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Abstrat

What is neuronal apability of disriminating between di�erent input signals? Fur-

thermore, how to improve its disriminating apability? We explore these issues both

theoretially and numerially for the integrate-and-�re (IF) model and the IF-FHN

model (a simpli�ed version of the FitzHugh-Nagumo model [6℄). It is found that adding

orrelations and inreasing inhibitory inputs onsiderably redue the total probability

of mislassi�ations (TPM). A novel theory on disrimination tasks is developed and

the theory aounts for all observed numerial results.

1 Introdution

To eÆiently disriminate between di�erent input signals, for example to tell the im-

age of a prey from that of a predator, is of vital importane to a nervous system. The

atual neuron mehanisms underpinning the ognitive ativity remain one of the most

signi�ant and puzzling problems in neurosiene, despite there have been mounting

experimental and theoretial results devoted to the topi (for example see reent re-

views [14, 15℄). In a series of experiments, Newsome and his olleagues have ompared

single neuron ativity with psyhophysial experiment data. They found, surprisingly,
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that the information extrated from single neuron ativity in MT is almost enough to

aount for psyhophysial experiment data. Hene an observation of the �ring rates

of single neuron, at least in MT, ontains enough information to further guide motor

ativity. Imagining the enormous number of neurons in the ortex, their �ndings are

striking and open up many interesting issues for further theoretial and experimental

study. Interestingly, similar �ndings are reported in somatosensory pathways [15℄ as

well. In line with these experimental results, in this paper we onentrate on the rela-

tionship of the input and output �ring rates of a single neuron. The issue we are going

to address is quite straightforward (see Fig. 1). Suppose that a neuron reeives two set

Figure 1: For two mixed signals (left), after neuronal transformation, will they beome more

mixed or more separated?

of signals (oded by �ring rates) distributed aording to two histograms as depited

in Fig. 1 (left). Will the signals beome more mixed or separated, after neuronal

transformations?

More spei�ally we onsider neuron models with a ombination of (oherent) signal

inputs and masking 'noise' inputs. The models we employ here are the integrate-and-
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�re(IF) model and the IF-FHN model [6℄. We �nd that with a small fration of signal

inputs, the e�erent spike trains of the model ontain enough information to disriminate

between di�erent inputs (see below for more details).

We then explore the possible funtional role of inhibitory inputs on disrimination

tasks. A neuron extensively reeives both exitatory and inhibitory inputs. It is lear

that the exitatory input odes the input information: the stronger the stimuli are, the

faster the neuron �res. Less is known about the inhibitory input, muh as di�erent,

theoretial hypotheses have been put forward in the literature ranging from atually

synhronizing the �ring of a group of neurons [20℄, linearizing input-output relation-

ship [7℄ and inreasing neuron �ring rates [6℄ et. We �nd that adding ertain amount

of inhibitory inputs onsiderably enhanes the neuronal disrimination apability if

signal inputs are orrelated.

The onlusion above seems quite ounter intuitive. We all know that inreasing

inhibitory inputs to a single neuron model will result in an inrease on the variability

of its e�erent spike trains [6℄. The histogram of �ring rates will thus beome more

spread out and, as a onsequene, the disrimination of di�erent inputs beomes more

diÆult. However, this is not the ase. To understand the mehanism underpinning

the observed phenomena, we then go a step further to theoretially explore the model

behaviour. Based upon the IF model, a theory on disrimination tasks is developed.

We �nd that two key mehanisms for ahieving a better separation of output signals,

in omparison with input signals, are

1. input signals are positively orrelated and

2. exitatory inputs and inhibitory inputs are exatly balaned.

Without orrelations, no matter how strong the inhibitory inputs are, the separability

of the output signals and the input signals is idential: if the input signals are separable,

so are the output signals and vise versa. With orrelations, the stronger the inhibitory

inputs are, the better the separation.
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Theoretially the ritial value of the oherent inputs at whih the output his-

tograms are separable is exatly obtained (Theorem 2) for the ase of orrelated and

exatly balaned inputs (the most interesting ase). The results enable us to assess the

dependene of our onlusions on di�erent model parameters and input signals. It is

illuminating to see that the ritial value is independent of model parameters inluding

the threshold, the deay time and the EPSP and IPSP magnitude.

All the aforementioned results are obtained for the IF and IF-FHN model without

reversal potentials, we further examine our onlusions for the IF model with reversal

potentials. Sine adding reversal potentials to a model is equivalent to inreasing its

deay rate (depending on input signals), we would naturally expet that the model

with reversal potentials will beome more e�etively to distinguish di�erent inputs.

The onlusion is numerially on�rmed.

During the past few years, inhibitory inputs (see for example [11, 12℄) and orrelated

inputs (see for example [17, 18℄ are two topis widely investigated in neurosiene. It

seems it is generally aepted that they play important roles in information proessing

in the brain. Our results here provide a onvining and diret evidene to show that

they do improve the performane of a single neuron. Suh results would also be valuable

on pratial appliations of spiking neural networks [9℄.

2 The Integrate-and-�re Model and its Inputs

The �rst neuron model we use here is the lassial IF model [4, 5, 19℄. When the

membrane potential V

t

is below the threshold V

thre

, it is given by

dV

t

= �L(V

t

� V

rest

)dt+ dI

syn

(t) (2.1)

where L is the deay oeÆient and the synapti input is

I

syn

(t) = a

p

X

i=1

E

i

(t)� b

q

X

j=1

I

j

(t)
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with E

i

(t); I

i

(t) as Poisson proesses with rate �

i;E

and �

i;I

respetively, a > 0; b > 0

are magnitude of eah EPSP and IPSP, p and q are the total number of ative exitatory

and inhibitory synapses. One V

t

rosses V

thre

from below a spike is generated and

V

t

is reset to V

rest

, the resting potential. This model is termed the IF model. The

interspike interval of e�erent spikes is

T = infft : V

t

� V

thre

g

More spei�ally, synapti inputs take the following form (p = q)

I

syn

(t) = a

p

X

i=1

E

i

(t)� b

p

X

j=1

I

j

(t)

= a

p



X

i=1

E

i

(t) + a

p

X

i=p



+1

E

i

(t)� b

p



X

i=1

I

i

(t)� b

p

X

i=p



+1

I

i

(t)

where E

i

(t); i = 1; � � � ; p



are orrelated Poisson proesses with an idential rate �

j

; j =

1; 2, E

i

(t) is Poisson proesses with a �ring rate �

i�p



independently and identially

distributed random variables from [0; 100℄; i = p



+ 1; � � � ; p, I

i

(t); i = 1; � � � ; p have the

same property as E

i

(t), but with a �ring rate of r�

j

; j = 1; 2 or r�

i�p



for r 2 [0; 1℄

representing the ratio between inhibitory and exitatory inputs.

From now on, we further use di�usion approximations to approximate synapti

inputs [19℄ and without loss of generality we assume that a = b and V

rest

= 0.

I

syn

(t) = ap



�

j

t+ a

p�p



X

i=1

�

i

t� bp



r�

j

t� b

p�p



X

i=1

r�

i

t

+

q

(a

2

+ b

2

r)�

j

p



(1 + (p



� 1)) + (a

2

+ b

2

r)

P

p�p



i=1

�

i

�B

t

where B

t

is the standard Brownian motion and j = 1; 2. We �rst onsider the ase

that a neuron reeives independent inputs. As we might expet, the output from a

single neuron does not ontain enough information for the disrimination task (results

not shown, see next setion), with the ratio of inhibitory to exitatory inputs spanned

from nil to one (exatly balaned inhibitory and exitatory input). We then turn to

the situation that a small amount of orrelations are added to the synapti inputs

whih ode oherently moving dots. For the simpliity of notation we assume that the
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orrelation oeÆient between ith exitatory (inhibitory) synapse and jth exitatory

(inhibitory) synapse is  > 0. The orrelation onsidered here reets the orrelation

of ativity of di�erent synapses, as disussed and explored in [6, 21℄. It is not the

orrelation of single inoming EPSP or IPSP whih ould be expressed as 

ij

(t� t

0

) for

the EPSP (IPSP) at time t of the ith synapse and time t

0

of the jth synapse. We refer

the reader to [6℄ for a detailed disussion on the meaning of the orrelation onsidered

here.

In summary, suppose that a neuron reeives p synapti inputs. The goal of the

postsynapti neuron is to disriminate between two types of inputs

1. p



exitatory Poisson inputs �re at a rate �

1

and

p



inhibitory Poisson inputs �re at a rate r�

1

with r 2 [0; 1℄;

2. p



exitatory Poisson inputs �re at a rate �

2

(�

2

6= �

1

)

p



inhibitory Poisson inputs �re at a rate r�

2

with r 2 [0; 1℄.

In both ases, the neuron reeives 'noise' Poisson inputs onsisted of p� p



exitatory

inputs and the same number of inhibitory inputs. We assume that 'noise' exitatory

inputs are uniformly distributed between 0 and 100 Hz, and 'noise' inhibitory inputs

are between 0 and 100r Hz. Without loss of generality, we always assume that �

2

> �

1

.

3 Numerial Results

Example 1 The setup above atually (see Fig. 2) mimis the inputs to an MT neuron

used in the experiments. In the experiment of Newsome and his olleagues, the input

image is a olletion of moving dots, say p dots. p



out of p dots move with an idential

(oherent) diretion, either upward or downward and p � p



dots move with random

diretions. In the literature [2℄, p



=p is alled oherene level. We ould assume that

an MT neuron exlusively reeives information of motion diretions of an input image

(moving dots), i.e. the ell reeives p synapti inputs, eah represents the moving
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diretion of a dot. Denote that N

i

(t); i = 1; � � � ; p as a Poisson proess with a rate �

i

,

where �

i

takes value from [0; 100℄Hz, i.e. (�

i

=100)2� is the motion diretion of the i-th

random moving dot (see [2℄) and the motion of eah dot is oded by the �ring rate of a

single synapti (Poisson) input. Hene �

i

= �

1

= 25 Hz represents the input of upward

motion, or the ith dot moves upward; �

i

= �

2

= 75 Hz represents the downward motion.

For example when the neuron reeives synapti inputs with a oherene of p



=p, whih

o 

o 

o 

o 

o 

o 

o 

o 

o 

o o 

o o o o o o o o o o o 

0 Hz 

25 Hz 

Figure 2: Shemati plot of inputs used in the experiment (see [2℄, left) and in the model

(right). In the model, the dot moves horizontally towards right is represented by synapti

inputs of 0 Hz input; the dot moves upwards is 25Hz.

means that the neuron reeives p



out of p Poisson proesses of �ring rates of 25 Hz

(upward motion) or 75 Hz (downward motion) and p� p



Poisson proesses of random

�ring rates uniformly taking values from 0 to 100 Hz.

The parameters used in simulating the IF model are V

thre

= 20mV , V

rest

=

0mV;L = 1=20, a = b = 1mV; p = 100; �

1

= 25 Hz and �

2

= 75 Hz. A refratory

period of 5mse is added for all numerial results of e�erent �ring frequeny. For eah

�xed set of parameters of the model, 100 spikes are generated to alulate eah mean,

standard deviation et.

Fig. 3 depits the histogram of �ring rates with purely exitatory r = 0 (left

olumn) and almost balaned exitatory and inhibitory inputs r = 0:95 (right olumn)
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with  = 0:1 [21℄ and p



= 15 (upper panel), 25 (bottom panel). It is easily seen that

when p



= 25 and r = 0:95, from an observation of single neuron ativity, we ould

perfetly separate upward from downward motions. Nevertheless, when r = 0 and

p



= 25 we are not able to perfetly separate upward from downward motions.

Figure 3: Histogram of �ring rates (Hz) with  = 0:1 for the IF model. Left, exlusively

exitatory inputs r = 0. Right, r = 0:95. Upper panel: p



= 15. The minimum TPM is

alulated aording to the thik vertial lines (the optimal disrimination line). Bottom

panel: p



= 25.

Let us now onsider the minimum total probability of mislassi�ation (TPM) de-

�ned by

TPM =

1

2

P ( downward jinput is upward) +

1

2

P ( upward jinput is downward)

For example, in Fig. 3, we see that TPM (in perentile) for the left upper panel is
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about 13:5% and for the right upper panel is 5:5%. Therefore adding inhibitory inputs

to the neuron onsiderably improves its disrimination apability, reduing TPM from

13:5% to 5:5%.

In Fig. 4 the histogram of oeÆient of variation (CV) of e�erent spike trains is

plotted. Our results also reveal one possible funtional role of e�erent spike trains with

a high CV widely observed in experiments. In the past few years, there are a large body

of literatures devoted to the topi: how to generate e�erent spike trains with a large

CV for the IF model(see [6℄ for a review). Nevertheless, the funtional impliations of

e�erent spike trains with a large CV are still not lear. Here we �nd that for a �xed

oherene level, a lower TPM value orresponds to a larger CV. In other words, for a

given p



, to ahieve a better disrimination naturally requires that e�erent spike trains

are more irregular.

Figure 4: Histogram of CV with  = 0:1; p



= 15 for the IF model. Left, exlusively

exitatory inputs r = 0. Right, r = 0:95.

In Fig. 5 we plot TPM (in perentile) vs. p



for r = 0 and r = 1 and TPM vs.

r for p



= 15 and p



= 25. TPM vs. p



simply on�rms our onlusion that adding

inhibitory inputs improves a neuron's apability of disriminating between di�erent

inputs. Remember that the noise strength in the input (� de�ned in Eq. (3.1)) is

proportional to r. The larger the r is, the larger the input noise. TPM vs. r in Fig. 5

tells us another interesting phenomenon: inreasing noise in the model is useful rather
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than harmful. The bene�t of noise in neuronal system has been extensively explored

in the literature of stohasti resonane [8℄. However, the mehanism to reah the

�nely tuning noise level whih results in the stohasti resonane seems far-fethed for

neuronal systems. Our �nding here provides a more diret and onvining evidene

whih learly demonstrates the advantage of adding noise to a neuronal system.
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Figure 5: TPM % vs. r (left) and TPM vs. p



(right) for the IF model. When p



= 15 (left),

it is learly shown that TPM attains its optimal value at r = 1, i.e. the larger the noise, the

better the disrimination ( see the right �gure as well).

3.1 Other Input Forms

The results presented in the previous subsetions seems quite ount-intuitive sine we

all know that adding inhibitory inputs to the IF model inreases its CV of e�erent spike

trains. Namely inreasing inhibitory inputs to the model will make the histogram of

�ring rates more widely spread out and so make the disrimination task more diÆult.

In this subsetion, we onsider the model with other forms of inputs.



11

The input in the previous subsetion is

di

syn

(t) = a(p



�

j

+

p�p



X

i=1

�

i

)(1� r)dt

+a

v

u

u

t

[�

j

p



(1 + (p



� 1)) +

p�p



X

i=1

�

i

℄(1 + r) � dB

t

= �dt+ �dB

t

(3.1)

where j = 1; 2. From results in [6℄ we know that

hT i =

2

L

Z

V

thre

L� �

�

V

rest

L� �

�

g(x)dx

(3.2)

where

g(x) =

�

exp(x

2

)

Z

x

�1

exp(�u

2

)du

�

In terms of the law of large numbers we onlude that

p�p



X

i=1

�

i

� (p� p



)h�

1

i+

p

p� p



��(�

1

) (3.3)

where �(�

1

) is the standard deviation of �

1

and � � N(0; 1).

Hene Eq. (3.2) turns out to be

hT i =

2

L

�

Z

V

thre

L� a[p



�

j

+ (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 � r)

a

q

[�

j

p



(1 + (p



� 1)) + (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 + r)

�[p



�

j

+ (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 � r)

q

[�

j

p



(1 + (p



� 1)) + (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 + r)

g(x)dx

(3.4)

We have heked the auray of the approximation developed here. It is found that

the approximation in Eq. (3.4) is not very good (ompare Fig. 6 upper panel with

Fig. 3 upper panel), simply implying that we have to inlude more higher order terms

in the approximation of Eq. (3.3). Nevertheless, Eq. (3.4) gives us a transparent

formula to study the issues disussed in the previous subsetion and Eq. (3.4) is exat

if we model the input rate as a normally distributed random variable

1

rather than a

uniformly distributed random variable.

1

More exatly, it should be a random variable so that Eq. (3.4) makes sense.
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Figure 6: Histogram of �ring rates (Hz) with  = 0:1; p



= 15; h�

1

i = 0:05 and �(�

1

) = :1=

p

12

(upper panel, ompare with Fig. ), p



= 25 and �(�

1

) = 1=

p

12 (bottom panel) for the IF

model with inputs de�ned by Eq. (3.3). Left, exlusively exitatory inputs r = 0. Right,

r = 0:95.
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To the �rst order approximation, Eq. (3.4) reveals the underpinning mehanism of

the phenomena observed here. From Eq. (3.4) we have

hT i � hT

1

i =

2g(0)V

thre

a

q

[�

j

p



(1 + (p



� 1)) + (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 + r)

(3.5)

The �ring rate in the unit of Hz is then

1000

R

e

+ hT

1

i

=

1000a

q

[�

j

p



(1 + (p



� 1)) + (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 + r)

R

e

a

q

[�

j

p



(1 + (p



� 1)) + (p� p



)h�

1

i+

p

p� p



��(�

1

)℄(1 + r) + g(0)V

thre

(3.6)

where R

e

is the refratory period. Let us denote 

1

= p



(1 + (p



� 1)) and 

2

(�) =

(p� p



)h�

1

i+

p

p� p



��(�

1

) then Eq. (3.6) is

1000a

q

[�

j



1

+ 

2

(�)℄(1 + r)

R

e

a

q

[�

j



1

+ 

2

(�)℄(1 + r) + g(0)V

thre

(3.7)

Under the assumption that � is a small perturbation of a deterministi quantity or in

the sense of the mean �eld approximation, we have

1000a

p

[�

2



1

+ 

2

(h�i)℄(1 + r)

R

e

a

p

[�

2



1

+ 

2

(h�i)℄(1 + r) + g(0)V

thre

�

1000a

p

[�

1



1

+ 

2

(h�i)℄(1 + r)

R

e

a

p

[�

1



1

+ 

2

(h�i)℄(1 + r) + g(0)V

thre

>

1000a

p

[�

2



1

+ 

2

(h�i)℄

R

e

a

p

[�

2



1

+ 

2

(h�i)℄ + g(0)V

thre

�

1000a

p

[�

1



1

+ 

2

(h�i)℄

R

e

a

p

[�

1



1

+ 

2

(h�i)℄ + g(0)V

thre

(3.8)

where r > 0 and �

1

< �

2

. Therefore we onlude that larger the inhibition is, the more

widely separate the �ring rate with di�erent inputs and so the easier to disriminate

between di�erent input signals. The onlusions are only true under very restrited

onditions as spei�ed above, however we would like to show it here sine all proofs

are straightforward. To have a rigorous result, we have to �nd the distribution density

of hT i, whih is a hard task. However, in the next setion, we develop a theory to get

around the diÆulty.

Next we are going to test how general or robust are our onlusions in the previous

subsetions. In Fig. 6 we show histograms of �ring rates with h�

1

i = 0:05, but with
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�(�

1

) = :1=

p

12 (upper panel) and �(�

1

) = 1=

p

12 (bottom panel). When h�

1

i = 0:05

and �(�

1

) = :1=

p

12, the mean and variane are the same as in the model onsidered in

the previous subsetions. When h�

1

i = 0:05 and �(�

1

) = 1=

p

12, the standard deviation

of inputs is enlarged by a fator of 10, in omparison with the setup in the previous

subsetions. It is easily seen that inreasing the variane in input signals will make the

histograms of �ring rates more widely spread out, as shown in Fig. 6, bottom panel.

Nevertheless, when p



= 25 we see that the input signals an be perfetly separated.

3.2 Models With Reversal Potentials

A slightly more general model than the IF model de�ned above is the IF model with

reversal potentials de�ned by

dZ

t

= �(Z

t

� V

rest

)Ldt+ d

�

I

syn

(Z

t

; t) (3.9)

where

�

I

syn

(Z

t

; t) = �a(V

E

� Z

t

)

p

X

i=1

E

i

(t) +

�

b(V

I

� Z

t

)

q

X

j=1

I

j

(t)

V

E

and V

I

are the reversal potentials V

I

< V

rest

< V

E

, �a(V

E

� V

rest

);

�

b(V

I

� V

rest

) are

the magnitude of single EPSP and IPSP when Z

t

= V

rest

. We ould rewrite Eq. (3.9)

in the following form

dZ

t

= �(Z

t

� V

rest

)(Ldt+ �a

p

X

i=1

dE

i

(t) + �a

p

X

i=1

dI

i

(t))

+�a(V

E

� V

rest

)

p

X

i=1

dE

i

(t) +

�

b(V

I

� V

rest

)

q

X

j=1

dI

j

(t)

= �(Z

t

� V

rest

)[Ldt+ �a

p

X

i=1

dE

i

(t) +

�

b

p

X

i=1

dI

i

(t)℄

+a

p

X

i=1

dE

i

(t) + b

q

X

j=1

dI

j

(t)

(3.10)

Therefore the di�erene between the model with and without reversal potentials is that

the latter has a deay rate depending on inoming signals. From the onlusions of
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the previous subsetions we would expet that the model with reversal potentials will

improve its apaity of disriminating inoming signals.

Fig. 7 is in agreement with our expetations. We see that for p



= 15 and

r = 0:6 a perfet disrimination is ahieved. For the model without reversal po-

tentials, we see that for p



= 15 and r = 1 we still have TPM > 0 (see pre-

vious subsetions). The parameters used in the model with reversal potentials are

�a = 0:01;

�

b = 0:1; V

E

= 100mV; V

I

= �10mV , with all other parameters as the model

without reversal potentials.

2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Figure 7: Histogram of �ring rates in the unit of Hz ( upper panel) and CV (bottom panel)

with  = 0:1; p



= 15 for the IF model with reversal potentials. Left, exlusively exitatory

inputs r = 0. Right, r = 0:6.
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3.3 IF-FHN Model

The IF model is the simplest neuron model whih mimis ertain properties of a bi-

ologial neuron and is linear before resetting. A slightly more omplex model is the

IF-FHN model, an IF model but with a nonlinear leakage oeÆient, as in a biophysial

model. In terms of the output signal-to-noise ratio, we know that the IF and IF-FHN

model behave in totally opposite ways when they reeive orrelated inputs (see [6℄ for a

review). We then naturally ask that whether the phenomenon observed in the previous

setion with partially orrelated inputs is true only for the IF model or not. To this

end we simulate the IF-FHN model de�ed by

dv(t)

dt

= �(1=� + �)v(t) + (1 + �)

v(t)

2

60

�

v(t)

3

3600

+

di

syn

(t)

dt

(3.11)

when v(t) < v

thre

= 50. The parameters are v

rest

= 0;  = 50; � = 0:2; � = 2:5;

a = 2:; p = 300. Note that to ensure the output �ring rates in the similar regions for

di�erent models, the value of p and a used in the IF-FHN model is higher than that

in the IF model, but still in the physiologially plausible regions.
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Figure 8: Histogram of e�erent frequeny (Hz) of the IF-FHN model with  = 0:1; p



=

25; p = 300. Left, exlusively exitatory inputs r = 0. Right, r = 1:

Fig. 8 shows the simulation results. It is readily seen that all onlusions in the

previous setion remain true: inreasing inhibitory inputs onsiderably improves the
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disrimination apability of the model neuron. Furthermore, the fration of oherent

inputs whih ensures a perfet disrimination is less than that of the IF model. For

example, in Fig. 8, with p



=p = 25=300 of oherent inputs the histograms of e�erent

frequeny are well separated when r = 1.

4 Theoretial Results

  

   

Firing rate (Hz)

H
is

to
g

ra
m

s

R
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(λ
2
) R

max
(λ

1
)

 

p
2
(λ) p

1
(λ) 

Figure 9: A shemati plot of two output histograms, R

min

(�

2

) and R

max

(�

1

).

In this setion we onentrate on theoretial results. Let � be the set of input

frequeny of the model, whih is [0; 100℄. It will beome obvious that all theoretial

results are independent of this hoie. For a �xed (�

1

2 �; �

2

2 �) with �

1

< �

2

we

have orresponding two histograms p

1

(�) and p

2

(�) of output �ring rates as shown in

Fig. 9. Let

R

min

(�

2

) = minf� : p

2

(�) > 0g

and

R

max

(�

1

) = maxf� : p

1

(�) > 0g
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and denote

�(�

1

; �

2

; ; r) = fp



: R

min

(�

2

) = R

max

(�

1

)g (4.1)

If it is lear from the ontext about the dependene of �(�

1

; �

2

; ; r) on ; r, we some-

times simply write �(�

1

; �

2

; ; r) as �(�

1

; �

2

). Hene for �xed (�

1

; �

2

), �(�

1

; �

2

) gives

us the ritial value of p



: when p



> �(�

1

; �

2

) the input patterns are perfetly separa-

ble in the sense that the the output �ring rate histograms are not mixed with TPM=0;

when p



< �(�

1

; �

2

) the input patterns might not be separable with TPM> 0. Note

that we onsider the worst ase here and in pratial appliations, the ritial value of

p



at whih the input patterns are perfetly separable, as found in the previous setion,

is in general lower than �(�

1

; �

2

; ; r). From now on, all �gures are generated using the

same parameters as in the previous setion, if not spei�ed otherwise.

Here is the basi idea of our approah. As pointed out before, it is not easy to

diretly alulate the distribution of hT i. Nevertheless, the disrimination task is only

involved in the most left point of p

2

(�), i.e. R

min

(�

2

), and the most right point of

p

1

(�), i.e. R

max

(�

1

), provided that both p

2

and p

1

are positive only in a �nite region.

This is exatly the ase for the model we onsidered here sine neurons �re within a

�nite region.

4.1 Behaviour of �(�

1

; �

2

; ; r)

First of all, we want to explore the behaviour of R

min

(�

2

) � R

max

(�

1

). In Fig. 10,

Di� = R

min

(�

2

) � R

max

(�

1

) with di�erent values of a and �

1

= 25Hz,�

2

= 75Hz are

shown. In all ases we see that it is an inreasing funtion of r and �(�

1

; �

2

; ; r) is a

dereasing funtion of r.
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Figure 10: Di�=R

min

(�

2

)�R

max

(�

1

) for a = 0:5 (upper panel), a = 1 (middle panel) a = 2

(bottom panel) with �

1

= 25 Hz, �

2

= 75 Hz and  = 0:1. It is easy to read out �(�

1

; �

2

; ; r).
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Theorem 1 Let �

max

= maxf� 2 �g = 100 Hz, we have

�(�

1

; �

2

) =

(

p



:

Z

V

thre

L

0

g

 

y � a[p



�

1

+ (p� p



)�

max

℄(1� r)

a

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

℄(1 + r)

!

dy

=

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

℄

p

[�

2

p



(1 + (p



� 1))℄

�

Z

V

thre

L

0

g

 

y � a(p



�

2

)(1� r)

a

p

[�

2

p



(1 + (p



� 1))℄(1 + r)

!

dy

)

(4.2)

Proof As in the previous setion we know that

hT i =

2

L

Z

V

thre

L� �

�

V

rest

L� �

�

g(x)dx

(4.3)

where

g(x) =

�

exp(x

2

)

Z

x

�1

exp(�u

2

)du

�

Hene Eq. (4.3) turns out to be

hT i =

2

L

�

Z

V

thre

L� a[p



�

j

+

P

p�p



i=1

�

i

℄(1� r)

a

q

[�

j

p



(1 + (p



� 1)) +

P

p�p



i=1

�

i

℄(1 + r)

�[p



�

j

+

P

p�p



i=1

�

i

℄(1� r)

q

[�

j

p



(1 + (p



� 1)) +

P

p�p



i=1

�

i

℄(1 + r)

g(x)dx

(4.4)

De�ne

T (x) =

2

L

�

Z

V

thre

L� a[p



�

j

+ x℄(1� r)

a

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)

�[p



�

j

+ x℄(1� r)

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)

g(x)dx

(4.5)

we intend to prove that T (x) is a dereasing funtion of x. Intuitively it is obvious: the

stronger the input is, the shorter the interspike interval. Nevertheless, we have proved

in [6℄ that, in ertain irumstanes, inreasing inhibitory inputs an inrease the �ring

rate. We thus prefer to present a rigorous proof here. From Eq. (4.5) we obtain

T (x) =

2

La

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)

�

Z

V

thre

L

0

g

0

�

y � a[p



�

j

+ x℄(1� r)

a

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)

1

A

dy

(4.6)
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Hene the derivative of the seond term in Eq. (4.6) is

2

L

�

Z

V

thre

L

0

g

0

0

�

y � a[p



�

j

+ x℄(1 � r)

a

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)

1

A

�

�2a(1� r)[�

j

p



(1 + (p



� 1)) + x℄(1 + r)� (y � a[p



�

j

+ x℄(1� r)(1 + r)

2a(

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r))

3

dy

� g

0

[�2a[�

j

p



(1 + (p



� 1)) + x℄� (0:5(V

thre

L)� a[p



�

j

+ x℄)℄(1 � r

2

)V

thre

L

2a[

q

[�

j

p



(1 + (p



� 1)) + x℄(1 + r)℄

3

< 0

provided that g

0

> 0 where g

0

is the minima of g

0

(x) over any ompat set. Hene what

remains to prove is that g

0

(x) > 0 for x 2 R. When x � 0, we have

g

0

(x) = 2xg(x) + 1

whih implies that g(x) is an inreasing funtion of x. When x < 0, with integration

by part, it an be easily shown that

g

0

(x) = �x exp(x

2

)

Z

x

�1

1

u

2

exp(�u

2

)du > 0

Hene g(x) is stritly inreasing for x 2 R and the onlusion is independent of �

j

.

De�ne

~

T (x; p



; �) =

2

La

p

[�p



(1 + (p



� 1)) + x℄(1 + r)

�

Z

V

thre

L

0

g

 

y � a[p



�+ x℄(1 � r)

a

p

[�p



(1 + (p



� 1)) + x℄(1 + r)

!

dy

(4.7)

we therefore onlude that

R

min

(�

2

) =

1000

R

e

+

~

T (0; p



; �

2

)

(4.8)

and

R

max

(�

1

) =

1000

R

e

+

~

T ((p� p



)�

max

; p



; �

1

)

(4.9)

where R

e

is the refratory period. Hene the onlusion of the theorem follows.

As we have mentioned before, to �nd the distribution or the variane of hT i is a

formidable task. Here, based upon the basi observations that
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� The output �ring rate is an inreasing funtion of inputs

� Input �ring rate is on�ned within a �nite region, whih is of ourse the ase in

neurosiene

we simplify our task from �nding out the variane of hT i to solving an algebra equation

de�ned in Theorem 1. Theorem 1 is the starting point of all following results.

Theorem 2 When  = 0 we have

�(�

1

; �

2

; 0; r) =

p�

max

�

2

� �

1

+ �

max

independent of r. When  > 0 we have

�(�

1

; �

2

; ; r

2

) < �(�

1

; �

2

; ; r

1

) < �(�

1

; �

2

; 0; r) (4.10)

where 1 � r

2

> r

1

> 0 and furthermore

�(�

1

; �

2

; ; 1) =

p

[(�

2

� �

1

)(1� ) + �

max

℄

2

+ 4p�

max

(�

2

� �

1

)� (�

2

� �

1

)(1� )� �

max

2(�

2

� �

1

)

(4.11)

Before proving the onlusions, we �rst disuss the meaning of Theorem 2. The

�rst onlusion tells us that with  = 0, no matter how strong the inhibitory inputs

are, the ritial value of p



is independent of r. In other words, without orrelated

inputs, inreasing inhibitory inputs does not enhane the disrimination apaity of

the neuron. In Theorem 3 below, we will further prove that without orrelated inputs,

if the inputs are separable, so are the outputs and vise versa. The seond onlusion

says that the disrimination apaity of the neuron is improved if the neuron reeived

orrelated inputs. With orrelated inputs, inreasing inhibitory inputs does enhane

the disrimination apaity of the neuron. In partiular, we see that for a �xed  > 0,

the optimal disrimination apaity is attained when r = 1. Hene Theorem 2 on�rms

our numerial results on the IF model presented in the previous setion.
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To prove Theorem 2, at a �rst glane, we might want to prove that �(�

1

; �

2

; r; )

is a dereasing funtion of r. Again a diret, brute fore alulation is very hard, if it

is not impossible. In the following we employ a more geometrially oriented proof.

Proof Note that when  = 0 we have

g

 

y � a[p



�

1

+ (p� p



)�

max

℄(1 � r)

a

p

[�

1

p



+ (p� p



)�

max

℄(1 + r)

!

= g

 

y � a(p



�

2

)(1� r)

a

p

�

2

p



(1 + r)

!

independent of r provided that

�

1

p



+ (p� p



)�

max

= �

2

p



whih implies the �rst onlusion.

We postpone the proof of

�(�

1

; �

2

; ; 0) < �(�

1

; �

2

; 0; r)

to Theorem 3 below.

Note that R

min

(�

2

) = R

max

(�

1

) for r = 1 implies

Z

V

thre

L

0

"

g

 

y

a

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

2℄

!

�

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

℄

p

[�

2

p



(1 + (p



� 1))℄

� g

 

y

a

p

[�

2

p



(1 + (p



� 1))2℄

!#

dy = 0

(4.12)

Sine g is a stritly inreasing funtion, we have

a

q

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

2℄ = a

q

[�

2

p



(1 + (p



� 1))2℄ (4.13)

and therefore

�(�

1

; �

2

; ; 1) =

p

[(�

2

� �

1

)(1� ) + �

max

℄

2

+ 4p�

max

(�

2

� �

1

)� (�

2

� �

2

)(1� )� �

max

2(�

2

� �

1

)

(4.14)

It is easy to verify that

lim

!0

�(�

1

; �

2

; ; 1) = �(�

1

; �

2

; 0; r)
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for r 2 [0; 1℄.

Finally we want to show that when

�(�

1

; �

2

; ; 1) =

p

[(�

2

� �

1

)(1� ) + �

max

℄

2

+ 4p�

max

(�

2

� �

1

)� (�

2

� �

2

)(1� )� �

max

2(�

2

� �

1

)

(4.15)

we have R

min

(�

2

) < R

max

(�

1

) for r = 0. To this end we only need to hek that

Z

V

thre

L

0

"

g

 

y � a[�

1

p



+ (p� p



)�

max

℄

a

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

℄

!

�

p

[�

1

p



(1 + (p



� 1)) + (p� p



)�

max

℄

p

[�

2

p



(1 + (p



� 1))℄

� g

 

y � a[�

2

p



℄

a

p

[�

2

p



(1 + (p



� 1))℄

!#

dy

=

Z

V

thre

L

0

"

g

 

y � a[�

1

p



+ (p� p
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℄
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(1 + (p



� 1))℄

!#
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(4.16)

This is obvious sine a[�

1

p



+(p�p



)�

max

℄ < a[�

2

p



℄. This, together with the fat that

R

min

(�

2

) � R

max

(�

1

) is an inreasing funtion of p



, we onlude that all onlusions

in Theorem 2 are true.
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Figure 11: �(�

1

; �

2

) (Hz) vs. ratio r with �

1

= 25 Hz and �

2

=75 Hz and �

1

= 25 Hz and

�

2

=30 Hz. It is easily seen that when  = 0, �(�

1

; �

2

) is at, otherwise it is a dereasing

funtion of r.
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In Fig. 11 some numerial results of �(�

1

; �

2

) are shown. It is easily seen that

when  = 0, �(�

1

; �

2

) is independent of r.

We want to point out another amazing fat from Theorem 2. �(�

1

; �

2

; 0; r) and

�(�

1

; �

2

; ; 1) with  > 0 are both independent of a; V

thre

; L. When r = 1;  = 0:1; �

1

=

25 Hz, �

2

= 75 Hz and �

max

= 100 Hz and p = 100, we have �(25; 75; 0:1; 1) =

32:5133; �(25; 75; 0; 1) = 66:6667 (see Fig. 10 and 11). Hene we onlude 32:5133 <

�(25; 75; 0:1; r) < 66:6667 for r 2 (0; 1).

Finally we are in the position to answer one of the questions raised in the intro-

dution: a large CV implies a small �(�

1

; �

2

; ; r). Note that the CV of interspike

intervals is the the variane when we alulate the mean interspike intervals. In other

words, for eah �xed realization of �

i

; i = 1; � � � ; p� p



, it is the variation of T . When

we alulate �(�

1

; �

2

; ; r), the variane of �ring rates histogram is mainly introdued

via the masking 'noise'. In other words it is the variation of hT i. Therefore these

are di�erent soures of noise. By inreasing the number of interspik intervals, we an

redue the variane of the �rst kind. Note that in the previous setion, we deliberately

employ a small number of spikes (100), whih might lose to the biologial reality, to

estimate hT i. The seond kind of variane is due to the utuation of input signals, or

masking noise. In onlusion, inreasing inhibitory inputs introdues more variations

when we alulate hT i, but improves neuronal disrimination apaity.

4.2 Input-Output Relationship

In the previous subsetions, we only onsider the output �ring rate histograms. It

is ertainly interesting to ompare the input histograms with output histograms. As

before, let � be the set of input frequeny of the model. For a �xed (�

1

2 �; �

2

2 �)

with �

1

< �

2

we have orresponding two histograms p

i

1

(�) and p

i

2

(�) of input �ring

rates, i.e. p

i

1

(�) is the histogram of p



�

1

+

P

p�p



i=1

�

i

and p

i

2

(�) is the histogram of
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p



�

2

+

P

p�p



i=1

�

i

. De�ne

R

i

min

(�

2

) = minf�; p

i

2

(�) > 0g

and

R

i

max

(�

1

) = maxf�; p

i

1

(�) > 0g

Then the relationship between R

i

min

(�

2

)�R

i

max

(�

1

) and R

min

(�

2

)�R

max

(�

1

) hara-

terizes the input-output relationship of neuron signal transformations.

We �rst want to assess that whether R

min

(�

2

)�R

max

(�

1

) > 0 even when R

i

min

(�

2

)�

R

i

max

(�

1

) < 0, i.e. the input signal is mixed, but the output signal is separated. In Fig.

12, we plot R

min

(�

2

)�R

max

(�

1

) vs R

i

min

(�

2

)�R

i

max

(�

1

) = �

2

p



��

1

p



��

max

(p�p



),

whih is a funtion of p



. It is easily seen that after neuronal transformation, mixed

signals are better separated when  > 0. For example, when  = 0:1; r = 1 and

R

i

min

(�

2

)�R

i

max

(�

1

) = �5000 Hz (mixed), but R

min

(�

2

)�R

max

(�

1

) > 0 (separated).

The onlusion is not true for  = 0, but the separation is not worse after neuronal

transformation.

−10000 −5000 0 5000

−140

−120

−100

−80

−60

−40

−20

0

20

40

Input diff (Hz)

O
u
tp

u
t 
d
if
f 
(H

z
)

−  r = 1             

⋅⋅⋅ r = 0

                     
c = 0.1              
                     

−10000 −5000 0 5000
−150

−100

−50

0

50

100

Input diff (Hz)

O
u
tp

u
t 
d
if
f 
(H

z
)

−  r = 1             

⋅⋅⋅ r = 0

                     
c = 0                

Figure 12: R

min

(�

2

)� R

max

(�

1

) vs R

i

min

(�

2

)� R

i

max

(�

1

) whih is a funtion of p



, for  = 0

(right) and  = 0:1 (left).
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Theorem 3 If  > 0 we have

R

min

(�

2

)�R

max

(�

1

) > 0 when R

i

min

(�

2

)�R

i

max

(�

1

) = 0

Proof Aording to the de�nition of R

i

min

(�

2

) and R

i

max

(�

1

) we have R

i

min

(�

2

) = p



�

2

and R

i

max

(�

1

) = p



�

1

+ �

max

(p� p



). From the proof of Theorem 1 we onlude that

R

min

(�

2

)�R

max

(�

1

) = 0 when R

i

min

(�

2

)�R

i

max

(�

1

) = 0

if  = 0. For  > 0, it is readily seen that R

min

(�

2

)�R

max

(�

1

) > 0 if and only if
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(4.17)

is greater than zero. Sine p



�

2

= p



�

1

+ �

max

(p � p



) we an rewrite Eq. (4.17) as

follows
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(4.18)

Again from the proof of Theorem 1 we know that g is an inreasing funtion, by noting

p

[�

1

p



(p



� 1)) + p



�

2

℄ <

p

[�

2

p



(1 + (p



� 1))℄ we onlude that Eq. (4.18)> 0.

Furthermore, the output di�erene of �ring rates is an inreasing funtion of p



,

this, together with the onlusions above, also implies the remaining results of Theorem

2.

Theorem 3 reveals one of the interesting properties of neuronal transformation.

Under the assumption that input signals are orrelated, the output signals will be

separated even the input signals are mixed. As aforementioned, we believe that the

fundamental requirement for a nervous system is to tell one signal from the other.

Theorem 3 tells us that after the transformation of the IF neuron, the input signals

ould be more easily separable.
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5 Disussion

We have onsidered the problem of disriminating between input signals in terms of

an observation of e�erent spike trains of single neuron. We have demonstrated, both

theoretially and numerially, that two key mehanisms to enhane the disrimination

apability of the model neuron is to inrease inhibitory inputs and orrelated inputs.

In [10℄, the authors have theoretially onsidered disrimination tasks as well. Never-

theless, our approah is very di�erent from theirs. We have onentrated on neuronal

mehanisms, but their results are more or less a diret appliation of results in statistis.

There are many issues to be further explored in the future.

� We have only onsidered to aomplish the disriminating task and have not

inluded time onstrains. De�nitely it is of vital importane for a neuronal system

to tell one signal from the other within a time window as short as possible.

� We have tested our model with stati inputs. It is an interesting question to

generalize our results here to time-varying inputs as reported in [15℄. Suh a study

might be helpful to larify the ongoing debate on the advantages of 'dynamial

stimuli' over the 'stati stimuli'.

� The input signal used here is very naive. To transform the image of moving

dots to input signals spei�ed in the present paper requires a neural network to

preproess the image. Hene to devise a network model (spiking neural networks

or Reihardt detetor [3℄) to reprodue our results is one of our ongoing researh

topis. We expet that suh a study ould provide us with a template to ompare

models with psyhophysial experiments.

� A neuronal system without learning is a 'dead' system. In atual situations, we all

know that learning is prevailing in neuronal systems. Hene a reasonable learning

rule should improve the neuronal apability of disrimination of di�erent input

signals. There are several learning rules reported in the literature. To assess the

impat of them on disrimination tasks is an intriguing issue.
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Disriminating between di�erent input signals is probably more fundamental on-

strains on the neural system than others suh as maximizing input-output information

or redundany redutions, a view reently ehoed in [1℄. To understand it will reveal

priniples employed by neuronal systems whih remain mysterious to us. The issue

disussed here is urrently a hot topi in neurosiene (for example see [13℄). Our ap-

proah provides us with a solid theoretial foundation for further study and we expet

that our approah also opens up many interesting questions to be further investigated

in the future.
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