cation.

The �rst read must begin at time d

1

, and the second at d

2

, which happens after d

1

, so we

have

Spec

def

= (Wait d

1

.Read1) jj (Wait d

2

.Read2 .Wait r

4

.Process)

where r

4

= �(Write2).

It is then routine, if rather tedious, to show that

Proposition 39. The implementation is equivalent to the speci�cation; Spec � System .

8. Further Work

We conclude the paper with a discussion of some extensions to the work presented here.

8.1. Passive Actions

Urgency is a crucial property in cIpa; without it, many of our proofs would not be valid.

However, it is quite constraining, especially given our choice of synchronisation rule. One way of

allowing more freedom in the timing of actions without losing all hope of a tractable calculus is to

add lazy actions; ~a:P , unlike a .P , waits to be triggered from a synchronisation [39]. Lazy actions

like ~a allow us to keep our synchronisation rule while allowing idling; ~a:Nil can synchronise with

the a in b .a .Nil, whereas a .Nil cannot.

Lazy actions also add expressive power to the calculus via their interaction with choice;

~a .Nil +

~

b .Nil is rather like the CSP external choice between a and b, for instance.

It would be interesting to try to extend our results for cIpa to a calculus with both lazy and

eager actions, some progress in this direction being reported in [39].

8.2. Recursion

In the main body of this paper, we have dealt with an algebra for �nite processes. However,

facilities for recursive de�nitions of processes are a vital ingredient of any process algebra. We can

extend cIpa with recursive process de�nitions by allowing constants to be de�ned recursively by

z

Our use of Wait t with t unde�ned means that we are implicitly working with a design calculus with �

rather than Wait t pre�xes which is compiled down to full cIpa syntax by �xing the duration of Wait s;

the least syntactic overhead comes if we view this as we have above, rather than making the design

calculus explicit.
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means of equations X

def

= P , where P is a process term built from cIpa operations and constants.

The behaviour of these recursively de�ned processes is given by the following standard rule

Rec

P t

�@t

���!

�

s

X t

�@t

���!

�

s

X

def

= P; X time{guarded in P

where, loosely, an occurrence of a variable is time{guarded in a process expression if it is pre�xed

by an action or a wait; see [15] or [39] for a comprehensive account.

Some of our results extend to recursive processes; compositionality (section 3.2) and time

uniformity (section 3.3) are straightforward. Moreover, a simple structural induction shows that

the meaning JP K of a recursive process P is a timeful and well{caused Atts . It can then be

shown that Zeno processes cannot be recursively de�ned; this follows since all processes are

sort{�nite

x

and time{guarded, and thus there is a bound on the number of simultaneous actions

a given process can display at some time. However, our axiomatisation is inherently limited to

�nite processes, so it is unlikely that a satisfactory equational account of � for recursive cIpa

could be easily found.

8.3. Other Operators

An industrial strength timed speci�cation formalism would need a much larger set of oper-

ators than we have provided in cIpa. Most of these would be derived, but there is a crucial class

of operations,|timeouts,|that cannot be coded in cIpa. The introductions of timeouts, such

as those provided in timed CSP [15], would be a useful extension to cIpa; the correct intuition,

however, is somewhat unclear: how should local clocks interact with timeouts? The right balance

between generality and tractability is not clear to us here.
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