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Abstract

A theory of symbolic bisimulation for the �-calculus is proposed which captures

the conventional notions of bisimulation-based equivalences for this calculus. Proof

systems are presented for both late and early equivalences, and their soundness and

completeness are proved. The proof system for early equivalence di�ers from that

for late equivalence only in the inference rule for input pre�xing. For the version of

�-calculus extended with the mismatch construction, complete proof systems can

be obtained by adding a rule for mismatch to the proof systems for the �-calculus

proper.

1 Introduction

The �-calculus [MPW92] is a special instance of general message-passing process calculi.

It is special in that the messages allowed to be passed between processes are port names.

On one hand this gives the calculus the power to describe mobile processes where the

communication topology may change dynamically, which is beyond the conventional

message-passing process algebras such as value-passing CCS. On the other hand, it o�ers

the opportunity to develop a simpler mathmetical theory for the calculus than general

message-passing calculi, because the message domain is now just a plain set of names

upon which tests for equalities or inequalities are the only allowed operations.

The aim of this paper is to provide a symbolic semantic theory as well as sound and

complete proof systems for the �-calculus. In the original �-calculus paper [MPW92]

bisimulation congruence � is de�ned in two steps: �rst, ground bisimulation

�

� is de�ned

analogously to strong bisimulation in CCS [Mil89]. t � u is then de�ned by t�

�

� u�

for every substitution �. [MPW92] only gave an axiomatisation for the late version of

ground bisimulation. Subsequently, e�orts have been made to formulate complete proof

systems for other equivalences for the calculus: [PS93] and [BD94] for both early and

�
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late bisimulation congruences, [Hen91] and [BD92] for testing equivalence. But all of

these axiomatisations are not for the �-calculus as proposed in [MPW92, Mil91]; they

all require an extension to the calculus: the mismatch construction. The only exception

is [San93] but the equivalence relation considered there is open bisimulation which is

strictly �ner than late (and hence early) bisimulation.

In this paper we shall �rst present proof systems for both late and early bisimulations

for the �-calculus proper, without mismatch; we then include the mismatch construction

into the language and extend our proof systems accordingly with a single inference rule for

it. These proof systems are specialisations of those for general message-passing process

calculi [HL93]. They consist of a set of inference rules together with some standard

equations. The judgements are of the form

C � t = u

where t; u are terms in the language and C, called a condition, is a set of equality or

inequality tests between names. It is important to note that C is not a construction in

the �-calculus; it is a construction used in our meta language in order to reason about

bisimulation equivalences for the calculus. To give a taste of the proof system, here is

the inference rule for match:

MATCH

C [ fx = yg � t = u C [ fx 6= yg � 0 = u

C � [x = y]t = u

It involves a case analysis: if we can establish t = u under the condition x = y, and

0 = u under the condition x 6= y, then we can conclude [x = y]t = u. Here it can be

seen clearly how the inequalities in the condition help us to characterise constructions

in the calculus.

The proofs of the completeness results for these inference systems rely on the notion

of symbolic bisimulations [HL92, HL93]. In [MPW92] a general notion of bisimulation,

�

D

, called distinction indexed bisimulation, is introduced, where the index D is a set of

inequations on names such that t �

D

u i� t�

�

� u� for every substitution � that satis�es

D. It is easy to see that � and

�

� are two extreme cases of �

D

: t � u i� t �

;

u while

t

�

� u i� t �

D(fn(t;u))

u where D(fn(t; u)) = fx 6= y j x; y 2 fn(t; u) g and fn(t; u)

is the set of free names in t and u. Symbolic bisimulation is a mild generalisation of

distinction indexed bisimulation, it is indexed by conditions consisting of name inequa-

tions as well as name equations. This generalisation makes it possible to give a direct

de�nition of symbolic bisimulation (in terms of symbolic transitional semantics) instead

of as substitution closure on top of ground bisimulation, which is itself of interest.

The de�nition of symbolic bisimulation for general message-passing calculi in [HL92,

HL93] involves the phrase \... there exists a partition ...". This is because the languages

of message and boolean are taken as parameters to the process language considered

there. In the case of the �-calculus, however, the language for the message domain is

known: it is simply a plain set of port names. To specialise the theory of symbolic

bisimulation for general message-passing calculi to the �-calculus, we �rst develop a

simple theory of conditions which are sets of equalities and inequalities over names. A

maximally consistent condition is a complete, or saturated, condition, in the sense that

adding to it anything not implied by it will result in inconsistency. Given a condition the

set of its maximally consistent extensions on a �nite set of names constitutes a boolean
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partition of the condition. Because of this we can use maximally consistent extensions

instead of the phrase \... there exists a partition ..." in the de�nition of symbolic

bisimulation. Another important property of maximal consistency is that it characterises

substitutions upto an injective substitution. That is, two substitutions satisfying the

same maximally consistent condition di�er only by an injective substitution. As ground

bisimulation in the �-calculus is preserved by injective substitutions, the �nite set of

maximally consistent conditions on fn(t; u) captures all the substitutions needed to

close up t

�

� u in order to get t � u.

The rest of the paper is organised as follows: The calculus and its semantics are

introduced in the next section. The inference system is presented in Section 3, along

with the completeness proof. Section 4 discusses extensions to the calculus. Section 5

demonstrates how the theory developed for the late equivalence in the previous sections

can be carried over to the early case. The paper concluded with Section 6 where the

relation with other work are also discussed.

2 The �-Calculus And Bisimulations

2.1 The Language And Operational Semantics

To give the syntax for the �-calculus we �rst presuppose an countably in�nite set N of

names, ranging over by a; b; x; y; : : :. The language of �-calculus can then be given

by the following BNF grammar

t ::= 0 j �:t j t+ t j [x = y]t j (x)t j t j t j A(y

1

; :::; y

n

)

� ::= � j a(x) j ax

Most of these operators are from CCS [Mil89]: 0 is a process capable of doing no action,

�:t is action pre�xing, + is non-deterministic choice, j is parallel composition, (x)t is

scope restriction. The match construction [x = y]t allows the comparison of two names:

if x and y are the same name then the process will behave like t; otherwise it will have

no action. Each identi�er A has a de�ning equation A(x

1

; :::; x

n

)

def

= t with fn(t) �

fx

1

; :::; x

n

g.

As in CCS � represents communication. An input-pre�xed process a(x):t can receive

a name along the port a then behave like t with the received name in place of x. An

output-pre�xed process ax:t can emit the name x along a and continue like t.

In a(x):t and (x)t x is a bound name with scope t. We use bn(t) and fn(t) for

the set of bound and free names in t, respectively. Bound names induce the notion of

�-equivalence as usual. In the sequel we will not distinguish between �-equivalent terms

and will use � for both syntactical equality and �-equivalence.

Substitutions, ranged over by � and �, are mappings from N to N . [y=x] is the

substitution sending x to y and is identity otherwise. Substitutions are post�x operators,

and have higher precedence than the operators in the language. If � = [y=x] then

n(�) = fyg [ fxg. So for any x 62 n(�); y� = x i� y = x. Substitutions on actions are

de�ned as usual.

The operational semantics of the language is reported in Figure 1, where a transition

is of the form t

�

�! u with � ranging over four kinds of actions: �; a(x); ax and a(x).
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pre

�:t

�

�! t

match

t

�

�! t

0

[x = x]t

�

�! t

0

sum

t

�

�! t

0

t+ u

�

�! t

0

par

t

�

�! t

0

t j u

�

�! t

0

j u

bn(�) \ fn(u) = ;

res

t

�

�! t

0

(x)t

�

�! (x)t

0

x 62 n(�) com

t

a(x)

�! t

0

u

ay

�! u

0

t j u

�

�! t

0

[y=x] j u

0

open

t

ax

�! t

0

(x)t

a(x)

�! t

0

a 6= x close

t

a(x)

�! t

0

u

a(x)

�! u

0

t j u

�

�! (x)(t

0

j u

0

)

id

t[y

1

; :::; y

n

=x

1

; :::; x

n

]

�

�! t

0

A(y

1

; :::; y

n

)

�

�! t

0

A(x

1

; :::; x

n

)

def

= t

Figure 1: �-Calculus Transitional Semantics

We have omitted the symmetric rules for sum and par. Transitions are de�ned upto

�-equivalence, i.e. �-equivalent terms are deemed to have the same transitions. Bound

names for actions are de�ned by: bn(a(x)) = bn(a(x)) = fxg and bn(� ) = bn(ax) = ;.

For the bulk of this paper we will concentrate on late bisimulation, and we will sketch

in a later section how these results can be carried over to early bisimulation in a system-

atic manner. So until Section 5, the word \bisimulation" means \late bisimulation".

De�nition 2.1 A symmetric relation R is a ground bisimulation if (p; q) 2 R implies:

� whenever p

a(x)

�! p

0

with x 62 fn(p; q) then q

a(x)

�! q

0

for some q

0

and for any y

(p

0

[y=x]; q

0

[y=x]) 2 R.

� whenever p

�

�! p

0

for any other action � with bn(�) \ fn(p; q) = ; then q

�

�! q

0

for some q

0

and (p

0

; q

0

) 2 R.

Write p

�

� q if there exists a ground bisimulation R s.t. (p; q) 2 R.

t is bisimular to u, written t � u, if t�

�

� u� for any substitution �. 2

Ground bisimulation is preserved by injective substitutions [MPW92]:

Lemma 2.2 if t

�

� u and � is injective on fn(t; u) then t�

�

� u�

The transitions de�ned in Figure 1 are concrete in the sense that they will always be

�red regardless the context in which terms are placed. In our work on general message-

passing processes [HL92, HL93] we use a more abstract form of transitions which we

called symbolic transitions. A symbolic transition takes the form t

b;�

�! u, where b is a

boolean condition. Intuitively b represents the environments under which action � can

actually be �red from t. In the setting of the �-calculus b will be a set of matches, i.e.
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Pre

�:t

true;�

�! t

Match

t

M;�

�! t

0

[x = y]t

ML;�

�! t

0

L =

n

x = y if x 6= y

; otherwise

Sum

t

M;�

�! t

0

t+ u

M;�

�! t

0

Par

t

M;�

�! t

0

t j u

M;�

�! t

0

j u

bn(�) \ fn(u) = ;

Res

t

M;�

�! t

0

(x)t

M;�

�! (x)t

0

x 62 n(M ; �) Com

t

M;a(x)

�! t

0

u

N;by

�! u

0

t j u

MNL;�

�! t

0

[y=x] j u

0

L =

n

a = b if a 6= b

; otherwise

Open

t

M;ax

�! t

0

(x)t

M;a(x)

�! t

0

x 62 n(M ; a) Id

t[y

1

; :::; y

n

=x

1

; :::; x

n

]

M;�

�! t

0

A(y

1

; :::; y

n

)

M;�

�! t

0

A(x

1

; :::; x

n

)

def

= t

Close

t

M;a(x)

�! t

0

u

N;b(x)

�! u

0

t j u

MNL;�

�! (x)(t

0

j u

0

)

L =

n

a = b if a 6= b

; otherwise

Figure 2: �-Calculus Symbolic Transitional Semantics

equality tests on names. This kind of transition has also been used in the work of open

bisimulation by Sangiorgi [San93].

The symbolic transitional semantics of the �-calculus is given in Figure 2, where

we use M; N; L to range over matches, namely sets of equality tests on names. For

notational convenience we write MN for the union of M and N . Also the symmetric

rules for Sum and Par have been omitted.

Lemma 2.3 If t

M;�

�! u then n(M) � fn(t).

Symbolic bisimulation will be de�ned in terms of symbolic transitional semantics, but

before doing so we need to develop a simple theory of conditions on the name set N .

2.2 Conditions

Conditions, ranged over by C; D, are �nite sets of equality or inequality tests on names.

We will write n(C) for the set of names appearing in C. We say C is a condition on a

name set V if n(C) � V . The empty condition will sometimes be denoted by true.

Note that we have been careful in distinguishing between conditions and matches:

matches consists only of name equations and is used in the symbolic operational seman-

tics, while conditions may contain inequations and will be used in our meta-theory about

the �-calculus, namely in the de�nition of symbolic bisimulations and in the formulation

of inference rules. On the other hand, matches are special conditions, so the notations

developed for conditions in this subsection apply to matches as well.

A substitution � satis�es a condition C, written � j= C, if x� = y� for any x = y 2 C

and x� 6= y� for any x 6= y 2 C. We write C ) D to mean that � j= C implies � j= D

for any substitution �.
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The elements in a condition are treated as conjuncts. We avoid introducing disjunc-

tion into the theory of conditions. The major advantage is that the relation C ) D can

be tested in linear time w.r.t the size of C and D:

Proposition 2.4 The relation C ) D is linear time decidable.

Proof: We �rst generate equivalence classes from the equalities in C, along with a list

of pairs of representatives of the equivalence classes such that the pair of representatives

of x and y is in the list if and only if x 6= y is in C. This process takes time linear to the

size of C. Then for each element e of D if e is an equality a = b we check if a; b is in

the same equivalence class; if e is an inequality a 6= b we check if the pair consisting of

their representatives are in the list. 2

Two substitutions � and �

0

are equal on V , written � =

V

�

0

, if x� = x�

0

for all x 2 V .

Two substitutions � and �

0

are elementarily equivalent on V if for any x; y 2 V � j=

x = y if and only if �

0

j= x = y. Clearly equal substitutions are elementarily equivalent.

On the other hand elementarily equivalent substitutions are not necessary equal, though

they do not di�er much, as the following lemma reveals.

Lemma 2.5 Suppose � and �

0

are substitutions on V . If they are elementarily equivalent

on V , then there exists an injective substitution � such that � =

V

�

0

�.

Proof: Let � be the substitution such that (x�)� = x�

0

and (x�

0

)� = x� for all x 2 V ,

and is identity otherwise. � is well de�ned because � and �

0

are elementarily equivalent

on V . Furthermore it is injective and satis�es � =

V

�

0

�. 2

A condition C is consistent if there are no x; y 2 N such that C ) x = y and

C ) x 6= y. C is maximally consistent on V � N if for any x; y 2 V either C ) x = y

or C ) x 6= y.

C

0

is a maximally consistent extension of C on V , written C

0

2MCE

V

(C), if C � C

0

and C

0

is maximally consistent on V . The set of maximally consistent extensions of a

given condition on a �nite set of names V is �nite. We will abbreviate MCE

V

(true) as

MC

V

.

Given a condition C, de�ne E

V

(C) = fx = y j x; y 2 V; C 6) x = y and C 6)

x 6= y g, and for any I � E

V

(C) de�ne I

�

= fx = y j x; y 2 V; I ) x = y g and

I = fx 6= y j x = y 2 E

V

(C)� I

�

g.

Clearly C is maximally consistent on V if and only if E

V

(C) = ;.

Lemma 2.6 D 2MCE

V

(C) i� D = C [ I [ I for some I � E

V

(C).

Proof: For any I � E

V

(C), by construction C[I[I is a maximally consistent extension

of C on V . On the other hand, let D = C [I[I for some I � E

V

(C). For any x; y 2 V ,

there are only three possibilities:

1. C ) x = y or C ) x 6= y;
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2. x = y 2 I

�

;

3. x 6= y 2 I.

In each case either D) x = y or D) x 6= y. 2

Corollary 2.7

W

MCE

V

(C) = C

Proof:

W

MCE

V

(C) =

W

fC [ I [ I j I � E

V

(C) g

= C ^

W

f I [ I j I � E

V

(C) g

= C ^ true

= C

2

Corollary 2.7 shows that the set of all consistent extensions of a condition (on a given

name set) constitutes a particular partition, or decomposition of the condition.

Proposition 2.8 C is maximally consistent on V if and only if all substitutions satis-

fying C are elementarily equivalent on V .

Proof: The \only if" part is trivial. For the \if" part, suppose C is not maximally

consistent on V . Then there exist x; y 2 V such that neither C ) x = y nor C ) x 6= y.

So there exists a substitution � such that � j= C and � j= x 6= y. Let �

0

be the

substitution which is the same as � except that it sends x to y�. Then we still have

�

0

j= C. But �

0

is not elementarily equivalent to � on V because �

0

j= x = y. A

contradiction. 2

Corollary 2.9 Suppose C is maximally consistent on V . If � and �

0

both satisfy C,

then � =

V

�

0

� for some injective substitution �.

In other words, all substitutions satisfying a maximally consistent condition on a given

name set are isomorphic on that name set. This shows the importance of the notion of

maximal consistence: it captures substitutions upto isomorphism. Recalling Lemma 2.2

that isomorphic substitutions make no di�erence as far as bisimulation is concerned, the

set of maximally consistent conditions on fn(t; u) characterises all possible substitutions

that may a�ect the bisimilarity between t and u. Although t � u is de�ned as the closure

of t

�

� u over all substitutions, only �nite number of substitutions need to be checked,

one for each maximally consistent condition on fn(t; u).

2.3 Symbolic Bisimulations

Now we are ready to give the de�nition of symbolic bisimulation.

We write � =

C

� to mean

if � � � then � � �

if � � ax then � � by and C ) a = b; C ) x = y

if � � a(x) then � � b(x) and C ) a = b

if � � a(x) then � � b(x) and C ) a = b

7



De�nition 2.10 A condition indexed family of symmetric relations S = fS

C

g is a late

symbolic bisimulation if (t; u) 2 S

C

implies

whenever t

M;�

�! t

0

with bn(�) \ fn(t; u; C) = ;, then for each C

0

2

MCE

fn(t;u)

(C [M) there is a u

N;�

�! u

0

such that C

0

) N; � =

C

0

�, and

(t

0

; u

0

) 2 S

C

00

, where

C

00

=

(

C

0

[ fx 6= y j y 2 fn(�:t

0

; �:u

0

) g if � � a(x)

C

0

otherwise

Let �

L

be the (point-wisely) largest late symbolic bisimulation. 2

Note that, in the clause for bound output, inequalities has been added to the indexing

condition to keep the restricted name di�erent from any other known names.

Symbolic bisimulation is a generalisation of distinction indexed bisimulation, �

D

,

as proposed in [MPW92], the main di�erence being that distinctions contain only in-

equalities, while in symbolic bisimulation we allow equalities as well as inequalities to

appear in the indexing conditions. The notion of symbolic bisimulation was proposed

in [HL92, HL93] as an e�cient characterisation of conventional notion of bisimulation

which, in the setting of message-passing process calculi, is inherently in�nite. The cur-

rent de�nition is a specialisation of this general notion to the �-calculus. In doing so

we have taken advantage of the particular features presented in the �-calculus: In the

above de�nition, instead of using the phrase \... there exists a partition ..." as in

[HL92, HL93], we use the set of maximally consistent extensions which, as shown in

Corollary 2.7, constitute a particular partition. It is much easier to work with maxi-

mally consistent extensions than an arbitrary partition, as we will see later in the proofs

of the completeness results.

Proposition 2.11 �

L

is an indexed family of equivalence relations.

The following proposition reveals the relationship between symbolic bisimulation and

the conventional notions of bisimulation equivalence for the �-calculus. where

�

�; �, and

�

D

are strong ground bisimulation, strong bisimulation and distinction indexed bisim-

ulation, respectively, as de�ned in [MPW92]. The proof of the proposition requires a

technical lemma relating concrete and symbolic transitions:

Lemma 2.12 1. If t�

�

�! p where bn(�) \ (fn(t) [ n(�)) = ;, then there exist

M; �; t

0

s.t. � j= M; � = ��; p � t

0

� and t

M;�

�! t

0

.

2. If t

M;�

�! t

0

then for any � j=M with bn(�) \ (fn(t) [ n(�)) = ;, t�

��

�! p � t

0

�.

Proposition 2.13 1. t �

C

L

u i� t�

�

� u� for any � j= C.

2. t �

D(fn(t;u))

L

u i� t �

D(fn(t;u))

u, where D(V ) =

def

fx 6= y j x; y 2 V and x 6� y g.

3. t �

true

L

u i� t � u.

8



Proof: 2 and 3 are direct consequences of 1. The \only if" part of 1 can be established

by de�ning

R = f (t�; u�) j t �

C

L

u for some C 2MC

fn(t;u)

and � j= C g

and showing that R is a ground bisimulation. Here we will concentrate on the \if" part.

De�ne

S

C

= f (t; u) j n(C) � fn(t; u); C 2MC

fn(t;u)

; t�

�

� u� for any � j= C g

and S = fS

C

g. We show S is a symbolic bisimulation.

Let (t; u) 2 S

C

and t

M;�

�! t

0

with bn(�)\ fn(t; u) = ;. Let C

0

2MCE

fn(t;u)

(C [M).

Take a � such that bn(�)\n(�) = ; and � j= C

0

. Then � j= C; � j= M . By Lemma 2.12

t�

��

�! p � t

0

�. Since t�

�

� u�, u� must have a matching transition. There are four

cases to consider, according to four di�erent types of actions. The most interesting case

is when � is a bound output, i.e. � � a(x).

In this case u�

a�(x)

�! q

�

� p. By Lemma 2.12 there exist N; b; u

0

s.t. � j= N; a� =

b�; q � u

0

� and u

N;b(x)

�! u

0

. From C

0

2MC

fn(t;u)

, � j= C

0

and a� = b� it follows a(x) =

C

0

b(x). We need to show (t

0

; u

0

) 2 S

C

00

where C

00

= C

0

[ fx 6= y j y 2 fn(a(x):t

0

; b(x):u

0

) g.

From x 62 n(�) and x 62 fn(t; u), � j= x 6= y for any y 2 fn(a(x):t

0

; b(x):u

0

) �

fn(t; u). Hence � j= C

00

. Since fn(t

0

; u

0

) � fn(t; u) [ fxg and C

0

2 MC

fn(t;u)

, C

00

2

MC

fn(t

0

;u

0

)

. We have t

0

� � p

�

� q � u

0

�, so by Corollary 2.9 and Lemma 2.2 t

0

�

0

�

� u

0

�

0

for any �

0

j= C

00

. Therefore (t

0

; u

0

) 2 S

C

00

by the de�nition of S. 2

3 The Inference System

This section is devoted to formulating a proof system for late symbolic bisimulation and

proving its soundness and completeness. It is well-known that such a proof system does

not exist for the full calculus, so we shall restrict ourselves to the �nite fragment, i.t.

leave out recursive de�nitions.

To give a proof system for �nite �-calculus, we �rst concentrate on a sublanguage

without the parallel composition operator j. In the next section we will see that this

operator can be axiomatised easily.

The inference system for late symbolic bisimulation consists of a set of inference

rules in Figure 3 (we have omitted the obvious rules for equivalence relations), together

with the standard equations for choice (S1 { S4) and restriction (R1 { R5) in Figure 4.

It inherits many features from the proof systems for general message-passing processes

presented in [HL93]. The judgements are of the form

C � t = u

where C is a condition. An important di�erence is that the inference system of [HL93]

relies on some \oracle" to answer questions concerning data, while in the current setting

we have a decidable theory for the value domain which is simply the set of port names.

Therefore in the current inference system questions about names are treated as side

conditions to the inference rules.

9



AXIOM

true � t = u

t = u is an axiom instance

CHOICE

C � t

i

= u

i

C � t

1

+ t

2

= u

1

+ u

2

L-INPUT

C � t = u

C � a(x):t = b(x):u

C ) a = b; x 62 fn(C)

OUTPUT

C � t = u

C � ax:t = by:u

C ) a = b; C ) x = y

TAU

C � t = u

C � �:t = �:u

MATCH

C [ fx = yg � t = u C [ fx 6= yg � 0 = u

C � [x = y]t = u

RES

C [ fx 6= y j y 2 fn((x)t; (x)u) g � t = u

C � (x)t = (x)u

x 62 n(C)

PARTITION

C [ fx = yg � t = u C [ fx 6= yg � t = u

C � t = u

CONSEQ

C � t = u

C

0

� t = u

C

0

) C

ABSURD

false � t = u

Figure 3: The Inference Rules for Late Symbolic Bisimulation

As we are working modulo �-equivalence, we also assume the following rule

ALPHA

true � t = u

t and u are � � equivalent

We write ` C � t = u to mean C � t = u can be derived from this inference system.

Proposition 3.1 1. If C )M and ` C � t = u then ` C �Mt = u.

2. If C [M ) false then ` C �Mt = 0.

Proof: It is su�cient to consider the case when M is x = y. Both can be proved by

using MATCH, CONSEQ and ABSURD. 2

10



S1 X + 0 = X R1 (x)0 = 0

S2 X +X = X R2 (x)�:X = �:(x)X if x 62 n(�)

S3 X + Y = Y +X R3 (x)�:X = 0 if x is the port of �

S4 (X + Y ) + Z = X + (Y + Z) R4 (x)(y)X = (y)(x)X

R5 (x)(X + Y ) = (x)X + (x)Y

Figure 4: The Axioms for Choice And Restriction

The rule PARTITION permits a case analysis on the name space represented by

a condition: To see if t = u holds over C, we can decompose C into C [ fx = yg

and C [ fx 6= yg, and exam each separately. In fact, this rule can be generalised to

allow arbitrary decompositions. The following proposition gives the case for a particu-

lar decomposition, i.e. the decomposition of a condition into its maximally consistent

extensions (Corollary 2.7):

Proposition 3.2 If ` D � t = u for each D 2 MCE

V

(C) then ` C � t = u.

Proof: Suppose ` D � t = u for each D 2 MCE

V

(C). By Lemma 2.6

D 2 MCE

V

(C) i� D = C [ I [ I for some I � E

V

(C). Apply induction on the

cardinality of E

V

(C).

If E

V

(C) is empty then C is the only maximally consistent extension of itself, and

the result is trivial.

Otherwise assume E

V

(C) has n+ 1 elements and let x = y 2 E

V

(C). We have

MCE

V

(C) = MCE

V

(C [ fx = yg) [MCE

V

(C [ fx 6= yg)

and

E

V

(C [ fx = yg) � E

V

(C)� fx = yg

E

V

(C [ fx 6= yg) � E

V

(C)� fx = yg

So by induction ` C [ fx = yg � t = u; ` C [ fx 6= yg � t = u. By PARTITION

` C � t = u. 2

The following proposition summarises the interaction between the restriction and

match operators.

Proposition 3.3 1. ` (x)[x = x]t = (x)t.

2. ` (x)[x = y]t = 0.

3. ` (x)[y = z]t = [y = z](x)t.

Proof: Easy applications of RES and MATCH. 2 also uses R1. 2

The soundness of the inference system is not di�cult to see:

11



Theorem 3.4 (Soundness of `) If ` C � t = u then t �

C

L

u.

The rest of this section is devoted to the proof of completeness result for `.

The height of a term t is de�ned inductively thus

� j 0 j = 0

� j t+ u j = maxfj t j; j u jg

� j [x = y]t j = j t j

� j (x)t j = j t j

� j �:t j = 1 + j t j

If a 6= x then we abbreviate (x)ax:t as a(x):t. a(x) is a derived action and is called

bound output.

Proposition 3.5 Suppose C ) a = b; x 62 n(C). If ` C [ fx 6= y j y 2

fn(a(x):t; b(x):u) g � t = u then ` C � a(x):t = b(x):u.

Proof: Since ` C [ fx 6= y j y 2 fn(a(x):t; b(x):u) g � t = u and C ) a = b, by

OUTPUT we get ` C [ fx 6= y j y 2 fn(a(x):t; b(x):u) g � ax:t = bx:u. From this and

x 62 n(C) an application of RES gives the required ` C � a(x):t = b(x):u. 2

A term is restriction-free if, using the above abbreviation, it does not explicitly con-

tain any occurrences of the restriction operator.

Lemma 3.6 For any term t there is a restriction-free term t

0

such that ` t = t

0

and

j t

0

j � j t j.

Proof: Using Axioms R1 { R5 and Proposition 3.3, we can push each restriction

inwards, until it either disappears or gives rise to a bound output. 2

A restriction-free term is a standard form if it has the form

P

i

M

i

�

i

:t

i

and each t

i

is

a standard form.

Lemma 3.7 For any term t there is a standard term t

0

such that ` t = t

0

and j t

0

j � j t j.

Proof: By Lemma 3.6 we may assume t is restriction-free. The proof is by induction

on the structure of t. 2

Theorem 3.8 (Completeness of `) If t �

C

L

u then ` C � t = u.

12



Proof: By Lemma 3.7 we may assume t; u are standard forms: t �

P

i

M

i

�

i

:t

i

,

u �

P

j

N

j

�

j

:u

j

. We may further assume that bound actions in �

i

; �

j

use the same

bound name z 62 fn(t; u; C). The proof is by induction on the joint height of t and u.

By Proposition 3.2 we need only to show ` D � t = u for each D 2 MCE

fn(t;u;C)

(C),

and for this it is su�cient to show ` D � t = t+N

j

�

j

:u

j

for each j.

If D 6) N

j

then, since D is maximally consistent, D [ N

j

) false. So by Proposi-

tion 3.1 ` D � N

j

�

j

:u

j

= 0. Hence ` D � t = t+N

j

�

j

:u

j

by S1.

Now assume D ) N

j

(then D 2 MCE

fn(t;u)

(C [ N

j

)), and consider four cases

according to the type of �

j

.

1. �

j

� � . Then u

N

j

;�

�! u

j

. Since t �

C

L

u and D 2 MCE

fn(t;u)

(C [ N

j

), t

M

i

;�

�! t

i

for some i s.t. D ) M

i

and t

i

�

D

L

u

j

. By induction ` D � t

i

= u

j

. By TAU

` D � �:t

i

= �:u

j

. By Proposition 3.1, ` D � M

i

�:t

i

= N

j

�:u

j

. Finally by S2

` D � t = t+N

j

�:u

j

.

2. �

j

� ax. Then u

N

j

;ax

�! u

j

, so t

M

i

;by

�! t

i

for some i s.t. D ) M

i

; ax =

D

by and

t

i

�

D

L

u

j

. By induction ` D � t

i

= u

j

. By OUTPUT, ` D � by:t

i

= ax:u

j

. By

Proposition 3.1, ` D �M

i

by:t

i

= N

j

ax:u

j

. Hence ` D � t = t+N

j

ax:u

j

by S2.

3. �

j

� a(z). Then u

N

j

;a(z)

�! u

j

, so t

M

i

;b(z)

�! t

i

for some i s.t. D ) M

i

; D ) a = b

and t

i

�

D

L

u

j

. By induction ` D � t

i

= u

j

. Since z 62 n(D), by L-INPUT, ` D �

b(z):t

i

= a(z):u

j

. By Proposition 3.1 and Axiom S2, ` D � t = t+N

j

a(z):u

j

.

4. �

j

� a(z). Then u

N

j

;a(z)

�! u

j

, so t

M

i

;b(z)

�! t

i

for some i s.t. D ) M

i

; D )

a = b and t

i

�

D[f z 6=yjy2fn(b(z):t

i

;a(z):u

j

)g

L

u

j

. By induction ` D [ f z 6= y j y 2

fn(b(z):t

i

; a(z):u

j

) g � t

i

= u

j

. Now n(D) � fn(t; u; C) and z 62 fn(t; u; C), hence

z 62 n(D), so by Proposition 3.5 ` D � b(z):t

i

= a(z):u

j

. By Proposition 3.1 and

Axiom S2, ` D � t = t+N

j

a(z):u

j

.

This completes the proof. 2

4 Other Operators

4.1 Parallel Composition

To deal with parallel composition all we need is a suitable form of expansion law which

is presented in Figure 5. With this law it is standard that any term containing parallel

operator can be reduced to a term without it, hence the normal form lemma still holds,

as does the completeness theorem.

4.2 Mismatch

Mismatch, i.e. testing inequality between names, is not included in the original �-

calculus. Some later publications, notably [Hen91], [BD92], [PS93] and [BD94], extended
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Let t �

P

i

M

i

�

i

:t

i

and u �

P

j

N

j

�

j

:u

j

with bn(�

i

)\fn(u) = bn(�

j

)\fn(t) = ;. Then

t j u =

X

i

M

i

�

i

:(t

i

j u) +

X

j

N

j

�

j

:(t j u

j

) +

X

�

i

opp �

j

M

i

N

j

[a

i

= b

j

]�:v

ij

where �

i

opp �

j

and v

ij

are de�ned as follows

1. �

i

� a(x); �

j

� by; then v

ij

� t

i

[y=x] j u

j

;

2. The converse of the above clause;

3. �

i

� a(x); �

j

� b(y); then v

ij

� (z)(t

i

[z=x] j u

j

[z=y]) with z 62 fn(t; u);

4. The converse of the above clause.

Figure 5: The Expansion Law

the calculus with mismatch in order to give axiomatisations for testing or bisimulation

equivalences.

To include mismatch into the language we �rst extend the operational semantics by

including the following two rules: \mismatch" and \Mismatch" in Figure 1 and Figure 2,

respectively (now M ranges over conditions)

mismatch

t

�

�! t

0

[x 6= y]t

�

�! t

0

x 6= y Mismatch

t

M;�

�! t

0

[x 6= y]t

M [x6=y];�

�! t

0

The inference rule for mismatch is dual to that for match:

MISMATCH

C [ fx 6= yg � t = u C [ fx = yg � 0 = u

C � [x 6= y]t = u

With this rule Proposition 3.1 can be generalised to allow M to be an arbitrary

condition, not just a match.

Now, in a normal form

P

i

M

i

�

i

:t

i

,M

i

may contain inequality tests as well as equality

tests. This does not a�ect the proofs of the normal form lemma and the completeness

theorem.

5 The Early Case

If we change the clause for input transition in De�nition 2.1 to

whenever p

a(x)

�! p

0

with x 62 fn(p; q) then for any y q

a(x)

�! q

0

for some q

0

and

(p

0

[y=x]; q

0

[y=x]) 2 R.

then we get the early version of ground bisimulation,

�

�

e

. Early bisimulation congruence

�

e

is then de�ned as substitution closure in terms of

�

�

e

, i.e. t �

e

u i� t�

�

�

e

u� for

any �. Similarly for distinction indexed early bisimulation: t �

D

e

u i� t�

�

�

e

u� for any

� j= D.

14



Early symbolic bisimulation is obtained by separating the clause for input transition

from other cases in De�nition 2.10:

whenever t

M;a(x)

�!

L

t

0

with x 62 fn(t; u; C), then for each C

0

2

MCE

fn(t;u)[fxg

(C [ M) there is a u

N;b(x)

�!

L

u

0

such that C

0

) N; C

0

j= a = b,

and (t

0

; u

0

) 2 S

C

0

Let �

E

be the largest early symbolic bisimulation.

So the only di�erence between early and late bisimulations is that the early version

allows to partition the name space over the input name, while in the late version this is

prohibited.

With these de�nitions the early version of Proposition 2.13 still holds.

The proof system for early bisimulation can be obtained by replacing the L-INPUT

rule in Figure 3 with the following one

E-INPUT

C �

P

i2I

�:t

i

=

P

j2J

�:u

j

C �

P

i2I

a

i

(x):t =

P

j2J

b

j

(x):u

C ) a

i

= b

j

; i 2 I; j 2 J

x 62 fn(C)

Let us write `

E

C � t = u to mean C � t = u can be derived from the new proof

system.

The E-INPUT rule has a generalised form:

Proposition 5.1 Suppose x 62 fn(C); C ) a

i

= b

j

; i 2 I; j 2 J . Then from

`

E

C �

X

i2I

M

i

�:t

i

=

X

j2J

N

j

�:u

j

infer

`

E

C �

X

i2I

M

i

a

i

(x):t =

X

j2J

N

j

b

j

(x):u

Proof: By Proposition 3.2, we only need to show `

E

D �

P

i2I

M

i

a

i

(x):t =

P

j2J

N

j

b

j

(x):u for each D 2 MCE

V

(C) where V is the set of free names appearing

in the conclusion. Since D is maximally consistent on V , for each i either C ) M

i

or

C [M

i

= false. Hence by Proposition 3.1

`

E

D �

X

i2I

M

i

�:t

i

=

X

i2I

0

M

i

�:t

i

`

E

D �

X

i2I

M

i

a

i

(x):t

i

=

X

i2I

0

M

i

a

i

(x):t

i

where I

0

= f i 2 I j D)M

i

g. Similarly,

`

E

D �

X

j2J

N

j

�:u

j

=

X

j2J

0

N

j

�:u

j

`

E

D �

X

j2J

N

j

b

j

(x):u

j

=

X

j2J

0

N

j

b

j

(x):u

j

15



where J

0

= f j 2 J j D ) N

j

g. Hence, from the assumption we can derive

`

E

C �

X

i2I

0

M

i

�:t

i

=

X

j2J

0

N

j

�:u

j

By E-INPUT

`

E

C �

X

i2I

0

M

i

a

i

(x):t =

X

j2J

0

N

j

b

j

(x):u

Therefore

`

E

C �

X

i2I

M

i

a

i

(x):t =

X

j2J

N

j

b

j

(x):u

2

We have the following counterpart of Theorems 3.4 and 3.8:

Theorem 5.2 (Soundness and Completeness of `

E

) t �

C

E

u if and only if `

E

C � t = u.

Proof: The proof of the completeness result is very similar to that of Theorem 3.8.

The only di�erence is concerning the input case. In this case we want to show

`

E

D � t = t+N

j

b(z):u

j

under the assumptions D 2MCE

fn(t;u;C)

(C) and D ) N

j

. Let t

0

�

P

i2I

0
M

i

a

i

(z):t

i

and

t

�

�

P

i2I

0
M

i

�:t

i

, where I

0

= f i 2 I j �

i

� a

i

(z); D ) a

i

= b g. Then it is su�cient to

show

`

E

D � t

0

= t

0

+N

j

b(z):u

j

which, by Proposition 5.1, can be reduced to

`

E

D � t

�

= t

�

+N

j

�:u

j

Now for each D

0

2MCE

fn(t;u;C)[fzg

(D) we can prove

`

E

D

0

� t

�

= t

�

+N

j

�:u

j

in the same way as the � case in the proof of Theorem 3.8. The proof is then completed

by an application of Proposition 3.2. 2

6 Conclusions and Related Works

We have introduced symbolic bisimulation equivalences for the �-calculus which sub-

sume the conventional bisimulation equivalences as proposed in [MPW92]. The main

advantage of such symbolic equivalences is that they can be de�ned (in term of symbolic

transitional semantics) in a single step. Sound and complete proof systems for symbolic

bisimulations have also been presented. A simple theory of conditions on names, which

is linear time decidable, plays an important rôle in formulating the notion of symbolic

bisimulation and associated proof systems.
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As a further research topic we would like to extend the current framework to deal

with weak bisimulation equivalences. Another interesting subject is the development

of a proof tool for the �-calculus, based on syntactical manipulation, similar to VPAM

(Value-passing Process Algebra Manipulator) for general message-passing calculi [Lin93].

Related Work. As mentioned in the introduction the current work inherits the main

ideas from our previous papers on general message-passing process calculi [HL92, HL93].

As the process calculi considered there take the languages for data and boolean ex-

pressions as parameters, the completeness results in those papers are relative to data

reasoning. Here, by exploiting the fact that in the �-calculus the message domain is

the plain set of port names, we have developed a decidable theory of conditions. As a

consequence, in the current proof systems there is no need to refer to an \oracle" for

the data domain and the completeness results are no longer relative to reasoning about

data.

In [PS93] Parrow and Sangiorgi present complete equational theories for name-passing

calculi, i.e. extensions of the �-calculus with the mismatch construction. Mismatch plays

an essential rôle in at least two places: the de�nition of normal form and the axiom for

early equivalence. The equational characterisation of the restriction operator also relies

on mismatch. In this paper mismatch has been kept outside the process language;

conditions involving mismatches are used as indices for symbolic bisimulation and as

guards in the judgements of the proof systems. In fact, a main objective of the current

paper was to achieve complete axiomatisation of the �-calculus proper, with only external

usage of mismatch. The notion of normal forms used in the proofs of the completeness

results in [PS93] is much more complicated than ours: it involves maximally consistent

saturation of boolean conditions inside terms. In our case such saturation is done at

the meta-level, so that the complexity of the completeness proofs have been reduced

considerably. It is also interesting to note that all the axioms in [PS93] can be easily

derived from the corresponding proof systems in this paper.

The work most closely related to the current paper is [BD94] where a symbolic se-

mantics and proof systems very similar to ours have been proposed. Again they work

with the extension of the �-calculus with mismatch instead of the �-calculus proper. In

the de�nition of symbolic bisimulation they use the phrase \there exists a decomposition

of" (as in [HL93]), while the current paper uses the notion of \maximally consistent ex-

tensions" which, as shown in Corollary 2.7, constitutes a particular decomposition. As a

consequence the completeness proof of symbolic bisimulation w.r.t concrete bisimulation

in this paper is much simpler. Comparing the inference systems our PARTITION rule

appears simpler than theirs, again by taking the advantage of particular features in the

�-calculus.

[Liu94] gives a symbolic version of distinction-indexed bisimulation for a sub-language

of the �-calculus (without the match operator) and show that this notion of bisimulation

captures the conventional bisimulation equivalences. But no proof system is considered

there.

In [San93] another notion of bisimulation, called open bisimulation, for the �-calculus

is proposed, along with an equational axiomatisation. A \symbolic characterisation"

of open bisimulation is also given. To deal with the restriction operator, distinctions

have to be exploited as indices in the de�nition of open bisimulation as well as in the

axiomatisation. We think it is natural to include in the indexing sets not only inequalities

17



but also equalities. By such mild generalisation, direct characterisations of both late

and early bisimulation equivalences for the �-calculus become possible and sound and

complete proof systems can be formulated, as demonstrated by our results presented

here. It is also interesting to characterise open bisimulation using our symbolic approach.

Such a characterisation could facilitate the comparisons between open, late and early

bisimulations, as they are expressed within the same framework.
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