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Abstra
t

What is neuronal 
apability of dis
riminating between di�erent input signals? Fur-

thermore, how to improve its dis
riminating 
apability? We explore these issues both

theoreti
ally and numeri
ally for the integrate-and-�re (IF) model and the IF-FHN

model (a simpli�ed version of the FitzHugh-Nagumo model [6℄). It is found that adding


orrelations and in
reasing inhibitory inputs 
onsiderably redu
e the total probability

of mis
lassi�
ations (TPM). A novel theory on dis
rimination tasks is developed and

the theory a

ounts for all observed numeri
al results.

1 Introdu
tion

To eÆ
iently dis
riminate between di�erent input signals, for example to tell the im-

age of a prey from that of a predator, is of vital importan
e to a nervous system. The

a
tual neuron me
hanisms underpinning the 
ognitive a
tivity remain one of the most

signi�
ant and puzzling problems in neuros
ien
e, despite there have been mounting

experimental and theoreti
al results devoted to the topi
 (for example see re
ent re-

views [14, 15℄). In a series of experiments, Newsome and his 
olleagues have 
ompared

single neuron a
tivity with psy
hophysi
al experiment data. They found, surprisingly,
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that the information extra
ted from single neuron a
tivity in MT is almost enough to

a

ount for psy
hophysi
al experiment data. Hen
e an observation of the �ring rates

of single neuron, at least in MT, 
ontains enough information to further guide motor

a
tivity. Imagining the enormous number of neurons in the 
ortex, their �ndings are

striking and open up many interesting issues for further theoreti
al and experimental

study. Interestingly, similar �ndings are reported in somatosensory pathways [15℄ as

well. In line with these experimental results, in this paper we 
on
entrate on the rela-

tionship of the input and output �ring rates of a single neuron. The issue we are going

to address is quite straightforward (see Fig. 1). Suppose that a neuron re
eives two set

Figure 1: For two mixed signals (left), after neuronal transformation, will they be
ome more

mixed or more separated?

of signals (
oded by �ring rates) distributed a

ording to two histograms as depi
ted

in Fig. 1 (left). Will the signals be
ome more mixed or separated, after neuronal

transformations?

More spe
i�
ally we 
onsider neuron models with a 
ombination of (
oherent) signal

inputs and masking 'noise' inputs. The models we employ here are the integrate-and-
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�re(IF) model and the IF-FHN model [6℄. We �nd that with a small fra
tion of signal

inputs, the e�erent spike trains of the model 
ontain enough information to dis
riminate

between di�erent inputs (see below for more details).

We then explore the possible fun
tional role of inhibitory inputs on dis
rimination

tasks. A neuron extensively re
eives both ex
itatory and inhibitory inputs. It is 
lear

that the ex
itatory input 
odes the input information: the stronger the stimuli are, the

faster the neuron �res. Less is known about the inhibitory input, mu
h as di�erent,

theoreti
al hypotheses have been put forward in the literature ranging from a
tually

syn
hronizing the �ring of a group of neurons [20℄, linearizing input-output relation-

ship [7℄ and in
reasing neuron �ring rates [6℄ et
. We �nd that adding 
ertain amount

of inhibitory inputs 
onsiderably enhan
es the neuronal dis
rimination 
apability if

signal inputs are 
orrelated.

The 
on
lusion above seems quite 
ounter intuitive. We all know that in
reasing

inhibitory inputs to a single neuron model will result in an in
rease on the variability

of its e�erent spike trains [6℄. The histogram of �ring rates will thus be
ome more

spread out and, as a 
onsequen
e, the dis
rimination of di�erent inputs be
omes more

diÆ
ult. However, this is not the 
ase. To understand the me
hanism underpinning

the observed phenomena, we then go a step further to theoreti
ally explore the model

behaviour. Based upon the IF model, a theory on dis
rimination tasks is developed.

We �nd that two key me
hanisms for a
hieving a better separation of output signals,

in 
omparison with input signals, are

1. input signals are positively 
orrelated and

2. ex
itatory inputs and inhibitory inputs are exa
tly balan
ed.

Without 
orrelations, no matter how strong the inhibitory inputs are, the separability

of the output signals and the input signals is identi
al: if the input signals are separable,

so are the output signals and vise versa. With 
orrelations, the stronger the inhibitory

inputs are, the better the separation.
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Theoreti
ally the 
riti
al value of the 
oherent inputs at whi
h the output his-

tograms are separable is exa
tly obtained (Theorem 2) for the 
ase of 
orrelated and

exa
tly balan
ed inputs (the most interesting 
ase). The results enable us to assess the

dependen
e of our 
on
lusions on di�erent model parameters and input signals. It is

illuminating to see that the 
riti
al value is independent of model parameters in
luding

the threshold, the de
ay time and the EPSP and IPSP magnitude.

All the aforementioned results are obtained for the IF and IF-FHN model without

reversal potentials, we further examine our 
on
lusions for the IF model with reversal

potentials. Sin
e adding reversal potentials to a model is equivalent to in
reasing its

de
ay rate (depending on input signals), we would naturally expe
t that the model

with reversal potentials will be
ome more e�e
tively to distinguish di�erent inputs.

The 
on
lusion is numeri
ally 
on�rmed.

During the past few years, inhibitory inputs (see for example [11, 12℄) and 
orrelated

inputs (see for example [17, 18℄ are two topi
s widely investigated in neuros
ien
e. It

seems it is generally a

epted that they play important roles in information pro
essing

in the brain. Our results here provide a 
onvin
ing and dire
t eviden
e to show that

they do improve the performan
e of a single neuron. Su
h results would also be valuable

on pra
ti
al appli
ations of spiking neural networks [9℄.

2 The Integrate-and-�re Model and its Inputs

The �rst neuron model we use here is the 
lassi
al IF model [4, 5, 19℄. When the

membrane potential V

t

is below the threshold V

thre

, it is given by

dV

t

= �L(V

t

� V

rest

)dt+ dI

syn

(t) (2.1)

where L is the de
ay 
oeÆ
ient and the synapti
 input is

I

syn

(t) = a

p

X

i=1

E

i

(t)� b

q

X

j=1

I

j

(t)
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with E

i

(t); I

i

(t) as Poisson pro
esses with rate �

i;E

and �

i;I

respe
tively, a > 0; b > 0

are magnitude of ea
h EPSP and IPSP, p and q are the total number of a
tive ex
itatory

and inhibitory synapses. On
e V

t


rosses V

thre

from below a spike is generated and

V

t

is reset to V

rest

, the resting potential. This model is termed the IF model. The

interspike interval of e�erent spikes is

T = infft : V

t

� V

thre

g

More spe
i�
ally, synapti
 inputs take the following form (p = q)

I

syn

(t) = a

p

X

i=1

E

i

(t)� b

p

X

j=1

I

j

(t)

= a

p




X

i=1

E

i

(t) + a

p

X

i=p




+1

E

i

(t)� b

p




X

i=1

I

i

(t)� b

p

X

i=p




+1

I

i

(t)

where E

i

(t); i = 1; � � � ; p




are 
orrelated Poisson pro
esses with an identi
al rate �

j

; j =

1; 2, E

i

(t) is Poisson pro
esses with a �ring rate �

i�p




independently and identi
ally

distributed random variables from [0; 100℄; i = p




+ 1; � � � ; p, I

i

(t); i = 1; � � � ; p have the

same property as E

i

(t), but with a �ring rate of r�

j

; j = 1; 2 or r�

i�p




for r 2 [0; 1℄

representing the ratio between inhibitory and ex
itatory inputs.

From now on, we further use di�usion approximations to approximate synapti


inputs [19℄ and without loss of generality we assume that a = b and V

rest

= 0.

I

syn

(t) = ap




�

j

t+ a

p�p




X

i=1

�

i

t� bp




r�

j

t� b

p�p




X

i=1

r�

i

t

+

q

(a

2

+ b

2

r)�

j

p




(1 + 
(p




� 1)) + (a

2

+ b

2

r)

P

p�p




i=1

�

i

�B

t

where B

t

is the standard Brownian motion and j = 1; 2. We �rst 
onsider the 
ase

that a neuron re
eives independent inputs. As we might expe
t, the output from a

single neuron does not 
ontain enough information for the dis
rimination task (results

not shown, see next se
tion), with the ratio of inhibitory to ex
itatory inputs spanned

from nil to one (exa
tly balan
ed inhibitory and ex
itatory input). We then turn to

the situation that a small amount of 
orrelations are added to the synapti
 inputs

whi
h 
ode 
oherently moving dots. For the simpli
ity of notation we assume that the
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orrelation 
oeÆ
ient between ith ex
itatory (inhibitory) synapse and jth ex
itatory

(inhibitory) synapse is 
 > 0. The 
orrelation 
onsidered here re
e
ts the 
orrelation

of a
tivity of di�erent synapses, as dis
ussed and explored in [6, 21℄. It is not the


orrelation of single in
oming EPSP or IPSP whi
h 
ould be expressed as 


ij

(t� t

0

) for

the EPSP (IPSP) at time t of the ith synapse and time t

0

of the jth synapse. We refer

the reader to [6℄ for a detailed dis
ussion on the meaning of the 
orrelation 
onsidered

here.

In summary, suppose that a neuron re
eives p synapti
 inputs. The goal of the

postsynapti
 neuron is to dis
riminate between two types of inputs

1. p




ex
itatory Poisson inputs �re at a rate �

1

and

p




inhibitory Poisson inputs �re at a rate r�

1

with r 2 [0; 1℄;

2. p




ex
itatory Poisson inputs �re at a rate �

2

(�

2

6= �

1

)

p




inhibitory Poisson inputs �re at a rate r�

2

with r 2 [0; 1℄.

In both 
ases, the neuron re
eives 'noise' Poisson inputs 
onsisted of p� p




ex
itatory

inputs and the same number of inhibitory inputs. We assume that 'noise' ex
itatory

inputs are uniformly distributed between 0 and 100 Hz, and 'noise' inhibitory inputs

are between 0 and 100r Hz. Without loss of generality, we always assume that �

2

> �

1

.

3 Numeri
al Results

Example 1 The setup above a
tually (see Fig. 2) mimi
s the inputs to an MT neuron

used in the experiments. In the experiment of Newsome and his 
olleagues, the input

image is a 
olle
tion of moving dots, say p dots. p




out of p dots move with an identi
al

(
oherent) dire
tion, either upward or downward and p � p




dots move with random

dire
tions. In the literature [2℄, p




=p is 
alled 
oheren
e level. We 
ould assume that

an MT neuron ex
lusively re
eives information of motion dire
tions of an input image

(moving dots), i.e. the 
ell re
eives p synapti
 inputs, ea
h represents the moving
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dire
tion of a dot. Denote that N

i

(t); i = 1; � � � ; p as a Poisson pro
ess with a rate �

i

,

where �

i

takes value from [0; 100℄Hz, i.e. (�

i

=100)2� is the motion dire
tion of the i-th

random moving dot (see [2℄) and the motion of ea
h dot is 
oded by the �ring rate of a

single synapti
 (Poisson) input. Hen
e �

i

= �

1

= 25 Hz represents the input of upward

motion, or the ith dot moves upward; �

i

= �

2

= 75 Hz represents the downward motion.

For example when the neuron re
eives synapti
 inputs with a 
oheren
e of p




=p, whi
h

o 

o 

o 

o 

o 

o 

o 

o 

o 

o o 

o o o o o o o o o o o 

0 Hz 

25 Hz 

Figure 2: S
hemati
 plot of inputs used in the experiment (see [2℄, left) and in the model

(right). In the model, the dot moves horizontally towards right is represented by synapti


inputs of 0 Hz input; the dot moves upwards is 25Hz.

means that the neuron re
eives p




out of p Poisson pro
esses of �ring rates of 25 Hz

(upward motion) or 75 Hz (downward motion) and p� p




Poisson pro
esses of random

�ring rates uniformly taking values from 0 to 100 Hz.

The parameters used in simulating the IF model are V

thre

= 20mV , V

rest

=

0mV;L = 1=20, a = b = 1mV; p = 100; �

1

= 25 Hz and �

2

= 75 Hz. A refra
tory

period of 5mse
 is added for all numeri
al results of e�erent �ring frequen
y. For ea
h

�xed set of parameters of the model, 100 spikes are generated to 
al
ulate ea
h mean,

standard deviation et
.

Fig. 3 depi
ts the histogram of �ring rates with purely ex
itatory r = 0 (left


olumn) and almost balan
ed ex
itatory and inhibitory inputs r = 0:95 (right 
olumn)
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with 
 = 0:1 [21℄ and p




= 15 (upper panel), 25 (bottom panel). It is easily seen that

when p




= 25 and r = 0:95, from an observation of single neuron a
tivity, we 
ould

perfe
tly separate upward from downward motions. Nevertheless, when r = 0 and

p




= 25 we are not able to perfe
tly separate upward from downward motions.

Figure 3: Histogram of �ring rates (Hz) with 
 = 0:1 for the IF model. Left, ex
lusively

ex
itatory inputs r = 0. Right, r = 0:95. Upper panel: p




= 15. The minimum TPM is


al
ulated a

ording to the thi
k verti
al lines (the optimal dis
rimination line). Bottom

panel: p




= 25.

Let us now 
onsider the minimum total probability of mis
lassi�
ation (TPM) de-

�ned by

TPM =

1

2

P ( downward jinput is upward) +

1

2

P ( upward jinput is downward)

For example, in Fig. 3, we see that TPM (in per
entile) for the left upper panel is
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about 13:5% and for the right upper panel is 5:5%. Therefore adding inhibitory inputs

to the neuron 
onsiderably improves its dis
rimination 
apability, redu
ing TPM from

13:5% to 5:5%.

In Fig. 4 the histogram of 
oeÆ
ient of variation (CV) of e�erent spike trains is

plotted. Our results also reveal one possible fun
tional role of e�erent spike trains with

a high CV widely observed in experiments. In the past few years, there are a large body

of literatures devoted to the topi
: how to generate e�erent spike trains with a large

CV for the IF model(see [6℄ for a review). Nevertheless, the fun
tional impli
ations of

e�erent spike trains with a large CV are still not 
lear. Here we �nd that for a �xed


oheren
e level, a lower TPM value 
orresponds to a larger CV. In other words, for a

given p




, to a
hieve a better dis
rimination naturally requires that e�erent spike trains

are more irregular.

Figure 4: Histogram of CV with 
 = 0:1; p




= 15 for the IF model. Left, ex
lusively

ex
itatory inputs r = 0. Right, r = 0:95.

In Fig. 5 we plot TPM (in per
entile) vs. p




for r = 0 and r = 1 and TPM vs.

r for p




= 15 and p




= 25. TPM vs. p




simply 
on�rms our 
on
lusion that adding

inhibitory inputs improves a neuron's 
apability of dis
riminating between di�erent

inputs. Remember that the noise strength in the input (� de�ned in Eq. (3.1)) is

proportional to r. The larger the r is, the larger the input noise. TPM vs. r in Fig. 5

tells us another interesting phenomenon: in
reasing noise in the model is useful rather
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than harmful. The bene�t of noise in neuronal system has been extensively explored

in the literature of sto
hasti
 resonan
e [8℄. However, the me
hanism to rea
h the

�nely tuning noise level whi
h results in the sto
hasti
 resonan
e seems far-fet
hed for

neuronal systems. Our �nding here provides a more dire
t and 
onvin
ing eviden
e

whi
h 
learly demonstrates the advantage of adding noise to a neuronal system.
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Figure 5: TPM % vs. r (left) and TPM vs. p




(right) for the IF model. When p




= 15 (left),

it is 
learly shown that TPM attains its optimal value at r = 1, i.e. the larger the noise, the

better the dis
rimination ( see the right �gure as well).

3.1 Other Input Forms

The results presented in the previous subse
tions seems quite 
ount-intuitive sin
e we

all know that adding inhibitory inputs to the IF model in
reases its CV of e�erent spike

trains. Namely in
reasing inhibitory inputs to the model will make the histogram of

�ring rates more widely spread out and so make the dis
rimination task more diÆ
ult.

In this subse
tion, we 
onsider the model with other forms of inputs.
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The input in the previous subse
tion is

di

syn

(t) = a(p




�

j

+

p�p




X

i=1

�

i

)(1� r)dt

+a

v

u

u

t

[�

j

p




(1 + 
(p




� 1)) +

p�p




X

i=1

�

i

℄(1 + r) � dB

t

= �dt+ �dB

t

(3.1)

where j = 1; 2. From results in [6℄ we know that

hT i =

2

L

Z

V

thre

L� �

�

V

rest

L� �

�

g(x)dx

(3.2)

where

g(x) =

�

exp(x

2

)

Z

x

�1

exp(�u

2

)du

�

In terms of the law of large numbers we 
on
lude that

p�p




X

i=1

�

i

� (p� p




)h�

1

i+

p

p� p




��(�

1

) (3.3)

where �(�

1

) is the standard deviation of �

1

and � � N(0; 1).

Hen
e Eq. (3.2) turns out to be

hT i =

2

L

�

Z

V

thre

L� a[p




�

j

+ (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 � r)

a

q

[�

j

p




(1 + 
(p




� 1)) + (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 + r)

�[p




�

j

+ (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 � r)

q

[�

j

p




(1 + 
(p




� 1)) + (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 + r)

g(x)dx

(3.4)

We have 
he
ked the a

ura
y of the approximation developed here. It is found that

the approximation in Eq. (3.4) is not very good (
ompare Fig. 6 upper panel with

Fig. 3 upper panel), simply implying that we have to in
lude more higher order terms

in the approximation of Eq. (3.3). Nevertheless, Eq. (3.4) gives us a transparent

formula to study the issues dis
ussed in the previous subse
tion and Eq. (3.4) is exa
t

if we model the input rate as a normally distributed random variable

1

rather than a

uniformly distributed random variable.

1

More exa
tly, it should be a random variable so that Eq. (3.4) makes sense.
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Figure 6: Histogram of �ring rates (Hz) with 
 = 0:1; p




= 15; h�

1

i = 0:05 and �(�

1

) = :1=

p

12

(upper panel, 
ompare with Fig. ), p




= 25 and �(�

1

) = 1=

p

12 (bottom panel) for the IF

model with inputs de�ned by Eq. (3.3). Left, ex
lusively ex
itatory inputs r = 0. Right,

r = 0:95.
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To the �rst order approximation, Eq. (3.4) reveals the underpinning me
hanism of

the phenomena observed here. From Eq. (3.4) we have

hT i � hT

1

i =

2g(0)V

thre

a

q

[�

j

p




(1 + 
(p




� 1)) + (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 + r)

(3.5)

The �ring rate in the unit of Hz is then

1000

R

e

+ hT

1

i

=

1000a

q

[�

j

p




(1 + 
(p




� 1)) + (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 + r)

R

e

a

q

[�

j

p




(1 + 
(p




� 1)) + (p� p




)h�

1

i+

p

p� p




��(�

1

)℄(1 + r) + g(0)V

thre

(3.6)

where R

e

is the refra
tory period. Let us denote 


1

= p




(1 + 
(p




� 1)) and 


2

(�) =

(p� p




)h�

1

i+

p

p� p




��(�

1

) then Eq. (3.6) is

1000a

q

[�

j




1

+ 


2

(�)℄(1 + r)

R

e

a

q

[�

j




1

+ 


2

(�)℄(1 + r) + g(0)V

thre

(3.7)

Under the assumption that � is a small perturbation of a deterministi
 quantity or in

the sense of the mean �eld approximation, we have

1000a

p

[�

2




1

+ 


2

(h�i)℄(1 + r)

R

e

a

p

[�

2




1

+ 


2

(h�i)℄(1 + r) + g(0)V

thre

�

1000a

p

[�

1




1

+ 


2

(h�i)℄(1 + r)

R

e

a

p

[�

1




1

+ 


2

(h�i)℄(1 + r) + g(0)V

thre

>

1000a

p

[�

2




1

+ 


2

(h�i)℄

R

e

a

p

[�

2




1

+ 


2

(h�i)℄ + g(0)V

thre

�

1000a

p

[�

1




1

+ 


2

(h�i)℄

R

e

a

p

[�

1




1

+ 


2

(h�i)℄ + g(0)V

thre

(3.8)

where r > 0 and �

1

< �

2

. Therefore we 
on
lude that larger the inhibition is, the more

widely separate the �ring rate with di�erent inputs and so the easier to dis
riminate

between di�erent input signals. The 
on
lusions are only true under very restri
ted


onditions as spe
i�ed above, however we would like to show it here sin
e all proofs

are straightforward. To have a rigorous result, we have to �nd the distribution density

of hT i, whi
h is a hard task. However, in the next se
tion, we develop a theory to get

around the diÆ
ulty.

Next we are going to test how general or robust are our 
on
lusions in the previous

subse
tions. In Fig. 6 we show histograms of �ring rates with h�

1

i = 0:05, but with
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�(�

1

) = :1=

p

12 (upper panel) and �(�

1

) = 1=

p

12 (bottom panel). When h�

1

i = 0:05

and �(�

1

) = :1=

p

12, the mean and varian
e are the same as in the model 
onsidered in

the previous subse
tions. When h�

1

i = 0:05 and �(�

1

) = 1=

p

12, the standard deviation

of inputs is enlarged by a fa
tor of 10, in 
omparison with the setup in the previous

subse
tions. It is easily seen that in
reasing the varian
e in input signals will make the

histograms of �ring rates more widely spread out, as shown in Fig. 6, bottom panel.

Nevertheless, when p




= 25 we see that the input signals 
an be perfe
tly separated.

3.2 Models With Reversal Potentials

A slightly more general model than the IF model de�ned above is the IF model with

reversal potentials de�ned by

dZ

t

= �(Z

t

� V

rest

)Ldt+ d

�

I

syn

(Z

t

; t) (3.9)

where

�

I

syn

(Z

t

; t) = �a(V

E

� Z

t

)

p

X

i=1

E

i

(t) +

�

b(V

I

� Z

t

)

q

X

j=1

I

j

(t)

V

E

and V

I

are the reversal potentials V

I

< V

rest

< V

E

, �a(V

E

� V

rest

);

�

b(V

I

� V

rest

) are

the magnitude of single EPSP and IPSP when Z

t

= V

rest

. We 
ould rewrite Eq. (3.9)

in the following form

dZ

t

= �(Z

t

� V

rest

)(Ldt+ �a

p

X

i=1

dE

i

(t) + �a

p

X

i=1

dI

i

(t))

+�a(V

E

� V

rest

)

p

X

i=1

dE

i

(t) +

�

b(V

I

� V

rest

)

q

X

j=1

dI

j

(t)

= �(Z

t

� V

rest

)[Ldt+ �a

p

X

i=1

dE

i

(t) +

�

b

p

X

i=1

dI

i

(t)℄

+a

p

X

i=1

dE

i

(t) + b

q

X

j=1

dI

j

(t)

(3.10)

Therefore the di�eren
e between the model with and without reversal potentials is that

the latter has a de
ay rate depending on in
oming signals. From the 
on
lusions of
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the previous subse
tions we would expe
t that the model with reversal potentials will

improve its 
apa
ity of dis
riminating in
oming signals.

Fig. 7 is in agreement with our expe
tations. We see that for p




= 15 and

r = 0:6 a perfe
t dis
rimination is a
hieved. For the model without reversal po-

tentials, we see that for p




= 15 and r = 1 we still have TPM > 0 (see pre-

vious subse
tions). The parameters used in the model with reversal potentials are

�a = 0:01;

�

b = 0:1; V

E

= 100mV; V

I

= �10mV , with all other parameters as the model

without reversal potentials.

2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Figure 7: Histogram of �ring rates in the unit of Hz ( upper panel) and CV (bottom panel)

with 
 = 0:1; p




= 15 for the IF model with reversal potentials. Left, ex
lusively ex
itatory

inputs r = 0. Right, r = 0:6.
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3.3 IF-FHN Model

The IF model is the simplest neuron model whi
h mimi
s 
ertain properties of a bi-

ologi
al neuron and is linear before resetting. A slightly more 
omplex model is the

IF-FHN model, an IF model but with a nonlinear leakage 
oeÆ
ient, as in a biophysi
al

model. In terms of the output signal-to-noise ratio, we know that the IF and IF-FHN

model behave in totally opposite ways when they re
eive 
orrelated inputs (see [6℄ for a

review). We then naturally ask that whether the phenomenon observed in the previous

se
tion with partially 
orrelated inputs is true only for the IF model or not. To this

end we simulate the IF-FHN model de�ed by

dv(t)

dt

= �(1=� + 
�)v(t) + 
(1 + �)

v(t)

2

60

�


v(t)

3

3600

+

di

syn

(t)

dt

(3.11)

when v(t) < v

thre

= 50. The parameters are v

rest

= 0; 
 = 50; � = 0:2; � = 2:5;

a = 2:; p = 300. Note that to ensure the output �ring rates in the similar regions for

di�erent models, the value of p and a used in the IF-FHN model is higher than that

in the IF model, but still in the physiologi
ally plausible regions.
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Figure 8: Histogram of e�erent frequen
y (Hz) of the IF-FHN model with 
 = 0:1; p




=

25; p = 300. Left, ex
lusively ex
itatory inputs r = 0. Right, r = 1:

Fig. 8 shows the simulation results. It is readily seen that all 
on
lusions in the

previous se
tion remain true: in
reasing inhibitory inputs 
onsiderably improves the



17

dis
rimination 
apability of the model neuron. Furthermore, the fra
tion of 
oherent

inputs whi
h ensures a perfe
t dis
rimination is less than that of the IF model. For

example, in Fig. 8, with p




=p = 25=300 of 
oherent inputs the histograms of e�erent

frequen
y are well separated when r = 1.

4 Theoreti
al Results

  

   

Firing rate (Hz)

H
is

to
g

ra
m

s

R
min

(λ
2
) R

max
(λ

1
)

 

p
2
(λ) p

1
(λ) 

Figure 9: A s
hemati
 plot of two output histograms, R

min

(�

2

) and R

max

(�

1

).

In this se
tion we 
on
entrate on theoreti
al results. Let � be the set of input

frequen
y of the model, whi
h is [0; 100℄. It will be
ome obvious that all theoreti
al

results are independent of this 
hoi
e. For a �xed (�

1

2 �; �

2

2 �) with �

1

< �

2

we

have 
orresponding two histograms p

1

(�) and p

2

(�) of output �ring rates as shown in

Fig. 9. Let

R

min

(�

2

) = minf� : p

2

(�) > 0g

and

R

max

(�

1

) = maxf� : p

1

(�) > 0g
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and denote

�(�

1

; �

2

; 
; r) = fp




: R

min

(�

2

) = R

max

(�

1

)g (4.1)

If it is 
lear from the 
ontext about the dependen
e of �(�

1

; �

2

; 
; r) on 
; r, we some-

times simply write �(�

1

; �

2

; 
; r) as �(�

1

; �

2

). Hen
e for �xed (�

1

; �

2

), �(�

1

; �

2

) gives

us the 
riti
al value of p




: when p




> �(�

1

; �

2

) the input patterns are perfe
tly separa-

ble in the sense that the the output �ring rate histograms are not mixed with TPM=0;

when p




< �(�

1

; �

2

) the input patterns might not be separable with TPM> 0. Note

that we 
onsider the worst 
ase here and in pra
ti
al appli
ations, the 
riti
al value of

p




at whi
h the input patterns are perfe
tly separable, as found in the previous se
tion,

is in general lower than �(�

1

; �

2

; 
; r). From now on, all �gures are generated using the

same parameters as in the previous se
tion, if not spe
i�ed otherwise.

Here is the basi
 idea of our approa
h. As pointed out before, it is not easy to

dire
tly 
al
ulate the distribution of hT i. Nevertheless, the dis
rimination task is only

involved in the most left point of p

2

(�), i.e. R

min

(�

2

), and the most right point of

p

1

(�), i.e. R

max

(�

1

), provided that both p

2

and p

1

are positive only in a �nite region.

This is exa
tly the 
ase for the model we 
onsidered here sin
e neurons �re within a

�nite region.

4.1 Behaviour of �(�

1

; �

2

; 
; r)

First of all, we want to explore the behaviour of R

min

(�

2

) � R

max

(�

1

). In Fig. 10,

Di� = R

min

(�

2

) � R

max

(�

1

) with di�erent values of a and �

1

= 25Hz,�

2

= 75Hz are

shown. In all 
ases we see that it is an in
reasing fun
tion of r and �(�

1

; �

2

; 
; r) is a

de
reasing fun
tion of r.
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Figure 10: Di�=R

min

(�

2

)�R

max

(�

1

) for a = 0:5 (upper panel), a = 1 (middle panel) a = 2

(bottom panel) with �

1

= 25 Hz, �

2

= 75 Hz and 
 = 0:1. It is easy to read out �(�

1

; �

2

; 
; r).
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Theorem 1 Let �

max

= maxf� 2 �g = 100 Hz, we have

�(�

1

; �

2

) =

(

p




:

Z

V

thre

L

0

g

 

y � a[p




�

1

+ (p� p




)�

max

℄(1� r)

a

p

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�

max

℄(1 + r)

!

dy

=

p

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�

max

℄

p

[�

2

p




(1 + 
(p




� 1))℄

�

Z

V

thre

L

0

g

 

y � a(p




�

2

)(1� r)

a

p

[�

2

p




(1 + 
(p




� 1))℄(1 + r)

!

dy

)

(4.2)

Proof As in the previous se
tion we know that

hT i =

2

L

Z

V

thre

L� �

�

V

rest

L� �

�

g(x)dx

(4.3)

where

g(x) =

�

exp(x

2

)

Z

x

�1

exp(�u

2

)du

�

Hen
e Eq. (4.3) turns out to be

hT i =

2

L

�

Z

V

thre

L� a[p




�

j

+

P

p�p




i=1

�

i

℄(1� r)

a

q

[�

j

p




(1 + 
(p




� 1)) +

P

p�p




i=1

�

i

℄(1 + r)

�[p




�

j

+

P

p�p




i=1

�

i

℄(1� r)

q

[�

j

p




(1 + 
(p




� 1)) +

P

p�p




i=1

�

i

℄(1 + r)

g(x)dx

(4.4)

De�ne

T (x) =

2

L

�

Z

V

thre

L� a[p




�

j

+ x℄(1� r)

a

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)

�[p




�

j

+ x℄(1� r)

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)

g(x)dx

(4.5)

we intend to prove that T (x) is a de
reasing fun
tion of x. Intuitively it is obvious: the

stronger the input is, the shorter the interspike interval. Nevertheless, we have proved

in [6℄ that, in 
ertain 
ir
umstan
es, in
reasing inhibitory inputs 
an in
rease the �ring

rate. We thus prefer to present a rigorous proof here. From Eq. (4.5) we obtain

T (x) =

2

La

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)

�

Z

V

thre

L

0

g

0

�

y � a[p




�

j

+ x℄(1� r)

a

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)

1

A

dy

(4.6)
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Hen
e the derivative of the se
ond term in Eq. (4.6) is

2

L

�

Z

V

thre

L

0

g

0

0

�

y � a[p




�

j

+ x℄(1 � r)

a

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)

1

A

�

�2a(1� r)[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)� (y � a[p




�

j

+ x℄(1� r)(1 + r)

2a(

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r))

3

dy

� g

0

[�2a[�

j

p




(1 + 
(p




� 1)) + x℄� (0:5(V

thre

L)� a[p




�

j

+ x℄)℄(1 � r

2

)V

thre

L

2a[

q

[�

j

p




(1 + 
(p




� 1)) + x℄(1 + r)℄

3

< 0

provided that g

0

> 0 where g

0

is the minima of g

0

(x) over any 
ompa
t set. Hen
e what

remains to prove is that g

0

(x) > 0 for x 2 R. When x � 0, we have

g

0

(x) = 2xg(x) + 1

whi
h implies that g(x) is an in
reasing fun
tion of x. When x < 0, with integration

by part, it 
an be easily shown that

g

0

(x) = �x exp(x

2

)

Z

x

�1

1

u

2

exp(�u

2

)du > 0

Hen
e g(x) is stri
tly in
reasing for x 2 R and the 
on
lusion is independent of �

j

.

De�ne

~

T (x; p




; �) =

2

La

p

[�p




(1 + 
(p




� 1)) + x℄(1 + r)

�

Z

V

thre

L

0

g

 

y � a[p




�+ x℄(1 � r)

a

p

[�p




(1 + 
(p




� 1)) + x℄(1 + r)

!

dy

(4.7)

we therefore 
on
lude that

R

min

(�

2

) =

1000

R

e

+

~

T (0; p




; �

2

)

(4.8)

and

R

max

(�

1

) =

1000

R

e

+

~

T ((p� p




)�

max

; p




; �

1

)

(4.9)

where R

e

is the refra
tory period. Hen
e the 
on
lusion of the theorem follows.

As we have mentioned before, to �nd the distribution or the varian
e of hT i is a

formidable task. Here, based upon the basi
 observations that
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� The output �ring rate is an in
reasing fun
tion of inputs

� Input �ring rate is 
on�ned within a �nite region, whi
h is of 
ourse the 
ase in

neuros
ien
e

we simplify our task from �nding out the varian
e of hT i to solving an algebra equation

de�ned in Theorem 1. Theorem 1 is the starting point of all following results.

Theorem 2 When 
 = 0 we have

�(�

1

; �

2

; 0; r) =

p�

max

�

2

� �

1

+ �

max

independent of r. When 
 > 0 we have

�(�

1

; �

2

; 
; r

2

) < �(�

1

; �

2

; 
; r

1

) < �(�

1

; �

2

; 0; r) (4.10)

where 1 � r

2

> r

1

> 0 and furthermore

�(�

1

; �

2

; 
; 1) =

p

[(�

2

� �

1

)(1� 
) + �

max

℄

2

+ 4p�

max


(�

2

� �

1

)� (�

2

� �

1

)(1� 
)� �

max

2
(�

2

� �

1

)

(4.11)

Before proving the 
on
lusions, we �rst dis
uss the meaning of Theorem 2. The

�rst 
on
lusion tells us that with 
 = 0, no matter how strong the inhibitory inputs

are, the 
riti
al value of p




is independent of r. In other words, without 
orrelated

inputs, in
reasing inhibitory inputs does not enhan
e the dis
rimination 
apa
ity of

the neuron. In Theorem 3 below, we will further prove that without 
orrelated inputs,

if the inputs are separable, so are the outputs and vise versa. The se
ond 
on
lusion

says that the dis
rimination 
apa
ity of the neuron is improved if the neuron re
eived


orrelated inputs. With 
orrelated inputs, in
reasing inhibitory inputs does enhan
e

the dis
rimination 
apa
ity of the neuron. In parti
ular, we see that for a �xed 
 > 0,

the optimal dis
rimination 
apa
ity is attained when r = 1. Hen
e Theorem 2 
on�rms

our numeri
al results on the IF model presented in the previous se
tion.
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To prove Theorem 2, at a �rst glan
e, we might want to prove that �(�

1

; �

2

; r; 
)

is a de
reasing fun
tion of r. Again a dire
t, brute for
e 
al
ulation is very hard, if it

is not impossible. In the following we employ a more geometri
ally oriented proof.

Proof Note that when 
 = 0 we have

g

 

y � a[p




�

1

+ (p� p




)�

max

℄(1 � r)

a

p

[�

1

p




+ (p� p




)�

max

℄(1 + r)

!

= g

 

y � a(p




�

2

)(1� r)

a

p

�

2

p




(1 + r)

!

independent of r provided that

�

1

p




+ (p� p




)�

max

= �

2

p




whi
h implies the �rst 
on
lusion.

We postpone the proof of

�(�

1

; �

2

; 
; 0) < �(�

1

; �

2

; 0; r)

to Theorem 3 below.

Note that R

min

(�

2

) = R

max

(�

1

) for r = 1 implies

Z

V

thre

L

0

"

g

 

y

a

p

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�
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2℄

!

�
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p




(1 + 
(p




� 1)) + (p� p




)�

max

℄
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[�

2

p




(1 + 
(p




� 1))℄

� g

 

y

a

p

[�

2

p




(1 + 
(p




� 1))2℄

!#

dy = 0

(4.12)

Sin
e g is a stri
tly in
reasing fun
tion, we have

a

q

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�

max

2℄ = a

q

[�

2

p




(1 + 
(p




� 1))2℄ (4.13)

and therefore

�(�

1

; �

2

; 
; 1) =

p

[(�

2

� �

1

)(1� 
) + �

max

℄

2

+ 4p�

max


(�

2

� �

1

)� (�

2

� �

2

)(1� 
)� �

max

2
(�

2

� �

1

)

(4.14)

It is easy to verify that

lim


!0

�(�

1

; �

2

; 
; 1) = �(�

1

; �

2

; 0; r)
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for r 2 [0; 1℄.

Finally we want to show that when

�(�

1

; �

2

; 
; 1) =

p

[(�

2

� �

1

)(1� 
) + �

max

℄

2

+ 4p�
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(�
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� �

1

)� (�
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� �

2

)(1� 
)� �

max

2
(�

2

� �

1

)

(4.15)

we have R

min

(�

2

) < R

max

(�

1

) for r = 0. To this end we only need to 
he
k that
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thre

L
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"
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� 1)) + (p� p




)�

max

℄

!

�

p

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�

max

℄

p

[�

2

p




(1 + 
(p




� 1))℄

� g

 

y � a[�

2

p




℄

a

p

[�

2

p




(1 + 
(p




� 1))℄

!#

dy

=

Z

V

thre

L

0

"

g

 

y � a[�

1

p




+ (p� p




)�

max

℄

a

p

[�

1

p




(1 + 
(p




� 1)) + (p� p




)�

max

℄

!

� g

 

y � a[�

2

p




℄

a

p

[�

2

p




(1 + 
(p




� 1))℄

!#

dy > 0

(4.16)

This is obvious sin
e a[�

1

p




+(p�p




)�

max

℄ < a[�

2

p




℄. This, together with the fa
t that

R

min

(�

2

) � R

max

(�

1

) is an in
reasing fun
tion of p




, we 
on
lude that all 
on
lusions

in Theorem 2 are true.
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Figure 11: �(�

1

; �

2

) (Hz) vs. ratio r with �

1

= 25 Hz and �

2

=75 Hz and �

1

= 25 Hz and

�

2

=30 Hz. It is easily seen that when 
 = 0, �(�

1

; �

2

) is 
at, otherwise it is a de
reasing

fun
tion of r.
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In Fig. 11 some numeri
al results of �(�

1

; �

2

) are shown. It is easily seen that

when 
 = 0, �(�

1

; �

2

) is independent of r.

We want to point out another amazing fa
t from Theorem 2. �(�

1

; �

2

; 0; r) and

�(�

1

; �

2

; 
; 1) with 
 > 0 are both independent of a; V

thre

; L. When r = 1; 
 = 0:1; �

1

=

25 Hz, �

2

= 75 Hz and �

max

= 100 Hz and p = 100, we have �(25; 75; 0:1; 1) =

32:5133; �(25; 75; 0; 1) = 66:6667 (see Fig. 10 and 11). Hen
e we 
on
lude 32:5133 <

�(25; 75; 0:1; r) < 66:6667 for r 2 (0; 1).

Finally we are in the position to answer one of the questions raised in the intro-

du
tion: a large CV implies a small �(�

1

; �

2

; 
; r). Note that the CV of interspike

intervals is the the varian
e when we 
al
ulate the mean interspike intervals. In other

words, for ea
h �xed realization of �

i

; i = 1; � � � ; p� p




, it is the variation of T . When

we 
al
ulate �(�

1

; �

2

; 
; r), the varian
e of �ring rates histogram is mainly introdu
ed

via the masking 'noise'. In other words it is the variation of hT i. Therefore these

are di�erent sour
es of noise. By in
reasing the number of interspik intervals, we 
an

redu
e the varian
e of the �rst kind. Note that in the previous se
tion, we deliberately

employ a small number of spikes (100), whi
h might 
lose to the biologi
al reality, to

estimate hT i. The se
ond kind of varian
e is due to the 
u
tuation of input signals, or

masking noise. In 
on
lusion, in
reasing inhibitory inputs introdu
es more variations

when we 
al
ulate hT i, but improves neuronal dis
rimination 
apa
ity.

4.2 Input-Output Relationship

In the previous subse
tions, we only 
onsider the output �ring rate histograms. It

is 
ertainly interesting to 
ompare the input histograms with output histograms. As

before, let � be the set of input frequen
y of the model. For a �xed (�

1

2 �; �

2

2 �)

with �

1

< �

2

we have 
orresponding two histograms p

i

1

(�) and p

i

2

(�) of input �ring

rates, i.e. p

i

1

(�) is the histogram of p




�

1

+

P

p�p




i=1

�

i

and p

i

2

(�) is the histogram of
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p




�

2

+

P

p�p
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i

. De�ne

R
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2

) = minf�; p

i

2

(�) > 0g

and

R

i

max

(�

1

) = maxf�; p

i

1

(�) > 0g

Then the relationship between R

i

min

(�

2

)�R

i

max

(�

1

) and R

min

(�

2

)�R

max

(�

1

) 
hara
-

terizes the input-output relationship of neuron signal transformations.

We �rst want to assess that whether R

min

(�

2

)�R

max

(�

1

) > 0 even when R

i

min

(�

2

)�

R

i

max

(�

1

) < 0, i.e. the input signal is mixed, but the output signal is separated. In Fig.

12, we plot R

min

(�

2

)�R

max

(�

1

) vs R

i

min

(�

2

)�R

i

max

(�

1

) = �

2

p




��

1

p




��

max

(p�p




),

whi
h is a fun
tion of p




. It is easily seen that after neuronal transformation, mixed

signals are better separated when 
 > 0. For example, when 
 = 0:1; r = 1 and

R

i

min

(�

2

)�R

i

max

(�

1

) = �5000 Hz (mixed), but R

min

(�

2

)�R

max

(�

1

) > 0 (separated).

The 
on
lusion is not true for 
 = 0, but the separation is not worse after neuronal

transformation.
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min

(�

2

)� R

max

(�

1

) vs R

i

min

(�

2

)� R

i

max

(�

1

) whi
h is a fun
tion of p




, for 
 = 0

(right) and 
 = 0:1 (left).
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Theorem 3 If 
 > 0 we have

R

min

(�

2

)�R

max

(�
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) > 0 when R

i
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2

)�R

i

max

(�
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) = 0

Proof A

ording to the de�nition of R

i

min

(�

2

) and R

i

max

(�

1

) we have R
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2

) = p




�

2

and R

i
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) = p




�
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+ �
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). From the proof of Theorem 1 we 
on
lude that
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if 
 = 0. For 
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) > 0 if and only if
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is greater than zero. Sin
e p
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2

= p
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+ �

max

(p � p




) we 
an rewrite Eq. (4.17) as

follows
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Again from the proof of Theorem 1 we know that g is an in
reasing fun
tion, by noting

p

[�

1

p





(p




� 1)) + p




�

2

℄ <

p

[�

2

p




(1 + 
(p




� 1))℄ we 
on
lude that Eq. (4.18)> 0.

Furthermore, the output di�eren
e of �ring rates is an in
reasing fun
tion of p




,

this, together with the 
on
lusions above, also implies the remaining results of Theorem

2.

Theorem 3 reveals one of the interesting properties of neuronal transformation.

Under the assumption that input signals are 
orrelated, the output signals will be

separated even the input signals are mixed. As aforementioned, we believe that the

fundamental requirement for a nervous system is to tell one signal from the other.

Theorem 3 tells us that after the transformation of the IF neuron, the input signals


ould be more easily separable.
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5 Dis
ussion

We have 
onsidered the problem of dis
riminating between input signals in terms of

an observation of e�erent spike trains of single neuron. We have demonstrated, both

theoreti
ally and numeri
ally, that two key me
hanisms to enhan
e the dis
rimination


apability of the model neuron is to in
rease inhibitory inputs and 
orrelated inputs.

In [10℄, the authors have theoreti
ally 
onsidered dis
rimination tasks as well. Never-

theless, our approa
h is very di�erent from theirs. We have 
on
entrated on neuronal

me
hanisms, but their results are more or less a dire
t appli
ation of results in statisti
s.

There are many issues to be further explored in the future.

� We have only 
onsidered to a

omplish the dis
riminating task and have not

in
luded time 
onstrains. De�nitely it is of vital importan
e for a neuronal system

to tell one signal from the other within a time window as short as possible.

� We have tested our model with stati
 inputs. It is an interesting question to

generalize our results here to time-varying inputs as reported in [15℄. Su
h a study

might be helpful to 
larify the ongoing debate on the advantages of 'dynami
al

stimuli' over the 'stati
 stimuli'.

� The input signal used here is very naive. To transform the image of moving

dots to input signals spe
i�ed in the present paper requires a neural network to

prepro
ess the image. Hen
e to devise a network model (spiking neural networks

or Rei
hardt dete
tor [3℄) to reprodu
e our results is one of our ongoing resear
h

topi
s. We expe
t that su
h a study 
ould provide us with a template to 
ompare

models with psy
hophysi
al experiments.

� A neuronal system without learning is a 'dead' system. In a
tual situations, we all

know that learning is prevailing in neuronal systems. Hen
e a reasonable learning

rule should improve the neuronal 
apability of dis
rimination of di�erent input

signals. There are several learning rules reported in the literature. To assess the

impa
t of them on dis
rimination tasks is an intriguing issue.
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Dis
riminating between di�erent input signals is probably more fundamental 
on-

strains on the neural system than others su
h as maximizing input-output information

or redundan
y redu
tions, a view re
ently e
hoed in [1℄. To understand it will reveal

prin
iples employed by neuronal systems whi
h remain mysterious to us. The issue

dis
ussed here is 
urrently a hot topi
 in neuros
ien
e (for example see [13℄). Our ap-

proa
h provides us with a solid theoreti
al foundation for further study and we expe
t

that our approa
h also opens up many interesting questions to be further investigated

in the future.
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