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AsstracT.  An intuitionistic, hybrid modal logic suitable for reasoning about distribution of resources was
introduced in [16, 17]. The modalities of the logic allow to validate properties paréicular place in some

place and irall places. We give a sound and complete Kripke semantics for the logic extended with disjunctive
connectives. The extended logic can be seen as an instahtybofl IS5 We also give a sound and complete
birelational semantics, and show that it satisfies the finite model property: if a judgement is not valid in the logic,
then there is a finite birelational counter-model. Hence we prove that the logic is decidable.
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1 Introduction

In current computing paradigm distributed resources spread over and shared amongst dif-
ferent nodes of a computer system are very common. For example, printers may be shared
in local area networks, or distributed data may store documents in part$esedi loca-

tions. The traditional reasoning methodologies are not easily scalable to these systems as
they may lack implicitly trust-able objects such as a central control.

This has resulted in the innovation of several reasoning techniques. A popular approach
in the literature has been the use of algebraic systems such as process algebra [10, 20, 15].
These algebras have rich theories in terms of semantics [20], logics [9, 8, 14, 22], and
types [15]. Another approach is logic-oriented [16, 17, 37, 21, 38, 30]: intuitionistic modal
logics are used as foundations of type systems by exploitingptbjgositions-as-types,
proofs-as-programparadigm [12]. An instance of this was introduced in [16, 17]. The
logic introduced there is the focus of our study. It uses the conjunctive connectaed
T, and implication—.

The formulae in this logic also include names, calfgdces Assertions in the logic
are associated with places, and are validated in places. In addition to considbetiger
a formula is true, we are also interestedwherea formula is true. In order to achieve
this, the logic has three modalities. The modalities allow us to infer whether a property is
validated in a specific place of the system)@or in an unspecified place of the system
(0), or in any part of the systenmj. The modality @ internalises the model in the logic,
and hence the logic can be classified as a hybrid logic [1, 2, 4, 5, 6, 7, 27, 28].

A natural deduction for the logic is given in [16, 17], and the judgements in the logic
mention the places under consideration. The rulesyfando resemble those for exis-
tential and universal quantification of first-order intuitionistic logic. We extend the logic
with disjunctive connectives, and extend the natural deduction system to account for these.
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The deduction system is essentially a conservative extension of propositional intuitionistic
logic; and it is in this sense that we will use the adjective “intuitionistic” for the extended
logic throughout the paper.

As noted in [16, 17], the logic can also be used to reason about distribution of resources
in addition to serving as the foundation of a type system. The papers [16, 17], however,
lack a model to match the usage of the logic as a tool to reason about distributed resources.
In this paper, we bridge the gap by presenting a Kripke-style semantics [19] for the logic
extended with disjunctive connectives. In Kripke-style semantics, formulae are considered
valid if they remain valid when the atoms mentioned in the formulae change their value
from false to true. This is achieved by using a partially ordered segioséible states
Informally, more atoms are true in larger states.

We extend the Kripke semantics of the intuitionistic logic [19], enriching each possible
state with a set of places. The set of places in Kripke states are not fixed, fierérdi
possible Kripke states may hadgferentset of places. However, the set of places vary in
a conservative way: larger Kripke states contain larger set of places. In each possible state,
different places satisfy fierent formulae. In the model, we interpret atomic formulae as
resources of a distributed system, and placement of atoms in a possible state corresponds
to the distribution of resources.

The enrichment of the model with places reveals the true meaning of the modalities in
the logic. The modality @ expresses a property in a named place. The modalityrre-
sponds to a weak form of spatial universal quantification and expresses a property common
to all places, and the modality corresponds to a weak form of spatial existential quan-
tification and expresses a property valid somewhere in the system. For the intuitionistic
connectives, the satisfaction of formulae at a place in a possible state follows the standard
definition [19].

To give semantics to a logical judgement, we allow models with more places than those
mentioned in the judgement. This admits the possibility that a user may be aware of only
a certain subset of names in a distributed system. This is crucial in the proof of soundness
and completeness as it allows us to create witnesses for the existehéiat(the universal
(o) modalities. The Kripke semantics reveals that the extended logic can be seen as the
hybridisation of the well-known intuitionistic modal systdé8b[11, 23, 26, 29, 34, 35].

Following [11, 26, 34, 35], we also introduce a sound and complete birelational se-
mantics for the logic. The reason for introducing birelational semantics is that it allows
us to prove decidability. Birelational semantics typically enjoy finée model property
[24, 35]: if a judgement is not provable, then there is a finite counter-model. On the other
hand Kripke semantics do not satisfy the finite model property [24, 35]. As in Kripke mod-
els, birelational models have a partially ordered set. The elements of this set are called
worlds. In addition to the partial order, birelational models also have an equivalence re-
lation amongst worlds, called treecessibilityor reachabilityrelation. Unlike the Kripke
semantics, we do not enrich each world with a set of places. Instead, we have a partial
function, theevaluation functionwhich attaches a name to a world in its domain. As we
shall see, the partiality of the function is crucial to the proof of decidability.

The partial evaluation function must satisfy two important properties. Eoterence
states that if the function associates a name to a world then it also associates the same
name to all larger states. The otheniquenessstates that two dlierent worlds accessible
from one another do not evaluate to the same name. Coherence is essential for ensuring
monotonicity of the logical connective @ and uniqueness is essential for the ensuring
soundness of introduction of conjunction and implication.

Following [35], we also introduce an encoding of the Kripke models into birelational
models. The encoding maps a place in a Kripke state into a world of the corresponding bire-
lational model. The encoding ensures that if a formula is validated at a place in a state of
the Kripke model, then it is also validated at the corresponding world. The encoding allows
us to conclude soundness of Kripke semantics from soundness of birelational semantics. It
also allows us to conclude completeness of the birelational models from completeness of
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Kripke semantics. We emphasise here that any birelational model resulting from the encod-
ing is restricted in the sense that any two worlds reachable from each other are not related
in the partial order. Therefore, the finite model property may fail for Kripke semantics even
if it holds for birelational models. Birelational semantics gives us more models, and the
fact that reachable worlds can be ordered is essential to achieve finite model property for
birelational semantics, s€8.2 and [24, 35].

Surprisingly, the soundness of the birelational models was not straightforward. The
problematic cases are the inference rules for introductiamarfid the elimination of. In
Kripke semantics, soundness is usually proved by duplicating places in a conservative way
[7, 35]. The patrtiality of the evaluation function, along with the coherence and uniqueness
conditions however impeded in obtaining such a result. It has been noted in [35] that the
soundness is also non-trivial in the case of birelational models for intuitionistic modal logic.
However, the problems with soundness here arise purely because of the hybrid nature of
the logic. Soundness is obtained by using a mathematical construction that creates a new
birelational model from a given one. In the new model, the set of worlds consists of the
reachability relation of the old model, and we add new worlds to witness the existential and
universal properties.

The proof of completeness follows standard techniques from intuitionistic logics, and
given a judgement that is not provable in the logic we constreetrenical Kripke model
that invalidates the judgement. However, following [35], the construction of this model is
done in a careful way so that it assists in the proof of decidability. The encoding of Kripke
models into birelational models gives uganonical birelational model The worlds of
canonical birelational models consists of triples: a finite set of plgea finite set of
sentenced, and a special plaagwhich is the evaluation of the world.

The set of worlds in the canonical birelational models may be infinite. We show that by
identifying the worlds in the birelational model up-to renaming of places, we can construct
an equivalent finite model, called tlypiotient model This allows us to deduce the finite
model property for the birelational semantics, and hence decidabilty of the logic. The proof
is adapted from the case of intuitionistic modal logic [35]. The partiality of the evaluation
function is crucial in the proof.

The rest of the paper is organised as follows.§H we introduce the logic and the
Kripke semantics. 183, we introduce the birelational semantics, and prove the soundness
of the logic with respect to birelational models. The encoding of Kripke models into birela-
tional models is also given and it allows us to conclude soundness of Kripke semantics. The
construction of canonical models and completeness is discus§ddlim§5, we construct
the quotient model and prove the finite model property for birelational models. Related
work is discussed i§6, and our results are summarisedin

2 Logic

We now introduce, through examples, the logic presented in [16, 17] extended with dis-
junctive connectives, thus giving us the full set of intuitionistic connectives. The logic can
be used to reason about heterogeneous distributed systems. To gain some intuition, con-
sider adistributed peer to peer databasdere the information is partitioned over multiple
communicating nodes (peers).

Informally, the database has a set of nodesplaces and a set of resources (data)
distributed amongst these places. The nodes are chosen from the elements of a fixed set,
denoted byp, q,1, s,... Resources are represented by atomic formidlzg ... € Atoms
Intuitively, an atomA is valid in a placep if that place can access the resource identified
by A.

Were we reasoning about a particular place, the logical connectives of the intuitionistic
framework would be dficient. For example, assume that a particular docunuerat, is
partitioned in two partsgdoc; anddoc,, and in order to gain access to the document a
place has to access both of its parts. This can be formally expressed as the logical formula:
(docy A docy) — doc, whereA and— are the logical conjunction and implication.déc,
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anddoc; are stored in a particular place, then the usual intuitionistic rules allow to infer
that the place can access the entire document.

The intuitionistic framework is extended in [17] to reason aboffedint places. An
assertion in such a logic takes the forgmat p”, meaning that formula is valid at placep.

The constructat” is a meta-linguistic symbol and points to the place where the reasoning
is located. For exampleloc; at p anddoc; at p formalise the notion that the panisc,
anddoc; are located at the noge If, in addition, the assertiondfc; Adoc,) — doc) at p

is valid, we can conclude that the documdat is available ap.

The logic is a conservative extension of intuitionistic logic in the sense that if we restrict
our attention to formulae without modalities then the ‘local’ proof system in a single place
p mimics the standard intuitionistic one. For instance, the deduction described above is
formally

;AP doc; atp ;AP doc, atp
A
: A HP doc; A doc, at p : A HP (doc, A doc,) — doc at p £ (1)
-
;AP docatp

wherea &' (doc; A docy) — doc at p,doc; at p,doc, at p. It is easy to see that this
derivation becomes a standard intuitionistic one if rewritten without the ‘plate.

In the assertiorp at p, ¢ will not contain any occurrences of the constrattInstead,
¢ will use modalities @, one for each place in the system, to cast the meta-linguistic
at at the language level. A modality @nternalises resources at the locatirand the
modal formulap@p means that the propertyis valid atp, and not necessarily anywhere
else. Indeed botl at p ande@p will have the same semantics, and it is possible to define
an equivalent logic in which the construet is not needed. However, we will prefer to
keep the distinction in the logic as was the case in [16, 17]. Also, the introduction and
elimination rules for the modality @ are more elegant if we maintain this distinction. We
need to keep track of where the reasoning is happening, and if we coafuséth @
then we will always need sentences of the fgg@p. In that case @-elimination could be
applied only when the formula has two or more occurrences of @, namely only when it is
of the formp@p@q.

An assertion of the formp@p at p’ means that we are located at the plgteand we
are reasoning about the propegtyhat is validated at placp. For example, suppose that
the placep has the first half of the document, i.elgc; at p, andp’ has the second one,
i.e.,doc, at p’. In the logic we can formalise the fact that can send the padoc, to
p by using the assertiormi¢c, — (doc,@p)) at p’. The rules of the logic will conclude
doc;, at p and sodoc at p. The formal derivation, (if we look ahead at the rules in Fig. 1),
is

A PP doc, at pPoA REE (doc, — (doc,@p)) at p/
. —
; A +HPP (doc,@p) at p/
. @E
;A HPPl doc, at p

E

Wherea €' doc; at p, (doc, — (doc,@p)). Moreover,doc at p is derived by enrichings
with the assumptiondoc; at p, (doc; Adoc;) — doc at p, and by mimicking the derivation
in (1).

The logic also has two other modalities to accommodate reasoning about properties
valid at diferent locations, which we discuss briefly. Knowing exactly where a property
holds is a strong ability, and we may only know that the property holds somewhere without
knowing the specific location where it holds. To deal with this, the logic has the modality
the formulaoy means thap holds in some place of the system. In the example above, the
location ofdoc, is not important as long as we know that this document is located in some
place from where it can be sentpo Formally, this can be expressed by the logical formula
¢(doc, A (doc, — (doc,@p))) at p’. By assuming this formula, we can infdoc; at p,
and hence the documaesidc is available ap. We will illustrate this inference at the end of
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the section (see Ex. 1).

Even if we deal with resources distributed in heterogeneous places, certain properties
are valid everywhere. For this purpose, the logic has the modalitlye formulaoy means
thaty is valid everywhere. In the example aboypesan access the documatic, if there
is a place that has the patbc, and can send it everywhere. This can be expressed by
the formula¢(doc, A (doc, — bdocy)) at p’. The rules of the logic would allow us to
conclude thatloc; is available ap. Therefore the documedbc is also available gp. We
will illustrate this inference at the end of the section (see Ex. 2).

We now define formally the logic. As mentioned above, it is essentially the logic in-
troduced in [17] enriched with the disjunctive connectiveand L, thus achieving the full
set of intuitionistic connectives. This allows us to express properties such as: the docu-
mentdoc; is located either ap itself or atq (in which casep has to fetch it). This can be
expressed by the formulddc, v ((doc,@q) — docy)) at p.

For the rest of the paper, we shall assume a fixed countable set of atomic formulae
Atoms and we vary the set of places. Given a countable set of pRicé=t Frm(Pl) be the
set of formulae built from the following grammar:

pi=AlTILlergleVele—¢le@p|Op|op.
Here the syntactic categofy stands for elements froal, and the syntactic categody
stands for elements froitoms The elements ifrrm(PIl) are said to bgure formulae
and are denoted by small Greek letterg, ... An assertion of the fornp at p is called
sentenceWe denote by capital Greek lettdrsl'y, . .. (possibly empty) finite sets of pure
formulae, and by capital Greek lettexsA;, . .. (possibly empty) finite sets of sentences.
Each judgement in this logic is of the form

AR patp
where

e Theglobal context is a (possibly empty) finite set of pure formulae, and represents
the properties assumed to hold at every place of the system.

e Thelocal contextA is a (possibly empty) finite set of sentences; since a sentence is a
pure formula associated to a plagerepresents what we assume to be valid in specific
places.

e The sentence at p says thatp is derived to be valid in the plageby assuming’; A.
e The set of placeP represents the part of the system we are focusing on.

In the judgement, it is assumed that the places mention&daimd A are drawn from the
setP. More formally, if PL(X) denotes the set of places that appear in a syntactic ofject
then it must be the case tHRit(I')) UPL(A) UPL(p at p) € P. Any judgement not satisfying
this condition is assumed to be undefined.

A natural deduction system without disjunctive connectives is given in [16, 17]. The
natural deduction system with disjunctive connectives is given in Fig. 1. The most interest-
ing rules arebE, the elimination ofy, andal, the introduction ofa. In these rulesP + p
denotes the disjoint unioR U {p}, and witnesses the fact that the plareccurs in neither
[, nor A, nore, nory. If p € P, thenP + pis undefined, and any judgement containing
such notation is assumed to be undefined in order to avoid a side condition stating this
requirement.

The ruleoE explains how we can use formulae valid at some unspecified location: we
introduce a new place and extend the local context by assuming that the formula is valid
there. If any assertion that does not mention the new place is validated thus, then it is also
validated using the old local context. The ralesays that if a formula is validated in some
new place, without any local assumption on that new place, then that formula must be valid
everywhere.

The rulesol andoE are reminiscent of the introduction of the existential quantifica-
tion, and the elimination of universal quantification in first-order intuitionistic logic. This
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AP gatp i=1,2 ;AP o1 A g at _
it A SRR EP AR (=12)
AP o1 Ao atp [ AR g atp
F;A,soatpkpwatp_)l AP o> yatp T;AR patp £
AP - yatp Ay atp -
;AP g at ;AP atp’
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AR p@patp AR gatp
AP patp | AP opatp T;A @atqrPdy atp” oF
AP opat pf AP yatp”
;AP g atq | I’A+Popatp T,p AP yatp e
I;A+Popatp AP yatpf

Ficure 1. Natural deduction.

analogy, however, has to be taken carefully. For example,Afi-° ¢y at p, then we can
show using the rules of the logic thEtA P ooy at p. In other words, if a formulay is
true in some unspecified place, then every place can deduce that there is some place where
Y is true.
Also note that, as stated, the ruld= has a ‘local’ flavour: fromL at p, we can infer
any other property in the same plage,However, the rule has a ‘global’ consequence. If
we havel at p, then we can infer. @q at p. Using @E, we can then infew at g. Hence,
if a set of assumptions makes a place inconsistent, then it will make all places inconsistent.
As we shall see i§2.1, the Kripke semantics of this logic would be similar to the one
given for intuitionistic systeniS5[23, 29, 35]. Hence this logic can be seen as an instance
of Hybrid 1S5[7]. Before we proceed to define the Kripke semantics, we illsutrate our
derivation system by a couple of examples. First example will demonstrate the use of rule
o1, while the second example will demonstrate the usetf

Example 1 Letp, p’ € P, ¢ be the formuladoc, A(doc, — doc,@p)) at p’. LetA & oY

Pickqg ¢ P and letA’ &t Oy, ¥ at q. We can derive

A +P doc, at p

as follows:



o
- L .
AP oy at p’ ;A +P*9 doc, at p
;A +P doc, at p

OE

wherer is the derivation:

L
; A’ +P*9 doc, A (doc, — docy) atq E ; A +P*9 doc;, A (doc, — doc,) atq
;A" +P*9 doc, at g ; A’ +P*9 doc, — oOdoc; atq

A’ P+ doc, atq

Example 2 Let p, p’ € P andy be the formuladoc, A (doc, — odoc,@p)) at p’. Let
AL oy. Pickqg ¢ P and letA’ &ef Oy, W atq. Just as in Example 1, we can derive
A +P doc, at p
as follows:
LM
A P o(doc;, A (doc, — odocy)) at p’ L - A’ +P+ dog, at p
;AP doc, at p oF

wherer, is the derivation
.
A’ +P*9 odoc, atq  docy; A’ FP*9 doc, at p .
O
A’ +P*9 doc, at p

wherer; is similar to the proofr in 1.

2.1 Kripke Semantics

There are a number of semantics for intuitionistic logic and intuitionistic modal logics that
allow for a completeness theorem [7, 18, 35, 11, 34, 23, 26]. In this section, we concen-
trate on the semantics introduced by Kripke [19, 36], as it is convenient for applications
and fairly simple. This would provide a formalisation of the intuitive concepts introduced
above.

In Kripke semantics for intuitionistic propositional logic, logical assertions are inter-
preted over Kripke models. The validity of an assertion depends on its behaviour as the
truth values of its atoms change from false to true according to a Kripke model. A Kripke
model consists of partially orderedset of Kripke statesand aninterpretation |, that
maps atoms into states. The interpretation tells which atoms are true in a state. It is re-
quired that if an atom is true in a state, then it must remain true in all larger states. Hence,
in a larger state more atoms may become true. Consider a logical assertion built from the
atomsAq, ..., A,. The assertion is said to be valid in a state if it continues to remain valid
in all larger states.

In order to express the full power of the logic introduced above, we need to enrich the
model by introducing places. We achieve this by associating a set of ghadeseach
Kripke statek. The formulae of the logic are validated in these places. The interpretation is
indexed by the Kripke states, and the interpretatianaps atoms into the sBf. Since we
consider atoms to be resources, the maplls how resources are distributed in the Kripke
statek.

In the case of intuitionistic propositional logic, an atom validated in a Kripke state is
validated in all larger states. In order to achieve the corresponding thing, we shall require
that all places appearing in a Kripke state appear in every larger state. Furthermore, we
require that ifl, maps an atom into a place, thkrshould map the atom in the same place
for all stated larger thark. In terms of resources, it means that places in larger states have
possibly more resources.



The Kripke models that we shall define now are similar to those defined for the intu-
itionistic modal systeniS5[11, 34, 23, 26, 7, 35]. In the definitiok is the set of Kripke
states, and its elements are denoted lby. .. The relation< is the partial order on the set
of states.

Definition 3 (Kripke Model) A quadrupleX = (K, <, {Pxlkek, {Ik}kek) IS aKripke model
if

K is a (non empty) set;

< is a partial order of;

Py is anon-emptyset of places for ak € K;

PccPifk<l;

Ik : Atoms— Pow(Py) is such thatx(A) c I,(A) forallk < 1.
LetPls = Jyek Px. We shall say thaPlsis the set of places oK.

The definition tells only how resources, i.e. atoms, are distributed in the system. To give
semantics to the whole set of formuleem(Pls), we need to extentl. The interpretation
of a formula depends on its composite parts, and if it is valid in a place in a given state,
then it remains valid at the same place in all larger states. For example, the fgrmula
is valid in a statek at placep € Py, if both ¢ andy are true at place in all stated > k.

The introduction of places in the model allows the interpretation of the spatial modali-
ties of the logic. Formula@p is satisfied at a place in a st&tgf it is true atp in all states
| > k; 0 andOy are satisfied at a place in stadteif ¢ is true respectively at some or at
every place in all statds> k.

We extend now the interpretation of atoms to interpretation of formulae by using in-
duction on the structure of the formulae. The interpretation of formulae is similar to that
used for modal intuitionistic logic [11, 34, 23, 26, 7, 35].

Definition 4 (Semantics) Let K = (K, <, {Px}kek, {Ik}kex) be a Kripke model with set of
placesPls. Givenk € K, p € Py, and a pure formulg with PL(¢) C Pls, we define
(k, p) E ¢ inductively as:

kpEA iff p e lk(A);

kpET iff pe Py

kpEL never;

kP EeAy iff (kp)Eeandkp)ky;
kpkEevy iff (kp)Eeorkp ky;

(k. p) e -y iff (I>kand(,p)E ¢)implies(,p) ¢
(k, p) E Op iff (I>kandqe P))implies(,Qq)kE ¢;

k. p) E op iff there existg) e P, such thatk, q)  ¢.

We pronouncek p) £ ¢ as‘(k, p) forcesy’, or ‘ (k, p) satisfiesp’. We writek E ¢ at p if
k. p) E ¢

It is clear from the definition that & = ¢ at p, thenPL(p at p) C Px. Please note that
in this extension, except for logical implication and the modatityve have not considered
larger states in order to interpret a modality or a connective. It turns out that the satisfaction
of a formula in a state implies the satisfaction in all larger states, as stated in the following
proposition.

Proposition 5 (Kripke Monotonicity) LetK = (K, <, {Px}kek, {Ik}kek) b€ a Kripke model
with set of place®lIs. The relatiori= preserves the partial order &ni.e., for eachk, | € K,
p € Py, andyp € Frm(Py), if | > kthen k, p) E ¢ implies (, p) E ¢.

Proof Standard, by induction on the structure of formulae. [
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Consider now the distributed database described before. We can express the same prop-
erties inferred in§2 by using a Kripke model. Fix a Kripke stalke The assumption that
the two partsdoc,, doc,, can be combined ip in a statek to give the documerndoc can
be expressed ak,(p) £ (doc; A doc,) — doc. If the resourcedoc; anddoc; are assigned
to the placep, i.e., Kk, p) E doc; and §, p) E doc,, then, sincek, p) = doc; A docy, it
follows that K, p) E doc.

Let us consider a slightly more complex situation. Supposektgad( doc, A (doc, —
odocy)) at p’. According to the semantics @f there is some placesuch thatk, r) E
doc, A(doc, — Odoc,). The semantics of tells us thatk, r) = doc, and &, r) E (doc, —
odoc,). Since k,r) E doc,, we know from the semantics eb that k,r) E odoc,, and
from the semantics dfi that , p) E doc,. Therefore, ifdoc; is placed ap in the statek,
then the whole documedbc would become available at plagen statek.

To give semantics to the judgements of the logic, we need to extend the definition of
forcing relation to judgements. We begin by extending the definition to contexts.

Definition 6 (Forcing on Contexts) Let K = (K, <, {Px}kek, {Iklkex) b€ a Kripke model.
Given a statd in K, a finite set of pure formulag, and a finite set of sentencasuch that
PL(T; A) € Py; we say thak forces the context; A (and we writek = T'; A) if

1. for everyp € T and evenyp € Py: (k, p) E Og;
2. foreveryy atqe A: (k.Q) E ¢.
Finally, we extend the definition of forcing to judgements.

Definition 7 (Satisfaction for a Judgment) Let K = (K, <, {P«}kek, {Ik}kex) be a Kripke
model. The judgemet; A 7 u at p is said to be valid i if

e PL(I) UPL(A) UPL() U {p} C P;
o for everyk € K such thaP C Py, if k = T; Athen K, p) E u.

Moreover, we say thdt; A 7 u at p is valid (and we writel'; A = u at p) if it is valid in
every Kripke model.

Although, it is possible to obtain soundness and completeness of Kripke semantics
directly, we shall not do so in this paper. Instead, they will be derived as corollaries.
Soundness will follow from the soundness of birelational semantics and encoding of Kripke
models into birelational models. Completeness will emerge as a corollary in the proof of
construction of finite counter-model.

3 Birelational Models

One other semantics given for modal intuitionistic logics in literature is birelational seman-
tics [11, 34, 26, 35]. As in the case of intuitionistic modal logics [24, 35], birelational
semantics for our logic enjoys the finite model property, while Kripke semantics does not.

Birelational models, like Kripke models, have a set of partially ordered states. The
partially ordered states will be calledorlds and we usey,v,w,... to range over them.
Formulae will be validated in worlds, and if a formula is validated in a world, then it will
be validated in all larger worlds. To validate atoms we have the interpretgtiwhich
maps atoms into a subset of worlds.| Iinaps an atom into a world, then it will map the
atom in all larger worlds.

In addition to the partial order, however, there is also a second binary relation on the
set of states which is calle@achabilityor accessibilityrelation. Intuitively,uRwmeans
thatw will be reachable fromu. As our logic is a hybridisation folS5 the relationR
will be an equivalence relation. The relati®will also satisfy a technical requirement,
thereachability conditionthat is necessary to ensure monotonicity and soundness of logic
evaluation.

Unlike the Kripke semantics, the states will not have a set of places associated to them.
Instead, there is partial function, Eval, which maps a world to aingleplace. In a sense
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which we will make precise i§3.2, a world in a birelational model corresponds to a place
in a specific Kripke state. As we shall see later, the partiality of the fun&iatis crucial
in the proof of the finite model property. In the cdseal(w) is defined and ip, we shall
say thatw evaluatego p.

In addition to partiality,Eval will also satisfy two other propertiescoherenceand
uniquenessCoherence says that if a world evaluateptdhen all larger worlds evaluate
to p. Together with the reachability condition, coherence will ensure the monotonicity of
the modality @. Uniqueness will say that no two worlds reachable from each other can
evaluate to the same place. Uniqueness will be essential for the soundness of introduction
of conjunction (1), and of implication © ). The formal definition of the models is below.

Definition 8 (Birelational Model) Given a set of placeBls, a birelational model on Pls
is a quintupleWps = (W. <, R, |, Eval), where

1. Wis a (hon empty) set, ranged overby,w,w/, .. ..

2. <is apartial order onw.

3. R ¢ Wx Wi s anequivalence relatiomnd satisfies theeachability condition
if w > wR v then there exists such that WRV > v;

4. 1 : Atoms— Pow(W) is such that ifv € 1 (A) thenw’ € I (A) for all w > w.

5. Eval: W — Plsis apartial function. We writev? if Eval(v) is not definedy| if Eval(v)
is defined, and/| pif Eval(v) is defined and equal tp.
Moreover, the following properties hold:

(a) coherencefor anyv e W, if v| p thenw] p for everyw > v;
(b) uniquenessfor everyv € W such thaw| p, if vRV andv'| p, thenv = V.

In addition to the reachability condition, usually there is another similar condition in
birelational models for intuitionistic modal logics [11, 34, 26, 35]:

if wR v< V then there exists \such that ws w RV

In this case, aR is an equivalence relation, the property is an immediate consequence of
the reachability condition.

As for Kripke models, the interpretation of atoms extends to formulae. A forp@p
is true in a worldw, if there is a reachable world which evaluatespt@and wherey is
valid. A formula¢g is valid in a worldw, if there is a reachable world (not necessary in
the domain oEval) wherey is valid. A formulaog is valid in a worldw if ¢ is valid in all
worlds reachable from worlds’ larger tharnw.

Definition 9 (Bi-forcing Semantics) Let Wps = (W, <, R, 1, Eval) be a birelational model
onPls. Givenw € W, and a pure formula € Frm(Pls), we define the forcing relation
w E ¢ inductively as follows:

wEA iff wel(A);
WET forallwe W,
WE L never;

WE Ay iff wiEgandwky;

WEpVYy iff wEgorwky;

WE ¢ -y iff (v>wandv E ¢) impliesv [ y;

WE o@q iff there existy such thatvR v v| gandv E ¢;
w E O iff (v>wandvRV)impliesv E ¢;

W E O iff there existy € W such thatvRvandv E ¢.

We pronouncev | ¢ as'w forcesy, or ‘w satisfiesy!

As for Kripke models, this relation is monotone.
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Proposition 10 (Monotonicity) Let ‘Wpis be a birelational model oRls. The relation=
preserves the partial orderW, namely, for every worldvin W andgy € Frm(PIs), if v > w
thenw E ¢ impliesv E ¢.

Proof The proof is straightforward, and proceeds by induction on the structure of formu-
lae. Here, we just consider the induction step in whicis of the forme;@p. Suppose
thatw £ ¢, @p. Then there is & such thawwRw, w'| pandw E ¢;.

Consider now > w. Sincew Rw, by the reachability condition we obtain that there
is a worldv' such thav RV andv' > w'. Asw E ¢3, by induction hypothesis we obtain
V' E ¢1. Now, asv' > w andw’| p, we getv'| p by coherence property. Finally, aR V,
we getv E ¢, @p by definition. ]

Example 11 Consider the birelational modé¥V ¢yamwith two worlds, sayw; andw,. We

takew; < w,, and both worlds are reachable from each other. The warldvaluates to
p, while the evaluation ofv; is undefined. LetA be an atom. We defingA) to be the
singleton{w,}. For any formulap, we abbreviate — L as-¢.

Consider the pure formulaA. Now, by definition,w, E A and thereforew, = -A.
Also, asw; < wp, we getw; = —A. This means that, £ —--A, andw; E —=—A. Hence,
we getwy, Wy E o--A

On the other hand, consider the formwlaoA. We have by definition thaty = A. As
w; is reachable from bottv; andw,, we deduce that;, w, £ OA. Using the semantics of
—, we get thatvy, w, £ =—=OA.

We now extend the semantics to the judgements of the logic. We begin by extending
the semantics to contexts.

Definition 12 (Bi-forcing on Contexts) Let Wps = (W <, R, |, Eval) be a birelational
model onPls. Given a finite set of pure formuldg and a finite set of sentencas such
thatPL(I'; A) C Pls; we say thatv € W forces the context; A (and we writew | T'; A) if

1. for everyy € I': w = Og, and
2. foreveryy atq e A: w E y@q.

In order to extend the semantics to judgements, we need one more definition. We say
that a placep is reachable from a worldg, if there is a world which evaluates fwand
is reachable fronv. The set of all places reachable from a wovlavill be denoted by
Reaclfv). More formally,

Reaclfv) aef {p : w| pfor somewe WvRwW

It can be easily shown by using the reachability condition and coherence thatif,
then every place reachable fronms also reachable fromw.

Proposition 13 (Reachability) Given any birelational model, then:
1. If v < w, thenReaclfv) € Reaclfw).

2. If vRw thenReaclfv) = Reaclfw).

We are now ready to extend the satisfaction to judgements.

Definition 14 (Bi-satisfaction for Judgments) The sequenf; A P ¢ at p is said to be
valid in the birelational modeWps = (W, <, R, I, Eval) if:

o PLNUPLQA)U{pt c P;
o for anyw € W such thaP € Reacliw): w = T'; A impliesw E ¢o@p.

Moreover, we say thdt; A v 4 at p is bi-valid (and we writel"; A P i at p) if it is valid
in every birelational model.

Example 15 Consider the birelational mod@Wleyam0on two worldsw; andw, discussed
in Ex. 11. We hadw;,w, E O0--A andwy,w, £ —-—OA. Therefore, the judgement
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;HP o-—Aat p is bi-valid in the modefWeyam While the judgementg—-—-Aatp +P
—-—0OAat p is not bi-valid in Wexam In fact, we will later on show that the judgement
;o--Aat p HP =-p0A at pis valid in every finite Kripke model. Therefore, this example,
adapted from [24, 35], will demonstrate that the finite model property does not hold in the
case of Kripke semantics.

3.1 Soundness

The proof of soundness of birelational models has several subtleties, that arise as a conse-
guence of the inference rules for the introductiommdf 1), and elimination ok (¢ E). Let
us illustrate this for the case afl. Recall the inference rule afl from Fig. 1:

;AP patq |
————— O
;AP opatp

To show the soundness of this rule, we must show that the judgdmant” oy at p
is bi-valid whenever the judgemenRtA +P*9 ¢ atq is bi-valid. Now, to show that the
judgement’; A P oy at p is bi-valid, we must consider an arbitrary world, sayin an
arbitrary birelational model, say#’pis, such thaf C Reaclfw) andw E I'; A. We need to
prove thatw E op@p also. For this, we need to show that for any worlth ‘Wp|s such
thatw < w’ Rvfor somew, it is the case that | ¢. Pick one suclv and fix it.

Please note that without loss of generality, we can assuméthdbes not contaiig
(otherwise, we can always renameén the model). To use the hypothesis tiian +P+9
¢ atq is bi-valid, we must consider a modification #ps. One strategy, that is adopted
in the case of Kripke semantics [7], is to add new wonfisone for each world” > v.

The new worlds/, duplicatev’ in all respects except that they evaluatejtdf the resulting
construction yields a birelational model, theeactfv;,) would containP as well ag.

The next step would be to show that any formglahat does not refer to the plageis
satisfied by, if and only if it is satisfied by’. Using this, that;, forces the context; A in
the new model also. Then, we can use the hypothesis to obtaiv thatisfiesp@q. Since
v, evaluates taj, we will get thatv, forcesy. As ¢ does not refer tg, we will get thatv’
forcesp. We can then conclude the proof by observing thatv, and choosing’ to bev.

In fact, if the worldv was in the domain oEval, then the above outline would have
worked. However, this breaks down in cage To illustrate this, suppose that there is a
world v’ such thatv < v/, VT andvR V. In the construction of the extension, we would
thus have two worldsy andv;, reachable from each other, that evaluate to the same place
d, which would violate the uniqueness condition.

This breakdown is fatal for the proof and cannot be fixed. Coherence demandg that
if vql 9. So, we cannot fiddle with the evaluation. We cannot even relax uniqueness as this
will be needed for soundness of introduction of conjunctiar)(and of implication &

). Furthermore, we cannot require that the evaluation is a total function: it is the partiality
of this function that gives us the finite model property. Indeed, if the function was total,
the class of birelational models would be equivalent to the class of Kripke models, and we
would have not gained anything by using birelational models.

Our strategy to prove soundness is to construct a birelational model¥py called
g-extension, whose worlds are the union of two sets. The first one of these sets is the
reachability relationR of ‘Wpis. The second one will be the Cartesian prodiagtx W,
whereW is the set of worlds ofWpis. Hence, the worlds of thg-extension are ordered
pairs. A world (v, w) will evaluate to the same place a5, and ¢, w) will evaluate tog.

Two worlds will be reachable from each other only if they agree in the second entry.

The construction would guarantee (see Lemma 17) that giverrrm(Pls), the world
(w',w) satisfiesy if and only if w does, and the worldg(w) satisfiesy if and only if
w does. The proof of soundness oF would work as follows. Let be a fixed world.
Consider the worldd, v) in the g-extension. We will show that satisfied"; A, and hence
(g, V) satisfiedI'; A. The set of reachable places from\) containsP as well asq, and
we can thus conclude thay, (/) satisfiesp@q. Since §, v) evaluates taj, we conclude that
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(g, v) satisfiesp. As mentioned above, this is equivalent to saying thedtisfiesy.
We are ready to carry out this proof formally. We begin by constructingtéeension,
and showing that this is a birelational model.

Lemma 16 (@-Extension) Let Wpis = (W <, R, |, Eval) be a birelational model oRls.
Given a new place ¢ Pls, we define tha-extensionW{qyp¢ to be the quintupleW’, <’
, R’,I’,Eval), where

1. PIs € pIsu (g).

def

2. W = RU({q} xW).
3. 'C W x W is defined as:
- (W,w) < (v,v)ifand only ifw < Vv andw <,
- (g,w) <’ (g,v) ifand only ifw < v;
4. R C W' x W is defined as:
- (W W) R(V,w),
- (W, w)R’(q,w),
- (g, W) R’(W,w), and
- (A, W) R’(q,w).
5. I’ : Atoms— Pow(W’) is defined as:
S 1A E L WLW) W e I(A), wRWIU{ (W) [wel(A));
6. Eval : W — PI< is defined as

- Eval((w', w)) ot Evalw) for every (v,w) € R/}

- Eval'((g,w)) o g for everyw e W.
Theg-extension is a birelational model.
Proof We need to show the five properties of Definition 8.
1. ClearlyW’ is a non empty set WV is.
2. Since< is a partial order, ther’ is a partial order too.

3. The relationR’ is an equivalence by definition. We show tHat satisfies the reacha-
bility condition by cases. There are four possible cases.

Case a. Assume that'(v) >’ (w,w) R’ (w”,w).

The hypothesis says that> w, v > w, VRv, w Rwandw” Rw. Since R
is an equivalence, we get > w Rw’. Using the reachability condition foR,
there exists” € W such that’ RV’ > w”. Hence, we conclude/(v) R’(v’,v) >
(W, w).

Case b. Assume that,(v) > (g, w) R’ (W', w).
This means that > wandw R w. By the reachability condition foR, there is a
V' such thav RV > w’, and we conclude(v) R’(V, V) =" (W, w).

Case c. Assume that'(v) >’ (w',w) R’(q, w).
This means > w, and we concludev(,v) R’(q, V) >’ (g, w).

Case d. Assume that,(v) >’ (g, w) R’(g, w).
We havev > w, and we concludey(v) R’(q, V) >’ (g, w).

4. To check monotonicity fol’, we consider two cases:

Lin the equality, the left hand side is defined only if the right hand side is.
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Case a. Assume thaw/(,w) € I’(A).
This means thaw’ € I (A). If (V,v) >’ (W, w), thenv' > w'. By the monotonicity
of I, we getv’ € I(A). Hence ¢, v) € I’(A).

Case b. Assume thad,(w) € | (A).
This means thaw € I (A). If (g,Vv) >’ (g, w), thenv > w. By the monotonicity of
I, we getv € I(A). Hence §,v) € I’(A).

5. According to the definitionEval is a partial function. We need to verify the two
properties required for a birelational model.

Coherence We have to show that if a world in the new model evaluates to some place,
then all the higher worlds evaluate to the same place. There are two possible cases.

Case a. Assume that'(v) >’ (W, w), and (v, w)| p
We get by definitiony’ > w’ andw’| p. By coherence on the modéVps,
we getv'| p. Hence ¢, V)| p.

Case b. Assume that,(v) > (g, w).
We have by definition,d, v)| g and @, w){ g.

Uniqueness We have to show that twofiierent worlds reachable from each other can-
not evaluate to the same place. Ap\) always evaluates tq, two worlds v, v)
and @, w) cannot evaluate to the same place. There are two other possible cases.

Case a. Suppos# (V) R’ (W, w), (W,w)] pand ¢, V)| p.
We have by definitiov Rv, w Rw, v = w, w'| pandVv' | p. SinceR is an
equivalence and = w, we getv’ Rw. By uniqueness ofiWpis, we getv’ = w'.
Therefore ¢, v) =" (W, w)

Case b. Suppose tha, ¢) R’(g,w), (g,w)| gand @, V)| q.
We have by definitiov = w, and henced, v) = (g, w). [ |

We will now show that if a pure formula, sgy does not mentiog, then (v, w) satisfies
¥ only if w does. Furthermoreg(w) satisfiesy only if w does.

Lemma 17 (W({u, Q)p)y iS conservative) Let Wps = (W. <, R, |, Eval) be a birelational
model, and letW({q)py = (W', <’, R’,l’, Eval) be itsg-extension. Let andE’ extend
the interpretation of atoms i/ps andW{q)pis respectively. For every € Frm(Pls) and
w e W, it holds

1. for everyw’ Rw, (W, w) E'¢ if and only if w = ¢; and
2. (O, w) Feifand only ifw [ ¢.

Proof Prove both the points simultaneously by induction on the structure of formulae in
Frm(Pls).
Base of inductionThe two points are verified on atoms, onand onL by definition.
Induction hypothesisWe consider a formula € Frm(Pls), and assume that the two
points hold for all sub-formulag; of ¢. In particular, we assume thimr every we W:

1. for every WRw,(W,w) E'¢; if and only if W | ¢;; and
2. (g.w) F'¢; if and only if wi ¢;.

We shall prove the lemma only for the modal connectives and for the logical connective
—. The other cases can be treated similarly. We shall also only considerlpaistthe
treatment of poinR is analogous. We picw € W andw’ R w, and fix them.

e Casep = p1 — ¢y. SupposewW,w) E'¢1 — ¢o. Then
for every ¢/,v) =" (W, w), we have {, V) E'¢; implies ¢/, V) E ¢,. (2)

We need to show that’ = ¢. Pickv' > w such that’ | ¢;, and fix it. It sufices
to show thav’ k= .
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We havev' > w Rw. By the reachability condition, there existss W such that
vV Rv>w. Hence, ¢, v) >’ (W, w).

The induction hypothesis says that, {) = ¢1. We have ¥, V) E' ¢, by (2) above.
HenceVv' E ¢, by applying induction hypothesis one more time.

For the other direction, assume thdtE ¢; — ¢,. Then

for everyv' > w', we havey' E ¢; impliesv' E ¢s. 3

Now consider ¥,v) > (W,w), and assumev(,v) E’¢1. From {/,v) >’ (W, w),
we havev' > w'. From {/,V) E’¢; and induction hypothesis, we haveE ¢;. Since
V' > w, we get from (3) above/  ¢,. Therefore ¢, V) E ¢, by induction hypothesis
once again. We conclude by definition thet ¢) = ¢1 — 2.

o Casep = ¢1@p. Sincep;@p € Frm(PIs), we havep # q.
(W, w) E'o1@p is equivalent to saying that there is a world, (v) € W’ such that:
(VI’W) R (W’W)! (V/’W)l p, and V’W) IZ/SD].-
By induction hypothesis and definition gfextension, this is equivalent to say that
there exists’ € W such thatvRWw, V| p, andV' E ¢;. This is equivalent to say that
W [ ¢1@p by definition.

o Caseyp = ¢¢;.

SupposewW’,w) E ¢¢1. Then there is a world iV’ such that this world is reachable
from (W, w), and which satisfieg;. There are two possibilities for this world: it can
be of the form ¥, w), or of the form ¢, w).

If it is of the form (v, w), then by definition we have Rw SinceR is an equiva-
lence andv R w, we havev Rw. Furthermore, since/(w) E’¢, we get by induction
hypothesis/ = ¢1. Thereforew = ¢¢; by definition.

If the world is of the form ¢, w), then by induction hypothesisy = ¢1. Since
W Rw, we getw’ | ¢¢;.

For the other direction, #v | ¢¢; then there existg RwW such thaw = ¢;1. Since
R is an equivalence, we haveRw Hence ¥, w) is a world of theg-extension, and
(v, w) E ¢1 by induction hypothesis. Sincg, (v) R(v, w), we concludewW, w) E ¢¢;.

e Casep = O¢p;. Suppose thatw,w) E’O¢;. This means thap; is forced by every
world reachable from some world larger thaf (w). In particular, we have that

for every ¢/, v) > (W, w), if (V’,v) R’(V,V) then ¢’,v) E ¢;. (4)

We need to show that’ E Og;. PickV,Vv”’ such thay > w, andv’ RV, and fix
them. It sufices to show that” E ¢;.

Sincev > w andw Rw, the reachability condition foR says that there exists
v € W such thav’ Rv> w. By transitivity, we haver’ Rvtoo. Hencey,Vv) > (W, w)
and ¢’,v) R’(v, V). Property (4) says that'(,v) ' ¢1, and sov” [ ¢; by induction
hypothesis.

For the other direction, assumé = Op;. Then

foreveryv' > w/, if V' RV thenv” [ ¢. (5)

We need to show that, w) E'0¢;.

Consider a world\{,v) >" (w,w), and fix it. We haver Ry, V' > w andv >
w. Now, consider any world reachable frowi,{). We need to show that this world
satisfiesp;. There are two possible cases.

This world is of the form {”, v). In this case, we have that Rv. Sincev' Rv, we
getv’ RV. Sincev > w, we getv’ E ¢; by (5). Hence,{’,V) E’ ¢1, by induction
hypothesis.

In the other case, the world is of the foriap ¢). SincevRV andv' > w’, we have
vV E o1 by (5). Therefore,d, v) £’ ¢1 by induction hypothesis. [ |

We need one more proposition which says that if a world satisfies a context then any world
reachable from aridr greater than it also satisfies the context.
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Proposition 18 (Forcing Propagation) Let Wpis = (W, <, R,V, Eval) be a birelational
model onPls. LetT be a finite set of pure formulad,be a finite set of sentencas andw
be a world inW such thatv = T'; A. Then

1. vET; A for everyvRw and
2. VET; A for everyv > w.

Proof The second part of the proposition is an easy consequence of monotonicity of the
logic. For the first part, pick Rwand fix it. We need to show thatf is a formula inl
thenv E Oy, and that ifp at pis a sentence in thenv E ¢@p.

Now, if ¢ € T', then we have that = oy. LetV, v’ be two worlds such that’ RV > v.
We will show thatv” | . AsV” is arbitrary, we will get thav = oy.

We havev' > vandv Rw By the reachability condition, we get that there ia’asuch
thatv Rw > w. Sincev’ RV, andR is an equivalence, we get Rw > w. Finally, since
w E Oy, we getv”’ [ ¢ as required.

If patp € A, then we have thav = ¢o@p. Therefore, there is a world’ such that
w | p, WRW andw E ¢. SinceR is an equivalence, we getRw. Thereforev E o@p,
and we are done. |

We are ready to prove soundness, which depends on Lemmas 16 and 17.

Theorem 19 (Bi-soundness)f the judgement; A +P u at pis derivable in the logic, then

it is bi-valid.

Proof The proof proceeds by induction anthe number of inference rules applied in the
derivation of the judgemert; A P y at p. The inference rules are given in Fig. 1. The
base case, where only one inference rule is used to derive the judgement, follows easily
from the definition. We discuss the induction step.

Induction hypothesié > 1). We assume that the theorem holds for any judgement that
is deducible by applying less tharinstances of inference rules, and consider a judgement
I'; A +P u at p derivable in the logic by using exactlyinstances.

We fix a modelWpis = (W. <, R,V, Eval) on Pls, and letE be the forcing relation in
this model. Letw € W be such thaP ¢ Reaclfw) andw [ T'; A. Fix w for the rest of
the proof. We have to show E u@p. We proceed by cases by considering the last rule
applied to obtai; A P 4 at p. For the sake of clarity, we consider only the cases in which
the last rule is introduction of implicatior{ 1), introduction ofo (o 1), and elimination of
¢ (0 E). The treatment of the other rules is similar.

e Case— |. If the last inference rule used was | theny is of the formy — , and
PL(I"; A) U PL(p) U PL(¥) U {p} € P. Furthermorel; A, ¢ at p +F ¢ at p by using less
thann instances of the inference rules. By induction hypothdsia, ¢ at p +P y at p
is bi-valid. We have to prove that there exigtR wsuch thaw| p, andv E ¢ — .

SinceP C Reacliw), there existss € R(w) such thatv] p. We will prove that
VE ¢ — . PickV > vand fix it. We need show that¥f | ¢, thenv' E ¢ also.

We havev'| p by coherence property, ami = I'; A by Proposition 18. Also aR
is reflexive, we have’ RV. If we assume that’ = ¢, then we get by definition that
V' E o@p. Hence, we get’ = T, A, ¢ at p. By induction hypothesi§; A, ¢ at p P
Y at pis bi-valid, and thereforeg’ | y@p.

Therefore, there is a world reachable frehwhich evaluates tp and which forces
Y. Sincev' | pandVv RV, uniqueness says that this world mustbdéself. Therefore
V' E ¢, as required.

e Casenl. Theny is of the formoy. Moreover,PL(T; A) U PL(¢) U {p} € P, and
I'; A +P+9 o at g for someq ¢ P by using less that instances of the rules. By induction
hypothesisT'; A -7+9 ¢ at q is bi-valid. Without loss of generality, we can assume that
g ¢ Pls (otherwise, we can renanggn PIs).
We have thatv E T'; A, and we need to show that= op@p. Note thatp € P, and
P ¢ Reacliw). Therefore there is@’ € Reactw) such thaw'| p. Pick such av', and
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fix it. By Proposition 18w = I'; A. We shall show that = og, and we will be done.

In order to show thatv' = Op, we have to show that | ¢ for everyv, v’ such that
V' Rv > w. Pick suchv,v' and fix them. We have’ E T'; A by Proposition 18. Since
P c Reacliw) andv' Rv> w, we getP C Reaclfv’) by Proposition 13.

Let PIs' = PIsu {qg}, and letW{(q)pi¢ be theg-extension of the birelational model.
LetE be the forcing relation of(u, ). From the hypothesig | I'; Aand Lemma 17
we get ¢,V) ET; A.

From definition ofg-extension, it is clear thaReacli(v,Vv')) = Reacliv’) U {q}.
HenceP + q ¢ Reaclf(v,Vv)). We can now apply the induction hypothesis on the
world (v, V), and obtain ¥, V') E’¢@q. By the definition of theg-extension, this is
equivalenttoq, V') F'¢. Lemma 17 then implies that = ¢, as required.

e Case¢E. This means that for somg’ € P andy € Frm(P) we can derivd’; A +°
opatp andTl; A, ¢ atq +P*9 g at p by using less tham instances of the rules. By
induction hypothesid;; A P ¢¢ at p’ andT; A, ¢ at q -9 1 at p are bi-valid.

As is the case afil, we can assume thgt¢ Pls. We need to show that £ u@p.
Sincew [ T'; A, the induction hypothesis says that= ¢o@p’. Therefore using the
definition of forcing and equivalence of the relatiét there is a worldv' such that
wRW andw’ E ¢. Sincew Rw, Proposition 18 implies that’ = T’; A.

Consider now thej-extensionW({qy of ‘W, with =" as forcing relation on the-
extension. Sinc&’ E ¢ andw E T'; A, Lemma 17 says that(w') E'¢ and @, w) E
'T; A. As (g, W) g, we get @, w) E'T; A, ¢ atg. Finally, asP + g € Reacliw’) U {q} =
Reacli(g, w’)), induction hypothesis gives ug,(v) E’'u@p. By Lemma 17, we get
thatw = u@p.

Hence, there is &’ such thatv Rw’ such thaw’ E u andw”| p. Sincew Rw
and R is an equivalence, we getR w’. Thereforew E u@p, as required. [ |

This theorem provides not only soundness for birelational models, but also for Kripke
models, thanks to the encoding presented in next section.

3.2 Relating Kripke and Birelational Models

In this section, we shall present an encoding of Kripke models in birelational models that
preserves the forcing relation. This will allow us to prove the soundness of the logic for
Kripke models.

In particular, given a Kripke model with a set of stat€swe construct a birelational
model whose worlds are pairk, ) wherek € K and p is a place in the Kripke statie
Two worlds will be related if they come from the same Kripke state. The warfg) (vill
be greater thatk(qg) only if | > kandp = g. The world §, p) will evaluate top, and an
atom will be interpreted in the worldk(p) only if it is placed inp in the Kripke statek.
The construction will guarantee that the Kripke staferces an assertion@p if and only
if the corresponding worldk( p) forces the formula .

Proposition 20 (Encoding) Let a Kripke model K = (K, <, {Pxlkek, {Ik}kex) With set of
placesPls, its K-birelational modetWp, is the quintuple\\V", <’, R’, 1", Eval), where

W E Ukt (K p) : p e Py;

1

2. <'c W x W is defined as:i; p) <’ (I,g) ifand only ifk < | andp = q;
3. R":c W x W is defined as:i, p) R’(l, g) if and only ifk = [;
4
5

.1 : Atoms— Pow(W') is defined asl (&) £ { (k. p) | p € Ik(A) };

. Eval : W — PIs is defined asEval(k, p) e p.

WK, is a birelational model.

Proof We need to check that the construction satisfies the properties of a birelational
model. The proof is straightforward, and here we just illustrate the proof of the reacha-
bility condition.
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Assume thatl{, p’) >’ (k, p) R’(l,q). Then it must be the case thdt> k, k = | and
g € P. Sincek = I, we getq € Py. Furthermore, ak’ > k, we havePy C Py. Therefore
ge Py.

Consider the worldK, g). We get K, p’) R’(k’, ) >’ (k, g) by definition. [ |

The encoding preserves the forcing relation:

Proposition 21 (Forcing Preservation) Let K = (K, <, {Pxlkek,» {Ik}kek) b€ @ Kripke mod-
el with set of place®ls. Let (Wffls = (W, <, R’,I’,Eval) be thek-birelational model.
Let =« andl=qy extend the interpretation of atomsi6 and(WZfIS respectively. For every

¢ € Frm(Pls), k € K, andp € Py, we have:

(k, p) Fx ¢ if and only if (k, p) Fay ¢.

Proof We proceed by induction on the formuae Frm(Pls). The statement of the propo-
sition is easily verified orr, L and on atoms.

Induction hypothesidiVe consider a formula € Frm(Pls), and assume that the propo-
sition holds for each of its sub-formulae. For sake of clarity, we just illustrate the cases of
logical implication, and modalities @ando.

e Caseyp = p1 — ¢».

Supposel, p) Ex ¢1 — ¢2. We need to show thak(p) Ew ¢1 — ¢2. Pick
(I,9) =" (k,p) such thatl,q) Ew ¢1, and fix it. It sufices to show that(q) Fq ¢2
also.

Since (,q) =’ (k, p), we haveq = p andl > k. Also, as (,q) Euw ¢1 andqg = p, we
get (, p) Ex ¢1 by induction hypothesis. Sinc& () Ex ¢1 — ¢» andl > k, we get
(I, p) Ex ¢2. By induction hypothesis once again, we det|\ = (I, p) Eqw ¢2, and we
are done.

For the other direction, suppose thitif) Ew ¢1 — ¢2. We need to show that
(k, p) Ex @1 — @2. Pickl > k such thatl; p) Ex ¢1, and fix it. It sufices to show that
(I, p) Ex 2.

As (I, p) Ex ¢1, we have by induction hypothesis thatfd) Eq ¢1. Sincel > k,
we getp € Py and (,p) >’ (k p). Therefore, ask p) Ew ¢1 — ¢2, we get that
(I, p) Ew ¢2. By induction hypothesis, we gdt ) =« ¢».

o Casep = p1@q.
Then K, p) Ex ¢ means that] € Py and k, q) =« ¢1. By induction hypothesis and

definition, this is equivalent to saying that there exigtg|(R’(k, p) such thatk, g)| q,

and k, Q) Eqw ¢1. This is equivalent to saying thék, () Ew ¢1@Q.

o Casey = O¢;.
Then K, p) E«x ¢ means that for everly> k and everyg € P, we have |, q) Ex ¢1.

By induction hypothesis and definition, this is equivalent to: for evermg)(=’ (k, p)

and (,q)R’(l, p), it is the case thatl(g) Ew ¢1. This is equivalent to saying that

(k, p) Ew O¢1. u

One thing that is worth pointing out is that in the resulting birelational model, the
evaluation istotal. It is easy to see the converse: every birelational model with a total
evaluation can be encoded as a Kripke model such that the forcing relation is preserved.
In the reverse encoding, the set of Kripke states is the set of equivalence classes under
reachability, and the set of places associated to a class is the set of all the evaluations of its
elements. Therefore, the class of Kripke models corresponds semantically to the class of
birelational models in which the evaluation is total.

The encoding cannot be reserved if we consider birelational worlds with partial evalau-
tion. Please note that this is not just a consequence of having undefined worlds in birela-
tional models. If this was the case, we could have added “undefined” places in each Kripke
state. The real issue is that when the evaluation is partial, two “undefined” worlds reachable
by each other can be ordered: a situation that will be ruled out if the evaluation was total
as a consequence of coherence and unigueness. In Kripke models, however, “reachability”
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and order are essentially orthogonal. Hence, the reverse encoding will fail to preserve the
forcing relation.

This is no accident, and as we have pointed out before, partiality of the evaluation
in birelational models is essential for the proof of the finite model property. This was
illustrated by the “finite model*Weyxamin Ex. 11. IN‘Wexam it is the case thaty; < wo,
w1 Rws, wiT andw,| p. As discussed there, this model allows us to refute the judgement
;o-—-Aatp +P ——oAat p. As we will see later, the judgement will be valid in every
finite Kripke model.

We shall now use the encoding and soundness of logic with respect to birelational
models to show soundness of Kripke semantics.

Corollary 22 (Soundness)If T; A +7 u at p is derivable in the logic, then it is valid in
every Kripke model.

Proof Suppose that the judgemdrttA +P u at p is derivable. Then it must be the case
thatPL(I') U PL(A) U PL(u) U {p} C P. LetK = (K, <, {Px}kek, {Ik}kek) b€ a Kripke model
with set of place®ls. Let =4 extend the interpretation of atoms to formulae on this Kripke
model. Letk be a Kripke state of this model such tHatc P, andk =« T'; A. We need to
show thatk, p) Ex u.

Consider the encoding of the Kripke modlinto a birelational model. LefW,ZfIS =
(W', <’, R’,I”, Eval) be theK-birelational model, and consider the world ) € W'. If
Eqy is the extension of interpretation of atoms in this model, we claim @) (= T; A.

If y € Athen ak E« T'; A, we get by definitionK, p) Ex oOw. By Proposition 21, we
get thatk, p) Eqy Oy.

If ¢ atq € I', then we have by definitiork(q) E« . By Proposition 21, we get that
(k, @) Ew ¥. Now, by constructionk; p) R’(k, g), and hence we gek(p) Eq v @0q.

Therefore, we get thak(p) =y T; A. As the logic is sound over birelational models,
we get K, p) Ew u@p. This implies thatk, p) E« u@p, by Proposition 21 once again.
Finally, this is the same ak,(p) =« u, by definition, and we have done. [

4 Bounded contexts and Completeness

In this section, we shall prove completeness of the logic with respect to both Kripke and
birelational semantics. The proof will follow a modification of standard proofs of com-
pleteness of intuitionistic logics[19, 35, 7, 36], and we will construct a particular Kripke
model: thecanonical bounded Kripke modeélhe reason for the term “bounded” shall be-
come clear later on. We will prove that a judgemEpa +” y at pis valid in the canonical
bounded model if and only if it is derivable in the logic. Then we will use the encoding of
the Kripke models into birelational models (s&%2), which will allow us to prove com-
pleteness of birelational models. The resulting model will be used to prove the finite model
property in§5.3. The construction of the model is adapted from [35].

We also point out that we shall prove the completeness results in the caseRvisere
finite. This is not a serious restriction for completeness, and the result can be extended to
judgements wher® is infinite. The real advantage of using a finite set of places is that it
will assist in the proof of finite model property as we will seegh

We begin by defining sub-formulae of a pure formulasub-formuleof a pure formula
¢ is inductively generated as:

e ¢ is a sub-formula of itself;

e if any of o1 A @2, 01 V @2, andy; — ¢ is a sub-formula ofy, then so are; andy,;
and

o if any of Oy, 01, andy; @p is a sub-formula of, then so isp;.

Given any set of pure formula®, thesub-formula closur®®, is the set of sub-formulae of

each of its members. Formall@* aef {y : ¢ is a subformula of € ®}. Bounded contexts
are defined by using sub-formulae closure.

19



Definition 23 (Bounded Contexts) Given a finite set of placeB and a finite set of pure
formulae® € Frm(P), a pair Q, A) is a (P, ®)—bounded context

e Qis a finite set of places that contaiRsi.e., P ¢ Q; and
e Ais a finite set of sentences of the fogat g, wherep € ®* andq € Q.

The bounded contexts will be used as Kripke states in the canonical model. However,
we will need particular kinds of bounded contexts.

Definition 24 (Prime Bounded Contexts)Let ®,I' ¢ Frm(P) be two finite sets of pure
formulae on the finite set of placéa A (P, ®)-bounded context@, A) is said to be
I'—primeif

e I; AR p atgfor ¢ € ® andq e Q, implies thaty at g € A (®-deductive closure);

e I; A¥Q 1 atqfor everyg € Q (Consistency);

e ;AR pvy atqfor o vy € ©® andg € Q, implies that eithep atq e A ory atqe A
(®-disjunction property); and

o I;A Q ¢patqfor oo € ® andq € Q, implies that there existg € Q such that
patq € A (@-diamond property).

As an example, lef be an atom. LeP = {p}, ® = {A@p} andQ = {p,q}. Consider
the following sets of sentences:

e Ap={Aatp, Aatg, A@pat p};
e Ay ={Aatp, Aatg, A@pat p, A@p atq}; and
e Az={Aatp, Aatqg, A@patp, A@patqg, vAatqg}.

Clearly, we have tha® C Q. If y atr is a sentence if; or A, theny is a sub-formula of
® andr € Q. Therefore, Q,A;) and @, Az) are P, ®)— bounded contexts. On the other
hand, Q. A3) is not a £, ®)—bounded context asA is not a sub-formula cA@p.

If we let T to be the list{A}, then it follows easily thai’; A; +° Aatp. Using the
inference rule of introduction of @, we gEtA; r? A@p atq. However, we have that
A@patq ¢ A;. Therefore, Q,A;) is notI'—prime. On the other hand(X A,) is T—prime.

The canonical model will be built by choosing the Kripke states to be prime bounded
contexts. We will first show that bounded contexts can be extended to prime bounded
contexts. Before we proceed, we state a proposition that says that the cut-rule is admissible
in the logic. In [16], this has been proved for the logic without the disjunctive connectives.
The proof can be extended for the logic with disjunctive connectives:

Proposition 25 If T;A +P pat p; and T; A, at py +P ¢ at p, thenl'; A P y at p.

Proof Induction on the number of inference rules used in derivatioR;df,  at p; +°
Y atp. [
We now show the existence of prime extensions:

Lemma 26 (Prime Bounded Extension)Let (Q, A) be a P, ®)—-bounded context, ang
be a pure formula ifrFrm(P). Given a finite subsef ¢ Frm(P) andq € Q such that
;A ¥Q y at g, there exists aR, ®)—bounded contextq’, A’) such that

1. (Q,A)isT—prime,
2. (Q,A)extendsQ,A),i.e, Qc Q,andA C A’, and
3. ;A ¥Q yatq.

Proof Please note that by definitidh® and®* are finite sets. Pick new placgg,, one
for each formulady € ®*. Let Q, be the set of all such places. As the @étis finite,
Q, is also a finite set. Finally, I be the set of sentencesat q such thaty € ®* and
ge QU Q,. As®*, QandQ, are finite setsY. is also finite.
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The setA’ required in the lemma would be a subse&pfand the se@)’ would be a
subset ofQU Q,. These sets would be obtained by a series of extengigrd, which will
satisfy certain properties:

Property 1 For everyn > 0

1. Qn € QU Q,, andA, C 3

2. Qn S Qni1, An S Any;

3. (Qn, Ay) is (P, ®)-bounded context; and
4. T;%, ¥ yatq.

The series is constructed inductively. In the induction, at an odd step we will create a
witness for a formula of the typey. At an even step we deal with disjunction property.
We shall also construct two sets:

o treated, that will be the set of the formulagy € ®* for which we have already created
a witness.

o treated;, that will be the set of the formulag, v ¥, at g € = which satisfy the disjunc-
tion property.

We pick an enumeration dd*, and fix it. We start & by definingtreatecg = 0,
treatedg = 0, Qo = Q, andAg = A. ltis clear from the hypothesis of the lemma that
Qo andPy satisfy the four points of Propertyl.

Then we proceed inductively, and assume BatA, (n > 0) have been constructed
satisfying Property 1. In step+ 1, we consider two cases:

1. If n+ 1 is odd, then pick the first formulg Vv > € ®* in the enumeration ad* , such
that

o I;An K& Yy V iy, atr, for somer € Qp;
e Y1 Vypatr ¢ treateq .

If no such formula exists, then 1,1 = Q, andAn;1 = A,. In this caseQ,,1 and
An,1 satisfy the four points of Property 1 by induction.

Otherwise, if botH™; Ay, ¥ atr @ y at qandT’; A, v, atr - y at g, then we can
deducel; A, & y atg. However, we have that,, Q, satisfy Property 1. Hence, it
must be the case that eitH&rA,, v atr ¥y atqorT; An, o atr ¥y atq.

We defineAn,1 = AnU{y atr}if T A,y atr 2y at p, andAn,: = AnU{yo atr}
otherwise. We defin®,,1 = Q,. We have by constructio®, € Qn.1, Qni1 € QU Q,
andA, C Apy1.

We haver € Qn. By definition, the se®* is closed under sub-formulae. Therefore
asy1 Vi, € ©*, we have botly; andy, are in®*. This implies thaty; atr andy; atr
are inZ, and Qn.1, An) is (P, ®)—bounded context.

Also by constructiol’; A, ynQ+1 Y atg. ThereforeQn:1, Any1 Satisfies Property 1.
Finally, we lettreated, , = treated; U {1 V ¢, atr} andtreated, , = treated,.

2. If n+ 1is even, pick the first formuléyp in the enumeration a®* such that
o I; Ap K& 0p atr, for somer € Qy;
e Oy ¢ treated.

Let Qniz = Qn + Goer A1 = An U {patqy,}, treatedy; = treated, U {0¢} and
treated,, = treated,. We have by construction th&n.1 andAn,; satisfy the first
three points of Propertyl. We claim tHgtA,,; ¥+t  at g also.

Suppose thal; Ap1 F91 yatq, i.e, T; An, ¢ atgy, 9 % y atg. We also have
thatI; A, - 0¢ atr. In fact, by the inference ruleE:

[ A0 FQ O0p atr T Ap, @ at gy, F% g atq .

E
[;An -9y atq
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This contradicts the hypothesis @, An. Hencel'; Ap,1 91 at . Therefore Qn,1
andAp,; satisfy Propertyl.

Therefore, we get by construction th@t, A, satisfy Property 1. We defin@ =
Uns0 Qn, andA” = [UnsoAn. Now, using Property 1Q' € QU Q, andA” < X. This
implies thatQ’ andA” are finite sets. (Note that this means that the se€gsA.,) is even-
tually constant). Using Property 1, we can easily show t@atA”) is a (P, ®)— bounded
context, and™; A” ¥Q y atq.

Finally, we defineA’ to be the set of all sentencesat s € * such thal’; A” +Q g at s.
As a consequence of Proposition 25, we get that

;A +Q patr ifand only if I A” +9Q patr (6)
Clearly, A’ extendsA” and hence\. Furthermore, @', A’) is (P, ®)—bounded by con-
struction. Also we gef’; A’ ¥Q y atq, thanks to the equivalence (6). We only need to
show that ', A’) isT-prime.
1. (Deductive Closure) The sat is deductively closed, by construction.

2. (Disjunction Property) Assume th&t A’ +Q 1 v yp atr, for ¥y Vv y2 € O and
g € Q. Then letn be the least number such thatA, +& 1 v Yy atr. Clearly,
W1V s atq ¢ treated, andT; Ay -9 g V ¥, atq for everym > n. Eventually
Y1 V i, atgqhas to be treated at some odd stagen. Hence, eitheg; atr € Ap,1 or
Yo atr € A1 Thereforey; atqe A’ oryp atqe A’.

3. (Diamond Property) Assume thatA’ Q' op atr, for ¢¢ € @* andr € Q. Then letn
be the least number such thagtA, - ¢p atr. As in the previous case, we assert that
O at qis treated for some even number n. We gety at d,, € A’ by construction.

4. (Consistency) If; A’ -9 1 atr, thenT; A’ +Q y@qatr by the ruleLE. Therefore,
I'; A’ +Q y at g by @E, which contradicts our construction. HenEeA’ ¥Q 1 atq.

We conclude that@’, A’) is al-prime and P, ®)— bounded context extendin@(A)
such thaf; A ¥Q ¢ at p. n

We finally construct the bounded canonical model. In the model, the set of Kripke
states is the set of prime bounded contegisA) ordered by inclusion. A place belongs to
the state Q,A) only if it is in Q, and an atonA is placed in a place in the state Q, A)
only if Aatr € A. More formally, we have

Definition 27 (Bounded Canonical Model) Given a finite set of placeB and two finite
sets of pure formula®,T" ¢ Frm(P), theT-prime and(P, ®)-bounded canonical moded
the quadrupl&Kean €' (K, <, {Pilkers {IiJkex), Where

o the set is the set of all P, ®)—bounded contexts that aFeprime;

e (Q1,A1) < (Q2,Ap) ifand only if Q; € Q, andA; C Ay; and

def
* Pona = Q;

e for k = (Q, A), the functionly : Atoms— Pow(Py) is defined as

los(A) L' {ge Q: Aatqge A).

Given a finite set of placeB and a finite set of formulaE € Frm(P), we say thal’
is consistent if"; P 1L at p for anyp € P. If T is consistent, then Lemma 26 guarantees
that the set of states in the canonical model is non-empty. This ensures that the bounded
canonical model is a Kripke model.

Lemma 28 (Canonical Evaluation) Given a finite set placeP, and two finite sets of
pure formulae®,I” € Frm(P) such thatl" is consistent, letK.an be thel'—prime and
(P, ®)-bounded canonical model. Then

1. Keanis a Kripke model; and
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2. if g is the forcing relation 0¥.an, then for everyy € ©*, every Q,A) € K, and
everyg € Qitholds: @Q,A) Ex ¢ atqif and only if o atq € A.

Proof Clearly, all the properties required for a Kripke model are verified. All we have to
prove is the par® of the lemma. The proof is standard, and we proceed by induction on
the structure of the formula € ®*. In the induction hypothesis, we assume that gart

the lemma is valid on all sub-formulae gfthat are in®*. Please note that i € ®*, then

all of the sub-formulae o are in®*. Hence, we can apply the induction hypothesis on all
the sub-formulae op. Here, we just illustrate the inductive case in whicls og;.

Casenp;. Assume that@®, A) E« O¢1 atqg, whereoyp; € ©*. By definition, this means
that for every ', A’) > (Q, A) and every € Q', itis the case thal@’, A’) E« ¢ atr (and
thereforep; atr € A’ by induction hypothesis).

Chose a new place¢ Q and fix it. We claim thal’; A -9*S ¢; at' s. Supposd; A ¥9*S
¢1 ats. Then by Lemma 26, there is a set of pla€gextendingQ + sand, al-prime and
(P, ®)-bounded contextq’, A’) extending Q, A) such thafl; A’ ¥ ¢; ats. This means
pratse¢ AL Since @, A’) is greater than@, A), we obtain a contradiction.

Therefore, we conclude thBf A F9+S ¢, at s. By using the inference rule of introduc-
tion of o (ol), we get thatl"; A -9 mg; atg. Since Q,A) is T-prime and P, ®)-bounded,
Oy atq e A.

For the other direction, letiy; atq € A. Pick a Kripke state@’, A”) > (Q, A), and fix
it. We need to show that, A’) Ex ¢1 atgq. Now A C A’, and thereforeip; atq € A'.

We can apply the inference rule of eliminationm{oE) to prove thatl", A’ +Q ¢, at s for
everyse Q.

By definition of the canonical modelQX, A’) is T-prime. Thereforep; ats e A’ for
everys € Q. Hence by induction hypothesigQ(,A’) Ex ¢1 atsfor everys € Q. As
(Q', A) is an arbitrary Kripke state larger tha®,(A), we get thatQ, A) ¢ O atq. =

We are now ready to prove completeness. It will imply the completeness theorem for
birelational models as a corollary. We will later on recall the proof of this theorem when
we deal with the finite model property.

Theorem 29 (Completeness)f P is finite and the judgement; A P ¢ at p is valid in
every Kripke model, then it is provable in the logic.

Proof Assume thal; A P ¢ at pis valid. We have:
1. PL(T') U PL(A) U PL(p) U {p} C P.

2. If K = (K, £, {Pilkek, {Ik}kek) is @ Kripke model, then for evelye K such thaP C Py,
k E ¢ at pwhenevek E T A.

We need to show that, A +P ¢ at p.

Assume tharl’; A ¥P ¢ at p. We fix© % {oy Y eTHU{u: patqge A} U {¢}. Please
note that® € Frm(P) and @ A) is a (P, ®)-bounded context. By Lemma 26, there is a
I'-prime and P, ®)- bounded context, ¥) extending P, A) such thaf; T ¥° ¢ at p. We
getp atp ¢ X. Fix (Q, %).

Now consider thé-prime and P, ®)-bounded canonical mod®.,, as constructed in
Definition 27, and lelzg be the forcing relation ifka,. Consider the Kripke stat€) X).
We claim that Q,X) Ex I; A.

Picky € ', r € Q and fix them. We first show that = 9 oy atr. In the proof, we
first choose a new plaaga ¢ Q, and then use the inference r@eto conclude thaiy atr
is derivable fronT", £. We then use the inference rut# to obtainl’; X 9 oy atr. More
formally,

—————— G

;2 FQMy atm

;X FQ oy atr
As y € T, we have thaty € ©. Asr € Q, we have by definition of prime contexts,
oy atr € X. Using Lemma 28, we get tha)(X) =« Oy atr.
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FurthermoreA is contained irE. Therefore, by Lemma 28Q), X) £« u at g whenever
patqeA.

Hence, we get that the Kripke stat@,g) = I'; A. By our assumption, we gef)( X) E«
patp also. By Lemma 28, we getatp € X. However our choice of,X~ was such
thatp atp ¢ X. We have just reached a contradiction, and hence we can conclude that
;AP patp. [

Now, by the encoding of Kripke models into birelational models (see Proposition 21),
if a judgement is valid in all birelational models then it is valid in all Kripke models. As
the class of Kripke models is complete, we get that the class of birelational models is also
complete for the logic.

Corollary 30 If Pis finite and the judgemeiit A +” ¢ at pis bi-valid in every birelational
model, then it is provable in the logic.

Proof Suppose that the judgemdrtA +P ¢ at p is not provable in the logic. Then by
Theorem 29, there is a Kripke mod&l with a statek such thak forcesI'; A but does not
forcep at p. Let ngls be thek-birelational model obtained by the encoding/dfas de-
fined in Proposition 20, and consider the woikdg). It can be shown using Proposition 21
that the world k, p) forcesI'; A but note at p. Hence, the judgemeiit A +P ¢ at p is not

bi-valid. [}

Now, the proofs in this section can be suitably modified to alPwo be infinite, as
they do not actually require context sets to be finite. Finiteness is actually required for the
proof of the finite model property, and not for completeness.

There is another way in which we can deduce the completeness result$iderii-
nite. For this, we take recourse to the following proposition which states that, to derive a
judgment, it is sfficient just to consider the set of places appearing in the formulae of the
judgement itself. This was proved for the logic without disjunctive connectives in [16], and
the proof can be extended for the whole logic.

Proposition 31 Let Py = PL(I') U PL(A) U PL(¢) U {p}, andPy C P. Thenl; A +P g at p
if and only if T'; A +P0 ¢ at p.

Proof The proofis by induction on the length of derivations. [

In order to use completeness result for judgements in wRichinfinite, we proceed
as follows. Suppose that

;AP patp.

Let Po = PL(I') U PL(A) U PL(¢) U {p}. Please observe that by the above Proposition, we
get

;A ¥P patp.

Using Theorem 29, we get a Kripke worki with a Kripke statek such thak forcesI'; A

but noty at p. Furthermorek has at leasP, places. Without loss of generality, we can
assume thaf does not contain any place in the $&t Py (otherwise we can rename
them). Now pickpp € P, and fix it. In each Kripke state ok add new place® \ Py, each
duplicatingpg. It can be shown that in the resulting model the Kripke skaséll forces

I'; A but noty at p. Therefore, we obtain completeness for Kripke semantics vithen
infinite. For the birelational models, we can once again use the encoding of Kripke models
into birelational models.

5 Finite Model Property

In this section, we will show that if a judgemeRtA +P ¢ at p is not provable in the
logic, then there is a finite birelational model that invalidates it. The proof will use the
counter-model from the proof of completenes$4#h The birelational model constructed
in the proof of completeness consists of worlds of the fo@nA, q), where Q,A) are
prime bounded contexts argle Q. The model constructed may be infinite as it may
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contain infinite many worlds. However, by using techniques similar to those used in [35],
we will be able to construct a finite model that is equivalent to the counter-model. The
key technique in the construction is the identification of tripl@sA, q) that difer only

in renaming of places other than thoseRn We start the proof by discussimgnaming
functions

5.1 Renaming functions

First, we discuss renaming of places in formulae and judgements. Given any two sets of
placesQ, Q,, arenaming functions a functionf : Q; — Q.. Intuitively, f renames a
placeqin Q; asf(q).

Given a renaming functior : Q; — Q., we can extend to a function from the
setFrm(Q,) into the setFrm(Q,) by replacing all occurrences of placgdy f(g). More
formally,

o f(A) % Afor all atomsA,;

o f(¢10¢2) € f(p1) o f(g2) foro € (v, A, —);
. f(p@9) £ f(p)@f(9);
o £(00) £ 0f(p) and f(op) £ af(e).

This can be further extended to contekis\ by applying f to all formulae inI" and all

sentences in\, with f extended to sentences Hg at q) def f(y) at f(q).
If f is a renaming function, then we can transform a proof of a judgeiemt-
¢ at g to a proof of the judgemerft(I’; A) < f(y) at f(q):

Lemma 32 (Provability Preservation Under Renaming) Let f : Q; — Q. be a renam-
ing function. Then for any set of pure formulfgany set of sentences any formulayp
and any placeg such thaPL(I') U PL(A) U PL(¢) U {q} € Q1, we have:

[;A F% g atqimplies f(I; A) 22 £(y) at f(0).

Proof Intuitively, in order to obtain a proof of (I'; A) % f(¢) at f(q), replace all occur-
rences of placesin the proof of[; A & ¢ at q by f(r).

More formally, we prove the lemma by induction anthe number of inference rules
applied to derive the judgemeRtA & ¢ atqg. Please note that the induction is on the
number of inference rules applied, and we will vary the §14\, and the formulg in the
proof. Please recall that the inference rules are given in Fig. 1.

Base Case (1= 1). Then the rule applied is one amondgstG, andTI. If the applied
rule isL, theny atq € A. Hencef(y) at f(q) € f(A). An application of the ruld. gives us
f(T; A) F2 () at f(q). The cases dB andT| follow immediately.

Induction hypothesis (i+ 1). We proceed by cases, and consider the last rule applied
to obtainT’; A +& g atq. The treatment of the rules involving the logical connectives is
fairly straightforward, and we show the three most interesting casésal@andoE.

@I: Assume that the last rule applied isl @Theny = y@r, for some pure formula e
Frm(Q.) and some place € Q. Furthermorel'; A +@ y at p is derivable by using
less tham instances of the rules.

The induction hypothesis says thdI"; A) - f(y) at f(r). Using the rule @, we
getl; A v f(y)@f(r) at f(g). We conclude by observing th&ty)@f(r) is f(y) by
definition.

ol: Assume that the last rule appliedid. Theny = oy for some pure formula e
Frm(Q). Moreover, there is &; ¢ Q; such thafl’; A FQHa y at 0; is derivable by
using less tham instances of the inference rules. L@’ = Q; U {q:’}. Choose
a0, ¢ Q2, and letQ,’ = Q2 U {q2'}. We definef’ : Q1" — Q" asf’(r) = f(r) forr € Qq,
andf’(q;) = .
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The induction hypothesis says thE(I; A) F%*% f'(y) atc),. AsT,A andy do
not containg;, we havef’(I'; A) = f(I'; A) and f'(y) = f(y). Therefore, by using the
inference ruleal, we getf(I'; A) +@ of(y) at f(q). We conclude by observing that
f(oy) = of(y).

OE: Assume that the last rule appliedd¢&. Theny = ¢y for some pure formula €
Frm(Q1). Moreover, there exist; ¢ Qi, gy € Q;, andu € Frm(P) such that:

— ;A FQ op at qy is derivable by using less tharinstances of inference rules; and

— T;Apat; F2%% y atq is derivable by using less thaninstances of inference
rules.

By induction hypothesis on the first judgement, we §@; A) - ¢ f(u) at f(ay).

Now, letQ;” = Q1 U {a1"} andA” = AU {u atq;}. We choosey, ¢ Q.. We define
fr:Q — Qasf’(r) = f(r) forr € Qi, andf’(q}) = 0.

By induction hypothesis on the second judgement, wef¢@t A, p atqy) F%
f’(y) at f’(g). Now, f’ is the same ad on Qi, and thereforef’(I'; A, u atq;) =
f(I; A), f(u) at g, by definition. Hence, we get th&(T; A), f(u) at g, %% f(y) atq.

We concludef (I'; A) -9 f(y) at f(q), by using the inference rukeE. ]

For example, let us consid€l; = {p,q} and letQ, = {r}. Letf : Q; — Q: be the
function f(p) = r, f(g) = r. Let A be an atom, and €t to be the empty list. We have
I;Aatp+% A@patg. Then by the Lemma 3Z;; Aatr +& A@r atr.

5.2 Pointed Contexts and Morphisms

Let P, Q be a finite sets of places such that Q. Let® € Frm(P) be a finite set of pure
formulae with sub-formula closui@*. Please recall that given a finite set of sentenices
we say that Q, A) is a (P, ®)—bounded context if for every sentengetr it is the case
thaty € ®* andr € Q. Given a P, ®)—bounded context@, A), we will say that Q, A, )

is a pointed (P, ®)—bounded contexf g € Q. Henceforth, we refer to such triples as
(P, ®)—pcontexts The elementy is said to behe pointof the pcontext@, A, g). Following
[35], we lift the notion of renaming functions to morphisms between pcontexts:

Definition 33 (Morphism) Let w; andw; be two P, ®)—pcontexts, andv, = (Q;, Aj, O)
fori = 1,2. A morphismfrom w; to w, is a renaming functiorf : Q; — Q; such that

1. f(p) = pforeverype P;
2. ifpatge A; theng at f(qQ) € Ay; and

3. f(tn) = .

We writew; 5 w, whenever there is a morphism from to w,. Furthermore, we write
wy = Wo if wi 5w, andw, < wy.

The first part of the definition says that the renaming function does not change the places
in P. Now for every sentence atq € Ay, it is the case thap € Frm(P). Therefore, the
second condition is equivalent to saying théhk;) C A,. Hence, Q1, A1, 01) 3 (Q2, A2, O2)
intuitively means that\, has “more” sentences than up-to renaming. Finally, the third
part says that a morphism preserves the point of a pcontext.

For example, leP = {p}, ® = {A}, andQ; = Q, = {p,q,r}. Letf : Q; — Q, be the
renaming function defined agp) = p, f(g) = r and f(r) = g. Consider the three sets of
sentences:

e Ay =A,={Aatg,Aatp}, and
e AN'={Aatp,Aatr}.

We havef(Aatq) = Aatr. Now, we have thafatr ¢ A, andAatr € A’. Therefore,
f is not a morphism from@1, A1) to (Qz2, Az). On the other handf is a morphism from
(Q1, A1) to (Q2, A).
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Clearly, < is a preorder. The identity function gives reflexivity, and function composi-
tion gives transitivity. This makes the relatieran equivalence relation. W is a pcontext,
then we shall useq] to denote the class of the pcontexts equivalemt Wwith respect to the
relation=. We shall use these equivalence classes as the worlds of the finite counter-model,
and the order amongst the worlds will be given by the preogdéie will now show that
the relation= partitions the set of pcontexts into finite number of classes. Please note that
it is in this proof, we use the fact that the $&is finite:

Lemma 34 (Finite Partition) The set of P, ®)—pcontexts is partitioned into a finite num-
ber of equivalence classes by the equivaleace

Proof We will show that everyR, ®)—pcontext is equivalent to@nonical pcontextThe
set of canonical pcontexts will be finite. Before we proceed, please notP #rad® are
finite sets by definition. Hence, the sub-formula clogaireand the powersdow(®*) must
be finite sets.

We will now define the set of canonical pcontexts. For edch ®* we choose a new

placer , ¢ Psuchthatr o, # 14, if A7 # Ao, Leth=9f{ r A C @} The cardinality

of Ris the same as the cardinality B6bW(®*), and hence& is finite. A canonical pcontext
will have places among$® U R. Furthermore, the canonical pcontext will contain the
sentencep at r , if and only if r , is a place in the pcontext arde A. More formally,
we say that the tripleQ, X, g) is acanonical(P, ®)-pcontexif

e Qisasetofplaces suchthatc Qc PUR.
e Ais the union of two setdp andAg, where
1. Apis a set of sentences such thait s € Ap means thap € ®* ands € P; and

2. Aris the set ofall sentenceg at r 5, wherep € Aandr, € QN R In other
WOde,ARdgf{(pat ra:geA, raeQnR.

e geQ.

Clearly, a triple that satisfies the above points iB@®{)—pcontext. Furthermore, as the sets
P, R, ®* are finite, the set of canonical pcontexts must be finite also.

We will now show that for every pcontest = (Q, A, g) there is a canonical pcontext
equivalent to it. This would immediately give us that the number of equivalence classes
induced by= is finite.

Letw = (Q, A, q) be a f,®)—pcontext, and fix it. Fos € Q, let H(s) € ®* be the set
of formulaey such thatp at s € A.

We now definev’ = (Q’, A’, '), the canonical pcontext equivalentwoas follows. P
will be contained inQ’. For eachs € Q \ P, we add the place i to Q. Forpe P, a
sentencep at p will be in A” only if itis in A. A sentencep at r (g Will be in Q" only if
¢ € H(s). Finally, the pointy will be gif g € P. Otherwise the poing will be r .
More formally, we define:

o Q'ngU{fH(s)ZSGQ\P}

o NE Ap U Ag, Where
- Apdzef{goatpnpatpeAandpe P}
— AR E{pat e se Q\ Pandyp e H())

q,dgf q ifge P;
N I H() Ifqu\P
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Clearly, @, A’,q) is a canonical, ®)—pcontext. Moreover, the renaming functions

. , def S if se P;
f:Q—Q f(9= { I (g Otherwise

tifteP;
. det | qif t=0;
9:Q—Q 9= | otherwise, wherée Q\ Pis chosen s.t.
t=rnp.
are morphisms fronw tow’ and fromw’ to w, respectively. We conclude that=w'. =

5.3 The Finite Counter-Model

Given a finite set of placeB, two finite sets of pure formulag, ® ¢ Frm(P), let Kcan

be thel'-prime and P, ®)-bounded canonical Kripke model as definedg4n(see Defini-

tion 27). Now, letWean = (W. <, R, I, Eval) be theK.,,— birelational model obtained by
using the encoding K4, into a birelational model (se§8.2). We calfW,, theI'—prime

and P, ®)-bounded canonical birelational model. Please recall from the proof of com-
pleteness (se#d) that if a judgemenk; X +P ¢ at p is not provable, ther¥ ., provides

the birelational counter-model for the judgement for an appropriate choi®e of

The worlds ofWan are pcontexts@, A, ) where Q, A) arel'—prime and P, ®)—bou-
nded. Two worldsv; = (Q1, A1, Q1) andw, = (Qy, Ay, Op) are reachable from each other
if Q1 = Q andA; = A,. Furthermore, @1, A1, 1) < (Q2,A2,02) if Q1 € Qz, A1 C A
andqg; = . Aworldw = (Q, A, ) € I(A) for some atonAif Aatqg e A. The evaluation
is a total function, and&((Q, A, q)) = g. Furthermore, as a consequence of definition of
canonical models, a world = (Q, A, g) forces a formula € ®* if and only ifp atqg € A.

Even though the worlds in canonical birelational are composed of bounded pcontexts,
the set of the worlds may itself be infinite. Following [35], we shall construct a model,
called thequotient modelequivalent to the canonical model. For this model, we will use
morphisms between pcontexts. Please recall that given pcomtexsdw,, w; < Ws if
there is a morphism fromy; into wp, andw; = w; if w; < W, andw, < wj. The relation
< is a preorder anét is an equivalence. The set of equivalence classes generatedsby
finite by Lemma 34. We writew] for the equivalence class of.

In the quotient canonical model, the set of worlds will\e. , the set of equivalence
classes generated byon W. We have thaW,.. is finite. Our construction will ensure that
w in the canonical birelational model forces a formula ®* only if [w] forcese.

In the quotient model ;] will be less than ] only if wy < w,. As 5 is a preorder,
it follows easily that this ordering is well-defined. R is the reachability relation on the
canonical model, thenw;] is reachable from\;] in the quotient model only if there is
somew; € [wi] andw, € [w;] such thatw; Rw,. The equivalence of ensures that
reachability relation is well-defined. I is the interpretation of atoms in the canonical
model andw = (Q, A, g), then an atonA will be placed in a world\] only if Aatq € A.
Since a morphism between pcontexts always preserves points, the interpretation function
is also well-defined.

Finally, the evaluation of a worldw] in the canonical model will beartial. It is
defined only if the point ofvis in P, and in that case the evaluation i [is the point ofw.
Please note that morphisms between pcontexts always fixes elemenémihtherefore the
evaluation is also well-defined. Moreovpartiality is essential for the well-definedness of
the evaluation as a morphism of pcontexts may not preserve places other than those in

We start by defining the quotient model formally, and show that this is indeed a birela-
tional model.

Definition 35 (Quotient Canonical Model) Given a finite set of placeB, two finite sets
of pure formulad’, ® € Frm(P), let Wean = (W <, R, |, Eval) be thel'—prime and P, ©)—
bounded canonical birelational model with set of plaees Thequotient model ofiW¢an
has set of placeB, and is defined to be the quintupM/(., <’, R’,l’, Eval), where
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1. The seWV,. is the set of the equivalence classes generated by the refatonV.
2. The binary relatior’ is defined as:\1] <’ [we] if and only if wy < ws.

3. The binary relatiorR’ is defined as: ] R’[ws] if and only if there existsv; € [wi]
andw;, € [w] such thatv; Rw,.

4. The function’ : Atoms— Pow(W,.) is defined as:
(A (W] we 1(A)
5. The partial functioreval : W,. — P is defined as:

def [ P if w=(Q,A, p)andpe P;
Evaf([w) = {not defined otherwise.

As we discussed before;, R’, I’ andEval in the quotient model are well-defined.
We show that the relatioR’ is an equivalence:

Lemma 36 (Reachability is an Equivalence)Given a finite set of placeP, two finite
sets of pure formula€,® c Frm(P), let Wean = (W. <, R, |, Eval) be thel'-prime and
(P, ®)-bounded canonical birelational model. L#®t,. = (W.,<’, R’,I’,Eval) be the
guotient model ofWan. Then R’ is an equivalence.

Proof The reflexivity and symmetry oR’ follow from the reflexivity and symmetry of
R in the modelW . We need to show thaR’ is transitive.

Pick [wi], [wo], [ws] € W, such thaty] R’[w,] R’[ws], and fix them. By definition,
the assumptiony] R’[w.] R’[ws] is equivalent to saying that there awg, w,, w,, w; € W
such thatv; = w; RW, = w, andw, = wj RWw, = ws. As = is an equivalence, we get

W, RW, = W) RW, )
In order to prove transitivity, we will first show that there are two wonrgsandvs in
W such thaw] = viRw = w;. This will give us by definition ;] R’[w;], and hence

[wi] R"[ws].
Now, the assumptions in (7) and the definitionRfsay that

1. W, = (Qu, Aq, 1) andw), = (Qq, A1, G2), where Q1, Aq) is al-prime and P, ®)—bound-
ed context, andj;, gz € Q;.

2. Wy = (Q2,A2,qy) andwy = (Qz, Az, 03), Where 2, Az) is al'-prime and P, ®)-bo-
unded context, and,;, gz € Q..

3. (Qu. AL ®) = (Q2, Ap, @), i.e., there exist two morphismb: Q; — Q andg : Q, —
Qi such thatf (gp) = o, andg(ap) = G

Without loss of generality, we can assume Qat= PUR; andQ, = PUR, with RiNR, = 0
(otherwise, we can rename the placeajmandRy,).

(Q1 U Q2,A1 U Ap) is (P,®)-bounded as@1,A;) and @2, Az) are bounded contexts.
We letv; &' (Q1U Q2,A1 U A2, 01) andvs &« (Q1U Q2,A1 U A, 0).

Now, consider the triple; = (Q1U Q2, A1 UAy, q1). We have Q1 U Qz, A1 U AL, qp) =
(Q1, A1, 1), by considering the two renaming functions

G1:QUQ— Qg G Q1 —QUQ
def [q if ge Qu; def
Gl(q) - {g(q) if q e Q2 GZ(Q) - q

Please note that agis a morphismg(q) = qif q € Q. N Q2 = P. Therefore,G; is
well-defined and5:(q;) = 1. Now, suppose thatatq € Ay U Ay, If patq € Aq, then
¢ atGy(q) € A1 asGy(q) = ginthat case. Ifpatq € A, thenp at G1(q) € A; because in
this case54(q) = g(g) andg is a morphism. Therefor&; is a morphism of pcontext$s,
is a morphism between pcontexts trivially, and hence wenget v;.
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Similarly, (Q1 U Q2, A1 U Az, 0s) = (Q2, Ay, g3) by considering the morphisms

F1:QuuQ2— Q2 F2:Q:— QUQ2
F@ (VI R@¥a
We get that/z = wy.

If vi andvs are worlds inWan, thenvy R v by definition. In that case, andv; are the
worlds we are looking for. In order to show thatandvs are indeed worlds iy, we
need to show that thé>(®)—bounded context@; U Q,, A; U Ay) isT-prime.

In order to show that@; U Q, A; UA,) isT'—prime we need to show the four properties
required by Definition 24. We will prove here only tiedeductive closure property. The
treatment of other properties is similar.

Assume thal’; A; U Ay FQYQ o atq for somep € ®. We consider two cases. If
g € Qs, then consider the renaming functi@ defined above. NovG; fixes Q; and
appliesg to Q.. Therefore,G;(I) = T, G1(A1 U Ap) = A1 U g(Az), Gi(p) = ¢ and
Gi(g) = g. Now, asg is a morphism we get tha{A,) € A;. Therefore, using Lemma 32
and applying the renaming functi@@y to the judgemenk; A; U A, FV ¢ at g, we get
thatT; A; K& g atg. As A; isT-prime,p atq e Ay C A; U A,. Likewise, ifg € Q,, we
conclude thap atq e Ay C Ay U As. [}

We now show that the quotient model is a birelational model.

Proposition 37 (Birelational Preservation) Let ‘Wcan be thel'—prime and P, ®)—boun-
ded canonical birelational model with set of plagds Let W ,. be the quotient model of
Wean. Then'W . is a finite birelational model with set of placPs

Proof Let Wean = W <, R, I,Eval) andW,. = (W, </, R’,I”, Eval). The finiteness
of ‘W, follows from Lemma 34. We need to verify all the properties listed in Definition 8.

1. ClearlyW,.. is a non empty set.

2. Therelatiorx’ is a partial order sincg is a preorder, anel is the equivalence induced
by <.

3. R’ is an equivalence by Lemma 36. We prove the reachability condition. Consider

[wa], [wy], [we] in W, such that ] >" [wy] R’[w;]. We need to prove that there
exists (v,] € W, such that,] R'[w,] > [w]].
Now, the hypothesisg] >’ [wi] R’[w;] means:

o W = (Q1,A1,q1) andw; = (Qi,A1,q;) where Q1,A;) is a (P, ®)-bounded and
I'—prime context, andj, g; € Qu;

e Wy = (Q2,Az, ) Where Q2, Ay) is al'—prime and P, ®)-bounded context, and
02 € Qz; and

e there is a morphisnfi : Q; — Q, from w; to ws.

We definew, def (Q2, Az, f(qy)). Clearlyw, € W, woRw,, andf is also a morphism

fromw; tow,. Therefore f,] R’[w;] >" [w/], as required.

4. In order to check the monotonicity of, consider ], [wz] € W, such thaty»] <’
[w2]. Thenwy = (Q1, A1, O1), Wo = (Q2, Az, g2), and there exists a morphisfrfrom wy
tows, such thatf(q;) = q.

We need to prove that ifwW;] € I’(A), then ;] € I’(A) also. Now assume that
[wi] € I’(A). By definition, this means that atg; € A;. As f is a morphism, we get
Aat (1) € Ay, and hencé at g, € A,. Therefore fv,] € I’(A) as required.

5. According to the definitionEval is a partial function. We need to verify coherence
and uniqueness.

Coherence Consider ], [w;] € W,.. such thatyw] <’ [w.], and assume thadj]| g.
Thenq € P, andw; = (Q1, Ay, q) for someQq, A;. [wy] <’ [we] means that is a
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morphism fromw; to w, that fixesq. Thereforew, = (Q, Az, q) for someQ, and
A,. By definition, we conclude thatg] | g.

UniquenessConsider fv1], [wz] € W, such that 1] R’[w,]. This means that there
existw;,w, € W such thatv; = w; Rw, = w,. Assume thatys]] g and ;]| g.
Thenw/ | gandw,| qin Wean. The uniqueness propertyWea, says thatv; = ws,.
Hencew; = w; = w,. We concludeW] = [w;] as required. [

We will show that a worldwv forces a formula ir®* in the canonical birelational model
if and only if [w] forces the formula in the quotient model. For this, we will need the
following proposition which states that given worlds < w» in the canonical model, ifi;
forces a formula i®* then so doess:

Proposition 38 (Forcing Preservation Under Morphisms) Given a finite set of placeR,
two finite sets of pure formula€,® < Frm(P), let Wean = (W <, R, 1, Eval) be the
I'-prime and P,®)- bounded canonical birelational model. Le}y, be the extension
of interpretationl to formulae. Then for every, w, € W, andy € ©*:

1. If wp 3 Wy, thenwy Eqy @ impliesw, Eqy .
2. If wy = Wy, thenwy Eqy ¢ if and only ifw, Eqy ¢

Proof We prove the first point as the second one is straightforward consequence of the
first one. Considew;,w, € W, such thatv; < w,. This means thatv; = (Qq, A1, 1)

andw, = (Q2, Ao, 02) Where @, Aj) arel'-prime and P, ®)-bounded contexts far= 1, 2.
Moreover, there is a morphisif: Q; — Q, such thatf(q;) = qp.

Assume thatv; 4y ¢ for somey € ®*. This means from the definition of canonical
birelational model thap atq; € A;. Sincef is a morphism fromw; to w,, we get that
patg € Ap,. Once again, we get from the definition of canonical birelational model that
Wo Fqy . =

We are now ready to prove that if the worldn the canonical birelational model forces
¢ € ®*, then the world ] in the quotient model also forces and vice-versa.

Lemma 39 (Quotient Forcing Preservation) Given a finite set of placeg, two finite sets
of pure formulad’, ® C Frm(P), let W¢an = (W <, R, |, Eval) be thel'—prime and P, ®)-
bounded canonical birelational model. 'Bt,. = (W,.,<’, R’,I’,Eval) be the quotient
model of Wean. Let = andf,. extend the interpretatiorlsand|’ to formulae respec-
tively. Then, for every € ®* andw € W

W Eqy ¢ ifand only if W] /- .

Proof The proof proceeds by induction on the structure of the forrauda®*.

Base caseThe lemma is verified omr, and on. by definition. Consider now the case
wheng = A € Atoms Thenw Eqy A meansw = (Q, A, g) for someQ, A,gandAatq € A.
Hence, V] € I’(A), and therefore] - A.

Induction hypothesisWe consider a formula € ©*, and we assume that the lemma
holds for each sub-formula gfthat is in®*. We will proceed by cases on the structureof
For the sake of clarity, we will just consider the case of implication and the modalities. The
other cases can be dealt with similarly. Please note that &sclosed under sub-formulae,
the induction hypothesis can be applied to all sub-formulag of

Before we proceed with the cases, we observe that if= (Q1,A1,01) andw, =
(Q2, Az, 0p) are two worlds inW suchw, < w», thenw; < Wy, This is because by definition
w1 < W, means thaQ; € Q,, A; € A, andq; = gp. The morphism betweem; andws; is
given by the injection of); into Q».

Case ¢ = @1 — ¢2. Letw =qp ¢. We need to show thatf] |, ¢. Consider '] > [w].
Thenw x w. By Proposition 38, we have’ =4y ¢. AS ¢ = 1 — ¢, We get that
W Eqy @2 Whenevemw Eqy ¢3.
If we assumeW] /. ¢1 thenw |4y @1 by induction hypothesis. Hene# =y
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¢2. The induction hypothesis says thet] =, ¢». As [w]is an arbitrary world larger
that w], we can conclude that] k== @1 — ¢2.

For the other direction, lewf] /. ¢. This means that for everyM] > [w]: if
W] E/= @1, then W] /- ¢o.

Consider noww’ >’ w. We have '] = [w] also. If we assum&/ Eq ¢1, then
the induction hypothesis says that] /- ¢1. Then W] /. ¢2, and sov' 4y @2 by
induction hypothesis. We conclude thatqy ¢1 — 2.

Case ¢ = Ogp1. Letw Eqy . We need to show thatf |, Op;. Consideryv;] >’ [w] and
[wo] R’[wy]. It suffices to show that},] k=/. ¢1. The hypothesisvjp] R'[wi] > [w]
means thatv; > wandw, = w3 Rw, = w; for some worldsws, w, € W. We get that
Wy > Wass is a preorder .

We havew,; > w, and hencen, 4 Op; by Proposition 38. By definition of
forcing, ws Eqy ¢1. Thereforew, Eqy ¢1 by Proposition 38. The induction hypothesis
says that\,] /- ¢1, and so we concludey /. Opi.

For the other direction, le] k,. Og,. Considem; > w andw; Rw. We have to
show thatw, E ¢;.

We havew; > w, and hencey;] > [w]. We also have by the definition of the
quotient model thatf,] R’[w1]. Therefore, as] k= O¢1, we get that\f,] /- ¢1.
Hencew, Eqy ¢1 by induction hypothesis. We conclude thakqy O¢p;.

Case ¢ = 0¢1. Letw Eqy . Then there exista; Rwsuch thatw; Eq ¢1. So we have
[wy] R’[w] by the definition of quotient model. Alsm{] /- ¢1 by induction hypoth-
esis. HenceW] E/. 0.

For the other direction, letw] |, ¢. Then there existswj] R’[w] such that
[wi] /= ¢1. This means that there avg andw’ such thatv; = w; RwW = w, and
w1 |y @1 by induction hypothesis. By Proposition 21, we get that=y ¢;. There-
fore, by definition of forcingw’ Eq ¢¢1. By Proposition 21 once agaiw, =4y 0p1.

CasE ¢ = p1@0. Asy € ®* and®* C Frm(P), we get thag € P.

Now, if w Eqy ¢ then there exista; Rwsuch thatv, Eqy ¢ andw; | g. We have
[w1] R’[w] by definition of quotient model. Ag € P, we also havew1]| g. Therefore,
W] E/= ¢1@0.

For the other direction, letw] [, ¢. Then there existswj] R’[w] such that
[wi] E/= ¢1, and ]| g. This means that there ang andw’ such thawv; = w; RW =
w, andwy 4y @1 by induction hypothesis. Furthermore; | g andw, | . By Propo-
sition 21, we get that;, 4y ¢1. Hence, by definition of forcingy’ 4y ¢1@q. By
Proposition 21 once agaiw, =y ¢1@Q. [

As a result of Lemma 39, we have a way to going from a canonical model to an equiv-
alent finite model. As shown above, the canonical model forces a formula if and only if its
finite quotient does, and we get finite model property:

Theorem 40 (Finite Model Property) Assume thaP is a finite set of places. If the judge-
mentT; A +7 ¢ at pis not provable, then there existéimite birelational modefW with set
of placesP, such thal’; A 7 ¢ at p is not valid inW.

Proof We fix® &' {Oy;y eTYUT U{y : ¢ atq e A} UPL(¢) U{p}. Consider th&-prime
and @, ®)—-bounded canonical birelational mod#/.,,. From the proof of completeness
in §4 there is a world ofW 4, Sayw, such thatv evaluates td® andw forcesI'; A but not
.

Consider the quotien¥y/,.. of Wean. “W,.. is a finite birelational model and has set
of placesP. The world [v] evaluates tqp. Furthermore, as a consequence of Lemma 39,
we can easily show thatj forcesT’; A but noty. Therefore,W,.. is the required finite
counter-model. ]

Decidability is based on the usual Harrop criterion, cf. [13], saying that every finitely
axiomatisable modal logic with the finite model property is decidable.
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Corollary 41 (Decidability) The provability of the judgemeiit; A 7 ¢ at p is decidable
in the logic.

Proof Let P’ bePL(I") U PL(A) U PL(¢) U {p}. By Proposition 31T; A 7 ¢ at p if and
only if T;A 7 g at p. As the functionPL can be &ectively computed, we just need to
consider the judgemeiit A -7 ¢ at p for the decidability result.

We can enumerate all proofs in the logic in which the set of places considered is finite.
Hence, we obtain anfiective enumeration of all provable judgements. We can dfsa-e
tively enumerate all finite birelational models, artketively check whether the judgement
I'; A +7 ¢ at pis refutable in a given finite birelational model. As a consequence of the fi-
nite model property proved abovg,A - ¢ at p is refutable only if it is refutable in some
finite birelational model. By performing these enumerations and checks simultaneously,
we obtain an ffective test for provability of'; A -7 ¢ at p. n

The procedure detailed in the corollary above would not have worked if we had used
Kripke models instead of birelational models. This is because the finite model property
fails for Kripke models. For example, consider the judgement=A at p P =-oA at p.

We claim that this judgement is valid for eveiyite Kripke model.

Indeed, lek be a Kripke state in some finite Kripke modglsuch thatk, p) E o—-—-A.

Pick| > k in % such that is maximal with respect to the ordering of Kripke states. As
(k, p) E o—=—-A, we get by definition that (r) £ —=—A for every place in the statd. From
the semantics of implication and the fact th&g a maximal state, it must be the case that
(I,r) E Afor every place in the statd. Again, asl is maximal, we getl(p) E oA, and
therefore [, p) E ——0A. As the model is finite, there is always a maxirhabove any

k' > k, and thenl( p) £ oA. We concludek, p) E ——OA.

On the other hand, we showed that the judgement is not valid in the finite rigglgh,
in Ex. 11. The modeWeamhas two worldsv; andws, such thatvy < w,, wi Rwe, 1(A) =
{wo}, wiT andw,| p. As we discussed therey, £ O-—-A andw, ¢ —-—-0A. As we
mentioned before, this example is adapted from [24, 35].

6 Related Work

The logic we studied is an extension of the logic introduced in [16, 17]. In [16, 17], it
was used as the foundation of a type system for a distribatedlculus by exploiting
the proofs-as-terms and propositions-as-typesadigm. The proof terms corresponding
to modalities have computational interpretation in terms of remote procedure cal)s (@
commands to broadcast computation$, @nd commands to use portable codg (The
authors also introduce a sequent calculus for the logic without disjunctive connectives, and
prove that it enjoys cut elimination. Although the authors demonstrate the usefulness of
logic in reasoning about the distribution of resources, they do not have a corresponding
model.

The proofs-as-terms and propositions-as-typegadigm has also been used in [37,
38, 21]. In [37], the logic studied is an intuitionistic modal logic derived frt8$8, and
the modalities have a spatial flavour. Specifically, Kripke states are taken to be nodes on
a network. The connectiva refelects the mobility of portable code, andeflects the
address of a fixed resources. The work in [38] extends [37, 16, 17] to a lambda calculus
for classical hybridS5with network-wide continuations, which arise naturally from the
underlying classical logic. These continuations create a new relationship between the two
modalities and give a computational interpretation of theorems of classical (§/®rikh
[21], the relationship modal logics and type systems for Grid computing is investigated.
The objects with type are interpreted as jobs that may be injected into the Gird and run
anywhere. The main fierence from [38, 37, 16, 17] is that the underlying logic is based
on S4rather tharS5 Whereas [38, 37, 16, 17] assume all nodes are connected to all other
nodes, networks may have a more refined accessibility relation.

From a logical point of view, the logic in this paper can be viewed as a hybrid modal
logic [1, 2, 4, 5, 6, 27, 28]. A hybrid logic internalises the model in the logic by using
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modalities built from pure names. The original idea of internalising the model into formulae

was proposed in [27, 28], and has been further investigated in [1, 2, 4, 5, 6]. This work has
been mostly carried out in the classical setting. More recently, classical hybrid logic is

combined with linear temporal logic in [25], and the logic accounts for both temporal and

spatial aspects. Intuitionistic versions of hybrid logics were investigated in [7, 16, 17].

There are several intuitionistic modal logics in the literature, and [35] is a good source
on them. The modalities in [35] have a temporal flavour, and the spatial interpretation
was not recognised then. In [35], for example, the accessibility relation expresses the next
step of a computation. The work in [7] extends the modal systems in [35], and creates
hybrid versions of the modal systems by introduanagninals a new kind of propositional
symbols projecting semantics into the logic. A natural deduction system for these hybrid
systems along with a normalisation result is also given in [7]. A Kripke semantics along
with a proof of soundness and completeness is also introduced.

The extension we gave to the logic in [16, 17] is a hybrid version of the intuitionistic
modal systemiS5[23, 29, 35]. The modality @ internalises the model in the logic. In the
modal systemS5 first introduced in [29], the accessibility relation among places is total.
The main diference in the logic presented in [7] and the logic in [16, 17] is that names in
[16, 17] only occur in the modality @

From the point of view of semantics, Kripke semantics were first introduced in [19]
for intuitionistic first-order logic. Kripke semantics for intuitionistic modal systems were
developed in [11, 23, 26, 34, 35]. Birelational models for intuitionistic modal logic were
introduced independently in [11, 34, 26]. They are in general useful to prove the finite
model property as demonstrated in [24, 35]. The finite model property fails for Kripke
semantics [35, 24], and an example for this was adapted in this paper.

Some other examples of work on logics for resources are separation logics [3l],and
the logic of bunched implications [22, 31, 32]. Separation logic is an extension of Hoare
logic that permits reasoning about low-level imperative programs with shared mutable data
structure. Formulae are extended by introducing a ‘separating conjunction’ whose subfor-
mulae are meant to hold for disjoint parts of the system, thus enabling a concise and flexible
description of structures with controlled sharingl is the theoretical base to separation
logics. While separation logic is based on particular storage mdsletiescribe resources
more generally and its model theory is inspired by a primitive of resource composition.

The logic of bunched implications is a substructural system which freely combines
propositional intuitionistic logic and the multiplicative fragment of propositional linear
logic. Assertions are not in a sequence, but rathdsunches contexts with two com-
bining operations, one reflected in the logic the intuitionistic conjunction and the other by
the multiplicative one. In [22, 31, 32], the authors give a Kripke model based on monoids.
The formulae of the logic are the resources, and are interpreted as elements of the monoid.
The monoidal operation is reflected in the logic by the multiplicative connective. The focus
of this work is the sharing of resources, and not their distribution.

Bl-Loc, presented in [3], extends the logic of bunched implication by introducing a
modality for locations. Its models aresource treesnode-labelled trees in which nodes
contain resources belonging to a monoid. Every label gives rise to a corresponding logical
modality which precisely indicates the location where a formula holds. Alth&igtoc
offers a separation operator to express properties holdingfareht parts of the system, its
propositional fragment cannot state properties verified in an unspecified node or in every
node of the system. To fill this gap, authors introduce quantifications on locations and paths.
Validity is undecidable for the fulBl-Loc with quantifications, but it becomes decidable
by avoiding the multiplicative (linear) implication.

The Logic of Bunched Implications has been recently extended in [30] with modalities,
in a Hennessy-Milner style [14]. The new logiglBI, is suitable to express properties
of concurrent systems specified in a calculus of resources and processes. This gives a
modal logic and a semantics that combines Kripke relational semanticsBivikripke
monoid semantics. A similar approach is presented in [8], wh&patial Logicmodels
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the asynchronous-calculus [20]. The logic is developed in classical settings and lacks
a notion of resources. The main aim of spatial logic is to describe the behaviour and the
spatial structure of concurrent systems. The logic is modal in space and in time, and a
formula describes a property of a particular part of a concurrent system at a particular time.

Locations can be added to Spatial Logic along the lines of [9] which gives a modal
logic based on Ambient Calculus [10]. Ambients are intended as locations, and there is
a modalitym [_] for every ambient namen which specifies the location where a property
holds. These spatial modalities have an intensional flavour and ‘hybridise’ spatial logics as
the modality @ ‘hybridises’IS5in the current paper. However, the locations in Ambient
logic unlike this paper have an intensional hierarchy which is reflected in the logic by
having nested formulae lika [n [T]].

7 Conclusions and Future Work

We studied the hybrid modal logic presented in [16, 17], and extended the logic with dis-
junctive connectives. Formulae in the logic contain names, also called places. The logic is
useful to reason about placement of resources in a distributed system. We gave two sound
and complete semantics for the logic.

In one semantics, we interpreted the judgements of the logic over Kripke-style models
[19]. Typically, Kripke models [19] consist of partially ordered Kripke states. In our case,
each Kripke state has a set of places, afigzint places satisfy flerent formulae. Larger
Kripke states have larger sets of places, and the satisfaction of atoms corresponds to the
placement of resources. The modalities of the logic allow formulae to be satisfied in a
named place (@), some place() and every placed). The Kripke semantics can be seen
as an instance of hybri®5[23, 29, 7, 35].

In the second semantics, we interpreted the judgements over birelational models [11,
34, 26, 35]. Typically, birelational models have a set of partially ordered worlds. In addition
to the partial order, there is also a reachability relation amongst worlds. In order to interpret
the modality @ in the system, we also introduced a partial evaluation function on the set
of worlds. The hybrid nature of the logic presenteffidilties in the proof of soundness.

The dificulties are addressed using a mathematical construction that creates a new model
from a given one. The set of worlds in the constructed model is the union of two sets.
One of these sets is the reachability relation, and the worlds in the second set witness the
existential and universal properties.

As in the case of intuitionistic modal systems [11, 34, 23, 26, 35], we demonstrated that
the birelational models introduced here enjoy the finite model property: a judgement is not
provable in the logic if and only if it is refutable in some finite model. The finite model
property allowed us to conclude decidability. The partiality of the evaluation function was
essential in the proof of the finite model property.

As future work, we are considering other extensions of the logic. A major limitation of
the logic presented in [16, 17] is that if a formulas validated at some named place, say
p, then the formulax@p can be inferred at every other place. Similarly# or op can
be inferred at one place, then they can be inferred at any other place. In a large distributed
system, we may want to restrict the rights of accessing information in a place. This can be
done by adding an accessibility relation as is done in the case of other intuitionistic modal
systems [35, 7]. We are currently investigating if the proof of the finite model property
can be adapted to the hybrid versions of other intuitionistic modal systems. We are also
investigating the computational interpretation of these extensions. This would result in
extensions ofi-calculus presented in [16, 17]. We also plan to investigate adding temporal
modalities to the logic. This will help us to reason about both space and time.

From a purely logical point of view, the meta-logic used in the paper to reason about
soundness and completeness is classical. In order to obtain a full intutionistic account for
the logic, another line of investigation would be to consider categoricdbatapological
semantics for the logic. This would allow us to obtain soundness and completeness results
when the meta-logic is intuitionistic.
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