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Abstract

What is neuronal capability of discriminating between different input signals? Fur-
thermore, how to improve its discriminating capability? We explore these issues both
theoretically and numerically for the integrate-and-fire (IF) model and the IF-FHN
model (a simplified version of the FitzHugh-Nagumo model [6]). It is found that adding
correlations and increasing inhibitory inputs considerably reduce the total probability
of misclassifications (TPM). A novel theory on discrimination tasks is developed and

the theory accounts for all observed numerical results.

1 Introduction

To efficiently discriminate between different input signals, for example to tell the im-
age of a prey from that of a predator, is of vital importance to a nervous system. The
actual neuron mechanisms underpinning the cognitive activity remain one of the most
significant and puzzling problems in neuroscience, despite there have been mounting
experimental and theoretical results devoted to the topic (for example see recent re-
views [14, 15]). In a series of experiments, Newsome and his colleagues have compared

single neuron activity with psychophysical experiment data. They found, surprisingly,



that the information extracted from single neuron activity in MT is almost enough to
account for psychophysical experiment data. Hence an observation of the firing rates
of single neuron, at least in MT, contains enough information to further guide motor
activity. Imagining the enormous number of neurons in the cortex, their findings are
striking and open up many interesting issues for further theoretical and experimental
study. Interestingly, similar findings are reported in somatosensory pathways [15] as
well. In line with these experimental results, in this paper we concentrate on the rela-
tionship of the input and output firing rates of a single neuron. The issue we are going

to address is quite straightforward (see Fig. 1). Suppose that a neuron receives two set
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Figure 1: For two mixed signals (left), after neuronal transformation, will they become more

mixed or more separated?

of signals (coded by firing rates) distributed according to two histograms as depicted
in Fig. 1 (left). Will the signals become more mixed or separated, after neuronal
transformations?

More specifically we consider neuron models with a combination of (coherent) signal

inputs and masking 'noise’ inputs. The models we employ here are the integrate-and-



fire(IF) model and the IF-FHN model [6]. We find that with a small fraction of signal
inputs, the efferent spike trains of the model contain enough information to discriminate
between different inputs (see below for more details).

We then explore the possible functional role of inhibitory inputs on discrimination
tasks. A neuron extensively receives both excitatory and inhibitory inputs. It is clear
that the excitatory input codes the input information: the stronger the stimuli are, the
faster the neuron fires. Less is known about the inhibitory input, much as different,
theoretical hypotheses have been put forward in the literature ranging from actually
synchronizing the firing of a group of neurons [20], linearizing input-output relation-
ship [7] and increasing neuron firing rates [6] etc. We find that adding certain amount
of inhibitory inputs considerably enhances the neuronal discrimination capability if
signal inputs are correlated.

The conclusion above seems quite counter intuitive. We all know that increasing
inhibitory inputs to a single neuron model will result in an increase on the variability
of its efferent spike trains [6]. The histogram of firing rates will thus become more
spread out and, as a consequence, the discrimination of different inputs becomes more
difficult. However, this is not the case. To understand the mechanism underpinning
the observed phenomena, we then go a step further to theoretically explore the model
behaviour. Based upon the IF model, a theory on discrimination tasks is developed.
We find that two key mechanisms for achieving a better separation of output signals,

in comparison with input signals, are

1. input signals are positively correlated and

2. excitatory inputs and inhibitory inputs are exactly balanced.

Without correlations, no matter how strong the inhibitory inputs are, the separability
of the output signals and the input signals is identical: if the input signals are separable,
so are the output signals and vise versa. With correlations, the stronger the inhibitory

inputs are, the better the separation.



Theoretically the critical value of the coherent inputs at which the output his-
tograms are separable is exactly obtained (Theorem 2) for the case of correlated and
exactly balanced inputs (the most interesting case). The results enable us to assess the
dependence of our conclusions on different model parameters and input signals. It is
illuminating to see that the critical value is independent of model parameters including
the threshold, the decay time and the EPSP and IPSP magnitude.

All the aforementioned results are obtained for the IF and IF-FHN model without
reversal potentials, we further examine our conclusions for the IF model with reversal
potentials. Since adding reversal potentials to a model is equivalent to increasing its
decay rate (depending on input signals), we would naturally expect that the model
with reversal potentials will become more effectively to distinguish different inputs.
The conclusion is numerically confirmed.

During the past few years, inhibitory inputs (see for example [11, 12]) and correlated
inputs (see for example [17, 18] are two topics widely investigated in neuroscience. It
seems it is generally accepted that they play important roles in information processing
in the brain. Our results here provide a convincing and direct evidence to show that
they do improve the performance of a single neuron. Such results would also be valuable

on practical applications of spiking neural networks [9].

2 The Integrate-and-fire Model and its Inputs

The first neuron model we use here is the classical IF model [4, 5, 19]. When the

membrane potential V; is below the threshold Vi, it is given by
dVy = —L(Vy — Viest)dt + dI gy, (1) (2.1)

where L is the decay coeflicient and the synaptic input is



with E;(t), I;(t) as Poisson processes with rate A\; g and \; j respectively, a > 0,b > 0
are magnitude of each EPSP and TPSP, p and ¢ are the total number of active excitatory
and inhibitory synapses. Once V; crosses Vipr. from below a spike is generated and
Vi is reset to Viest, the resting potential. This model is termed the IF model. The

interspike interval of efferent spikes is
T = inf{t Vi > ‘/thre}
More specifically, synaptic inputs take the following form (p = q)
P P
Isyn(t) = a Z Ez(t) —b Z Ij (t)
i=1 j=1
Pe p Pe p
= GZEi(t) +a Z El(t) - bZIi(t) —b Z Ii(t)

i=1 i=pe+1 i=1 i=pe+1
where E;(t),i = 1,---,p. are correlated Poisson processes with an identical rate \;, j =
1,2, E;(t) is Poisson processes with a firing rate &_,, independently and identically
distributed random variables from [0,100],7 = p. + 1,---,p, I;(t),i = 1,---,p have the
same property as Fj;(t), but with a firing rate of r);,j = 1,2 or r&_,, for r € [0, 1]
representing the ratio between inhibitory and excitatory inputs.

From now on, we further use diffusion approximations to approximate synaptic

inputs [19] and without loss of generality we assume that a = b and V.5 = 0.

P—Pc P—Pc
Iyn(t) = apcAjt+a Z &t — bperAjt —b Z r&;t
=1 =1

/(a2 + B2r)Ajpe(L + clpe — 1)) + (a2 + b2r) S2 P& - By
where By is the standard Brownian motion and j = 1,2. We first consider the case
that a neuron receives independent inputs. As we might expect, the output from a
single neuron does not contain enough information for the discrimination task (results
not shown, see next section), with the ratio of inhibitory to excitatory inputs spanned
from nil to one (exactly balanced inhibitory and excitatory input). We then turn to
the situation that a small amount of correlations are added to the synaptic inputs

which code coherently moving dots. For the simplicity of notation we assume that the



correlation coefficient between ith excitatory (inhibitory) synapse and jth excitatory
(inhibitory) synapse is ¢ > 0. The correlation considered here reflects the correlation
of activity of different synapses, as discussed and explored in [6, 21]. It is not the
correlation of single incoming EPSP or IPSP which could be expressed as ¢;;(t —t') for
the EPSP (IPSP) at time ¢ of the ith synapse and time ' of the jth synapse. We refer
the reader to [6] for a detailed discussion on the meaning of the correlation considered
here.

In summary, suppose that a neuron receives p synaptic inputs. The goal of the

postsynaptic neuron is to discriminate between two types of inputs

1. p. excitatory Poisson inputs fire at a rate A; and

pe inhibitory Poisson inputs fire at a rate rA; with r € [0, 1];

2. p. excitatory Poisson inputs fire at a rate Ay (A2 # A1)

pe inhibitory Poisson inputs fire at a rate rAy with r € [0, 1].

In both cases, the neuron receives 'noise’ Poisson inputs consisted of p — p. excitatory
inputs and the same number of inhibitory inputs. We assume that 'noise’ excitatory
inputs are uniformly distributed between 0 and 100 Hz, and ’noise’ inhibitory inputs

are between 0 and 100r Hz. Without loss of generality, we always assume that Ao > A;.

3 Numerical Results

Example 1 The setup above actually (see Fig. 2) mimics the inputs to an MT neuron
used in the experiments. In the experiment of Newsome and his colleagues, the input
image is a collection of moving dots, say p dots. p. out of p dots move with an identical
(coherent) direction, either upward or downward and p — p. dots move with random
directions. In the literature [2], p./p is called coherence level. We could assume that
an MT neuron exclusively receives information of motion directions of an input image

(moving dots), i.e. the cell receives p synaptic inputs, each represents the moving



direction of a dot. Denote that N;(¢),i = 1,---,p as a Poisson process with a rate (;,
where (; takes value from [0, 100]Hz, i.e. (¢;/100)27 is the motion direction of the i-th
random moving dot (see [2]) and the motion of each dot is coded by the firing rate of a
single synaptic (Poisson) input. Hence (; = A\; = 25 Hz represents the input of upward
motion, or the ith dot moves upward; {; = A9 = 75 Hz represents the downward motion.

For example when the neuron receives synaptic inputs with a coherence of p./p, which

Y, e

b=t A \\
Bh

Figure 2: Schematic plot of inputs used in the experiment (see [2], left) and in the model
(right). In the model, the dot moves horizontally towards right is represented by synaptic

inputs of 0 Hz input; the dot moves upwards is 25Hz.

means that the neuron receives p. out of p Poisson processes of firing rates of 25 Hz
(upward motion) or 75 Hz (downward motion) and p — p. Poisson processes of random

firing rates uniformly taking values from 0 to 100 Hz.

The parameters used in simulating the IF model are Vi, = 20mV, Ve =
0mV,L = 1/20, a = b = 1mV,p = 100, \; = 25 Hz and Ay = 75 Hz. A refractory
period of Smsec is added for all numerical results of efferent firing frequency. For each
fixed set of parameters of the model, 100 spikes are generated to calculate each mean,
standard deviation etc.

Fig. 3 depicts the histogram of firing rates with purely excitatory r = 0 (left

column) and almost balanced excitatory and inhibitory inputs » = 0.95 (right column)



with ¢ = 0.1 [21] and p, = 15 (upper panel), 25 (bottom panel). It is easily seen that
when p, = 25 and r = 0.95, from an observation of single neuron activity, we could
perfectly separate upward from downward motions. Nevertheless, when » = 0 and

pe. = 25 we are not able to perfectly separate upward from downward motions.
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Figure 3: Histogram of firing rates (Hz) with ¢ = 0.1 for the IF model. Left, exclusively
excitatory inputs r = 0. Right, » = 0.95. Upper panel: p. = 15. The minimum TPM is
calculated according to the thick vertical lines (the optimal discrimination line). Bottom

panel: p. = 25.

Let us now consider the minimum total probability of misclassification (TPM) de-

fined by
1 . . 1 . .
TPM = §P( downward |input is upward) + §P( upward |input is downward)

For example, in Fig. 3, we see that TPM (in percentile) for the left upper panel is



about 13.5% and for the right upper panel is 5.5%. Therefore adding inhibitory inputs
to the neuron considerably improves its discrimination capability, reducing TPM from
13.5% to 5.5%.

In Fig. 4 the histogram of coefficient of variation (CV) of efferent spike trains is
plotted. Our results also reveal one possible functional role of efferent spike trains with
a high CV widely observed in experiments. In the past few years, there are a large body
of literatures devoted to the topic: how to generate efferent spike trains with a large
CV for the IF model(see [6] for a review). Nevertheless, the functional implications of
efferent spike trains with a large CV are still not clear. Here we find that for a fixed
coherence level, a lower TPM value corresponds to a larger CV. In other words, for a
given p., to achieve a better discrimination naturally requires that efferent spike trains

are more irregular.
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Figure 4: Histogram of CV with ¢ = 0.1,p. = 15 for the IF model. Left, exclusively

excitatory inputs r = 0. Right, r = 0.95.

In Fig. 5 we plot TPM (in percentile) vs. p. for » = 0 and » = 1 and TPM vs.
r for p. = 15 and p. = 25. TPM vs. p. simply confirms our conclusion that adding
inhibitory inputs improves a neuron’s capability of discriminating between different
inputs. Remember that the noise strength in the input (o defined in Eq. (3.1)) is
proportional to r. The larger the r is, the larger the input noise. TPM vs. r in Fig. 5

tells us another interesting phenomenon: increasing noise in the model is useful rather
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than harmful. The benefit of noise in neuronal system has been extensively explored
in the literature of stochastic resonance [8]. However, the mechanism to reach the
finely tuning noise level which results in the stochastic resonance seems far-fetched for
neuronal systems. Our finding here provides a more direct and convincing evidence

which clearly demonstrates the advantage of adding noise to a neuronal system.
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Figure 5: TPM % vs. r (left) and TPM vs. p, (right) for the IF model. When p, = 15 (left),
it is clearly shown that TPM attains its optimal value at » = 1, i.e. the larger the noise, the

better the discrimination ( see the right figure as well).

3.1 Other Input Forms

The results presented in the previous subsections seems quite count-intuitive since we
all know that adding inhibitory inputs to the TF model increases its CV of efferent spike
trains. Namely increasing inhibitory inputs to the model will make the histogram of
firing rates more widely spread out and so make the discrimination task more difficult.

In this subsection, we consider the model with other forms of inputs.



The input in the previous subsection is

P—DPc
digyn(t) = a(phj+ Y &)(1—r)dt

P—Pc (3.1)
t+a | ipe(1 +elpe = 1) + 3 &)1 +7) - dBy
i=1
= /.Ldt + O'dBt
where j = 1,2. From results in [6] we know that
5 V;threL — M
- £ o
o

where
xr

o) = [exp(a?) |

— 00

exp(—uZ)du}

In terms of the law of large numbers we conclude that

P—Dc
Z i~ (p = pe)(&1) + V= pebo(&r) (3.3)
where o(&;) is the standard deviation of ¢; and & ~ N(0,1).

Hence Eq. (3.2) turns out to be

Vinre L — a[p()\- + (p = pe)(€1) + /P = pelo(€1)](1 —r)

\/ ]pc pc_l))+(p_pc)<§1>+Vp_pc§0'(§1)](1+r) ( )d
/ [pcx + (p— pe){E1) + VP — peo(€)](1 — 1) gArIar

VNPl + clpe = 1)) + (0 — pe)(€1) + VP — peto(ED](L +7)

(3.4)
We have checked the accuracy of the approximation developed here. It is found that
the approximation in Eq. (3.4) is not very good (compare Fig. 6 upper panel with
Fig. 3 upper panel), simply implying that we have to include more higher order terms
in the approximation of Eq. (3.3). Nevertheless, Eq. (3.4) gives us a transparent
formula to study the issues discussed in the previous subsection and Eq. (3.4) is exact
if we model the input rate as a normally distributed random variable' rather than a

uniformly distributed random variable.

More exactly, it should be a random variable so that Eq. (3.4) makes sense.

11
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To the first order approximation, Eq. (3.4) reveals the underpinning mechanism of

the phenomena observed here. From Eq. (3.4) we have

29(0)‘/;%7‘6
ay/INpe(l + e(pe — 1) + (0 = pe){€1) + VP — pefo(€1)](1 +7)

The firing rate in the unit of Hz is then

(T) ~(Th) =

(3.5)

1000
Re + <T1>
100004/ [Ajpe(1 + e(pe — 1)) + (0 — pe){€1) + Vb — pefr(€1)](1+7)

Reay/Inpe(1 + clpe — 1)) + (0 — p){&1) + VB — peto (€I (1 +7) + g(0)Vinre
(3.6)

where R, is the refractory period. Let us denote ¢; = p.(1 + ¢(p. — 1)) and ¢(§) =
(P = pe)(&1) + VP — pco(&1) then Eq. (3.6) is

1000a\/[>\jc1 +e(9)](1+7)
Reay/Njer + e2(€)](1+7) + 9(0) Vinre

(3.7)

Under the assumption that £ is a small perturbation of a deterministic quantity or in

the sense of the mean field approximation, we have

1000a+/[Aac1 + e2((E)](1 + 1) 1000a+/[A1c1 + e2((EN](1 +7)

Rear/Doct + (EN]A+7) + g(0)Vinre  Reay/Drct + ca(ENIA + 1) + g(0) Vinre

1000a/aci + e ((E))] __ 1000ay/[Arer + e2((6))]
Rea/[hact + ()] +9(0)Vinre  Reav/[Aict + c2((€))] + 9(0) Vinre

(3.8)
where r > 0 and A\; < Ago. Therefore we conclude that larger the inhibition is, the more
widely separate the firing rate with different inputs and so the easier to discriminate
between different input signals. The conclusions are only true under very restricted
conditions as specified above, however we would like to show it here since all proofs
are straightforward. To have a rigorous result, we have to find the distribution density
of (T'), which is a hard task. However, in the next section, we develop a theory to get
around the difficulty.

Next we are going to test how general or robust are our conclusions in the previous

subsections. In Fig. 6 we show histograms of firing rates with (£;) = 0.05, but with

13



o(¢1) = .1/+/12 (upper panel) and o(¢1) = 1/4/12 (bottom panel). When (&) = 0.05
and o(&;) = .1/V/12, the mean and variance are the same as in the model considered in
the previous subsections. When (¢;) = 0.05 and o (¢;) = 1/v/12, the standard deviation
of inputs is enlarged by a factor of 10, in comparison with the setup in the previous
subsections. It is easily seen that increasing the variance in input signals will make the
histograms of firing rates more widely spread out, as shown in Fig. 6, bottom panel.

Nevertheless, when p. = 25 we see that the input signals can be perfectly separated.

3.2 Models With Reversal Potentials

A slightly more general model than the TF model defined above is the TF model with

reversal potentials defined by

dZt = _(Zt - Vrest)Ldt + dfsyn(zta t) (3-9)
where
— p —
Tayn(Zit) = a(Ve — Z) Y Ei(t) + b(Vi — Z;) Y I;(t)
i=1 j=1

Vi and V7 are the reversal potentials Vi < Vyest < Vg, a(Ve — Vyest), D(V — Viest) are
the magnitude of single EPSP and TPSP when Z; = V,..s;. We could rewrite Eq. (3.9)
in the following form

P p
dZ; = —(Zi—Vies)(Ldt +ay_ dEi(t) +a ) dI;(1))
=1 =1

p q
+C_l(VE - Vrest) Z dEi (t) + b(VI - Vrest) Z de (t)
i=1 j

» p =1 (3.10)
= —(Z— Vyest)[Ldt + @) _dE;(t) + b _ dI;(t)]
» q =1 =1
+a Z dEi (t) +b de (t)
i=1 j=1

Therefore the difference between the model with and without reversal potentials is that

the latter has a decay rate depending on incoming signals. From the conclusions of

14



15

the previous subsections we would expect that the model with reversal potentials will

improve its capacity of discriminating incoming signals.

Fig. 7 is in agreement with our expectations. We see that for p, = 15 and
r = 0.6 a perfect discrimination is achieved. For the model without reversal po-
tentials, we see that for p. = 15 and r = 1 we still have TPM > 0 (see pre-
vious subsections). The parameters used in the model with reversal potentials are
a=0.01,b =0.1,Vg = 100mV,V; = —10mV, with all other parameters as the model

without reversal potentials.
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3.3 IF-FHN Model

The IF model is the simplest neuron model which mimics certain properties of a bi-
ological neuron and is linear before resetting. A slightly more complex model is the
IF-FHN model, an IF model but with a nonlinear leakage coefficient, as in a biophysical
model. In terms of the output signal-to-noise ratio, we know that the IF and IF-FHN
model behave in totally opposite ways when they receive correlated inputs (see [6] for a
review). We then naturally ask that whether the phenomenon observed in the previous
section with partially correlated inputs is true only for the IF model or not. To this
end we simulate the IF-FHN model defied by

du(t)
dt

Wt o dign®)

= —(1/B +yao(t) + (1 + o)== — S5 di

(3.11)

when v(t) < vgpre = 50. The parameters are v..ey = 0,7y = 50, = 0.2, = 2.5,
a = 2.,p = 300. Note that to ensure the output firing rates in the similar regions for
different models, the value of p and a used in the IF-FHN model is higher than that

in the IF model, but still in the physiologically plausible regions.
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Figure 8: Histogram of efferent frequency (Hz) of the IF-FHN model with ¢ = 0.1,p, =

25, p = 300. Left, exclusively excitatory inputs » = 0. Right, » = 1.

Fig. 8 shows the simulation results. It is readily seen that all conclusions in the

previous section remain true: increasing inhibitory inputs considerably improves the



discrimination capability of the model neuron. Furthermore, the fraction of coherent
inputs which ensures a perfect discrimination is less than that of the IF model. For
example, in Fig. 8, with p./p = 25/300 of coherent inputs the histograms of efferent

frequency are well separated when r = 1.

4 Theoretical Results

Histograms

Firing rate (Hz)

Figure 9: A schematic plot of two output histograms, Rmin(A2) and Rpyax(Ar).

In this section we concentrate on theoretical results. Let A be the set of input
frequency of the model, which is [0,100]. It will become obvious that all theoretical
results are independent of this choice. For a fixed (A € A, Xy € A) with Ay < Xy we
have corresponding two histograms p;(A) and pa(\) of output firing rates as shown in

Fig. 9. Let

Rmin(A2) = min{X : pa(N) > 0}

and

Rmax(Al) = max{)\ : pl()\) > 0}

17



and denote

a(A, A, ¢,7) = {p¢ : Rmin(A2) = Rmax(A1)} (4.1)

If it is clear from the context about the dependence of a(\1, A2, ¢, ) on ¢, r, we some-
times simply write a(A1, Ao, ¢, 7) as a(A1, A2). Hence for fixed (A1, A2), a(A1, A2) gives
us the critical value of p.: when p. > (A1, A2) the input patterns are perfectly separa-
ble in the sense that the the output firing rate histograms are not mixed with TPM=0;
when p. < a(A, \y) the input patterns might not be separable with TPM> 0. Note
that we consider the worst case here and in practical applications, the critical value of
pe at which the input patterns are perfectly separable, as found in the previous section,
is in general lower than a(Aq, A2, ¢, 7). From now on, all figures are generated using the

same parameters as in the previous section, if not specified otherwise.

Here is the basic idea of our approach. As pointed out before, it is not easy to
directly calculate the distribution of (T"). Nevertheless, the discrimination task is only
involved in the most left point of pa(\), i.e. Rmin(A2), and the most right point of
p1(N), i.e. Rmax(A1), provided that both ps and p; are positive only in a finite region.
This is exactly the case for the model we considered here since neurons fire within a

finite region.

4.1 Behaviour of a(Ai, Ay, c,7)

First of all, we want to explore the behaviour of Rmin(A2) — Rimaz(A1). In Fig. 10,
Diff = Rmin(A2) — Riae (A1) with different values of a and A\ = 25Hz,\y = 75Hz are
shown. In all cases we see that it is an increasing function of r and a(A1, A2, ¢, 7) is a

decreasing function of r.
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Figure 10: Diff=Ruin(A2) — Rimaz (A1) for a = 0.5 (upper panel), a =

(bottom panel) with A\; = 25 Hz, Ay = 75 Hz and ¢ = 0.1. It is easy to read out a(\1, Ag, ¢, 7).
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Theorem 1 Let A\pypp = maz{X € A} = 100 Hz, we have

_ . Vinre L Yy— a[pc>\1 + (p - pc))‘max](l - T)
a(Al, }\2) - {pc ‘ /0 § (a\/P‘lpC(l + C(pc — 1)) + (p _pc)AmaX](l + T)) R4

_ \/[)‘1170(1 + C(pc - 1)) + (p - pc))\max]
\/[)‘2100(1 + C(pc - 1))]

. VihreL y — a(per2)(l —r)
/ g<a¢uw41+dm—4nkr+m>@}

(4.2)

Proof As in the previous section we know that

V;‘/hreL — K

where
o) = [exp(a?) [ exp(-u)du
Hence Eq. (4.3) turns out to be

‘/thre [pc}V + Zf;{)c 52](1 - 'r)

/ ay/IAjpe(l + e(pe — 1)) + S0P &](1 + 1)
"L —[pej + V&)1 =)

VINpe(l + elpe — 1)) + S0 &)(L+ 1)

g(z)dz (4.4)

Define
Vthre a[pc)\' + :l?](l - T)

\/ ]pcl+0pc_1))+x](1+r)
-1 / —[peXj +x](1 —1)

VIipe(l + e(pe — 1) + 2](1 +7)

we intend to prove that T'(z) is a decreasing function of . Intuitively it is obvious: the

g(z)dz (4.5)

stronger the input is, the shorter the interspike interval. Nevertheless, we have proved
in [6] that, in certain circumstances, increasing inhibitory inputs can increase the firing

rate. We thus prefer to present a rigorous proof here. From Eq. (4.5) we obtain

T(z) = 2
Lay/Dype(1 + elpe — 1)) + 2](1 + 1) »
‘/VWEL y —a[pA; + z](1 —1) )dy (46)
0 ay/pe(1 + efpe — 1) +a)(1+7)
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Hence the derivative of the second term in Eq. (4.6) is

2 /V;,WL , ( y —alpX; +a)(1 — 1) )
L Jo ay/Ipe(1 + e(pe — 1)) +2](1 + 1)
=201 = ) jpe(1 + e(pe = 1)) + 2)(1 +7) — (y — alpe); +2](1 = 7)(1+7)
2a(\/IAjpe(1 + elpe — 1)) + 2](1 4 1))3
g [=2a[Ajpe(1 + c(pe — 1)) + 2] = (0.5(Vinre L) — alpej + z])](1 — 7°) Vipre L
- 2a[y/\jpe(1 + c(pe — 1)) + 2](1 +7)]?

< 0

dy

provided that ¢’ > 0 where g’ is the minima of g’(z) over any compact set. Hence what

remains to prove is that ¢’(z) > 0 for x € R. When = > 0, we have
g'(z) = 2zg(z) + 1

which implies that g(z) is an increasing function of z. When z < 0, with integration

by part, it can be easily shown that

x

1
Jd(z) = —x exp(:cZ)/ = exp(—u?)du > 0

— 00
Hence g(x) is strictly increasing for € R and the conclusion is independent of A;.

Define
T(z,pe,\) = -
Pt T e/t clpe — 1) + 2](1 + 1) (4.7)
./VthreL y — a[pA +z](1 —71) d .
0 g a/| ’

Ape(l+c(pe — 1)) +2](1 +7)

we therefore conclude that

1000
Rmin(>\2) — = (48)
Re + T(O,pc, >‘2)
and
1000
Rma‘x(>\1) (49)

B R, + j”((p - pc)Amaxapm >\1)

where R, is the refractory period. Hence the conclusion of the theorem follows.

As we have mentioned before, to find the distribution or the variance of (T') is a

formidable task. Here, based upon the basic observations that



22

e The output firing rate is an increasing function of inputs

e Input firing rate is confined within a finite region, which is of course the case in

neuroscience

we simplify our task from finding out the variance of (T') to solving an algebra equation

defined in Theorem 1. Theorem 1 is the starting point of all following results.

Theorem 2 When ¢ = 0 we have

PAmax
A1, A2,0,7) = —M————
R L P VS
independent of r. When ¢ > 0 we have
(A, A2, ¢,m2) < (A1, Ao, 6,7m1) < (A, A2,0,7) (4.10)

where 1 > ro > r1 > 0 and furthermore

A2 — M) (1 —¢) + Anaz)? + 4pAmaxc(Aa — A1) — (A2 — M) (1 — ¢) — Amax
20()\2 — )\1)

Ol()\l, )\2, C, 1) = \/[(
(4.11)

Before proving the conclusions, we first discuss the meaning of Theorem 2. The
first conclusion tells us that with ¢ = 0, no matter how strong the inhibitory inputs
are, the critical value of p. is independent of r. In other words, without correlated
inputs, increasing inhibitory inputs does not enhance the discrimination capacity of
the neuron. In Theorem 3 below, we will further prove that without correlated inputs,
if the inputs are separable, so are the outputs and vise versa. The second conclusion
says that the discrimination capacity of the neuron is improved if the neuron received
correlated inputs. With correlated inputs, increasing inhibitory inputs does enhance
the discrimination capacity of the neuron. In particular, we see that for a fixed ¢ > 0,
the optimal discrimination capacity is attained when r = 1. Hence Theorem 2 confirms

our numerical results on the IF model presented in the previous section.



To prove Theorem 2, at a first glance, we might want to prove that a(\, 2,7, c)
is a decreasing function of r. Again a direct, brute force calculation is very hard, if it

is not impossible. In the following we employ a more geometrically oriented proof.

Proof Note that when ¢ = 0 we have

g (y — a[pc>\1 + (p _pc)Amax](l - T)) _ (y - a(pc)\g)(l — r))
ay/IAipe + (0 — pe) Amax] (1 +7) ar/Aape(1+7)

independent of r provided that

A1pe + (p - pc) Amax = A2Pe¢

which implies the first conclusion.

We postpone the proof of
a(>\17 >\Qa c, 0) < a(>\17 >\Qa 07 ’I")

to Theorem 3 below.

Note that Rmin(A2) = Rmax(A1) for 7 = 1 implies

‘/th’r‘eL y
/0 [g (a\/[hpc(l +clpe—1))+(p— pc)AmaX2]>
\/P‘lpc(l +c(pe — 1)) + (p — pc))\max] Y

Jo-s

J— . g
VIepe(1 + c(pe — 1))] av/[Aape(1 + c(pe — 1))2]
(4.12)
Since g is a strictly increasing function, we have
a\/[)\lpc(l +c(pe— 1)) + (P — pe) Amax2] = a\/[)\gpc(l + c(p. — 1))2] (4.13)

and therefore

23

A2 — A1) (1 = ¢) + Amax)? + 4PAmaxc(Aa — A1) — (A2 — X2)(1 — €) — Amax

a(A, A, 6 1) = \/[( 2¢(A2 — A1)

(4.14)

It is easy to verify that

lim Ot()\l, )\2, C, 1) = ()./()\1, )\2, 0, ’f’)
c—0
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for r € [0,1].

Finally we want to show that when

V02 =)0 =) T el T Aphmac (2 — A1) — (Mg = A2) (1 = €) = Amax
a(A, Aoy, 1) = YR22 A 26(&_;;) Do

(4.15)

we have Rmin(A2) < Rmax(A1) for » = 0. To this end we only need to check that

/VHWEL [ ( y— a[)\lpc + (p - pc))\max] )
0 a\/P\lpc(l + C(pc - 1)) + (p - pc)AmaX]

. \/P‘lpc(l +c(pe — 1)) + (P — Pe) Amax] g Yy — a[Aap] )] dy
\/P‘Qpc(l + c(pe — 1))] a\/[>‘2pc(1 + c(pe — 1))]
= /VHWEL l Yy — a[)‘lpc + (p - pc))‘max]
0 a\/P‘lpc(l + C(pc - 1)) + (p - pc)AmaX]

_ y — a[Aapc] >] dy > 0

a\/[)\gpc(l +c(pe — 1))]

(4.16)

This is obvious since a[A\1pe + (P — Pe) Amax] < a[A2pc]. This, together with the fact that

Ruin(A2) — Rmax(A1) is an increasing function of p., we conclude that all conclusions

in Theorem 2 are true.

10 - - - - 100

N EEEEEEEEEE"

a(25,75) (Hz)
a(25,30) (Hz)

0.8 1

02 0.4 06 08 1 0 0.2

0.4 0.6
Ratio r Ratio r

Figure 11: (A1, Ag) (Hz) vs. ratio r with A\; = 25 Hz and A\y=75 Hz and A\, = 25 Hz and

A=30 Hz. It is easily seen that when ¢ = 0, a(\, \o) is flat, otherwise it is a decreasing

function of r.



In Fig. 11 some numerical results of a(A1, A2) are shown. It is easily seen that

when ¢ = 0, a(A1, A\2) is independent of r.

We want to point out another amazing fact from Theorem 2. a(\, A2,0,7) and
a(A1, A2, ¢, 1) with ¢ > 0 are both independent of a, Vippe, L. Whenr =1,¢=0.1,\; =
25 Hz, Ay = 75 Hz and Apax = 100 Hz and p = 100, we have «(25,75,0.1,1) =
32.5133, (25,75,0,1) = 66.6667 (see Fig. 10 and 11). Hence we conclude 32.5133 <
«(25,75,0.1,7) < 66.6667 for r € (0, 1).

Finally we are in the position to answer one of the questions raised in the intro-
duction: a large CV implies a small a(\,\2,c,r). Note that the CV of interspike
intervals is the the variance when we calculate the mean interspike intervals. In other
words, for each fixed realization of &;,2 = 1,---,p — p,, it is the variation of 7. When
we calculate a(A1, A9, ¢, 1), the variance of firing rates histogram is mainly introduced
via the masking 'noise’. In other words it is the variation of (T). Therefore these
are different sources of noise. By increasing the number of interspik intervals, we can
reduce the variance of the first kind. Note that in the previous section, we deliberately
employ a small number of spikes (100), which might close to the biological reality, to
estimate (T'). The second kind of variance is due to the fluctuation of input signals, or
masking noise. In conclusion, increasing inhibitory inputs introduces more variations

when we calculate (T'), but improves neuronal discrimination capacity.

4.2 Input-Output Relationship

In the previous subsections, we only consider the output firing rate histograms. It
is certainly interesting to compare the input histograms with output histograms. As
before, let A be the set of input frequency of the model. For a fixed (A1 € A, Ay € A)
with A\; < Ay we have corresponding two histograms p}()\) and p4(\) of input firing

rates, i.e. pi()\) is the histogram of p.A; + >0_P° ¢ and py()) is the histogram of

25
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PeAa + Y PP ¢;. Define

R! . () = min{\, pi()\) > 0}

min

and

Riax(M1) = max{)\,p}()) > 0}

Then the relationship between R? . (\o) — R!

min max

(A1) and Rpmin(A2) — Rmax(A1) charac-
terizes the input-output relationship of neuron signal transformations.

We first want to assess that whether Ryin(X2) — Rmax(A1) > 0 even when R? . (o) —

min
7
Rma,x

12, we plot Rmin()\Z) - Rmax()\l) Vs Rinin(A2) - Rf;nax()\l) = XoPe — AMPe — Amag (p _pc)a

which is a function of p.. It is easily seen that after neuronal transformation, mixed

(A1) < 0, i.e. the input signal is mixed, but the output signal is separated. In Fig.

signals are better separated when ¢ > 0. For example, when ¢ = 0.1, = 1 and
Rl (A2) — R! (A1) = —5000 Hz (mixed), but Rpin(A2) — Rmax(A1) > 0 (separated).

The conclusion is not true for ¢ = 0, but the separation is not worse after neuronal

transformation.

100

__________ 50,

Output diff (Hz)

Output diff (Hz)

-100

L S VI

= S . WP

150 .
5000 —?8000 -5000
Input diff (Hz) Input diff(Hz)

-10000 -5000 5000

Figure 12: Ruin(A2) — Rmax(A1) vs RL (X2) — R

min max

(A1) which is a function of p,, for ¢ =0

(right) and ¢ = 0.1 (left).
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Theorem 3 If ¢ > 0 we have
Rmin(A2) = Rumax(A1) >0 when R’ . (Ag) — R' .. (A1) =0

Proof According to the definition of R? . (\2) and R’

min max

(A1) we have R’ . (A2) = pea

min

and R . (A1) = peAl + Amax(p — pe). From the proof of Theorem 1 we conclude that

Rmin(A2) — Rmax(A\1) =0 when Rl . (M) — R, .(\)=0

max

if c=0. For ¢ > 0, it is readily seen that Rpyin(A2) — Rmax(A1) > 0 if and only if

/VML l ( y — alpert + (p — Pe) Amax] (1 — 1) >
0 a\/P‘lpc(l +c(pe — 1)) + (P — Pe) Amax] (1 + 1)

. \/P\lpc(l + C(pc - 1)) + (p _pc)Amax] ) Y — a[pcAQ](l - ’f’) ) dy
VPaepe(1 + c(pe — 1))] av/Thape(1 + c(pe — 1)2](1 J;T)
4.17

is greater than zero. Since pcAa2 = PeAi + Amax(P — Pe) we can rewrite Eq. (4.17) as

follows
/VtmL [g( y —alpra)(1— 1) )
0 a\/P‘lpcc(pc - 1)) +pc)\2](1 + T)
_ VPapeelpe — 1) + Xope] | ( y — alpa)(1 — 1) ) &
VDape(T + clpe — 1))] av/Pape(T+ c(pe = D)I(T +7) .
4.18

Again from the proof of Theorem 1 we know that g is an increasing function, by noting

VIApec(pe — 1)) + pede] < /[Aape(1 + ¢(pe — 1))] we conclude that Eq. (4.18)> 0.
Furthermore, the output difference of firing rates is an increasing function of p,,
this, together with the conclusions above, also implies the remaining results of Theorem

2.

Theorem 3 reveals one of the interesting properties of neuronal transformation.
Under the assumption that input signals are correlated, the output signals will be
separated even the input signals are mixed. As aforementioned, we believe that the
fundamental requirement for a nervous system is to tell one signal from the other.
Theorem 3 tells us that after the transformation of the IF neuron, the input signals

could be more easily separable.



5 Discussion

We have considered the problem of discriminating between input signals in terms of
an observation of efferent spike trains of single neuron. We have demonstrated, both
theoretically and numerically, that two key mechanisms to enhance the discrimination
capability of the model neuron is to increase inhibitory inputs and correlated inputs.
In [10], the authors have theoretically considered discrimination tasks as well. Never-
theless, our approach is very different from theirs. We have concentrated on neuronal
mechanisms, but their results are more or less a direct application of results in statistics.

There are many issues to be further explored in the future.

e We have only considered to accomplish the discriminating task and have not
included time constrains. Definitely it is of vital importance for a neuronal system

to tell one signal from the other within a time window as short as possible.

e We have tested our model with static inputs. It is an interesting question to
generalize our results here to time-varying inputs as reported in [15]. Such a study
might be helpful to clarify the ongoing debate on the advantages of ’dynamical

stimuli’ over the ’'static stimuli’.

e The input signal used here is very naive. To transform the image of moving
dots to input signals specified in the present paper requires a neural network to
preprocess the image. Hence to devise a network model (spiking neural networks
or Reichardt detector [3]) to reproduce our results is one of our ongoing research
topics. We expect that such a study could provide us with a template to compare

models with psychophysical experiments.

e A neuronal system without learning is a ’"dead’ system. In actual situations, we all
know that learning is prevailing in neuronal systems. Hence a reasonable learning
rule should improve the neuronal capability of discrimination of different input
signals. There are several learning rules reported in the literature. To assess the

impact of them on discrimination tasks is an intriguing issue.



Discriminating between different input signals is probably more fundamental con-
strains on the neural system than others such as maximizing input-output information
or redundancy reductions, a view recently echoed in [1]. To understand it will reveal
principles employed by neuronal systems which remain mysterious to us. The issue
discussed here is currently a hot topic in neuroscience (for example see [13]). Our ap-
proach provides us with a solid theoretical foundation for further study and we expect
that our approach also opens up many interesting questions to be further investigated

in the future.
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