
A Model for the �- Calculus

�

M. Hennessy

University of Sussex

Abstract

We develop a semantic theory based on testing for a minor variant of the

�-calculus. The resulting semantic equivalence can be characterised using of ac-

ceptance sets and can also be characterised as an equational theory. We de�ne a

class of interpretations for the �-calculus and construct one which is fully-abstract.

Moreover the interpretation we construct is initial in the class of all fully-abstract

interpretations.

�

This work has been supported by the ESPRIT/BRA CONCUR project

1

1 Introduction

In [MPW92a], [MPW92b], a calculus of mobile processes, the �-calculus, is presented.

The �rst reference is an introduction to the calculus and the second develops a semantic

theory based on bisimulations, [Mil89]. The �-calculus is an extension of the process

algebra CCS, a more primitive calculus for describing and manipulating processes which

perform uninterpreted actions. In the �-calculus these actions are now interpreted as ei-

ther the input or output of values along channels. The power of the extension comes from

the fact that the values sent and received are themselves channel names and moreover

the language allows the transmission of private channels between processes.

In [HI91] a similar extension to a CCS-like language is developed but here the values

transmitted are simple data-values such as the integers. Although processes may test

these data-values and base their future behaviour on the outcome, unlike the �-calculus,

these values can not change radically the communication topology of processes. The

theory of this extension, called VPL, is based on the testing approach to processes, as

presented in [Hen88]. This is in terms of a preorder

<

�

and roughly speaking p

<

�

q for

two processes p and q if q guarantees all tests guaranteed by p. In [HI91] a sound and

complete proof system is given for the language VPL and a fully-abstract model, based

on the acceptance trees of [Hen88] is also de�ned.

In this paper we show that a similar theory may be developed for mobile processes.

As usual we modify the language somewhat, the main di�erence being that the CCS

operator for internal moves � is replaced by a binary internal choice operator, �. We

call the modi�ed language L

�

and apart from this modi�cation it is more or less the

same as the �-calculus. A testing preorder is developed for this language and we show

that it may be characterised in terms of acceptance trees. We also give an algebraic

characterisation of the preorder. The equations involved are relatively straightforward.

They partition naturally into two sets. The �rst consist of standard testing equations,

those from [Hen88] together with an extra equation, originally given in [HI91], which is

required because of the interpreted nature of the actions { as input and output of values

along channels. The second set is a subset of the equations from [MPW92b] for the

�-calculus and are mainly concerned with the restriction operator; this is not surprising

as the real power of the �-calculus stems from restriction.

Finally we discuss the problem of giving a denotational interpretation for the lan-

guage. We �rst de�ne an appropriate class of interpretations and show that there exists

a fully-abstract one, i.e. an interpretation which identi�es and only identi�es processes

which can not be distinguished by tests. Unfortunately the construction of this inter-

pretation is as a term model, built from the syntax of the language using a provability

relation. It would be more interesting if a representation could be given in terms of,

for example, the acceptance trees of [Hen88]. But for the moment we have been unable

to do this. The major obstacle is with the restriction operator. It is far from obvious

how to adapt the de�nition of acceptance trees so that they can support a reasonable

interpretation of restriction.

As far as the author is aware all suggested theories in the literature for the �-calculus

are based on bisimulation equivalence apart from the work reported in [BD92]. Here

a testing theory for the �nite terms of the �-calculus is de�ned and equationally char-

acterised. This work is quite similar to ours although the authors work with the exact

2

syntax of the language of [MPW92a] whereas we have modi�ed it slightly so as to obtain

a marginally cleaner equational characterisation. But the main di�erence between the

present paper and [BD92] is that we are primarily interested in developing a denota-

tional model of the language and have used the equational characterisation as a tool in

its construction.

2 The Language

In this section we de�ne the language, called L

�

, and its operational semantics. The

language is a minor variant of the �-calculus as presented in [MPW92a],[MPW92b], the

main di�erence being that two nondeterministic operators, internal nondeterministic

choice and external nondeterministic choice are used in place of the original nondeter-

ministic operators from CCS. The �-calculus is a particular instance of a family of an

algebraic description languages for communicating processes. The processes use commu-

nication channels to exchange values and in the �-calculus these values are themselves

communication channels. The real power of the language comes from the fact that pri-

vate channels may be exchanged between processes. The reader is referred to [MPW92a]

for a thorough introduction to the language. We limit ourselves to a rather terse ex-

position of our variant and its operation semantics. This in turn is very similar to the

exposition of the original �-calculus in [MPW92b].

Let PV be a set of process variables, ranged over by X;Y; and N a countable set of

channel names, ranged over by x; y. The set of process terms, ranged over by t; u; : : : is

then de�ned by the following grammar:

t ::=
 j nil

j t+ t j t� t

j pre

j t j t

j (x)t

j if be then t else u

j X j recX: t

pre ::= xy j x(y)

be ::= x = y j :be j be _ be j be ^ be

Here
 represents the completely unde�ned process and nil the process which has ter-

minated. Next we have the two types of nondeterminism, + representing external non-

determinism and � the internal form. Input and output along channels are represented

by x(y):t and xy:t respectively. The term x(y):t represents a process which may input a

channel name from the channel x, \bind" that channel name to the name y in the process

t. On the other hand xy:tmay output the name y along the channel name x and proceed

like the process t. The term t j u represents the process consisting of two subprocesses t

and u running in parallel while in (x)t all occurrences of the channel name x are local.

This is the representation in the �-calculus of the restriction operator of CCS, [Mil89],

3

where it is written as t n x. In fact it is with this operator that the communication of

private channels may be represented in the language. Unlike the original �-calculus we

use an if : : : then : : : else : : : statement. The process if be then t else u acts like t if the

boolean expression be is true and like u otherwise. We allow a very simple language of

boolean expressions. Essentially it allows the testing of identity between channel names.

Finally we have recursive de�nitions; intuitively the process recX: t is equivalent to a

process X where X has been de�ned by the equation X = t. We use � to denote the

set of operators fnil;
; (x); xy;+;�; jg, i.e. all the operators except pre�xing by input

actions; the interpretation of this last operator will require special attention.

As usual rec acts like a binder for process variables and we have an appropriate

form of substitution: t[u=X] is the term which results from substituting u for all free

occurrences of X in t where the substitution is de�ned so that free variables are not

captured. We are mainly interested in closed terms, i. e. terms with no free occurrences

of process variables. We use P to denote the set of such terms, which we refer to as

processes, and individual processes are referred to using the meta-variables p; q; : : :.

More importantly we have two binders for channel names. In (x)t all occurrences

of the name x in t are bound and in x(y):t all occurrences of y are also bound. These

binders give rise in the normal way to the de�nition of free and bound names which occur

in a process, fn(t); bn(t) respectively. These functions will also be liberally applied to

sets of terms, sequences of terms etc. . We will also use n(t) to refer to the union of

these two sets, i. e. the set of names which occur in t. When substituting names in

processes we have to be careful to preserve their free names. In general a substitution is

a function � from N to N which is almost everywhere the identity. We use t� to denote

the process which results from simulataneously substituting in t all free occurrences of

x by �(x), with change of bound names to avoid captures. A precise de�nition, for a

somewhat di�erent language, may be found in [Sto88]. We use the normal notation for

substitutions when convenient, writing fy

1

=x

1

; : : : ; y

n

=x

n

g for the substitution � whose

non-trivial domain is fx

1

; : : : ; x

n

g and is de�ned by �(x

i

) = y

i

. We also use the standard

notation for modifying substitutions, �[x 7! y] being the substitution which is the same

as � except that x is mapped to y. The relation of alpha{convertability on processes,

de�ned in the normal way, is denoted by �

�

whereas � will mean syntactic identity. We

use without comment standard properties of substitution and �

�

and sometimes we rely

on speci�c properties of the actual de�nition of substitution from [Sto88]. One useful

property of this de�nition is that if � and �

0

agree on fn(t) then t� �

�

t�

0

.

We formalise our intuitions about the behaviour of processes by giving an operational

semantics to P. As in [Hen88] this consists of a relation �! which describes the possible

internal actions, such as internal communication, between processes and a collection of

next state relations

a

�! where a ranges over the possible external actions processes can

perform. These external actions are of two froms, input and output, but because of the

particular values being exchanged the situation is somewhat more complicated than for

the operational semantics of the value-passing version of standard CCS. There are three

kinds of external actions.

1. A free output action. Here p

xy

�! q implies that the process p can output the free

name y to the channel x or on the port x. A typical example of such an action

arises from the process xy:p and according to the de�nition of the transition system

we will have xy:p

xy

�! p.

4

2. An input action x(y). Intuitively p

x(y)

�! q means that the process p may recieve

any name v from the channel x and thereby be transformed into qfv=yg. It is

important to realise that this is unlike the standard input actions of say [HI91] or

[Mil89]. Here y is being used as a place holder or reference and the p

x(y)

�! q does not

mean that p has actually input the name y on the channel x and been transformed

to q. Instead it simply encodes the ability of p to input from the channel x and

the resulting e�ect. Processes of the form x(y):p give rise to input actions.

3. A bound output action x(y). Here p

x(y)

�! q means that p may output a private

name along the channel x but once more y is not necessarily this private name.

As in the previous case it represents a reference (in q) to this private channel. It

is these kinds of actions, which do not appear in standard CCS, which gives the

language its power. They are typically performed by processes of the form (y)x:p.

The reader is referred to [MPW92a] for a more detailed discussion.

As in [MPW92b] the relevant properties of these external actions are given in the

following table:

a Kind Free/Bound fn(a) bn(a) Subject Object

xy Free Output f fx; yg ; x y

x(y) Input b fxg fyg x y

x(y) Bound Output b fxg fyg x y

We use Act to denote the set of these actions. As can be seen from the table all the

actions occurring in a free action are free whereas in a bound action the object is bound

while the subject is free.

The de�ning rules for these transitions are given in Figures 1 and 2. These are a

mixture of the usual rules for internal actions taken from [Hen88] and those for the

�-calculus from [MPW92a]. The latter are the most complicated but rather than ex-

plaining them in detail we refer the reader to their detailed exposition in [MPW92a] and

[MPW92b]. Note that in the rules Sum, Par, Choice, Com and Close we have omitted

the symmetrical versions. In the two If rules we have also assumed some standard eval-

uation mechanism for Boolean expressions, with [[be]] always evaluating to either true or

false.

As an example of the operational semantics consider the process p j q j r where p; q; r

are x

1

(y):x

2

y:p

0

, (z)x

1

z:z(y):q

0

and x

2

(y):yx:r

0

respectively. Then q can send a private

channel name to p along the channel x

1

who in turn can send it to r using x

2

and �nally r

can use this private name to send x to q. The resulting state is then (v)(p

0

j q

0

fx=yg j r

0

)

where v is represents the private channel and does not occur in p j q j r.

The �rst move in this computation is

p j q j r �! (v)(x

2

v:p

0

j v(y):q

0

) j r

and its derivation uses the rules Open, Output, Input, Close and Par. The next move is

(v)(x

2

v:p

0

j v(y):q

0

) j r �! (v)(p

0

j v(y):q

0

j vx:r

0

)

and this uses the same rules. The �nal move is then

(v)(p

0

j v(y):q

0

j vx:r

0

) �! (v)(p

0

j q

0

fx=yg j r

0

):

5

[t]

Input

�

x(y):p

x(v)

�! pfv=yg

v 62 fn((y)p)

Output

�

xy:p

xy

�! p

Sum

p

a

�! p

0

p + q

a

�! p

0

Par

p

a

�! p

0

p j q

a

�! p

0

j q

bn(a) \ fn(q) = ;

Res

p

a

�! p

0

(y):p

a

�! (y):p

0

y 62 n(a)

Open

p

xy

�! p

0

(y):p

x(v)

�! p

0

fv=yg

y 6= x and v 62 fn((y)p

0

)

If

p

a

�! p

0

; [[be]] = tt

if be then p else q

a

�! p

0

q

a

�! q

0

; [[be]] = �

if be then p else q

a

�! q

0

Figure 1: Rules for external actions

In the remainder of this section we develop some technical results about this transition

system and it may be skipped by the reader uninterested in technical details. Most of the

proofs are omitted as they are rather tedious and usually proceed by syntactic analysis.

The �rst two results are taken directly from [MPW92b] and the proofs can be transferred

directly to our language.

Lemma 2.1 If p �! p

0

then fn(p

0

) � fn(p) and if p

a

�! p

0

then fn(p

0

) � fn(p)[bn(a)

and fn(a) � fn(p) 2

De�nition 2.2 We use the phrase

if p

a

�! p

0

then equally q

a

�! q

0

to mean that if p

a

�! p

0

may be inferred from the transition rules then q

a

�! q

0

may also

be inferred, with an inference of no greater depth. We use a similar notation for internal

arrows. 2

Lemma 2.3 Suppose that p

�(y)

�! p

0

where � = x or � = x and that z 62 n(p). Then

equally p

�(z)

�! p

00

for some p

00

such that p

00

�

�

p

0

fz=yg. 2

6

[t]

�

 �!

Rec

�

recX: t �! t[recX: t=X]

Choice

p �! p

0

p� q �! p

0

Op

p

i

�! p

0

i

op(: : : ; p

i

; : : :) �! op(: : : ; p

0

i

; : : :)

for op 2 f+; j; (y)g

Com

p

xy

�! p

0

; q

x(z)

�! q

0

p j q �! p

0

j q

0

fy=zg

Close

p

x(w)

�! p

0

; q

x(w)

�! q

0

p j q �! (w)(p

0

j q

0

)

If

p �! p

0

; [[be]] = tt

if be then p else q �! p

0

q �! q

0

; [[be]] = �

if be then p else q �! q

0

Figure 2: Rules for internal transitions

In the operational semantics bound names are liberally renamed and it is important

to establish that �-conversion does not seriously a�ect the behavioural properties of

processes. The next series of results have this in mind. In the next section a new kind of

action, a free input action, will be seen to be important and therefore these results will

be also established for these actions. Recall that p

x(y)

�! p

0

means that y is acting as a

reference in p

0

to where names which are received by p are placed. This is actually how

it is used in the rule Com of Figure 2. So it is natural to de�ne a free input action by

p

xy

�! p

0

fy=zg whenever p

x(z)

�! q.

We use EAct, to denote this extended set of Actions, i.e.

EAct = fxy; x(y); xy; x(y) j x; y 2 N g:

Now we will use a to range over this augmented set of actions.

In order to state these results it is convenient to extend �-conversion to actions in EAct

and more generally sequences over EAct

�

. The most convenient way of doing this is to

view sequences as very simple sequential processes and apply the standard de�nition

which already exists for processes. Thus if a is a free action and a �

�

a

0

then necessarily

a

0

must be a but x(y) �

�

x(z) for any pair of names y and z. Similarly if x(y):s �

�

u

7

then u must be of the form x(z):u

0

for some z such that s �

�

u

0

fy=zg. We will make

frequent use of the notion of a harmless action or sequence of actions. In a particular

statement a sequence of actions is considered harmless if the bound variables are di�erent

than any of the variables appearing in the rest of the statement. This de�nition is of

course context dependent but in each context the meaning will be perfectly clear.

Lemma 2.4 For any a 2 EAct

1. p

a

�! p

0

implies that for any harmless a

0

such that �(a) �

�

�(a

0

) p�

a

0

�! r for

some r such that r �

�

p

0

�[bn(a) 7! bn(a

0

)]

2. p �! p

0

implies p� �! r for some r such that r �

�

p

0

�.

Proof: The two statements are proved simultaneously by induction on the derivations.

In the �rst statement we mean that a

0

should be such that bn(a

0

) \ n(p; a) = ;. This

will be true of almost all a

0

such that a �

�

a

0

because the set of names appearing in p

and a is �nite. 2

The converse is not true in general but we can obtain a partial result by restricting the

allowed substitutions to be injective. However the statement of the result is complicated

by the presence of free input actions. If p� performs the action x

0

y

0

then there is an x

such that �(x) = x

0

but there may not be a y such that �(y) = y

0

.

Lemma 2.5 Let � be injective on fn(p) and a 2 EAct.

1. p�

a

0

�! r implies that for any harmless a and substitution �

0

such that p� �

�

p�

0

and �

0

(a) �

�

a

0

there exists a p

0

such that p

a

�! p

0

and r �

�

p

0

�

0

[bn(a) 7! bn(a

0

)].

2. p� �! r implies p �! p

0

for some p

0

such that p

0

� �

�

r.

Proof: Once more both of these are proved simultaneously by induction on the deriva-

tions. 2

These may now be combined to give the �rst result about �-conversion. If p �

�

q and

p does an internal move to p

0

then q can also do an internal move to some q

0

such that

p

0

�

�

q

0

. But this is not true for external action because the rule Open can transform a

bound variable into a free variable. So when matching external moves from �-equivalent

processes a record must be kept of these newly generated free variables.

Proposition 2.6 If p �

�

q then

1. p

a

�! p

0

implies that for any harmless a

0

such that a �

�

a

0

there exists a q

0

such

that q

a

�! q

0

; p

0

�

�

q

0

fbn(a)=bn(a

0

)g and q

0

�

�

p

0

fbn(a

0

)=bn(a)g

2. p �! p

0

implies that, for some q

0

, p �! q

0

and p

0

�

�

q

0

.

8

Proof: Once more both results are proved simultaneously by induction on the length

of the derivations. Note that in i) it is su�cient to prove p

0

�

�

q

0

fbn(a)=bn(a

0

)g only

and this only in the case where bn(a) 62 n(p; q). For suppose we have shown that this

is true. Then let p

a

�! p

0

for an arbitrary a. There exists an a

00

such that a �

�

a

00

and

bn(a) 62 n(p; q). Applying Lemma 2.3 if necessary we can �nd a p

00

such that p

a

00

�! p

00

and p

00

�

�

p

0

fbn(a

00

)=bn(a)g. From our assumption we then obtain, for any harmless a

0

such that a

0

�

�

a

00

�

�

a, a q

0

such that q

a

0

�! q

0

and p

00

�

�

q

0

fbn(a

00

)=bn(a

0

)g. However

now one can check that

p

0

�

�

p

0

fbn(a

00

)=bn(a)gfbn(a)=bn(a

00

)g �

�

q

0

fbn(a)=bn(a

0

)g

and

q

0

�

�

q

0

fbn(a

00

)=bn(a

0

)gfbn(a

0

)=bn(a

00

)g �

�

p

0

fbn(a

0

)=bn(a)g:

2

These results can be extended to sequences of actions. For s 2 EAct

�

let the relation

s

=) be de�ned in the standard way:

1. p

"

=) p

2. p �! p

00

, p

00

s

=) p

0

implies p

s

=) p

0

3. p

a

�! p

00

, p

00

s

=) p

0

implies p

a:s

=) p

0

.

We use bn(s) to denote the sequence of bound names which appear in s and by an abuse

of notation �[bn(s) 7! bn(s

0

)] is used to denote the substitution �[x

1

7! y

1

; : : : ; x

k

7! y

k

]

where x

1

; : : : ; x

k

, and y

1

; : : : ; y

k

are the sequences bn(s); bn(s

0

) respectively. For this to

make sense s and s

0

must have the same number of bound variables.

Proposition 2.7 For any s 2 EAct

�

1. p

s

=) p

0

implies that for any harmless s

0

such that �(s) �

�

s

0

there exists an r

such that p�

s

0

=) r and r �

�

p

0

�[bn(s) 7! bn(s

0

)]

2. if � is injective on fn(p) then p

0

�

s

0

=) r implies that for any harmless s and

substitution �

0

such that p� �

�

p�

0

and s

0

�

�

�

0

(s) there exists an p

0

such that

p

s

=) p

0

and r �

�

p

0

�

0

[bn(s) 7! bn(s

0

)]

3. if p �

�

q and p

s

=) p

0

then, for any harmless s

0

such that s �

�

s

0

, q

s

0

=) q

0

for

some q

0

such that p

0

�

�

q

0

fbn(s)=bn(s

0

)g and q

0

�

�

p

0

fbn(s

0

)=bn(s)g.

Proof: The three statements are proved simultaneously by induction on the length of

the derivation of

s

=) . For each of the statements one of the three previous results are

employed when an individual move of the derivation is being considered. 2

This completes the analysis of �-conversion and in the remainder of this section we

show that the possible computations from processes are in some sense �nite branching.

For any action a 2 Act let D(p; a) = f p

0

j p

a

�! p

0

g.

9

Lemma 2.8 For any a; p the set D(p; a) is �nite.

Proof: The proof is straightforward by structural induction on p. Note that if p has

the form recX: t then this set is empty for every a. 2

Of course a process may be able to perform an in�nite number of di�erent actions.

For example x(y):y!z:nil can perform the action x(v) for any v and (y)x(y):nil can

perform x(v) for any v. But the number of names which may be used as subjects is

�nite as is the number of free names which may be output. Let Subj(p) denote the set

of names x such that p

a

�! p

0

for some p

0

and a such that x is the subject of a and let

OutN(p) be the set of y such that for some p

0

and x p

xy

�! p

0

.

Lemma 2.9 For every p the sets Subj(p) and OutN(p) are �nite.

Proof: Again a simple proof by structural induction. 2

However the use of bound variables also means that the set of states to which a process

may evolve by an internal move may not be �nite. However it is up to �-conversion. Let

ID(p) = f [p

0

] j p �! p

0

g where [p] denotes the equivalence class of p with respect to �

�

.

Lemma 2.10 For every p the set ID(p) is �nite.

Proof: By structural induction on p. Note that the case when p has the form recX:t

the result is trivial since ID(recX:t) = ft[recX:t=X]g. The only non-trivial case is when

t has the form p j q. If p j q �! r then r must be of the form p

0

j q

0

and there are three

possible ways in which this move can be inferred:

1. using the rule Op in which case p �! p

0

and q

0

is q or q �! q

0

and p

0

is p. By

induction ID(p) and ID(q) are �nite and therefore there are only �nite number of

[r] which can be inferred from this rule.

2. using the rule Com. Here either p

xy

�! p

0

and q

x(z)

�! q

00

with q

0

= q

00

fy=zg or

symmetrically q

xy

�! q

0

and p

x(z)

�! p

00

with p

0

= p

00

fy=zg. It is su�cient to consider

the �rst case where we show that there is only a �nite number of ways of using

Com in this way. Pick some v which does not appear in p j q. By Lemma 2.3 we

know that q

x(v)

�! q

000

such that q

000

�

�

q

00

fv=zg. Therefore each p

0

j q

0

inferred in this

way must be such that p

0

2 D(p; xy) and q

0

�

�

q

000

fy=vg where q

000

2 D(q

0

; x(v)).

Since both of these sets are �nite there can only be a �nite number of such p

0

j q

0

up to �-equivalence.

3. using the rule Close. This is treated exactly as in the previous case.

2

10

3 Testing Processes

Given the operational semantics of the previous section we may now apply the standard

theory of testing as developed in [Hen88]. To this end we assume a special name called

! which is used to denote success. A test or experiment is then simply a process which

may use this extra name and applying a test e to a process p consists in running the

process e j p to completion. A computation from e j p is a complete sequence of the form

e j p = s

0

�! s

1

�! : : : �! s

k

�! : : :

i.e. it is either in�nite or if s

n

is the last element there must be no s

0

such that s

n

�! s

0

.

Such a computation is successful if some s

k

can report success, i. e. s

k

!(x)

�! for any name

x. We often write this as s

k

2 Succ. Then we write

p must e

if every computation from p j e is successful. Finally we say

p

<

�

q

if for every experiment e, p must e implies q must e. We use

�

to denote the kernel of

<

�

and is obviously an equivalence relation.

We wish to establish two results about testing, �rstly that the preorder is preserved

by all the operators of the language and secondly that for any test e if p must e then for

some �nite approximation d to p, p must e. The latter is easier if we have developed an

equational theory for the language and this is the topic of the next section. The proof

of the latter is more straightforward in terms of an alternative characterisation of

<

�

.

Recall from [Hen88] that for the pure version of the language this alternative charac-

terisation is in terms of acceptance sets of actions which code up the possible next moves

a process can perform after having executed a sequence of actions. This characterisation

will not apply directly here because some of the transitions which processes can perform

record their potential rather than actual moves. For example let p; q denote x(y):xy:nil

and x(y): if � then zy:nil else xy:nil respectively. Then obviously p

�

q but the set

of input actions they can perform are di�erent; p can perform the action x(z) which

q can not perform. To overcome this problem we use the new kind of action, a free

input action, introduced in the previous section. These free input actions give us all the

behavioural information we require of the ability of processes to input and therefore we

need not consider bound input actions at all.

Let RAct denote the set of actions fxy; xy; x(y) j x; y 2 N g. The alternative char-

acterisation of

<

�

is in terms of the ability of processes to perform actions from this

set. Note that this still contains bound output actions and these continue to present

problems. For example (y):xy:y(z):nil and (w):xw:y(w):nil are obviously behaviourally

equivalent but they o�er di�erent possibilities with respect to the actions from RAct.

The latter can perform the action x(w) which the former can not; but it can perform

x(y) which is equivalent if we only consider the free names involved. We overcome this

problem by working only with sequences from RAct

�

where the bound variables are new,

i. e. do not occur in the processes under consideration.

First let us de�ne convergence with respect to sequences of actions.

11

De�nition 3.1 For every sequence s 2 RAct

1. let # s be de�ned by

� p # " if there is no in�nite internal computation from p, i.e. no in�nite com-

putation of the form p �! p

1

�! : : : �! p

k

�! : : :.

� p # a:s if p # and for every p

0

such that p

a

=) p

0

p

0

s.

2. let p + s if for every s

0

such that s �

�

s

0

p # s

0

.

2

To prove that the latter is preserved by �-conversion we need a lemma.

Lemma 3.2 For every process p

1. p� # implies p #

2. if � is injective on fn(p) then p # implies p� #

3. p �

�

q and p # implies q #.

Proof: As an example we prove the second statement. Suppose

p� �! r

1

�! : : : �! r

n

�! : : :

is an in�nite sequence. By Lemma 2.5 p �! p

1

such that p

1

� �

�

r

1

and by Proposi-

tion 2.7, part (3), p

1

� �! r

0

2

such that r

2

�

�

r

0

2

. Again by Lemma 2.5 p

1

�! p

2

such

that p

2

� �

�

r

2

. Continuing in this way we obtain an in�nite internal computation from

p. 2

As a corollary we have

Proposition 3.3

1. If p �

�

q and p + s then q + s.

2. if � is injective on fn(p) then p + s implies p� + �(s)

3. if p� + s

0

then for every �

0

and s such that p� �

�

p�

0

and �

0

(s) �

�

s

0

; p + s.

Proof: The �rst statement directly from the previous lemma and the results at the end

of the previous section. For suppose p * s, i. e. for some pre�x s

0

of some s

00

such that

s �

�

s

00

p

s

0

=) p

0

such that p ". So by Proposition 2.7 q

s

0

1

=) q

0

for some q

0

and s

0

1

such

that s

0

�

�

s

0

1

and q

0

�

�

p

0

fbn(s

0

)=bn(s)g. Since p

0

" it follows from the previous lemma

that p

0

fbn(s

0

)=bn(s)g " and therefore that q

0

". This in turn implies that q * s.

We leave the second statement to the reader and concentrate on the last. Suppose

p * s, i. e. p

u

=) p

0

where p " for some pre�x u of s. By Proposition 2.7 this means that

p�

0

u

0

=) r for some r and u

0

such that r �

�

p

0

�

0

[bn(u) 7! bn(u

0

)] and u

0

�

�

�

0

(u). From

12

the previous lemma this means that r " and therefore p�

0

* u

0

, i. e. p�

0

* s

0

. Applying

clause (1) we obtain p� * s. 2

In fact in order to establish that a process is convergent with respect to all sequences

which are �-equivalent to s it is su�cient to establish it for a sequence whose bound

variables are new, i.e. a harmless sequence.

Lemma 3.4 If bn(s) \ fn(p) = ; then p + s if and only if p # s.

Proof: One direction is immediate. So suppose that p # s , s �

�

s

0

and p

s

0

=) p

0

.

We need to show that p

0

#. By Proposition 2.7 we know p

s

=) p

1

such that p

0

�

�

p

1

fbn(s)=bn(s

0

)g. Now p

1

and because bn(s) are new the substitution is injective on

fn(p

1

) and therefore by the Lemma 3.2 p

1

fbn(s)=bn(s

0

)g # which in turn means p

0

#. 2

We now de�ne the possible acceptance sets of a process after a sequence of actions

s. The de�nition is standard but the acceptance sets of processes will be compared with

respect to a restricted set of sequences. We say p is stable if p �! p

0

for no p

0

. Let

A(p; s) = fSubj(p

0

) j p

s

=) p

0

; p

0

stable g

Lemma 3.5 For every process p and sequence s 2 RAct

�

such that p + s the set A(p; s)

is a �nite set of sets.

Proof: Follows directly from Corollary 2.10 if we normalise the derivations from p.

Suppose s uses k bound variables and let y

1

; : : : y

k

be k names not occurring in p. Then

let s

0

be the sequence obtained from s by using these variables, in order, as bound

variables. Then consider the computation tree from p where the nodes are labelled

by equivalence classes of processes with respect to �-conversion and the branches are

labelled by actions from s

0

or by i representing internal moves. This is a �nite tree and

the elements of A(p; s) correspond to Subj(p

0

) where [p

0

] labels a leaf. It follows that

A(p; s) is �nite. 2

Lemma 3.6 If p �

�

q and s is harmless then A(p; s) = A(q; s)

Proof: It follows directly form Proposition 2.7. 2

With these acceptance sets we can mimic the alternative preorder from [Hen88]. First

acceptance sets are compared in the standard way by saying A � B if for every B 2 B

there is some A 2 A such that A � B. This is then lifted to processes by:

De�nition 3.7 For any two processes p; q let p � q is for every sequence s 2 RAct

�

p + s implies

� p + s

13

� for some harmless s

0

such that s �

�

s

0

, (i. e. bn(s

0

) \ (fn(p) [fn(q)) = ;),

A(p; s

0

)� A(q; s

0

)

2

First we show that this preorder is preserved by �-conversion.

Proposition 3.8 If p �

�

q then p � q.

Proof: From Proposition 3.3 we know that that p �

�

q and p * s implies q * s and

the result therefore follows by the preceding lemma. 2

This means that we can be relatively liberal with respect to �-conversion and therefore

in the following proofs we will not pay much attention to it. In particular when using

the de�nition of � we may choose any convenient s

0

provided it is �-equivalent to s.

Also because of Lemma 3.4 it should be clear that we could have replaced the use of + s

in the de�nition with # s provided we restrict attention to harmless sequences.

As with strong bisimulation, � in [MPW92a],

<

�

is not preserved by substitutions.

For example

xv:nil j y(z):nil

�

xv:y(z):nil+ y(z):xv:nil

but they are no longer equivalent when x is substituted for y because then the left

hand side may perform an internal move to nil. However it is preserved by injective

substitutions:

Proposition 3.9 If � is injective on fn(p; q) then p

<

�

q implies p�

<

�

q�.

Proof: Follows from Propositions 3.3 and 3.6.

Suppose p� + s

0

. We �rst show that q� + s

0

. Let s be a harmless sequence and

�

0

an injective substitution such that p� �

�

p�

0

, q� �

�

q�

0

and �(s) �

�

s

0

. Then by

Proposition 3.3, part (3), p + s and therefore q + s. Again using the same proposition

q�

0

+ �

0

(s), i. e. q� + �(s).

Now suppose that A 2 A(q�; s

00

) where s

00

is harmless and s

0

�

�

s

00

. So q�

s

00

=) r

where r is stable and A = Subj(r). Again let s and �

0

be such that s is harmless,

�

0

is injective, p� �

�

p�

0

, q� �

�

q�

0

and �

0

(s) = s

00

. By Proposition 2.7 q

s

=) q

0

for some q

0

such that r �

�

q

0

�

0

[bn(s) 7! bn(s

00

)]. In particular q

0

is stable and so

p

s

=) p

0

for some stable p

0

such that Subj(p

0

) � Subj(q

0

). For convenience let �

00

denote the substitution �

0

[bn(s) 7! bn(s

00

)] which is injective. Again by Proposition 2.7

it follows that p�

0

s

00

=) r

0

such that r

0

�

�

p

0

�

00

and since p� �

�

p�

0

p�

s

00

=) r

00

such

that r

00

�

�

p

0

�

00

. By Lemma 2.5 r

00

is stable and Subj(r

00

) � Subj(r) follows because

Subj(r

00

) = Subj(p

0

�

00

) = �

00

(Subj(p

0

)) while Subj(r) = Subj(q

0

�

00

) = �

00

(Subj(q

0

)). 2

The main result we wish to show is that the two relations � and

<

�

coincide on

processes. The proof is very similar in style to the corresponding proof in [Hen88] but

the details are considerably di�erent. We �rst show

14

Proposition 3.10 If p � q then p

<

�

q.

Proof: The proof has the same structure as that for the corresponding result in [Hen88],

Lemma 4.4.13, although the details are more complicated because of the di�erent forms

of communication allowed in the �-calculus. Suppose p � q and p must e. We show

q must e by examining an arbitrary computation from e j q :

e j q = r

0

�! r

1

�! : : : �! r

k

�! : : : (�)

and proving that there is some e

n

such that e

n

2 Succ. The proof depends on whether

the computation (�) is �nite or in�nite. As an example we consider only the �nite case.

So we may assume that r

k

is stable for some k. Each r

i

is of the form (v

i

)r

0

i

where

the individual restricted names in the sequence v

i

arise because of the possible use of

the Close rule from the operational semantics. Nevertheless by concentrating on the

interaction between the two processes the computation (�) may be unzipped into two

derivations from e, q respectively, which use only actions from Act and which show their

individual contributions:

e = e

0

a

1

=) : : : e

j

: : :

a

k

=) e

m

and

q = q

0

a

1

=) : : : q

j

: : :

a

k

=) q

m

:

These are such that for each j there exists an i such that r

0

i

= e

j

j q

j

and if a

i

= x(v); a

i

=

x(v) then r

i�1

�! r

i

is inferred using an instance of the rule Close. If on the other hand

it is inferred using an instance of the rule Com then if a

i

= xy we can assume that a

i

is

xy. Let s denote the sequence a

1

: : : a

k

. Then because r

k

is stable we can further assume

that Subj(q

m

) \ Subj(e

m

) = ;. Let s

0

be a harmless sequence such that s �

�

s

0

and

therefore s �

�

s

0

. From Proposition 2.7 part (3), q

s

0

=) q

0

such that q

0

�

�

q

m

� where

� is the renaming fbn(s

0

)=bn(s)g. In particular, from Proposition 2.7 parts (1) and (2),

Subj(q

0

) = Subj(q

m

)�, where the latter denotes f�(x) j x 2 Subj(q

m

) g. Similarly

e

s

0

=) e

0

such that Subj(e

0

) = Subj(e

m

)�. Because � is injective on n(e

0

; q) it follows

that Subj(e

0

) \ Subj(q

0

) = ;. There are two cases to consider.

1. p + s.

Then q + s and so there is a p

0

such that p

s

0

=) p

0

, p

0

stable and Subj(p

0

) � Subj(q

0

), i.

e. Subj(p

0

) \ Subj(e

0

) = ;. Because s

0

is harmless the derivations e

s

0

=) e

0

and p

s

0

=) p

0

can be zipped together to form a computation

e j p �! : : : �! e

0

j p

0

:

Since p must e there exists some e

0

j

in this computation such that e

0

j

2 Succ. But

each e

0

i

in this computation is such that e

0

i

�

�

e

i

fbn(s

0

i

)=bn(s

i

)g where s

0

i

and s

i

are the

corresponding initial subsequences of s

0

and s respectively. So e

0

j

2 Succ and therefore

the original computation is successful.

2.p * s.

If we assume that no e

i

is in Success then we immediately contradict the fact that

p must e. For there must exist some subsequence of s, s

1

and a derivation p

s

0

1

=) p

0

where

s

1

�

�

s

0

1

and p

0

". Then as in the previous case we can transform the derivation into

15

one involving a harmless subsequence and combine this with a corresponding derivation

from e to obtain an unsuccessful computation from e j p.

When the computation (�) is in�nite the only possibility we have not touched on is when

the unzipped derivations are in�nite and p converges on all subsequences. Here we make

use of Corollary 2.10 which states that the computation trees from p and q are �nite

branching, modulo �-conversion. The details of how this is used may be found in Lemma

4.4.13 from [Hen88]. 2

To prove the converse we need to de�ne two sets of special tests one of which tests

for convergence and the other which is capable of testing for the contents of A(p; s). The

crucial point is to be able to distinguish between outputing a free name on a channel

and outputing an internal link. To achieve this we use the fact that if a process outputs

a free name this name must belong to the free names of the process. We �rst examine

convergence.

Let X be a �nite set of names. For each s in Act let the test c(s)

X

be de�ned as

follows:

1. c(")

X

= !z:nil�!z:nil where z is any name. For convenience we use 1:w to denote

this process and w to denote !z:nil.

2. c(xy:s)

X

= 1:w + xy:c(s)

X[fyg

3. c(xy:s)

X

= 1:w + x(z): if z = y then c(s)

X

else ! where z 62 fn(c(s)

X

; y)

4. c(x(y):s) = 1:w + x(z): if z 2 X then ! else c(sfz=yg)

X[fzg

where z 62 fn(s;X).

Here we use z 2 X as the obvious abbreviation for z = x

1

_ z = x

2

: : :_ z = x

n

where X

is the set fx

1

; : : : ; x

n

g. First we need a lemma about the e�ect of substitutions on these

tests.

Lemma 3.11 c(s)

X

� �

�

c(s�)

X�

.

Proof: By induction on the length of s. 2

We can now prove the expected property of these tests.

Proposition 3.12 If fn(p) � X then p + s if and only if p must c(s)

X

Proof: The proof is by induction on s and we examine one case when it has the form

x(y):s

0

.

First suppose that p + s. Then certainly p # and we use induction on this to show

that p must c(s)

X

. Let us say that q

p

succ, for any term q, if every computation from

q is successful. Note that by Proposition 2.6 this relation is preserved by �-conversion.

So we must show that p j c(s)

X

p

succ. This amounts to showing that if p j c(s)

X

�! r

then r

p

succ. The proof depends on why this move is made. If it is because of an

internal move from c(s)

X

then by construction r

p

succ while if it is an internal move

from p we may use induction on p #. So we need only consider when it is because of a

communication between the process and the test. There are two cases.

16

1. The rule Com is used in the derivation.

Then r has the form p

0

j if y 2 X then ! else : : : where p

xy

�! p

0

. This means that

y 2 fn(p) � X and therefore r

p

succ.

2. The rule Close is used in the derivation.

Here r has the form

(y)(p

0

j (if y 2 X then ! else c(s

0

fz=yg)

X[fzg

)fy=zg)

for some new name z, where p

x(y)

�! p

0

. If y 2 X then this term is obviously

in

p

succ. If not we know that p

0

+ s

0

because p + s and since fn(p

0

) � X [

fyg we may apply induction to obtain that p

0

j c(s

0

)

X[fyg

p

succ. But by the

previous lemma c(s

0

)

X[fyg

�

�

c(s

0

fz=yg)

X[fzg

)fy=zg and therefore c(s

0

)

X[fyg

j

p

0

�

�

c(s

0

fz=yg)

X[fzg

)fy=zg j p

0

. It now follows that r

p

succ.

Conversely suppose p j c(s)

X

p

succ. Obviously p # and to show p + s it is su�cient

to prove that if p

x(y)

=) p

0

then p + s

0

. Now it may not be possible for c(s)

X

to perform

x(y) because y may be in X. So pick a completely new v. Then p

x(v)

=) p

0

fv=yg and

p j c(s)

X

�! r where up to �-conversion we may take r to be

(v)p

0

fv=yg j if v 2 X then ! else c(s

0

fv=yg)

X[fvg

:

Moreover we know that r

p

succ and therefore that p

0

fv=yg j c(s

0

fv=yg)

X[fvg

p

succ. By

induction this means p

0

fv=yg + s

0

fv=yg). The simple substitution fy=vg is injective on

fn(p

0

) and so we may apply Proposition 3.3 to conclude p

0

fv=ygfy=vg + s

0

fv=ygfy=vg,

i.e. p

0

+ s

0

. 2

We next design a test e(s;B)

X

, where s 2 RAct

�

and B a �nite subset of N with the

property that whenever p + s and fn(p) � X

p must e(s;B)

X

() 8A 2 A(p; s) B \A 6= ;:

Note that the right hand side is trivially satis�ed if A(p; s) = ;. First let e(x); e(x)

denote the tests xy:!y:nil; x(y):!y:nil respectively, for any name y. Then we de�ne

e(s;B)

X

by induction on s:

1. e(";B)

X

=

P

f e(y) j y 2 B g

2. e(xy:s;B)

X

= 1:w + xy:e(s;B)

X[fyg

3. e(xy:s;B)

X

= 1:w + x(z): if z = y then c(s;B)

X

else ! where z is a new name

4. e(x(y):s; B)

X

= 1:w + x(z): if z 2 X then ! else e(sfz=yg; B)

X[fzg

where z is a

new name.

Proposition 3.13 If p + s and fn(p) � X then

p must e(s;B)

X

() 8A 2 A(p; s) B \A 6= ;:

17

Proof: The proof is by induction on s and again we examine only one case, when s has

the form x(y):s

0

First suppose that p j e(s;B)

X

p

succ and A 2 A(p; s). We must show that B\A 6= ;.

We know that p

x(y)

=) p

00

s

0

=) p

0

for some stable p

0

such that A = Subj(p

0

). Because y

may appear free in the test e(s:B)

X

we may not be able to use y in a communication

between the process and the test. So choose a new v and by Proposition 2.7 we have,

up to �-conversion, p

x(v)

=) p

00

fv=yg

sfv=yg

=) p

0

fv=yg. Moreover by Lemmas 2.4 and 2.5 and

Proposition 2.6 it follows that Afv=yg = Subj(p

0

fv=yg). Because v is new we now have

that, again up to �-conversion,

p j e(s;B)

X

�!

�

(v)p

00

fv=yg j if v 2 X then ! else e(s

0

fv=yg; Bfv=yg)

X[fvg

:

Here we have used an analogue to Lemma 3.11 for the tests, namely that (e(s;B)

X

)� �

�

e(�(s); B�)

X�

. From this it follows that p

00

fv=yg j e(s

0

fv=yg; Bfv=yg)

X[fvg

)

p

succ. So

by induction A

0

\ Bfv=yg 6= ; for every A

0

2 A(p

00

fv=yg; s

0

fv=yg). One such A

0

is

Afv=yg and so A \B 6= ;, because v is new.

Conversely suppose that for all A 2 A(p; s) A \ B 6= ;. We show that

p j e(s;B)

X

p

succ. We know that p # and the proof proceeds by induction on this fact.

Suppose p j e(s;B)

X

�! r. We must show that r

p

succ. If this move is because of an

internal move of either the process or the test we can apply induction or else the result

follows trivially by the construction of the tests. So we need only consider the case when

there is communication between the process and the test. We consider the case when

this is because of an application of the rule Close. The other possibility, when the rule

Com is used, is left to the reader. Then r must have the form

(v)(p

0

j if v 2 X then ! else e(s

0

fv=yg; Bfv=yg)

X[fvg

);

up to �-conversion, where p

x(v)

�! p

0

. It is su�cient to consider the case when v is not

in X when e�ectively any continuing computation is from p

0

j e(s

0

fv=yg; Bfv=yg)

X[fvg

.

So the result will follow by induction if we can show that for every A

0

2 A(p

0

; s

0

fv=yg)

A

0

\Bfv=yg 6= ;. One can show that any suchA

0

has the formAfv=yg where A 2 A(p; s).

Since A \ B 6= ; this implies A

0

\Bfv=yg 6= ;: 2

With these two proposition we can now prove the converse of Proposition 3.10 and

therefore the alternative characterisation of

<

�

.

Theorem 3.14 For every pair of processes p; q, p

<

�

q if and only if p� q.

Proof: We need only prove p � q implies p

<

�

q and this follows directly from the

previous two propositions. For example suppose that p + s, q + s and B 2 A(q; s

0

) where

s

0

is new. We derive a contradiction from the assumption that for all A 2 A(p; s

0

) A 6� B.

For each such A there must be some x

A

in A and not in B. Let L = f a

A

j A 2 A(p; s) g

and choose X so that it contains both fn(p) and fn(q). Then p must e(s

0

; L)

X

whereas

q need not always pass e(s

0

; L)

X

and this contradicts the fact that p

<

�

q. 2

18

This theorem also shows that the behavioural preorder

<

�

is determined by a small

collection of tests, namely all those of the form e(s;B)

X

or c(s)

X

. We call this set of

tests CTest and they will be used in the next section.

As an application of the alternative characterisation we show that

<

�

is preserved by

most of the operators of the language.

Proposition 3.15 For every operator op in � p

i

<

�

q

i

implies op(: : : ; p

i

; : : :)

<

�

op(: : : ; q

i

; : : :).

Proof: For the operator j it is best to prove this directly from the de�nition of

<

�

using the fact that p j q must e if and only if p must q j e. For the other operators is

is easier to prove the result for �. The only non-trivial case is for the binding operator

(y)�. As an example of the proof technique let us show that if p� q and (y)q * s then

(y)p * s. So without loss of generality we can suppose that (y)q

s

=) r where r ". If the

rule Open is not used in this derivation then r has the form (y)q

0

where q

s

=) q

0

. So

q * s from which it follows that p * s and therefore (y)p * s since y can not appear in

s. So suppose Open is used. Then the derivation can be viewed as

(y)q

s

1

=) (y)q

1

x(v)

�! q

0

1

fv=yg

s

2

=) r

where

q

s

1

=) q

1

xy

�! q

0

1

and v 62 fn((y)q

0

1

). This means that the substitution fv=yg is injective on fn(q

0

1

) and

therefore we can apply Proposition 2.7 to �nd a q

0

and s

0

2

such that

q

0

1

s

0

2

=) q

0

; s

2

�

�

s

0

2

and r �

�

q

0

fv=ygfbn(s

2

)=bn(s

0

2

)g:

If we take care to arrange so that bn(s

2

) are all new names, which is possible using

�-conversion, then the renaming is injective and using Proposition 3.3 we have that q

0

".

So q * s and therefore p * s. From this it is easy to establish that (y)p * s. 2

As with the semantic equivalence of [MPW92a],

<

�

is not preserved by pre�xing by

input actions; for example if x and y are di�erent names then

if x = y then vy:nil else v

0

x:nil

<

�

v

0

x:nil

but this is not the case if both sides are pre�xed by z(x). However the following propo-

sition gives us a �nitary rule for inferring z(x):p

<

�

z(x):q | which is the same as that

used in [MPW92a].

Proposition 3.16 If for all v 2 fn(p; q; x) pfv=xg

<

�

qfv=xg then z(x):p

<

�

z(x):q.

Proof: We use the alternative characterisation of

<

�

, the relation �. Every sequence

from z(x):p or z(x):q, apart from the empty one, is of the form zv:s for some v, where

s is a sequence from pfv=xg or qfv=xg respectively. If v 2 fn(p; q; x) then we can use

pfv=xg � qfv=xg to compare their acceptance sets and convergence. Otherwise fv=xg

is injective on fn(p; q) and therefore by Proposition 3.9 pfv=xg � qfv=xg and once more

we can carry out the comparisons. 2

19

4 Modelling the Language L

�

In this section we address the question of �nding a denotational semantics for the lan-

guage L

�

. We �rst discuss what should be an appropriate class of interpretations and

then construct a fully-abstract one in the sense that it identi�es and only identi�es pro-

cesses which are testing equivalent. This is a term model which is constructed using

an equationally based proof system and therefore we have as a by-product a sound and

complete proof system for testing equivalence over processes. We also show that the

particular interpretation we construct is initial in the class of all fully-abstract interpre-

tations.

Because of the computational nature of the language we expect to interpret it in

some complete partial order or cpo D where recursive de�nitions can be interpreted. We

can follow the standard paradigm of algebraic semantics, [Gue81], [Hen88], if in addition

we associate a continuous function with each of the operators of the language. For the

most part the types of these operators are straightforward. Recall that � represents the

set of operators

f nil;
; (y); xy; +; �; j g:

Each of these expects to be applied to either zero, one or two processes and returns a

process. So they may be interpreted as continuous functions over D of the appropriate

arity. However the input operator is more subtle; it is a binding operator in that in x(y):t

all free occurrences of the name y in t are bound by the pre�x x(y). So an appropriate

type for an input function in is

N � (N 7�! D) 7�! D:

Then x(y):t will be in(x; f) where f represents the function �y:[[t]]. This leads to the

de�nition of what we call a natural interpretation for the language L

�

.

De�nition 4.1 A natural interpretation (for the language L

�

), consists of hD; in

D

i

where

i) D is a �� cpo

ii) in

D

: N � (N 7�! D) 7�! D is a function continuous in its second argument, where

N 7�! D inherits the natural pointwise ordering from D

2

This extra structure brings us outside the standard framework of algebraic semantics as

for example de�ned in [GTWW77], [Gue81]. but homomorphisms may be de�ned as the

obvious generalisation of homomorphisms for �� cpos:

De�nition 4.2 A homomorphism from the natural interpretation hC; in

C

i to the nat-

ural interpretation hD; in

D

i is a �-homomorphism h of the underlying �-cpos which

satis�es in addition

h(in

C

(x; f)) = in

D

(x; h � f):

2

20

Given such a natural interpretation, D, we can de�ne a semantic interpretation of L

�

following the usual approach of denotational semantics. We let Env

D

be the set of D-

environments, i.e. mappings from PV toD, ranged over by � and we assume an evaluation

function [[]]:BExp 7�! ftt;�g. Then the semantics of the language L

�

is given as a

function:

D[[]]:L

�

7�! (Env

D

7�! D)

and is de�ned by structural induction:

i) D[[X]]� = �(X)

ii) D[[op(t)]]� = op

D

(D[[t]]�)

iii) D[[recP:t]]� = Y �d:D[[t]]�[d=P]

iv) D[[if be then t else u]]� = D[[t]]� if [[be]] = tt

D[[u]]� if [[be]] = �

v) D[[x(y):t]]�= in

D

(x; �y:D[[t]]�)

where Y is the least-�xpoint operator for continuous functions in D. Although we are

somewhat outside the realm of standard algebraic semantics, [Gue81], many of the usual

techniques and results apply. One particular property we will use is that the denotation

of a process is completely determined by that of its �nite approximations.

De�nition 4.3 Let � be the least reexive, transitive relation over L

�

which is pre-

served by all the operators in � [fx(y)g and which satis�es

1.
 � t

2. tfrecX: t=Pg � recX: t

2

We use FL

�

to denote the set of syntactically �nite terms, i.e. all terms in L

�

which

have no occurrence of the recursion construct, recX: �. Then we de�ne the set of �nite

approximations to a term t as App(t) = f d 2 FL

�

j d � t g. We state without proof:

Theorem 4.4 For every interpretation D D[[t]] =

W

fD[[d]] j d 2 App(t) g.

Of course there are many interpretations which are of no interest whatsoever. How-

ever we show that there is at least one which reects the behavioural view of processes

as outlined in the previous section.

De�nition 4.5 An interpretation D is a model for the language L

�

if for every pair of

processes p; q; D[[p]] � D[[q]] implies p

<

�

q. It is a fully-abstract model if in addition

p

<

�

q implies D[[p]] � D[[q]]. 2

21

X � (Y � Z) = (X � Y)� Z

X � Y = Y �X

X �X = X

X + (Y + Z) = (X + Y) + Z

X + Y = Y +X

X +X = X

X + nil = X

pre:X + pre:Y = pre:(X � Y)

x(y):X + x(y):Y = x(y):X � x(y):Y

xy:X + xy

0

:Y = xy:X � xy

0

:Y

X + (Y � Z) = (X + Y)� (X + Z)

X � (Y + Z) = (X � Y) + (X � Z)

X � Y � X

X +
 �

 � X

(x)(X + Y) = (x)X + (x)Y

(x)(X � Y) = (x)X � (x)Y

(x)(pre:X) = pre:(x)X if x not in n(pre)

(x)(pre:X) = nil if x is the subject of pre

(x)X = X if x 62 fv(X)

(x)(y)X = (y)(x)X

(x)
 =

if tt then X else Y = X

if � then X else Y = Y

Figure 3: Basic Equations

We construct a fully-abstract model using a proof system based on a set of inequations.

The inequations are given in Figures 3 and 4. The �rst contain the standard equations

for testing from [Hen88] and the additional one,

xy:X + xy

0

:Y = xy:X � xy

0

:Y;

from [HI91] which is appropriate to value passing process calculi. It also contains nat-

ural laws for the restriction operator, taken from [MPW92a] and obvious rules for the

if : : : then : : : construct. In the second we have rules governing the parallel combinator,

22

the principal being a version of the interleaving law. Unlike the standard theories of

concurrency, such as that in [Mil89], the restriction operator can not be eliminated from

all �nite terms using the equations; this is a reection of the extra power of restriction

in the �-calculus. However the irreducible occurrences can be coded up as a form of

derived pre�x.

De�nition 4.6 If x 6= y then x(y)p is a shorthand for the term (y)xy:p and the subject

of the pre�x x(y) is x. 2

This notation, taken from [MPW92a], is used in the interleaving law where it is assumed

that pre now ranges over both the standard pre�xes of the form x(y); xy and the new

derived pre�x x(y). The proof system itself is given in Figure 5 and is a simple extension

of equational reasoning. The principle new rule is the Input rule for deriving statements

of the form x(y):p � x(y):q. The rule which one might suggest for input pre�xing,

p � q

x(y):p � x(y):q

is not sound because

<

�

is not preserved by input pre�xing. For another example let p; q

be z(v):yw:nil + yw:z(v):nil; z(v):nil j yw:nil, respectively; then p

<

�

q but x(y):p

6<

�

x(y):q because x(y):q can perform the action x(z) followed by a communication and be

transformed into nil whereas x(y):p does not have that possibility. So x(y):p must satisfy

the test xz:(z(v

0

):! + z(v

0

):! but x(y):q may fail it. For this reason we need the more

complicated Input rule.

We write ` t � u if t � u can be derived in this proof system.

Proposition 4.7 (Soundness) If ` t � u then t

<

�

u.

Proof: It is su�cient to check that all of the equations are satis�ed by

<

�

and that

it is preserved by the rules. The soundness of Rule Input follows from Proposition 3.16

while that of Rule � follows from Proposition 3.8. 2

Note that Proposition 3.16 would justify a more restricted form of the input rule, namely

pfz=yg � qfz=yg for all free names z 2 fv(p; q; y)

x(y):p � x(y):q

However in later proofs it is more convenient to have the more general rule in the proof

system.

The proof system is also complete for �nite processes. These are closed terms from

FL

�

, the sublanguage which does not use the recursion construct. However we can

prove a slightly more general result. Let us add to the proof system the following rule

for recursive equations, which we call the Unwind rule:

u � tfrecX: t=Xg

u � recX: t

Then we can show that the augmented proof system, whose provability relation we denote

by `

r

, is complete for statements of the form d

<

�

p where d is a �nite closed term and

p is any closed term. The essential idea behind the proof is head normal forms.

23

(X � Y) j Z = X j Z � Y j Z

X j (Y � Z) = X j Y �X j Z

nil j P = P j nil = P

X j (Y +
) = (X +
) j Y =

Let X, Y denote

P

fpre

i

:X

i

; i 2 Ig,

P

fpre

j

:Y

j

; j 2 Jg, where no pre

i

(resp. pre

j

) binds

a name free in Y (resp. X

i

). Then

X j Y =

(

ext(X;Y) if comms(X;Y) = false

(ext(X;Y) + int(X;Y))� int(X;Y) otherwise

where

ext(X;Y) =

P

fpre

i

:(X

i

j Y); i 2 Ig+

P

fpre

j

:(X j Y

j

); j 2 Jg

int(X;Y) =

P

� fZ

i;j

; pre

i

comp pre

j

g

where comms(X;Y) is true if there is no i; j such that pre

i

comp pre

j

and

pre

i

comp pre

j

holds when

1. pre

i

is xu and pre

j

is x(v); then Z

i;j

is X

i

j Y

j

fu=vg

2. pre

i

is x(u) and pre

j

is x(v); then Z

i;j

is (w)(X

i

fw=ug j Y

j

fw=vg) where w is not

free in (u)X

i

or in (v)Y

j

3. pre

i

is x(v) and pre

j

is xu: then Z

i;j

is X

i

fu=wg j Y

j

4. pre

i

is x(v) and pre

j

is x(u); then Z

i;j

is (w)(X

i

fw=vg j Y

j

fw=ug) where w is not

free in (v)X

i

or in (u)Y

j

Figure 4: Equations for j

De�nition 4.8 Let A be a �nite collection of �nite subsets of N [N , and for each

a 2 [A let p

a

be a term given as follows:

1. If a 2 N then p

a

is a(y):p

0

for some term p

0

2. If a 2 N then p

a

is a non-empty sum of the form ay

1

:p

1

+ : : :+ ay

n

:p

n

+ f a(y):p

0

g

where p

i

; p

0

are arbitrary terms and y

i

are distinct names and +f g indicates an

optional summand.

Then

X

� f

X

fp

a

j a 2 AgjA 2 Ag

is a hnf. 2

Note that by taking A to be empty we have that nil is a hnf. We �rst show that every

convergent process can be reduced to a hnf which has the same \size" for some measure

of size. Here we take the size of a a process p, j p j, to be the length of the longest

sequence of actions which it can perform.

24

Lemma 4.9 If p # then there exists a hnf, hnf (p), such that `

r

p = hnf (p) and

j p j = j hnf (p) j.

Proof: It is virtually identical to that of Proposition 4.2.1 of [HI91] and is therefore

omitted. The only new ingredient is that in the subterms p

x

there is at most one

summand of the form x(y):p

0

. If during the reduction procedure two such summands are

generated then they can be replaced by one using the equations as follows:

x(y):p

0

+ x(z):p

00

= x:(w)p

0

fw=yg+ x:(w)p

00

fw=zg by �-conversion, where w is new

= (w)(xw:p

0

fw=yg+ xw:p

00

fw=zg)

= (w)(xw:(p

0

fw=yg � p

00

fw=zg))

� x(w):(p

0

fw=yg � p

00

fw=zg)

Note also that the new operator, (y), is accommodated by the restriction axioms in

Figure 3. If h is a hnf then these can be used to reduce (y)h to a hnf . 2

Theorem 4.10 (Partial Completeness) For all �nite processes d and arbitrary processes

p; d

<

�

p implies `

r

d � p.

Proof: (Outline) The proof is by induction on j d j. If d " then it is easy to show

that ` d =
 and therefore the result follows trivially. So we may assume both d and

p converge and therefore by the previous result that they are head normal forms. The

proof is now virtually identical to that of Theorem 5.6 of [HI91]. 2

The term model is constructed from this provability relation applied to what we call

behaviourally �nite terms. Intuitively these are terms which can only ever perform a

�nite number of possible actions. But because of the nature of bound output actions the

de�nition is a little complicated. First let (a; p) � (a

0

; p

0

) if

1. a = x(y) or xy implies a

0

= a and p

0

= p

2. a = x(y) implies a

0

= x(z) and p

0

�

�

pfz=yg for some z not free in (y)p.

It is easy to check that � is in fact an equivalence relation.

De�nition 4.11 The set of behaviourally �nite terms, BF, is the least set of (syntacti-

cally) �nite terms b such that

1. the set f [(a; b

0

]) j b

a

=) b

0

and b

0

6<

�

 g is �nite

2. whenever b

a

=) b

0

for any action a then b

0

is also in BF.

2

25

I

p � p

p � q; q � r

p � r

II

p

i

� q

i

; 1 � i � n

op(p

1

; : : : ; p

n

) � op(q

1

; : : : ; q

n

)

for every op 2 fxy:; (x);+;�; jg

Eq

p � q

for every instance of an inequation

�

p �

�

q

p � q

Input

pfz=yg � qfz=yg for all names z

x(y):p � x(y):q

If1

p � p

0

if be then p else q � if be then p

0

else q

q � q

0

if be then p else q � if be then p else q

0

If2

if tt then p else q = p

if � then p else q = q

Figure 5: The Proof System

A typical example of a �nite process which is not behaviourally �nite is x(y):nil because

it can perform an in�nite number of distinct actions. In any model of the language this

term will not be interpreted as a compact element. One can also check that the pre�x

operator x(y) does not preserve the property of being behaviourally �nite. As a simple

example nil is in BF but x(y):nil is not. However it is preserved by all the other operators

and therefore when constructing the model we will only have to pay particular attention

to this operator, x(y).

For convenience let us use p �

E

q in place of ` p � q and when appropriate p �

Er

q in

place of `

r

p � q. The relation �

E

is a preorder over the set BF and is also preserved by

all the operators in �. So let P

E

denote the �-po (or �-partial order) whose carrier is the

set of equivalence classes [b] over BF, generated by the kernel of �

E

. These are ordered by

[d] � [d

0

] if d �

E

d

0

and the operations are de�ned by op

P

E

(: : : ; [d]; : : :) = [op(: : : ; d; : : :)].

This is extended to a �-cpo in the standard way by ideal completion. We denote the

resulting cpo by C

E

. Briey speaking the elements of C

E

may be taken to be ideals

over P

E

, i. e. non-empty downward-closed subsets of P

E

ordered by set inclusion. The

26

operations are de�ned pointwise:

op(: : : ; I; : : :) = f op

P

E

(: : : ; e; : : :) j e 2 I g #

where S # denotes the downward closure of the set S. These de�nitions ensure that C

E

is

a �-cpo. More details of this construction, and its properties, may be found in [Gue81],

[Hen88]. To consider it as an interpretation it is su�cient to de�ne in

C

E

to interpret the

missing operator, x(y). Since N is countable we can assume that there exists a sequence

of �nite subsets of N ; N

k

; k � 0, such that N = [

k

N

k

. These �nite sets are used to

de�ne approximations to in

C

E

: for each k � 0 let

in

k

C

E

:N � (N 7�! C

E

) 7�! C

E

be de�ned by

in

k

C

E

(x; f) = f [x(n): if n 2 N

k

then b else
] j b 2 f(n) g # :

Here we are assuming that the language for boolean expressions is su�ciently powerful

to express \n 2 N

k

". Since N

k

is �nite this is not unreasonable. We may now de�ne

in

C

E

(x; f) =

_

f in

k

C

E

(x; f) j k � 0 g:

It is easy to check that each in

k

C

E

is continuous and therefore so is in

C

E

. Thus we can

consider C

E

to be an interpretation and so we can interpret our language in it. We show

that it gives a fully-abstract model.

The principle characteristic of this interpretation is given in the following theorem.

Theorem 4.12 For every b 2 BF C

E

[[b]] = f[b]g # :

Proof: Since all elements of BF are �nite terms we can prove the result by induction

on the size of the terms, i. e. the number of symbols it contains. The only non-trivial

case is when the term has the form x(y):b. By induction we may assume C

E

[[bfz=yg]] =

f[bfz=yg]g # for every name z. So by de�nition

C

E

[[x(y):b]] =

_

k

in

k

C

E

(x; �n:f[bfn=yg]g #)

Using the inductive hypothesis one can check that for each k

in

k

C

E

(x; �n:f[bfn=yg]g #) = f[x(n): if n 2 N

k

then bfn=yg else
]g # :

Let m be such that x 62 N

m

implies bfx=yg

<

�

 and therefore ` bfx=yg �
. Then

using the Input rule it follows that for every k

` x(n): if n 2 N

k

then bfn=yg else
 = x(n): if n 2 N

m

then bfn=yg else

and therefore

C

E

[[x(y):b]] = f[x(n): if n 2 N

m

then bfn=yg else
]g # :

An application of the Input rule also gives

` x(n): if n 2 N

m

then bfn=yg else
 = x(y):b

27

and it follows that C

E

[[x(y):b]] = f[x(y):b]g # : 2

We now wish to show that the provability relation `

r

is sound and complete with respect

to the model C

E

for statements of the form b � q. To this end we extend the syntax of

the language by allowing, for each k � 0, the input pre�x x

k

(y). The semantics of this

new construct is obvious:

C

E

[[x

k

(y):t]]� = in

k

C

E

(x; �y:C

E

[[t]]�):

This extended syntax allows us to de�ne syntactically the behaviourally �nite terms

which determine the semantics of arbitrary �nite terms.

For any �nite process d let d

(m)

be de�ned by

1. d

(0)

=

2. (x(y):d)

m

= x

m

(y):d

(m)

3. (op(: : : ; d; : : :))

(m)

= op(: : : ; d

(m)

; : : :).

Note that each d

(m)

is behaviourally �nite and one can show that n � m implies ` d

(n)

�

d

(m)

and that ` d

(m)

� d for any m. These proofs make essential use of the Input rule.

But the most important property of these behaviourally �nite approximations is:

Proposition 4.13 For all �nite d; C

E

[[d]] =

W

m

C

E

[[d

(m)

]].

Proof: By structural induction on d. The only nontrivial case is when d has the form

x(y):e.

C

E

[[x(y):e]] =

_

m

in

m

C

E

(x; �w:C

E

[[efw=yg]])

=

_

m

in

m

C

E

(x; �w:

_

k

C

E

[[e

(k)

fw=yg]]) by induction

=

_

k

in

m

C

E

(x; �w:C

E

[[e

(m)

fw=yg]]) by continuity

=

_

m

[[x

m

(y):e

(m)

]]:

2

As an immediate corollary we have a partial completeness result:

Proposition 4.14 For every b 2 BF and process q C

E

[[b]]� C

E

[[q]] implies `

r

b � q.

Proof: First recall that C

E

[[q]] =

W

fC

E

[[d]] j d � q g and that C

E

[[b]] is a compact element

since, by Theorem 4.12, it has the form f[b]g #. So for some d � q C

E

[[b]] � C

E

[[d]].

Also C

E

[[d]] =

W

fC

E

[[d

(m)

]] j m � 0 g and again by the compactness of C

E

[[b]] there is a

m � 0 such that C

E

[[b]] � C

E

[[d

(m)

]]. Both of these are in BF and so using Theorem 4.12

` b � d

(m)

.

Therefore `

r

b � d

(m)

� d � q. 2

We also have the converse:

28

Proposition 4.15 For every b 2 BF and process q `

r

b � q implies C

E

[[b]]� C

E

[[q]].

Proof: The proof follows from the property

`

r

b � q implies that there exists a d � q such that

for some m � 0 ` b � d

(m)

: (�)

This is proved by induction on the length of the proof of `

r

b � q and proceeds by

considering the last rule applied in the proof. There are only three non-trivial cases, the

Input rule, the Unwind rule and the Transitivity rule. As an example we look at the Input

rule. Here b; q have the form x(y):b

0

; x(y):p respectively and `

r

b � q has been inferred

because for all z 2 N `

r

bfz=yg � qfz=yg. Moreover by induction the proposition will

apply to all of these statements. Let N

n

be the �nite set f z j 6` bfz=yg �
 g. For

each z 2 N

n

there is a d

z

and n

z

such that ` bfz=yg � (d

z

fz=yg)

(n

z

)

. Let d 2 App(q)

dominate all d

z

, i. e. d

z

� d, and let n be the maximum of fn

z

g. Then for every name z

` bfz=yg � dfz=yg

n

= d

n

fz=yg:

Applying the Input rule we now obtain ` x(y):b � x

n

(y):d

n

Assuming (�) the proof of the proposition is now immediate. For if `

r

b � q then let

d be such that d � q and ` b � d

(m)

for some m. Since both of these are in BF it follows

from Theorem 4.12 that C

E

[[b]]� C

E

[[d

(m)

]]. Applying Theorem 4.4 and Proposition 4.13

we obtain C

E

[[b]]� C

E

[[q]]. 2

We can now show that that the interpretation C

E

is fully abstract with respect to a

�nitary version of the behavioural preorder.

De�nition 4.16 If R is any relation over processes let pR

f

q if for every b 2 BF bRp

implies bRq. 2

Theorem 4.17 C

E

is a fully abstract model with respect to

<

�

f

.

Proof: For convenience let us denote C

E

[[p]] � C

E

[[q]] by p �

C

E

q. Since C

E

is an

algebraic cpo it follows that the relation �

C

E

is �nitary, i. e. �

C

E

=�

f

C

E

. So

p �

C

E

q () p �

f

C

E

q

() b �

C

E

p implies b �

C

E

q

() `

r

b � p implies `

r

b � q

() b

<

�

p implies b

<

�

q

() p

<

�

f

q

2

The required full-abstractness result will follow if we can show that

<

�

coincides

<

�

f

. If

we examine the tests which characterise

<

�

one can see why intuitively why this should

be true; to guarantee each speci�c test in CTest only a �nitary amount of the behaviour

of a process is required. This could be proved directly using the operational semantics

but we take advantage of the development of head normal forms in order to give a simpler

proof.

29

Lemma 4.18 For every test e 2 CTest p must e implies that there exists some b 2 BF

such that `

r

b � p and b must e.

Proof: The proof proceeds by induction on the size of the test e. Because of the form

of the tests in CTest p must converge and therefore it must have a hnf, say of the form

X

� f

X

fp

a

j a 2 AgjA 2 Ag:

The idea is to replace each p

a

with a behaviourally �nite approximation which is provably

less than it so that the resulting process still satis�es the test. The exact from the

replacement term takes depends on the test e. We examine only one example. Suppose

it is e(xy:s;B)

X

, i. e. 1:! + xy:e(s;B)

X[fyg

. Then each p

a

other than one of the form

x(z):p

0

, if it exists, is replaced by a term involving
. For example if it has the form

x

0

(z):p

0

where x

0

is di�erent from x then it is replaced by x

0

(z):
 and if it has the form

x

0

y

1

:q

1

+ : : :+ x

0

y

k

:q

k

f +x

0

(y):q

0

g it is replaced by x

0

y

1

:
 + : : :+ x

0

y

k

:
 f +x

0

(y):
g.

If one of the form x(z):p

0

exists then p

0

fy=zg must e(s;B)

X[fyg

. So by induction there

is a b

0

such that `

r

b

0

� p

0

fy=zg. So replace the x(z):p

0

by x(z): if z = y then b

0

else
 .

Suppose that the result of all these replacements is b. Then b must e(xy:s;B)

X

and one

can easily show that `

r

b � p. 2

Corollary 4.19 The relation

<

�

is �nitary, i. e.

<

�

=

<

�

f

.

Proof: It is su�cient to prove that p

<

�

f

q implies p

<

�

q.

Let p must e where e 2 CTest. Then there exists a b 2 BF such that `

r

b � p and

b must e. From the soundness of the proof system it follows that b

<

�

p and so b

<

�

q;

therefore q must e. 2

We can now state the main result of the section

Theorem 4.20 C

E

is a fully abstract model with respect to

<

�

. 2

Finally we can show that this particular fully abstract model is in some sense the \least"

interpretation which is fully-abstract.

De�nition 4.21 An interpretation C is initial in a class of models C if for every D 2 C

there is a unique homomorophism i

D

:C 7�! D. 2

Theorem 4.22 C

E

is initial in the class of fully-abstract models.

Proof: Let D be a fully-abstract model. De�ne i

D

:C

E

7�! D by

i

D

(I) =

_

fD[[b]] j [b] 2 I g:

Since D is fully-abstract this is well-de�ned and obviously is a �-homomorphism. So we

must show that in addition it satis�es

i

D

(in

C

E

(x; f) = in

D

(x; i

D

� f)

30

for any f :N 7�! C

E

.

Let f =

W

f

n

where f

n

is de�ned such that for all x 62 N

n

f

n

(x) =
 and for all

x 2 N

n

f

n

(x) is a compact element. This is possible because C

E

is an algebraic cpo.

Then in

C

E

(x; f) =

W

n

in

C

E

(x; f

n

). It is not di�cult to show that for each n

in

C

E

(x; f

n

) = f[x(w): if w 2 N

n

then f

n

(w) else
]g #

and therefore

in

C

E

(x; f) =

_

n

f[x(w): if w 2 N

n

then f

n

(w) else
]g # :

So

i

D

(in

C

E

(x; f)) =

_

n

D[[x(w): if w 2 N

n

then f

n

(w) else
]]

=

_

n

in

D

(x; �w: if w 2 N

n

then D[[f

n

(w)]] else ?)

=

_

n

in

D

(x; i

D

� f

n

)

= in

D

(x; i

D

� f):

2

These results show that at least there are reasonable models of the language and as

a byproduct we have a sound and complete proof system for the behavioural preorder.

This is obtained by adding !-induction to the proof system. Note that one can also

replace the in�nitary Input rule with the �nitary one suggested by Proposition 3.16 and

retain completeness. However CI

E

, the initial fully-abstract model constructed in this

section, is a term model and it would be more satisfactory if we had an independent

description of it, for example as some modi�cation of the acceptance trees in [Hen88].

The main di�culty here is to �nd a version of these trees which will support a reasonable

de�nition of the restriction operator (y).

Another de�ciency in this section is the general de�nition of what constitutes an

interpretation of the language. It would be more satisfactory if this took into considera-

tion the fact that the operator (y) also binds names. So in addition to having a special

way of interpreting the input operator, using the functions in

D

, we would also have a

special function for restriction. One suggestion would be to have a function res

D

of type

(N 7�! D) 7�! D and then to de�ne D[[(y)t]]� to be res

D

(�y:[[t]]�). With this de�nition

�-conversion would be sound in all interpretations. However it is di�cult to extend the

results of this section to this new form of interpretation. It seems that a more subtle

interpretation of restriction is required and one possibility is to adopt the approach taken

in [Win88].

References

[BD92] M. Boreale and R. DeNicola. Testing for mobile processes. In Proceedings

of CONCUR 92, 1992.

31

[GTWW77] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra seman-

tics and continuous algebras. Journal of the Association for Computing

Machinery, 24(1):68{95, 1977.

[Gue81] I. Guessarian. Algebraic Semantics. Lecture Notes in Computer Science vol

99, 1981.

[Hen88] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[HI91] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes

with value-passing. Information and Computation, to appear, 1991.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part i.

Information and Computation, 100(1):1{40, 1992.

[MPW92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part

ii. Information and Computation, 100(1):41{77, 1992.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research

Notes in Theoretical Computer Science, Pitman/Wiley, 1988.

[Win88] G. Winskel. A category of labelled petri nets and compositional proof

system. In Proceeding of the conference \Logic in Computer Science", Ed-

inburgh, July, 1988.

32

