
Specifying Interaction Categories

(extended abstract)

S. Abramsky

�

and D. Pavlovi�c

y

Department of Computing, Imperial College, London SW7 2BZ

Abstract

We analyse two complementary methods for obtaining categorical mod-

els of process calculi. They allow adding new features respectively to the

captured notion of process and to the notion of type. By alternating these

two methods, all the familiar examples, as well as some new interaction

categories, can be derived from basic monoidal categories.

Using the proposed constructions, interaction categories can be built

and analysed without �xing a set of axioms for them. They are thus ap-

proached via speci�cations, just like algebras are approached via equations

and relations, independantly of the intrinsic characterisation of varieties.

1 Introduction

Interaction Categories [2] are proposed as a general, yet practical tool for rea-

soning about functional and concurrent computation. They are not meant to be

a de�nitive formal system, but rather a task speci�cation, suggesting a partic-

ular framework for a solution. The paradigm of processes as relations extended

in time is taken as the conceptual basis for integrating type theory with pro-

cess calculus, on the background of categorical structures. The interaction of

processes is captured by composition.

We make a step towards determining the structure of Interaction Categories

by analysing the ways in which they come about. It turns out that all existing

examples, and several new ones, are obtained by alternating sequences of two

speci�cation methods, determining respectively the notion of process and the

notion of type.

The notion of speci�cation is here understood as a method of building a

structure from given material. For instance, universal algebra is the method of

�

Current address: Department of Computer Science, University of Edinburgh, Edinburgh

EH9 3JZ

y

Current address: COGS, University of Sussex, Brighton BN1 9QH. This work was par-

tially supported under ONR grant N00014-92-J-1974.

1

specifying by operations and equations; forcing is a method of specifying new

models of set theory over the old ones. Note that the Birhko� theorem, axioma-

tising categories that arise in universal algebra, as well as the Giraud theorem,

providing the axioms for those those which arise from forcing, came only after

extensive development of the corresponding speci�cation methods. Thorough

studies of the practice of specifying usually precede abstract characterisation of

a class of structures.

2 Speci�cations and categories derived from them

The two speci�cation methods that we are about to describe both begin from an

arbitrary, possibly degenerate interaction category R. The �rst of them yields

a category with the same objects as R but with morphisms capturing a richer

notion of process, while the second one re�nes the type structure, but leaves the

morphisms essentially unchanged.

2.1 Specifying processes

De�nition 2.1 A functor h : R ! Q between monoidal categories [16, sec. 1.1.]

is said to be lax monoidal if it is given with a natural family

�

AB

: hA
 hB �! h(A
B) and an arrow

� : > �! h>;

which are coherent in the sense that for all A;B;C the following diagrams com-

mute

hA
 hB
 hC

//

�
id

��

id
�

h(A
B)
 hC

��

�

hA

//

�
id

��

id

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

��

id
�

h>
 hA

��

�

hA
 h(B
C)

//

�

h(A
 B
C)

hA
 h>

//

�

hA

(1)

| with monidal isomorphisms (A
B)
C

�

=

A
(B
C) and A
>

�

=

A

�

=

>
A

omitted for simplicity. h is said to be (strong) monoidal when � and � are

isomorphisms.

Remark. Recall that a monoidal category R is ?-autonomous [5] if and only

if it is self-dual, and the duality

1

(�)

?

: R

op

! R, A

�

=

A

??

, induces the

1

As a small contribution to the notational confusion in this context, we denote the two

monoidal structures of ?-autonomous categories by (
;>) and (O;?). The usual notations

(�; 1) and (+; 0) for products and coproducts are often replaced respectively with (N; 1) and

(�; 0).

2

cotensor B �� C in the form (B
C

?

)

?

, thus makingR autonomous (i.e. closed

symmetric monoidal [16, sec. 1.5]). Now a ?-autonomous R satis�es the MIX

rule [13] if and only if the duality functor (�)

?

is lax monoidal; and it is compact

closed [17] if and only if the duality is monoidal.

Process speci�cations. All these concepts readily generalise to enriched cat-

egories [16]. Process speci�cations are meant to be Pos

?

-enriched lax monoidal

functors h : R ! Pos

?

, where R is at least autonomous and Pos

?

is the cate-

gory of posets with the bottom; morphisms are the bottom preserving monotone

maps, and the monoidal structure is induced by the cartesian products. The

base R is to be thought of as a category of abstract sets and relations. The func-

tor h de�nes a notion of process by specifying for each set the processes typed

by it. They are partially ordered by computational power, i.e. their ability to

simulate one another.

For simplicity, we presently leave the enriched aspects aside, and formal-

ize process speci�cations as functors to Set. Formally, though, any monoidal

category would do.

Construction. The category of processes R

h

induced by a speci�cation h :

R ! Set will have the same objects as R. To de�ne the morphisms, we compose

the internal hom-functor ��: R

op

�R �! R with h : R �! Set. Hence

R

h

(A;B) = h(A �� B): (2)

The structure of R then readily lifts to R

h

. The identity on A is obtained using

the transposition pid

A

q : > �! (A �� A) of the corresponding identity in R:

id

A

= hpid

A

q(�): (3)

The composite of f 2 R

h

(A;B) and g 2 R

h

(B;C), i.e. of hf; gi 2 h(A ��

B) � h(B �� C), becomes

f ; g = hm(�hf; gi); (4)

where m : (A �� B)
 (B �� C) �! (A �� C) is the internal composition

in R. The autonomous structure on the objects is inherited directly, while the

arrow part is �rst internalised. For instance, the functor X
 (�) on R induces

a family of arrows from A �� B to (X
 A) �� (X
 B) in R, the h-image of

which is a family of functions from R

h

(A;B) to R

h

(X
 A;X
 B).

Note that R

h

comes with a functor J = J

h

: R ! R

h

. It is identity on the

objects, and it maps f 2 R(A;B) to Jf = hpfq(�), where pfq 2 R(>; A �� B)

is the transpose of f . It is autonomous by the very de�nition of the autonomous

structure in R

h

.

The other way around, any functor F : R ! Q induces a representation

h = h

F

: R ! Set, with hA = Q(>; FA). If F is monoidal, h is lax monoidal,

with � = id

>

and �

AB

induced by tensoring the arrows >! FA and >! FB

to get > �! FA
FB

�

=

F (A
B). If F is autonomous, we can construct R

h

as

3

above, and it will be isomorphic with Q if and only if F is bijective on objects.

In fact, any essentially surjective F induces a weak equivalence F

0

: R

h

! Q,

with F = (J ;F

0

). We spell out just the 1-dimensional part of the underlying

2-adjunction. Note that it extends to V-enriched categories for any monoidal V

in place of Set.

Fix an autonomousR and consider the categoryR=Bij of bijective on objects,

autonomous functors out of it. A morphism from such an F : R ! Q to

G : R ! P will be an autonomous functor M : Q ! P, satisfying (F ;M) = G

(and necesssarily bijective on objects too).

On the other hand, let [R; Set]

lax

be the category of lax monoidal functors

and lax monoidal transformations. A natural transformation ' : h ! h

0

is said

to be lax monoidal if � ;'

>

= �

0

and (�

AB

;'

A
B

) =

�

('

A

� '

B

) ;�

0

AB

�

.

Proposition 2.2 R=Bij ' [R; Set]

lax

2.2 Specifying types

De�nition 2.3 Let R be a category and B a bicategory [7]. A lax functor

P : C ! B is an assignment for each object A of R of an object PA in B and for

each arrow f : A ! B of a 1-cell Pf : PA ! PB in B. Furthermore, P comes

equipped with the 2-cells

�

fg

: Pf ;Pg �! P(f ; g) for every composable f and g, and

�

A

: id

PA

�! P(id

A

) for every object A,

satisfying coherence conditions similar to (1).

The lax monoidal functors from 2.1 are just lax functors between monoidal

categories, regarded as bicategories with one object.

Type speci�cations. To re�ne the type structure of an interaction category

R, we assign for each type A 2 R a set PA of new \properties", or \predicates"

over it. Putting them all together, we construct a new interaction category R

P

.

No new processes are added: an R

P

-morphism from � 2 PA to � 2 PB will be

just an R-morphism f : A ! B, mapping the elements that satisfy � to those

that satisfy �. Which �s and �s does f connect in this way will be speci�ed by

a relation Pf � PA� PB. Clearly, such relations will usually not satisfy more

than

�fPfg� ^ �fPgg
 =) �fP(f ; g)g
 (5)

� = �

0

=) �fP(id)g�

0

(6)

where �fPfg� abbreviates h�; �i 2 Pf . A type speci�cation thus turns out to

be a lax functor P from an interaction category R to the Pos

?

-category Rel of

sets and relations.

4

Extracting from such a speci�cation P : R ! Rel an interaction category R

P

is not essentially more complicated than extracting R

h

in 2.1, but it has very

general background and deep conceptual roots.

Comprehension for categories. Consider the bicategory Span: its objects are

sets, and a morphism from A to B is a pair of functions A M ! B. A 2-cell

to another such pair A M

0

! B is just a function ' : M !M

0

, commuting

with the pairs. Given a span B N ! C, the composite A (M ;N) ! C

is obtained by calculating a pullback of M ! B and B N . Identities will

clearly be in the form A

id

 A

id

! A. A span A

a

 M

b

! B can also be viewed as

an A�B-matrix of sets, with ha; bi

�1

(i; j) as the (i; j)-th entry. The 2-cells are

obviously just entry-wise families of functions. The described composition then

corresponds the usual matrix multiplication, using the set-theoretical sums and

products.

Now any lax functor P : R ! Span induces the total category

R

R

P, de�ned:

j

Z

R

Pj =

X

X2jRj

PX (7)

Z

R

P (hA;�i; hB; �i) =

X

f2R(A;B)

�fPfg� (8)

where �fPfg� is the (�; �)-th entry of the matrix Pf . The composite of hf; 'i :

hA;�i �! hB; �i and hg; i : hB; �i �! hC;
i in

R

R

P, is

D

(f ; g); �

�

fg

(�; ';)

E

,

where

�

�

fg

:

X

�2PB

�fPfg� � �fPgg
 �! �fP(f ; g)g
 (9)

is the (�;
)-th component of the 2-cell �

fg

. The identity on hA;�i is hid

A

; �

A

(�)i.

While the total category comes with the obvious projection I :

R

R

P �! R,

any functor F : Q �! R (say, between small categories) induces a lax functor

P

F

: R ! Span, with an isomorphism F

0

: Q !

R

R

P

F

satisfying F = (F

0

; I).

The lax functor P

F

sends each A 2 R to the set PA = f� 2 QjF� = Ag, and

each arrow f : A! B to the PA� PB-matrix of sets

�fPfg� = f' 2 Q(�; �)jF' = fg: (10)

The described correspondence extends to the equivalence

Proposition 2.4

2

Cat=R ' [R; Span]

lax

2

Although this correspondence de�nitely seems too basic to be unknown, we remain unable

to �nd any reference to it in the literature or folklore. A considerably more complicated one,

relating Cat=R with the normalised lax functors fromR to categories and profunctors, is often

mentioned, though, and has been known for long [8].

5

between the category of functors to R, with commutative triangles as mor-

phisms, and the category of lax functors R ! Span and the functional lax

transformations. A lax transformation ' : P ! Q : R ! Span is a family of

matrices '

A

: PA!

j

QA with a coherent 2-cell (Pf ;'

B

) �! ('

A

;Qf) for every

f : A! B. It is said to be functional if all components '

A

are functions.

The establisned equivalence extends in various directions. By dropping the

functionality requirement, and varying the notion of lax transformation on the

right-hand side, one gets various interesting classes of morphisms on the left-

hand side: indexed profunctors and anafunctors [18], and a categorical form of

simulations. On the other hand, it restricts to the Conduch�e correspondence

[23], to the Grothendieck construction [15], and so on, until it boils down to the

familiar correspondence Set=R ' [R; Set] of the functions to a set R and the

R-indexed sets | and, �nally, to the comprehension scheme Sub=R

�

=

[R;
],

connecting the subobjects of R with the predicates over it. Indeed, just as the

extension fx 2 Rjp(x)g ,! R can be obtained as a pullback of the truth t : 1!

along the predicate p : R !
, the construct

R

R

P �! R can be obtained as

a pullback along P : R ! Span of the obvious projection t : Span

�

�! Span,

where Span

�

is the total category of the identity on Span.

To restrict to the lax functors P : R ! Rel, note that a relation R ,! A�B

is a jointly monic span A R! B, i.e. a matrix of 0s and 1s. The canonical

functor Span ! Rel is thus obtained by taking monic images of spans, or, in

terms of matrices of sets, by reducing each nonempty entry to 1. The category

[R;Rel]

lax

is thus a re
ective subcategory of [R; Span]

lax

. On the left-hand side

of 2.4 the category Fait=R of faithful functors to R corresponds to it: by (8),

R

R

P �! R will be faithful if and only if each �fPfg� is just 0 or 1.

The interaction category speci�ed by P : R ! Rel will be R

P

=

R

R

P.

2.3 Lifting the structure

In principle, the signature of an Interaction Category combines linear logic with

the delay monads, in an enriched setting. In the present paper, we can only

comment on the very �rst aspect.

The linear structure of R lifts to R

h

in a fairly straightforward way. First

of all, R

h

is ?-autonomous (resp. compact closed) if and only if R is. Namely,

any endofunctor D on R lifts to an endofunctor on D

h

on R

h

: the arrow part

is again the h-image of the obvious family (A �� B) �! (DA �� DB). In this

way, the duality lifts from R to R

h

.

Moreover, any natural transformation between lifted endofunctors lifts too

| along the functor R !R

h

. Monads and comonads thus induce monads and

comonads. Recall that a bang is a monoidal comonad ! : R !R the coalgebras

of which are
-comonoids. This can be expressed by natural transformations

e

A

: !A ! > and d

A

: !A ! !A
 !A, imposintg the required structure [9].

6

A bang thus lifts from R to R

h

. However, the couniversal bang, sending each

object to the corresponding cofree
-comonoid, may loose its property in lifting.

Finally, using just de�nition (2), one easily shows that the (weak) products

and coproducts are preserved and thus created by the functor R !R

h

as soon

as the speci�cation h : R ! Set preserves the (weak) products. However, we

shall see that usually does not. Process speci�cations alone thus yield categories

with few limits and colimits. Adding more types corrects this.

Lifting structures along type speci�cations is less straightforward, although

quite uniform. Looking at the correspondence from proposition 2.4, one sees

that any, say, binary functorial operation �, preserved by

R

R

P �! R, cor-

responds to a functional lax transformation PA � PB

�

�! P(A � B), with

hA;�i � hB; �i = hA � B;� � �i. In order to lift � from R to R

P

, we must

thus specify the corresponding transformations. This is where we depart from

the degeneracies of R.

3 Examples

The idea is to start from a simple model R, and successively re�ne it by speci-

fying

R �! R

h

1

 � (R

h

1

)

P

1

�! ((R

h

1

)

P

1

)

h

2

 � (((R

h

1

)

P

1

)

h

2

)

P

2

�! � � �

The view of processes as relations in time suggests that any category of relations

could be taken as the base R. Namely, the calculus of relations as jointly monic

spans can be developed not just over sets but over more general categories C

[12]. The obtained category Rel(C) is always compact closed, but varying C

allows additional structure on actions.

3.1 Synchrony

The simplest case is of course Rel = Rel(Set). Let the process speci�cation

s : Rel! Set assign to every set A the poset sA of nonempty, pre�x-closed sets

of �nite strings from A. These strings are to be thought of as \the elements

of A extended in time", so that the elements of sA become \the subsets of A

extended in time". Algebraically, they can be presented as one-sided multiplica-

tive systems of the free monoidA

�

, i.e., the complements of the one-sided ideals

of A

�

.

The arrow part of s will map a relation A R ! B to the function sR :

sA! sB, de�ned

sR(S) = ft 2 B

�

j9s 2 S:sR

�

tg; (11)

7

where A

�

 R

�

! B

�

is the componentwise extension of R to strings. The lax

monoidal structure consists of the function �

AB

: sA� sB �! s(A
B), where

�

AB

(S; T) = fu 2 (A
 B)

�

j�

�

A

(u) 2 S ^ �

�

B

(u) 2 Tg; (12)

and � 2 s1 consisting of all �nite strings of � 2 1.

The category sproc = Rel

s

, obtained by the construction from 2.1, is a rudi-

mentary interaction category of synchronous processes, modulo the trace equiv-

alence. Finer notions of behaviour are obtained by taking as the elements of sA

transition systems, or A-labelled trees, rather than just the traces S � A

�

. Def-

initions (11) and (12) readily extend. Working modulo bisimilarity complicates

matters [19, 20], but everything goes through.

The synchronous interaction category SProc [2] is obtained by a further

type speci�cation S : sproc ! Rel. Its object part will actually be the same

as for the above process speci�cation. Its arrow part should take the process

U 2 sproc(A;B) to the relation SA SU ! SB de�ned

SfSUgT () 8u 2 U: �

�

A

(u) 2 S ^ �

�

B

(u) 2 T (13)

If sproc is taken modulo bisimilarity, the process U in this de�nition should be

replaced by the corresponding set of traces.

The category SProc is thus (Rel

s

)

S

. This order of specifying can be changed,

as one can easily see by constructing the pullback of the functors Rel �

sproc �! SProc, obtained from speci�cations. Although it is intuitively simpler

to �rst specify the notion of process, the advantage of �rst specfying the types

is that the biproducts and the cofree comonoids of SProc | neither of which

are present in sproc | can then be traced back to Rel.

3.2 Asynchrony

To capture the asynchrony, one can start from the calculus of relations Rel

�

developed over the category Set

�

of pointed sets, all containing a �xed element

�, which all functions must preserve. � represents the idle action, which allows

processes to wait. Set

�

is the Kleisli category for the monad 1+(�) : Set! Set,

but it is sometimes useful to view it as the category of sets and partial functions.

Rel

�

= Rel(Set

�

) can thus be presented either as the full subcategory of Rel

spanned by the objects in the form 1+A, or as the category of sets and partial

relations. A partial relation A (R * B actually boils down to a triple

hR

A

; R

�

; R

B

i, where R

�

,! A�B is an ordinary binary relation, while R

A

,! A

and R

B

,! B the parts where R is unde�ned. The tensor and the cotensor are

A
B = A+B+A�B, and the embedding 1+(�) : Rel

�

! Rel preserves them.

The weak biproducts A+B are also preserved, and note that Rel

�

does not have

the strong ones, which is re
ected in the asynchronous interaction categories.

To specify as

�

: Rel

�

! Set, identify Rel

�

with its image in Rel and note that

8

� must be the unit of any monoid in Set

�

. Rather than (1+A)

�

, the free monoid

over 1 + A is thus 1 +A

+

, where A

+

consists of all nonempty strings from A.

The object part of as

�

thus takes 1 + A to the set of pre�x-closed subsets

of 1 + A

+

, each containing �. The arrow part is de�ned using the monoid

homomorphism

g

(�) : (1 + A)

�

�! 1 + A

+

, which removes � from all nontrivial

strings, and induces the weak equivalence s � t () es =

e

t. A relation

1 + A R! 1 +B now goes to the function as

�

R : as

�

A �! as

�

B, de�ned

as

�

R(S) = ft 2 1 + B

+

j9s 2 S: s � R

�

� tg: (14)

In words, a string t belongs to as

�

R(S) if there is a string s in S such that

s and t can be �lled up with sequences of � in such a way that they become

componentwise R-related.

By a similar trick, the function �

AB

: as

�

A � as

�

B �! as

�

(A
 B) shu�es

the strings:

�

AB

(S; T) =

n

u 2 ((1 + A)� (1 +B))

+

j

f

�

�

A

(u) 2 S ^

f

�

�

B

(u) 2 T

o

(15)

An element of �

AB

(S; T) is obtained by taking some s 2 S and t 2 T , possibly

of di�erent length, interpolating � in them at will, to get s

0

= �

1

: : : �

n

and

t

0

= �

1

: : : �

n

, and then forming u = h�

1

; �

1

i : : : h�

n

; �

n

i. The unit is � = f�g.

The asynchronous interaction category as

�

proc = Rel

�

as

�
is obtained as be-

fore. A version depicting a �ner notion of behaviou can again obtained using

(1+A)-labelled trees or transition systems, this time modulo weak or branching

bisimilarity. A full
edged asynchronous category AS

�

Proc, with weak biprod-

ucts and a weakly couniversal bang, is obtained by adding more types along a

speci�cation AS

�

: as

�

proc �! Rel, similar to S from section 3.1, but relaxed

modulo �.

The original asynchronous category ASProc [2, sec. 5] is obtained in the

same way, but using relations in place of partial functions, i.e. starting from

Req = Rel(Rel) rather than Rel

�

= Rel(Set

�

). Req is the category of sets and the

partial equivalence relations on A+B as the morphisms from A to B. Namely, a

relation A

j

R!

j

B in Rel boils down to a jointly surjective pair A! R B in

Set

�

. Alternatively, Req can be viewed as the full subcategory of Rel spanned by

the power sets}A. The tensor preservation along the embedding} : Req! Rel

boils down to the exponential laws }(A+ B)

�

=

}A�}B and }0 = 1.

The speci�cation as : Req! Set assigns to each A the set of nonempty pre�x

closed sets of sequences from}

+

A =}A��. The empty set is deleted because

it plays the role of �. The resulting category asproc = Req

as

compares to as

�

proc

just as Req compares to Rel

�

. For instance, bang comonads are precluded by

the fact that any functor ! : Req ! Req with a natural family e

A

: !A! 0 must

be trivial.

The structure of actions can be further enriched using other monads on Set.

E.g., consider the one sending A to 1 + A+ A. (If its unit is chosen to include

9

A in 1 + A + A as the �rst copy, then the multiplication should send the �rst

two As from 1+ (1+A+A) + (1+A+A) to 1+A+A in order, and twist the

last two of them.) Besides the idling �, this monad captures the input/output

distinction | between the elements of the two copies of A. The Kleisli category

Set

�

for this monad can now be viewed as the category of sets, with pairs

hf; F i as morphisms from A to B, where f is a partial function A * B and

F is a subset of A. The composite of hf; F i : A ! B and hg;Gi : B ! C

consists of the usual composite of partial function (f ; g), accompanied with the

set

�

F \ '

�1

(G)

�

[

�

F \ '

�1

(G)

�

, where F;G denote the complements. The

free monoid A

�

over A in Set

�

will be the quotient of 1 + (A + A)

+

satisfying

�� = � for all � 2 A, with (�) : A+ A �! A +A denoting the twist map. All

monoids in Set

�

are thus groups | which means that any computation can be

\consumed" and \internalized" as �. One is thus led to consider the in�x closed

sets S � A

�

, i.e. such that

�s� 2 S =) s 2 S (16)

for any � 2 A. They correspond to normal subgroups of A

�

roughly like the

pre�x closed sets correspond to the ideals of A

�

, the underlying idea being that,

in reversible time, computations develop in two directions.

The speci�cation as

�

: Rel

�

! Set, where Rel

�

= Rel(Set

�

), will now assign

to each A the set of the in�x closed subsets of A

�

. The arrow part can be

formally de�ned just as for as

�

| but the kernel of

g

(�) : (1 + A + A)

�

�! A

�

will be much larger and instead of sequences of �, we shall be interpolating more

general strings of the input and output actions, that reduce to �.

For �ner notions of behaviour, instead of in�x closed sets, one could use tran-

sition systems without a distinguished initial state, or labelled acyclic graphs,

modulo the corresponding notion of bisimilarity.. .

3.3 Coherence

Each of categories constructed so far can be re�ned by �rst extending Rel, say,

by the notion of coherence. It can be introduced by lax functor C : Rel ! Rel,

assigning to each set A the set of all symmetric, irre
exive binary relations on

it. A relation A R! B now induces CA CR! CB, de�ned

�fCRg	 () 8��

0

2 A��

0

2 B: (�R� ^ �

0

R�

0

)) (���

0

) �	�

0

):(17)

The total category Rel

C

will be the familiar category Coh of coherence spaces

[14]. By imposing on each set of traces S � A

�

(or on labelled trees, or transition

systems) the coherence requirement

s�; s�

0

2 S =) ���

0

(18)

for all � 6= �

0

2 A, all previously described speci�cations lift to Coh, and yield

interaction categories with a grain of true concurrency. It is interesting to notice

10

that already the synchronous ones can be speci�ed in many di�erent, meaningful

ways.

Coh

��
$$

I

I

I

I

I

I

I

I

I

SCProc

��
%%

K

K

K

K

K

K

K

K

K

Rel

$$

I

I

I

I

I

I

I

I

I

scproc

��

SProc

yys

s

s

s

s

s

s

s

s

sproc

(19)

3.4 Games

Categories of games are specifed starting from signed sets Set

�

. A signed set A

is a pair hA

�

; A

+

i, of ordinary sets; a signed function f : A! B is an ordinary

partial function f : A

+

+ B

�

* B

+

+ A

�

. To compose it with g : B ! C, i.e.

g : B

+

+ C

�

* C

+

+ B

�

, follow the images of each x 2 A

+

along the tower

A

+

f

* B

+

g

* B

�

f

* B

+

g

* � � �. If an image ever leaves B and lands in A

�

or

in C

+

, it will be the value of (f ; g) at x. Otherwise, (f ; g) remains unde�ned

at x. To de�ne (f ; g) on C

�

, follow the tower C

�

g

* B

�

f

* B

+

g

* B

�

� � �. The

identity on A = hA

�

; A

+

i is obviously the identity on A

+

+A

�

. The obtained

category is compact closed, with the structure

A
B = hA

�

+B

�

; A

+

+ B

+

i; (20)

A

?

= hA

+

; A

�

i: (21)

In fact, the free compact closed categories are e�ectively described in terms of

Set

�

[17, sec. 3] | in fact, by a type speci�cation over it. A further, somewhat

more complicated re�nement yields the free ?-autonomous categories.

A basic category of games is obtained by a type speci�cation G : Set

�

! Rel,

sending each A to the set of all nonempty pre�x closed subsets of (A

�

�A

+

)

�

.

The functions GA�GB

�! G(A
B) and GA�GB

��

�! G(A

?

B) shu�e these

sets, the latter in the subtle way described in [3]. A signed function f : A! B

then induces GA Gf ! GB, relating 	 and � if and only if f yields a history

free strategy for � �� 	 [3].

The history sensitive strategies can now be introduced in a process speci-

�cation over the total category Set

G

�

. Furthermore, the winning positions can

be added in a further type speci�cation, or just extending the speci�cation G.

Clearly, G can also be extended to include the equivalence relations on positions,

essential for [4]. The relations Gf will be supplied with the requirement that f

preserves the equivalences on the games being related. The category from [4]

will follow from an additional process speci�cation, identifying the equivalent

strategies.

11

References

[1] S. Abramsky, Speci�cation structures and propositions-as-types for concurrency,

talk at the CONFER meeting in Paris, April 1995

[2] S. Abramski et al., Interaction categories and the foundations of the typed con-

current programming, to appear in the proceedings of BANFF

[3] S. Abramsky and R. Jagadeesan, Games and full completeness for multiplicative

linear logic, J. Symbolic Logic

[4] S. Abramsky et al., Full abstraction for PCF, submitted

[5] M. Barr, ?-Autonomous Categories, Lecture Notes in Mathematics 752 (Springer

1979)

[6] M. Barr, ?-Autonomous categories and linear logic, Math. Structures Comput.

Sci. 1/2(1991), 159{178

[7] J. B�enabou, Introduction to bicategories, in: Reports of the Midwest Category

Seminar I, Lecture Notes in Mathematics 47 (Springer, 1967) 1{77

[8] J. B�enabou, 2-dimensional limits and colimits of distributors, abstract of a talk

given in Oberwolfach (1972)

[9] G.M. Bierman, What is a categorical model of intuitionistic linear logic?, in: Pro-

ceedings of Conference on Typed Lambda Calculus and Applications, M. Dezani-

Ciancaglini and G. Plotkin, eds., Lecture Notes in Computer Science 902

(Springer 1995)

[10] V. Danos and L. Regnier, The structure of multiplicatives, Archive form Math.

Logic 28(1989) 181{203

[11] T. Fox, Coalgebras and cartesian categories, Comm. Algebra, 4/7(1976) 665{667

[12] P.J. Freyd and A. Scedrov, Categories, Allegories, North-Holland Mathematical

Library 39 (North-Holland, 1990)

[13] A. Fleury and C. Retor�e, The MIX rule, Unpublished note, 1990

[14] J.-Y. Girard et al., Proofs and Types, Cambridge Tracts in Theoretical Computer

Science 7 (Cambridge Univ. Press 1989)

[15] A. Grothendieck, Cat�egories �br�ees et descente, Expos�e VI, Revêtements Etales

et Groupe Fondamental (SGA1), Lecture Notes in Mathematics 224 (Springer,

1971) 145{194

[16] G.M. Kelly, Basic Concepts of Enriched Category Theory, L.M.S. Lecture Notes

64 (Cambridge Univ. Press 1982)

[17] G.M. Kelly and M.L. Laplaza, Coherence for compact closed categories, J. Pure

Appl. Algebra 19(1980) 193{213

[18] M. Makkai, Avoiding the axiom of choice in general category theory, to appear

in J. Pure Appl. Algebra

[19] D. Pavlovi�c, Categorical logic of concurrency and interaction I. Synchronous pro-

cesses, in: Theory and Formal Methods of Computing 1994, C.L. Henkin et al.,

eds. (World Scienti�c 1995), 105{141

[20] D. Pavlovi�c, Convenient categories of processes and simulations I: modulo strong

bisimilarity, Category Theory and Computer Science '95, D.H. Pitt et al., eds.,

Lect. Notes in Comp. Science 953 (Springer, 1995), 3{24

12

[21] D. Pavlovi�c, Maps I: relative to a factorisation system, J. Pure Appl. Algebra

99(1995), 9{34; Maps II: Chasing diagrams in categorical proof theory, J. of the

IGPL 3/7(1995), 1{36

[22] R.A.G. Seely, Linear logic, ?-autonomous categories and cofree coalgebras, in:

J. Gray and A. Scedrov (eds.), Categories in Computer Science and Logic, Con-

temp. Math. 92 (Amer. Math. Soc., 1989), 371{382

[23] R. Street, Conduch�e functors, a hand written note, dated 15 October 1986, 4 pp.

13

