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Abstract. A semantic theory of an imperative language which allows value-

passing and assignments as a simple action pre�xing is described. Three di�erent

semantic approaches are given: denotational based on the mathematical model

Acceptance Trees, axiomatic based on inequations and behavioural in terms of

testing. The equivalence of these di�erent approaches is shown. The results are

compared with similar results for other languages such as CSP and Occam.

1. Introduction

In this extended introduction we give a detailed description of the contents of

the paper, compare it with previous work and outline what we perceive to be

the advantages of our approach.

1.1. Languages for Concurrent Systems

In 1978 Hoare published a proposal for a parallel programming language called

CSP, [Hoa 78]. In this language a program consists of a collection of indepen-

dent processes, each with its private memory or store, which could communicate
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with each other using a form of instantaneous exchange of messages called hand-

shake communication. Each individual process in a program may be viewed as

a straightforward imperative program working on its own memory, with assign-

ment statements, boolean tests, iteration, etc.

Subsequently, although some work was done on the semantics of this lan-

guage, [FLP 84], most of the research e�ort was devoted to semantic theories

of more abstract versions, such as theoretical CSP, TCSP, [BHR 84], [Plo 82]

andCCS, [Mil 89]. These languages, often refered to as process algebras, di�er

signi�cantly from the original CSP. For example TCSP may be viewed as an

applicative language. There is no store nor assignment statement and no values

may be transmitted between processes; they only communicate by synchronising

on signals. Nevertheless this area of research has been very fruitful. Semantic

models have been developed and are well understood and well-behaved syntactic

constructs have been isolated.

The programming language Occam may be seen as a direct descendant of the

original programming language CSP. It contains most of its basic features. For

example, it is imperative, with each process having its own private memory. But

communication is now via channels although the basic communication principle

is the same. However, there are many restrictions on the syntactic form of con-

structs in the language. Some of these were imposed in order to obtain e�cient

implementations, others because of conceptual di�culties. In this paper we would

like to suggest that, at least from a theoretical point of view, these restrictions

are unnecessary. We show that it is possible to de�ne clean extensions to Occam,

i.e. imperative parallel programming languages, based on private memories for

processes and handshake communication, which have fully-abstract denotational

models and associated complete proof systems. The key to our approach is to

take advantage of the existing work on the more abstract process algebras, in

particular by importing into the world of imperative programs the syntactic con-

structs which have proven to be mathematically well-behaved in the applicative

world of process algebras. For example, we will have an external choice mech-

anism similar to the existing ALT construct of Occam but in addition we will

have an internal choice mechanism, which has proven to be of great use in more

theoretical developments. This phenomenon already appears in Occam : in

ALT

SKIP ! P

SKIP ! Q

an internal nondeterministic choice is made between P and Q. So we only em-

phasise its importance by making it a basic element of the syntax. We will also

abolish all restrictions on the use of channels in the parallel construct, PAR, and

will also allow arbitrary processes to be used in the ALT construct. In one signif-

icant aspect we will be less general than Occam. We will not use the sequential

composition construct SEQ. Instead we will use the more primitive notion of

action pre�xing from CCS. Here the actions will consist of the usual input and

output actions, c?x and c!e, together with the new action assignment, x := e.

This does not impinge signi�cantly on the usefulness of the language but, as we

will see, it enables us to simplify considerably the semantic model required to

interpret it.
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The language is described in detail in Section 2.1 where it is compared with

Occam and, in particular, the version of Occam used in [HR 88] and [Ros 87].

1.2. Denotational Models

A standard model for TCSP is the failure-sets model described, for example in

[BHR 84]. It consists of suitable collections of pairs of the form (s;X) where

s is a trace of actions which the process can perform and X is a �nite set of

actions which it can subsequently refuse. A further component of the model also

contains information about possible internal divergences.

This model has been adapted in [Ros 87] in order to interpret a subset of Oc-

cam. The adaptation is two-fold: the �rst to handle the communication of values

and the second to handle stores. Values are accommodated by using actions of

the form c:v where c is a channel name and v is a value. Intuitively this action

represents the passage of the value v along the channel c. Stores are incorporated

by extending that part of the model which records possible internal divergences.

Whereas previously it consisted simply of the traces of a process which could

lead to divergence, it also now includes those traces which lead to successful

termination and the resulting store.

There are two major problems associated with this extended model, both

connected with the treatment of value-passing. The �rst is that the allowed set

of values must be �nite for otherwise the semantic operators would no longer be

continuous. Although in practice a given program will only ever use a �nite set

of values, it is conceptually very restricting to limit the possible values usable

in a programming language to be �nite. The second arises from the form of the

actions, c:v. Processes input values from channels or output values to channels

and these are di�erent actions. In [Ros 87] they are modelled by the same action,

c:v which merely records the passage of v along c. This is possible because the

model is only used to interpret a very restricted form of parallelism, where every

channel has exactly two users, one using it only for input and the other output.

This approach would be inadequate for more general languages which do not

impose such restrictions. In this paper we use a di�erent model which may be

used for languages where the set of communicated values may be in�nite and

where there are no restrictions on the use of communication channels.

In [He 88] a model, called Acceptance Trees, very similar to failure-sets, is

described and used to model abstract languages such as TCSP and CCS. In

order to interpret value-passing in [HI 89] it is extended to a model called AT

v

,

which is obtained as an instantiation of the more general mathematical model

called Natural Interpretation, introduced in [HP 80]. It does not su�er from

the disadvantages outlined above. In particular it allows values to range over

arbitrary countable sets and it can be used to interpret general forms of the

parallel construct because actions of the form c?v and c!v are used, representing

input and output respectively. Nevertheless it is an algebraic cpo obtained as the

initial solution to a domain equation and supports the usual equational reasoning

associated with the more abstract languages such as TCSP and CCS. In order

to be able to use it to model imperative parallel programming languages, it is

therefore su�cient to adapt it in order to model the use of stores. However, we

claim that for our particular variation of Occam this is unnecessary. The reason

for this is two-fold.

First we take seriously the idea that each individual process has its own
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private store and the only access to this store is by communication with the

process. From this point of view the two processes

(x := 1):c?x:P

and

(x := 2):c?x:P

are behaviourally identical; although they have di�erent e�ects on their private

memory, this di�erence is not discernible to any external observer or, indeed,

any larger system which uses them as subprocesses. Of course it would be quite

di�erent if, after updating its private memory, there is a subsequent possibility

of communicating the e�ect of this update. So, for example, the processes

(x := 1):c!x:STOP

and

(x := 2):c!x:STOP

will be distinguished in the model. But in general there is no need to record

the sequence of store transformations carried out by a process as it receives and

sends communications. This is also true of the model in [Ros 87] but there the

terminal states of processes are recorded. This is unnecessary for us because we

avoid the use of the sequential composition operator SEQ and in its place make

more use of action-pre�xing. Thus the processes

(x := 1):STOP

and

(x := 2):STOP

are behaviourally equivalent and indeed they are equivalent to the trivial process

STOP . These would not be reasonable identi�cations if the language contained

SEQ for a di�erence between them could be discovered by a larger system: the

programs

SEQ SEQ

(x := 1):STOP (x := 2):STOP

c!x c!x

are certainly behaviourally di�erent. By avoiding the use of SEQ we lose very

little descriptive power but we are able to use the model AT

v

unaltered.

We describe the general model Natural Interpretations for the language in

x2.2 and show how it is used to interpret our version of Occam. In x2.3 the model

AT

v

is described briey although the reader is referred to [HI 89] for a complete

description.

In x2.4 we de�ne the syntactically and semantically �nite approximations of

a term and show that the interpretation of a general term is decided by the

interpretations of its �nite approximations.

1.3. Proof Systems

An immediate advantage of using the existing model AT

v

is that we may con-

tinue to use all of the well-known equational laws which it supports. Indeed, the
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syntactic constructs we borrow from process algebras were speci�cally designed

so as to enjoy simple equational laws. This is in contrast to [HR 88] where a new

collection of laws is required, some of them being far from intuitive. Of course

we will require additional laws from the new constructs of the language, such as

the assignment statement but these are all very simple and intuitive.

In x2.5 the resulting proof system is discussed and shown to be sound and

complete for closed processes.

1.4. Full-Abstraction

Rather than simply present a reasonable denotational model for our language,

we also wish to justify it behaviourally.We do so by proving it to be fully-abstract

with respect to some suitable notion of behaviour, i.e. we show that the model

identi�es and only identi�es those processes which we deem to be behaviourally

equivalent. The notion of behaviour we use is a standard one, based on testing,

[He 88]. This is a two-level view of processes. The �rst gives an operational se-

mantics of the language in terms of labelled transition systems, which describes

the individual computation steps or actions a process may perform. The second

describes how a test is applied to a process. Here we take a test to be another

process whose memory or store is distinct from that of the process under obser-

vation. So the only knowledge of the store of the observed process available is

what may be discovered via communication over channels.

The major di�culty of the paper is to invent a suitable operational semantics

for the language. In fact this is the main contribution of the paper. We design a

reasonable operational semantics and behavioural equivalence for the language

which describes our intuition of the behaviour of processes and agrees with an

existing denotational interpretation [Miln 88]. There are three natural types of

computation steps a process may perform: input, output and internal move. In

the world of process algebras the validity of the denotational model, and many

of the equational laws, depends on the fact that internal moves do not a�ect the

syntactic structure of processes. Thus in the operational semantics of [HI 89],

[Ol 85], we have

ALT

P

Q

�!

ALT

P

0

Q

whenever P �! P

0

where �! represents an internal move. However this cannot be applied directly

to our language as we would obtain non-intuitive computations, and a notion

of behaviour di�erent from that encapsulated in the denotational model. For

example, let s be a store where x contains 0. Then using the above property of

internal moves we would have

 

ALT

(x := 1):STOP

c!x:STOP

; s

!

�!

 

ALT

STOP

c!x:STOP

; s[1=x]

!

and this latter process could then output 1 on the channel c. However, this is

unexpected behaviour of the original process

ALT

(x := 1):STOP

c!x:STOP
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which is supposed to be a choice between two behaviours, one which outputs the

value of x, which is 0, and the other which updates the store. Our solution to this

problem is given in Section 3.1 where we present the operational semantics. This

is followed in Section 3.2 by a de�nition of testing and the associated preorder.

Finally, in Section 3.3, we prove that our model is fully-abstract.

2. The Language and its Model

In this section we introduce our language and describe its denotational seman-

tics. The section is divided into �ve subsections: In the �rst one we give the

syntax of the language and some example programs. In x2.2 we describe a gen-

eral mathematical model for the language in terms of natural interpretations

and then in x2.3 we give a brief introduction to one such model, the so-called

Strong Acceptance Trees [HI 89], which is a modi�cation of the model Strong Ac-

ceptance Trees introduced in [He 85] and [He 88]. In x2.4 we de�ne syntactically

and semantically �nite approximations of programs and show that the denota-

tional interpretation is completely decided by these. In the last subsection we

de�ne a proof system and prove its soundness and completeness with respect to

the model.

2.1. Syntax

Our language, V PLA, (a Value-Passing Language with Assignment) is an ex-

tension of the applicative concurrent language, V PL, introduced in [HI 89]. We

have added the imperative construct assignment but only as a form of pre�xing.

As we want to compare our language with the existing concurrent programming

language Occam we omit renaming.

The language is therefore a slight modi�cation of Occam although we use a

di�erent more abstract syntax. The main di�erences are that beside the usual

external choice or alternation operator ALT , which in our setting is called +,

we have an internal choice operator �. Further we have the restriction in our

language that sequential composition is not allowed in general but only as a pre-

�xing of the input/output actions or of an assignment statement. The operator

nc plays the role of a local declarations of channels in Occam and 
 can be

used to model the error handling. Further the RecP: can be used to simulate

the construct While e p from Occam and the various datatypes can easily be

incorporated into our language.

In the de�nition of the language we assume a prede�ned syntactic category of

expressions, Exp, ranged over by e. This includes a set of variable symbols, V ar,

ranged over by x, and a countable set of value symbols, V al, ranged over by v.

The assumption that the set V al is countable is very important in our semantical

description of the language. This implies that V al has the form fv

1

; v

2

; � � �g and

if we de�ne V

n

= fv

1

; � � � ; v

n

g then V al =

S

n

V

n

where V

n

� V al obviously are

�nite. We use this notation of V

n

throughout the paper.

To obtain a language closer to Occam we could, for example, assume that Exp

includes the usual datatypes allowed in Occam. We will also assume a syntactic

category of boolean expressions, BExp, ranged over by be, including the set of

boolean variables, BV ar, ranged over by bx, and with the only constants T and

F . Further we assume the set of free variables of a data expression, FV ar(e),
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t ::= op(t

1

; : : : ; t

k

); op 2 �

k

j P j pre:t j recP:t j be! t; t

pre ::= c!e j c?x j x := e

Fig. 1. Syntax

and a boolean expression, FV ar(be), to be prede�ned. We let Chan denote a

prede�ned set of channel names, ranged over by c.

The allowed operators in the syntax are STOP , and 
 of arity 0, nc of arity

1 and �, + and j of arity 2. We use � to denote this collection of operators and

�

k

those of arity k. We also need a prede�ned set of process names, PN , ranged

over by upper-case letters such as P , Q, etc. The set of terms is then de�ned by

the BNF-de�nition given in Figure 1.

We �nish this section by giving some programming examples in V PLA:

Example 2.1.1. Consider the process

in?x:RecQ:c?y:x = 0! out!y:STOP;

(x := x� 1):Q:

It has three channels, in, out and c. From the channel in it reads a number,

n, and then outputs on out the n-th value input from c. (A simpli�cation of

Example 2.1.1 in [HI 89], where communication is used to simulate assignment.)

Example 2.1.2. The process

x := 1:recQ:(x := x+ 1):in?y:x div 2 = 0! left!y:Q;

right!y:Q:

uses three channels, in, left and right. It inputs numbers from in and outputs

them alternatively on the channels left and right.

2.2. A General Denotational Model

In this subsection we will give the general structure of denotational models for

the language V PLA.

A Natural Interpretation (for the language V PLA), consists of a triple

hD; out

D

; in

D

i

where

i) D is a � � cpo

ii) out

D

: (Chan� V al �D) �! D is a total function continuous in its third

argument.
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iii) in

D

: (Chan � (V al �! D)) �! D is a total function continuous in its

second argument, where V al �! D inherits the natural pointwise ordering

from D.

Given such a natural interpretation, D, we can de�ne a semantic interpre-

tation of VPLA following the usual approach of denotational semantics. We

let Env

D

be the set of D-environments, i.e. mappings from PN to D, ranged

over by � and St the set of stores, mappings from V ar into V al, ranged over

by �. We assume evaluation functions [[ ]] : Exp �! (St �! V al) and

[[ ]] : BExp �! (St �! fT; Fg). Then the semantics of the language VPLA is

given as a function:

D[[ ]] : VPLA �! (Env

D

�! (St �! D))

and is de�ned by structural induction on VPLA:

i) D[[P ]]�� = �(P )

ii) D[[op(t)]]�� = op

D

(D[[t]]��)

iii) D[[recP:t]]�� = Y �d:D[[t]]�[d=P ]�

iv) D[[be! t; u]]�� = D[[t]]�� if [[be]]� = T

D[[u]]�� if [[be]]� = F

v) D[[c!e:t]]�� = out

D

(c; [[e]]�;D[[t]]��)

vi) D[[c?x:t]]�� = in

D

(c; �v:D[[t]]��[v=x])

vii) D[[x := e:t]]�� = D[[t]]��[[[e]]�=x]

where Y is the least-�xpoint operator for continuous functions over D.

2.3. Acceptance Trees

In this subsection we will give a brief description of the mathematical model

called Strong Acceptance Trees, or just Acceptance Trees, introduced in [He 85]

and explained in more detail in [He 88]. Then we will explain the modi�ed

version, which models the value-passing calculus V PL in [HI 89]. The de�ni-

tion of the pure version assumes a set of \pure" actions, Act which processes

can perform. Further we need the notion of saturated sets. Thus a �nite set,

A � P

fin

(Act), where P

fin

(Act) is the family of �nite subsets of Act, is said to

be saturated if it satis�es the following conditions:

1.

S

A 2 A

2. A;B 2 A and A � C � B implies C 2 A.

The set of all saturated subsets of P

fin

(Act), all saturated sets over Act, is

denoted by sat(Act). A saturated set over Act is called an acceptance set. The

saturated closure, c(A), of a �nite set, A � P

fin

(Act) is de�ned as the least set

which satis�es

1. A � c(A)

2.

S

A 2 c(A)



Communicating Processes with Value-passing and Assignments 9

3. A;B 2 c(A) and A � C � B implies C 2 c(A).

It follows easily from the de�nition, that c(A) is the least saturated set, which

includes A.

Finite acceptance trees are rooted �nite branching trees of �nite depth. Each

node is either open or closed. Each closed node is labelled by an acceptance

set, A, where each set, A, in A models a state the process can reach internally

or without performing any visible action. The actions in A are those which the

process can perform when in that state. The arcs leading from a node are labelled

by the actions which occur in the acceptance set labelling the node. Thus for

every a 2

S

A there is exactly one outgoing branch labelled by a. In that sense

the tree is deterministic but the nondeterminism inherent in processes is modelled

by the acceptance sets. A branch labelled by an action, a, leads to a subtree,

which models the behaviour of the process after having performed the action a.

Only the leaves of the tree can be open and in that case they are unlabelled.

The open nodes model divergent or unspeci�ed processes or states.

If we denote the open nodes by ?, we can de�ne the set of �nite acceptance

trees, fAT , formally as the least set which satis�es

1. ? 2 fAT

2. A 2 sat(Act) and f :

S

A �! fAT implies (A; f) 2 fAT .

We let T , U , etc. range over fAT and use the notation [a

1

�! T

1

; : : : ; a

n

�! T

n

]

for the function which maps the element a

i

to T

i

, i = 1; 2; : : : ; n. Note that the

leaves are either labelled by ? or by (f;g; [ ]), where the latter models the empty

process. The trees are ordered as follows:

1. ? � T for all T 2 fAT .

2. (A; f) � (B; g) if

i) B � A

ii)f � g

where f � g means

a) domain(g) � domain(f)

b) for all a 2 domain(g) f(a) � g(a).

It can be seen very easily, that � is a partial order. It represents the intuition

that one process is an \improvement" of another if it is more deterministic, i.e.

has fewer internal states.

To model in�nite or recursively de�ned processes we need a notion of in�nite

or recursively de�ned acceptance trees. Thus we aim for an extension of (fAT;�)

which is a cpo. This can be obtained by looking at the construction of trees from

already existing trees as a functor in the category of cpos, CPO, and de�ning

the set of acceptance trees as the least �xpoint to the functor. Let us assume we

have a cpo, D, and a general set of events or actions, Ev. Then we de�ne the

tree constructor, H, by

H(Ev;D) = f(A; f)jA 2 sat(Ev); f :

[

A �! Dg

By adding the bottom element and using the order � de�ned above we get a cpo

(H(Ev;D))

?

. Following the procedure in [Plo 81] it is straightforward to turn

H into a continuous functor, which we again call H. We can now de�ne AT to

be the least solution to the domain equation
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1. D = (H(Ev;D))

?

2. Ev = Act.

It is simple to show that H preserves !-algebraicness and thus from the general

theory in [Plo 81] we get, that the solution,AT , is a !-algebraic cpo with fAT as

the set of �nite elements. The elements of AT may be viewed as in�nite versions

of the �nite trees in fAT . They are still �nite branching but may have in�nite

depth.

To model the value-passing calculus we have to carry out some modi�cations.

First we choose a di�erent set of events. Thus we let

Ev = Chan?[ Chan!

where Chan? and Chan! mean fc?jc 2 Chang and fc!jc 2 Chang respectively.

Further instead of having elements from the cpo D as residuals in the trees we

now have as a residual to a branch labelled by an input event, c?, a function

which takes a value and returns an element in the cpo D. A residual to a branch

labelled by an output event of the form c! will be a �nite lists of pairs of values

and elements in D, or equivalently a �nite partial function from the set of values,

V al, into D. To capture this distinction between the input and output events

we introduce the notation f : A

1

]A

2

�! B

1

]B

2

where ] is the disjoint union

and whenever a 2 A

i

then f(a) 2 B

i

; i = 1; 2. Now our tree constructor can be

de�ned as

F (Ev;D) = H(Ev;G(D))

?

where

G(D) = (V al �! D) ] Fin(V al * D)

and Fin(V al * D) is the set of �nite partial functions from V al to D and H is

de�ned as before. Again F (Ev; ) maps a cpo into a cpo and thus can be turned

into a continuous functor, again called F . Thus The (Strong) Acceptance Trees

with Value-Passing, AT

v

, can be de�ned as the least solution to the domain

equation

D = F (Ev;D)

Ev = Chan?] Chan!:

The two sets AT

v

and F (Ev;AT

v

) are the \same" in the sense that they are

isomorphic and to simplify the notation, we do not distinguish between an ele-

ment in one of the sets and its isomorphic image in the other. Thus we say that a

typical element in AT

v

has either the form ? or the form (A; f) for some A and

f . Again F preserves !-algebraicity and therefore AT

v

is an !-algebraic cpo.

The �nite elements of AT

v

, fAT

v

, are those who have \�nite" functions as

residuals, whereby we mean that the functions have �nite domains and return

�nite elements as results. A formal de�nition of fAT

v

is given below, where we

use Fin(V al �! fAT

v

) to denote the set of total functions from Val to fAT

v

where only a �nite number of values are mapped to something di�erent from ?.

We also introduce the notation G

fin

(V al;D) for Fin(V al �! D) ]Fin(V al *

D).

De�nition 2.3.1. fAT

v

is the least set, which satis�es:

1. ? 2 fAT

v

2. if A 2 sat(Ev) and f :

S

A �! G

fin

(V al; fAT

v

) then (A; f) 2 fAT

v

.
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We also need a de�nition of AT

v

n

, the Acceptance Trees of depth and func-

tional size n. We let Fin

n

(V al �! D) = ff 2 Fin(V al �! D)jf(v) =

? whenever v 62 V

n

g and G

n

fin

= Fin

n

(V al �! D) ] Fin(V al * D).

De�nition 2.3.2. We de�ne AT

v

(n)

by induction on n by

1. f?g 2 AT

v

(n)

for all n

2. if A 2 sat(Ev) and f :

S

A �! G

n

fin

(V al; AT

(n)

) then (A; f) 2 AT

v

(n+1)

.

We have the following result:

Lemma 2.3.1.

1. AT

v

0

� AT

v

1

� � � � � fAT

v

2. fAT

v

=

S

n

AT

v

n

.

Proof. The �rst part follows from an easy induction on n. To prove 2. we �rst

note that

S

n

AT

v

n

� fAT

v

follows from 1. Thus we only have to prove that for

any T 2 fAT

v

there is an n such that T 2 AT

v

n

which is straightforward.

To prove that fAT

v

is exactly the set of �nite elements in AT

v

is the subject of

the next theorem.

Theorem 2.3.1. fAT

v

is the set of �nite elements of AT

v

.

Proof. We �rst prove that the elements of fAT

v

are �nite and then that these are

the only �nite elements ofAT

v

. The proof for the �rst part proceeds by induction

on the de�nition of the elements in fAT

v

. We have the following cases:

1. ? is obviously �nite.

2. Assume T = (A; f) 2 fAT

v

where A is an acceptance set and f 2

S

A �!

G

fin

(V al; fAT

v

). Now assume that

T �

G

m

T

m

= T

0

where T

1

� T

2

� � � � � T

0

. Let T

m

= (A

m

; f

m

);m = 1; 2; : : : and T

0

=

(A

0

; f

0

). By the de�nition of the preorder

A

0

� A

m+1

� A

m

� A; for m = 1; 2; : : :

and

f � f

m

� f

m+1

� f

0

for m = 1; 2; : : :

As A is �nite then A = A

M

for some M and thus

f

0

(e) =

G

m>M

f

m

(e); e 2

[

A:

Further, as f(e) � f

0

(e) for all e 2

S

A

(f(e))(v) �

G

m>M

(f

m

(e))(v); e 2

[

A; v 2 domain(f(e))
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By induction (f(e))(v) � (f

m(e;v)

(e))(v) for some m(e; v) for all e 2

S

A

and v 2 domain(f(e)). As domain(f(e)) and

S

A are �nite, the set E =

f(e; v) j e 2

S

A; v 2 domain(f(e))g is �nite. We can therefore de�ne

N = maxfm(e; v) j (e; v) 2 Eg

and we get easily that f � f

N

and the result follows.

Next we will prove that fAT

v

are the only �nite elements in AT

v

. For this

purpose for any T 2 AT

v

we de�ne T

(n)

, the projection of T on AT

v

(n)

. This we

do in the following way:

1. T

(0)

= ?

2.a ?

(n+1)

= ?

2.b (A; f)

(n+1)

= (A; f

(n)

); n = 1; 2; : : :

where f

(n)

(c?) is de�ned by

(f

(n)

(c?))(v) =

�

(f(c?)(v))

(n)

if v 2 V

n

? otherwise

and f

(n)

(c!) is de�ned by

domain(f

(n)

(c!)) = domain(f(c!)) \ V

n

(f

(n)

(c!))(v) = ((f(c!))(v))

(n)

for v 2 domain(f

(n)

(c!))

By an easy induction we get that T

(n)

2 AT

v

(n)

and that T

(0)

� T

(1)

� � � �T

(n)

�

T for all n. We will prove that T is the lub for the chain. To do so we have to

refer to some general results about initial solutions in CPO ([Plo 81]).

Now we recall the standard de�nition of T

n

, the n-th approximation of T :

1. T

0

= ?

2.a ?

n+1

= ?

2.b (A; f)

n+1

= (A; f

n

); n = 1; 2 : : :

where f

n

(c?) is de�ned by

f

n

(c?) = (f(c?)(v))

n

and f

n

(c!) is de�ned by

domain(f

n

(c!)) = domain(f(c!))

(f

n

(c!))(v) = ((f(c!))(v))

n

for v 2 domain(f

n

(c!))

Note that the nth approximation, T

n

, is in general not a �nite element of the

model. From the general theory we know that T =

F

n

T

n

. Furthermore we can

show that

F

n

T

(n)

=

F

n

T

n

. The \�" part follows from the obvious fact that

T

(n)

� T

n

for all n. We get the \�" part by showing that T

m

�

F

n

T

(n)

for all

m by induction on m as follows:

1. T

0

�

F

n

T

(n)

is obvious

2. Now we want to prove for any T that T

m+1

�

F

n

T

(n)

given the statement

is true for m. If T = ? we are done so assume T has the form (A; f). Then

T

m+1

= (A; f

m

) and T

(n)

= (A; f

(n�1)

) for n = 1; : : :. We also can easily

prove that

F

n

(A; f

(n)

) = (A;

F

n

f

(n)

) where

F

n

f

(n)

is de�ned by
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((

G

n

f

(n)

)(e))(v) =

G

n

(f

(n)

(e))(v):

By induction we get

(f

m

(e))(v) = ((f(e))(v))

m

�

G

n

((f(e))(v))

(n)

=

G

n

(f

(n)

(e))(v):

As e and v are arbitrary this implies f

m

�

F

f

(n)

. Thus

T

m+1

= (A; f

m

) � (A;

G

n

f

(n)

) =

G

n

(A; f

(n)

) =

G

n

T

(n)

as we wanted to prove. From this result we derive that

T =

G

n

T

n

=

G

n

T

(n)

:

The proof now proceeds as follows: Assume T is �nite. From the result above

we have that T =

F

n

T

(n)

. By the de�nition of �nite elements T � T

(N)

for

some N . As we already know that T

(N)

� T then T = T

(N)

. This proves that

T 2 AT

v

(N)

and thereby T 2 fAT

v

which completes the proof.

Now what is missing to turn AT

v

into a natural interpretation for the language

V PLA is to de�ne the functions in and out and the operators named in � and to

show the continuity of these. We only give a few of these de�nitions here but the

remainder can be found in the appendix. Regarding the proofs for the continuity

we refer to [HI 89].

To make these de�nitions more compact we will denote AT

v

by AT . Further

we introduce the following convention : if h is a function fromAT �! AT we also

use h to denote the natural extension ext(h) : (V al �! AT ) �! (V al �! AT )

de�ned by

ext(h)(f

1

; : : : ; f

n

)(v) = h(f

1

(v); : : : ; f

n

(v)):

We use the notation

P

� fT

1

; : : : ; T

n

g; n � 1 for T

1

�

AT

� � ��

AT

T

n

and

P

fT

1

: : : T

n

g

for T

1

+

AT

� � �+

AT

T

n

, where the last sum reduces to STOP

AT

when n = 0. This

notation will be justi�ed by the associativity of the operators �

AT

and +

AT

and

the neutrality of STOP

AT

with respect to +

AT

.

Output:

De�ne out

AT

: Chan� V al � AT �! AT by

out

AT

(c; v; t) = hffc!gg; fi

where

domain(f) = fc!g

f(c!) = fhv; tig.

Intuitively out

AT

(c; v; t) represents a process which can output the value v on

the channel c and then act like the process t.

STOP :

Let STOP

AT

be the tree hffgg; fi, where
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f is the empty function.

This is the terminated process which can perform no actions.


 :

Let 


AT

be ?

AT

This represents the unde�ned process.

Internal Nondeterminism:

De�ne �

AT

: AT � AT �! AT as

Y �I:�t:�u: if t = ? or u = ?

then ?

else let

hA; fi = t

hB; gi = u

in hc(A [ B); hi

where c(X) is the least saturated set containing X and h is de�ned

by:

h(c?)= I(f(c?); g(c?)) if c? 2 domain(f) \ domain(g)

= f(c?) if c? 2 domain(f) n domain(g)

= g(c?) if c? 2 domain(g) n domain(f)

and

h(c!) = f(c!) if c! 2 domain(f) n domain(g)

= g(c!) if c! 2 domain(g) n domain(f)

= k if c! 2 domain(f) \ domain(g)

where

k(v)= I(f(c!)(v); g(c!)(v)) if v 2 domain(f(c!)) \ domain(g(c!))

= f(c!)(v) if v 2 domain(f(c!)) n domain(g(c!))

= g(c!)(v) if v 2 domain(g(c!)) n domain(f(c!))

This is a recursive de�nition of a binary operator where I represents the function

being de�ned. This function is strict in both arguments, returning ? unless the

arguments are of the form hA; fi; hB; gi respectively. In this case it returns a tree

whose node is labelled by the acceptance set c(A [ B) and whose residuals are

calculated from those of f and g. For each event e 2 Ev the residual after e is

obtained from f if e is in the domain of f and not in that of g, it is obtained

from g if it is in the domain of g and not that of f while if it is in both domains

it is obtained by recursively applying I.

2.4. Syntactically and Semantically Finite Terms

In the previous section we proved that each element of AT

v

is determined by

a sequence of �nite trees which only use a �nite number of values. It can be

seen very easily that these elements are de�nable by syntactically �nite terms in

the language where \syntactically �nite", as usual, means that the construction

rec: does not occur. In fact we can prove that these elements can be de�ned by

syntactically �nite terms where the input terms give non-trivial result for only a

�nite number of input values. We call these de�ning terms \semantically �nite
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terms" to distinguish them from the usual syntactically �nite terms. We will in

the following de�ne formally the semantically �nite terms and then show that

they denote exactly the �nite elements in the model, i.e. fAT

v

.

De�nition 2.4.1. We de�ne the set of semantically �nite terms as the least set,

SF , which satis�es:

1. STOP;
 2 SF

2. t 2 SF implies op(t) 2 SF

3. t 2 SF; c 2 Chan and e 2 Exp implies c!e:t 2 SF

4. t 2 SF; c 2 Chan, x 2 V ar and V � V al is �nite implies c?x:x 2 V ! t;
 2

SF

5. t; u 2 SF and be 2 BExp implies be! t; u 2 SF

6. t 2 SF; e 2 Exp and x 2 V ar implies (x := e):t 2 SF

Here we assume that the language for expressions is su�ciently expressive to

contain \x 2 V "; since V is a �nite set this is not very onerous. We have the

following result:

Lemma 2.4.1.

1. For all d 2 SF [[d]] 2 fAT

v

2. For all D 2 fAT

v

there is a d 2 SF such that [[d]] = D.

Proof. An easy structural induction on d in the �rst case and and induction on

the de�nition of D in the second one.

In [HI 89] we de�ned the syntactically �nite approximations of a term t, t

n

, as the

n-th unfolding of the recursive de�nitions and then we showed that the meaning

of a term is completely de�ned by these approximations. As we do not have any

restrictions on the input terms the syntactically �nite approximations are not in

general semantically �nite. Therefore, to take advantage of the !-algebraicness

of the model, we introduce the so called semantically �nite approximations, t

(n)

,

which are de�ned in a slightly di�erent way in that now the n-th approximation

of the input term c?x:t only allows a �nite number of inputs. In the following

de�nition and in the rest of the paper we recall that V

n

; n = 1; : : : are de�ned as

in x2.1. Thus V al =

S

n

V

n

, where V

n

� V

n+1

� V al are �nite.

De�nition 2.4.2. (Semantically Finite Approximations) The n-th approx-

imation of a term is de�ned inductively by following:

i) t

(0)

= 


ii) 1: P

(n+1)

= P

2: (op(t))

(n+1)

= op(t

(n+1)

)

3: (c!e:t)

(n+1)

= c!e:t

(n+1)

4: (c?x:t)

(n+1)

= c?x:x 2 V

n+1

! t

(n+1)

;


5: (recP:t)

(n+1)

= t

(n+1)

[(recP:t)

(n)

=P ]

6: (be! t; u)

(n+1)

= be! t

(n+1)

; u

(n+1)

7: (x := e:t)

(n+1)

= x := e:t

(n+1)

Note that the only di�erence between the de�nition of the syntactically �nite

approximations from [HI 89], t

n

, and the semantically �nite ones, t

(n)

, is in the
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case c?x:t as in the �rst case we have (c?x:t)

n

= c?x:t

n

. We will now show that

the interpretation of a term in AT

v

is completely de�ned by the meaning of

the semantically �nite approximations of the term. This is the content of the

following theorem:

Theorem 2.4.1. For all t 2 V PLA; � 2 St and � 2 Env

[[t]]�� =

G

n

[[t

(n)

]]��

Proof. The proof is very similar to the corresponding one for Theorem 4.2.11

in [He 88]. As there we proceed by structural induction. The only case which is

di�erent is t = c?x:u and will therefore be given in detail.

By de�nition of [[ ]] and t

(n)

[[c?x:u]]�� = in(c; �v:[[u]]�(�[v=x]))

and

[[(c?x:u)

(n)

]]�� = [[c?x:x 2 V

n

! u

(n)

;
]]�� = in(c; �v:v 2 V

n

! [[u

(n)

]]�(�[v=x]);?)

Let f be �v:[[u]]�(�[v=x]) and f

n

be �v:v 2 V

n

! [[u

(n)

]]�(�[v=x]);?. It is suf-

�cient to prove that f =

F

f

n

where

F

is the lub with respect to the usual

pointwise order. Therefore take any v 2 V al then there is an N such that v 2 V

n

for all n � N . Now we have by the structural induction

f(v) = [[u]]��[v=x] =

F

n

[[u

(n)

]]��[v=x]

=

F

n�N

[[u

(n)

]]��[v=x] =

F

n�N

f

n

(v)

=

F

n

f

n

(v) = (

F

n

f

n

)(v)

which completes the proof.

2.5. The Proof System

In this last subsection we will de�ne a proof system, E, for the language and

prove the soundness and completeness for closed terms or processes.

As we have two kinds of variables, process variables and value variables, we

also have two kinds of bindings. The construction recP:t binds occurrences of

the process name P in the term t and as we are not interested in terms with free

process variables we assume that all occurrences of such variables are bound. In

the construct c?x:t and (x := e):t the value-variable x is bound in t but e in

c!e:t and (x := e):t may again contain free value-variables. Thus the set of free

value-variables in a term t FV ar(t) is de�ned by:

FV ar(STOP ) = FV ar(
) = ;

FV ar(op(t

1

; : : : ; t

n

)) =

S

n

i=1

FV ar(t

i

)

FV ar(recP:t) = FV ar(t)

FV ar(c!e:t) = FV ar(t) [ FV ar(e)

FV ar(c?x:t) = FV ar(t) n fxg

FV ar(x := e:t) = (FV ar(t) n fxg) [ FV ar(e)

FV ar(be! t; u) = FV ar(be) [ FV ar(t) [ FV ar(u):

A term, t, is said to be a process if it is closed, i.e. if FV ar(t) = ;.

The set of processes is denoted by Proc and ranged over by p, q, etc.. For
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X � (Y � Z) = (X � Y )� Z

X � Y = Y �X

X �X = X

X + (Y + Z) = (X + Y ) + Z

X + Y = Y +X

X +X = X

X + STOP = X

pre:X + pre:Y = pre:(X � Y )

c?x:X + c?x:Y = c?x:X � c?x:Y

c!e:X + c!e

0

:Y = c!e:X � c!e

0

:Y

X + (Y � Z) = (X + Y )� (X + Z)

X � (Y + Z) = (X � Y ) + (X � Z)

X � Y v X

X + 
 v 



 v X

(X � Y ) n c = X n c� Y n c

(X + Y ) n c = X n c+ Y n c

(pre:X) n c =

�

pre:(X n c) if c 6= chan(pre)

STOP otherwise

STOP n c = STOP


 n c = 


(X � Y ) jZ = X j Z � Y j Z

X j (Y � Z) = X j Y �X j Z

STOP jX = X j STOP = X

X j (Y +
) = (X +
) j Y = 


Fig. 2. Equations

processes, the interpretation in the model is independent of the store and the

environment and thus we can may write [[p]] instead of [[p]]��.

The proof system is equationally based and is given in Figure 5 and the

equations are given in Figure 2, 3 and 4. In the interleaving law in Figure 4

the predicate comms(X;Y ) is de�ned to be true if X and Y can communicate

and false otherwise. So it is true only if there is a pair a

i

; b

j

of complementary

actions, one of the form c?x and the other c!e. In Rule V of Figure 5 we use � to



18 M. Hennessy and A. Ing�olfsd�ottir

(x := e):STOP = STOP

(x := e):
 = 


(x := e):X � Y = (x := e):X � (x := e):Y

(x := e):X + Y = (x := e):X + (x := e):Y

(x := e):X jY = (x := e):X j (x := e):Y

(x := e):c!e

0

:X = c!e

0

[e=x]:(x := e):X

(x := e):c?y:X = c?y:(x := e):X; x 6= y; y not free in e

(x := e):be! X;Y = be[e=x]! (x := e):X; (x := e):Y

Fig. 3. Equations for Assignment

range over arbitrary substitutions of terms for variables. As usual we de�ne v

E

as the least relation which satis�es the rules and equations in Figures 2-5, and

t =

E

u means t v

E

u and u v

E

t.

The system is basically the same as the one for the applicative language V PL

in [HI 89]. We only have added equations, Figure 3, to reason about assignment

and one new inference rule, the second part of rule VII in Figure 5, to assure

substitutivity for assignment. In Figure 3 the assignment pre�xing does not af-

fect the meaning of the processes STOP and 
. This reects our ideas that

stores and therefore bindings of variables to values can only be investigated by

communication. Thus changing the value binding of a variable does not a�ect

the process if it is not able to output the value of that variable. Further as-

signment distributes over the operators + and j which reects our ideas of each

subcomponent of the system having their private store only accessible by others

via communication.

The new rules allow us to remove the assignments from any �nite term and

prove it equal to an assignment free �nite term, i.e. a term in V PL.

Lemma 2.5.1. For all �nite d 2 V PLA there is a �nite d

0

2 V PL such that

d = d

0

.

Proof. Follows easily by structural induction on d and a repeated use of the

equations in Figure 3 and Rule IX.

Another signi�cant di�erence from the proof system in [HI 89] is the de�-

nition of the �nite approximations t

(n)

in the !-rule (rule VI) as they are now

only allowed to use a �nite number of values. In [HI 89] we de�ned the n-th

approximation of the term c?x:u by (c?x:u)

n

= c?x:u

n

. Then we proved the

completeness of the proof system by means of normal forms and head normal

forms. We could have used the same procedure for the completeness proof in
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LetX, Y denote

P

fa

i

:X

i

; i 2 Ig,

P

fb

j

:Y

j

; j 2 Jg where the same data variables

do not occur in X and Y . Then

X j Y =

�

ext(X;Y ) if comms(X;Y ) = false

(ext(X;Y ) + int(X;Y ))� int(X;Y ) otherwise

where

ext(X;Y ) =

P

fa

i

:(X

i

j Y ); i 2 Ig +

P

fb

j

:(X j Y

j

); j 2 Jg

int(X;Y ) =

P

� fX

i

[v=x] j Y

j

; a

i

= c?x; b

j

= c!vg

�

P

� fX

i

j Y

j

; [v=y] a

i

= c!v; b

j

= c?yg

Fig. 4. Interleaving Law

I t v t

t v u; u v v

t v v

II

t

i

v u

i

op(t) v op(u)

for every op 2

P

III

t v u

c!e:t v c!e:u

t[v=x] v u[v=x] for every v 2 V

c?x:t v c?x:u

IV

t v u

recP:t v recP:u recP:t = t[recP:t=P ]

V

t v u

t� v u� t v u

for every equation t v u

VI

8n:t

(n)

v u

t v u

VII

[[e]] = [[e

0

]]

c!e:t = c!e

0

:t

[[e]] = [[e

0

]]

x := e:t = x := e

0

:t

VIII

[[be]] = T

be! t; u = t

[[be]] = F

be! t; u = u

IX

c?x:t = c?y:t[y=x]

if y does not occur free in t

Fig. 5. Proof System
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this case; instead we have chosen to de�ne the n-th approximations t

(n)

in this

slightly di�erent way which can be seen in De�nition 2.4.2. Unlike in the previous

paper t

(n)

is semantically �nite and thus the new !-rule

8n: t

(n)

v u

t v u

reects the !-algebraicness in the model. We can therefore use the completeness

of the old system for �nite terms and then take advantage of the !-algebraicness

of the model to prove the completeness in the general case.

Obviously the original de�nition of �nite approximations, t

n

in [HI 89], dom-

inates the new ones, i.e. we can prove that for all t 2 V PLA, t

(n)

v

E

t

n

without

using the !{rule and therefore the new !-rule implies the original one

8n: t

n

v u

t v u

The new system is thus stronger than the old one, and a completeness for the

old one implies completeness for the new one. We will take advantage of this fact

to prove the completeness of the new proof system.

We end this section by stating and proving the soundness and completeness

of the system for processes with respect to AT

v

. We start with the soundness.

Theorem 2.5.1. (Soundness) For all t; u

t v

E

u implies [[t]] � [[u]]:

Proof. The soundness is already proved for most of the rules and equations in

[HI 89]. The soundness of the !-rule is the content of Theorem 2.4.1 and the

soundness of the remaining ones is obvious.

For the completeness we start by proving the result for �nite processes and

then show how the general result follows from this as an easy corollary.

Lemma 2.5.2. For all �nite d

1

; d

2

2 Proc

[[d

1

]] � [[d

2

]] implies d

1

v

E

d

2

:

Proof. Suppose d

1

; d

2

2 Proc are syntactically �nite and [[d

1

]] � [[d

2

]]. By Lemma

2.5.1 , d

1

=

E

d

0

1

and d

2

=

E

d

0

2

for some closed �nite d

0

1

; d

0

2

2 V PL. By the

soundness of the proof system [[d

1

]] = [[d

0

1

]] and [[d

2

]] = [[d

0

2

]]. Now we note that

our proof system is an extension of the proof system introduced in x4 in [HI 89].

Thus we can use the completeness of that proof system to deduce that d

0

1

v

E

d

0

2

and the result follows from the transitivity of the proof system. This completes

the proof.

Next we will use this partial result to prove the general completeness.

Corollary 2.5.1. (completeness) For all p; q 2 Proc

[[p]] � [[q]] implies p v

E

q:

Proof. We will prove that the general completeness follows from the previous
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Lemma and the !-algebraicity of the model. Thus assume that [[p]] � [[q]].

From Lemma 2.4.1 we get that [[p]] =

F

n

[[p

(n)

]] and [[q]] =

F

n

[[q

(n)

]]. Therefore

F

n

[[p

(n)

]] �

F

n

[[q

(n)

]] which implies that

8k: [[p

(k)

]] �

G

n

[[q

(n)

]]

As [[p

(k)

]] is a �nite element of the model we have

8k9m: [[p

(k)

]] � [[q

(m)

]]:

By the already proved completeness for �nite terms

8k9m: p

(k)

v

E

q

(m)

:

As we know that q

(m)

v

E

q this implies

8k:p

(k)

v

E

q

and the result follows from the !-rule.

3. Operational Semantics and Full Abstractness

In this section we de�ne an operational semantics for our language and introduce

the notion of testing. The operational semantics is de�ned in such a way that it

captures our intuition of the behaviour of processes or con�gurations described in

the introduction, i.e. that each subprocess of a system has its own private store

only accessible by other processes by means of communication. For a further

justi�cation of our di�erent semantic approaches we show that the model AT

v

s

is fully abstract with respect to the resulting testing preorder.

3.1. Operational semantics

We are now no longer dealing with a pure applicative language but with a lan-

guage with assignments which aims to change the bindings of the variables. We

follow the standard approach and use a store, a total function from the set of

variables into the set of values, to keep track of the bindings of the variables

to values. Thus our operational semantics should describe how a con�guration,

a pair of a process and a store, evolves to another con�guration by either an

internal or an external move. We denote a con�guration by ht; �i where t is a

term and � is a store. Note that, unlike in [HI 89], the terms may now contain

free data variables as the store takes care of the bindings.

Updating the store is not supposed to be a visible action and is therefore

modelled as an internal move. In the standard approach each argument of the

operators + and j can move internally without a�ecting the structure. Thus we

have

p �! p

0

implies p j q �! p

0

jq

and

p �! p

0

implies p+ q �! p

0

+ q:
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In following this standard approach a problem arises when we have to deal

with these operators. In both cases each of the components can update the store

internally and thus a�ect the variable bindings for the other. Let us have a look

at an example. We use the notation �[x

1

=v

1

; : : : ; x

n

=v

n

] for the store �

0

de�ned

by �

0

(x) = v

i

if x = x

i

; i = 1; : : : ; n and �

0

(x) = �(x) otherwise. Let

t = c!x:STOP j x := 1:STOP

�

0

= �[0=x]:

How is the store to be updated according to the assignment statement?We might

either have

hc!x:STOP jx := 1:STOP; �[0=x]i

c!0

�!

hSTOP jx := 1:STOP; �[0=x]i �!

hSTOP jSTOP; �[1=x]i

or

hc!x:STOP jx := 1:STOP; �[0=x]i �!

hc!x:STOP jSTOP; �[1=x]i

c!1

�! hSTOP jSTOP; �[1=x]i:

Thus by directly outputting on the channel c by the �rst component we get

ht; �[0=x]i

c!0

=) hSTOP jSTOP; �[0=x]i

or alternatively we get

ht; �[0=x]i

c!1

=) hSTOP jSTOP; �[1=x]i

by a side-e�ect when we �rst apply the assignment statement of the second

component and then output the updated value on the channel c of the �rst com-

ponent. Here

a

=) is the weak transition relation derived from

a

�! by abstracting

from the internal moves. This proposed possibility of di�erent computations con-

icts with our intuitions. We expect each component to have its own independent

store which is not accessible by other processes. Thus in our example each of the

subprocesses c?x:STOP and x := 1:STOP , when refering to x, are refering to

x of its own local store. To reect this in the operational semantics we create a

new copy of the store for each of the operator's argument by an internal move

and distribute them over the operator, and thus introduce a parallel composition

for con�gurations instead of terms. Now each copy of the store becomes com-

pletely local to each of the arguments and can be updated independently of each

other. The only way two parallel con�gurations can access each other stores is

via communication. Our example now becomes

hc!x:STOP jx := 1:STOP; �[0=x]i �!

hc!x:STOP; �[0=x]i j hx := 1:STOP; �[0=x]i

c!0

�!

hSTOP; �[0=x]i j hx := 1:STOP; �[0=x]i �!

hSTOP; �[0=x]i j hSTOP; �[1=x]i:

That is

ht; �[0=x]i

c!0

=) hSTOP; �[0=x]i j hSTOP; �[1=x]i:

This is the only possible external move by the �rst component and is completely

independent of the internal moves of the second one.

The same solution can be used to solve the similar problem related to external
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choice outlined in the introduction. Furthermore this solution coincides with the

de�nition of the denotational semantics in the sense that there the stores are

distributed over the operators and assignment in one component does not have

any inuence on the semantics of another component.

In the followingwe will try to formalise these informal ideas of the operational

behaviour of processes, or more precisely con�gurations.

As motivated above, we need to introduce external choice and parallel com-

position between con�gurations. Thus more complex con�gurations are built up

from the basic ones, which only consist of a pair of a term and a store. To

simplify the rules for the operational semantics we also introduce the operators

�, nc and pre�xing for con�gurations. This leads to the following de�nition of

con�gurations:

De�nition 3.1.1. The set of basic con�gurations, BCon, is de�ned as:

BCon = fht; �i j t 2 V PLA; � 2 Stg:

Now we de�ne the set of con�gurations, Con, as the least set, which satis�es

1) BCon � Con

2) ht; �i 2 BCon implies pre:ht; �i 2 Con

3) � 2 Con implies op(�) 2 Con

for all op 2 �

1

�

1

; �

2

2 Con implies op(�

1

; �

2

) 2 Con

for all op 2 �

2

:

We let �,  , etc. range over the set BCon and �, �, etc. over the set Con. The

operational semantics can now be given in the same way as in [HI 89]. We de�ne

an extended labelled transition system hCon;Act;�!;�!i where

� Act is a set of actions

� �!� Con�Act �Con

� �!� Con�Con

(�; a; �) 2 �! is usually written �

a

�! � and intuitively it means that the

con�guration � may perform the action a and thereby be transformed into �;

� �! � may be read as \� may evolve spontaneously to �".

The set Act consists of all input events of the form c?v and all output events

of the form c!v where c 2 Chan and v 2 V al. The relations

a

�! and �! are

de�ned to be the least which satisfy the rules given in Figures 6 and 7. As in

the denotational semantics, these rules presuppose an evaluation mechanism for

expressions : [[e]]� gives the value in V al of the expression e in the store � and

[[be]]� returns either T or F . The rule for communication, Rule 9 Figure 6, uses

a complementation notation for actions, c?v is c!v and c!v is c?v. The rules for

channel hiding also use the obvious notation name(a) 6= c to indicate that the

action a does not use the channel c.

The rules themselves are quite straightforward. Rules 5 and 6 in Figure 6 cre-

ate a structured con�guration from a basic one by distributing the store over the

operators, the one for assignment updates the store as the rule for conditionals

chooses one of the components according to the value of the boolean expression.

The remainder are directly from [HI 89] but now on con�gurations instead of

terms.

As before the resulting labelled transition system is not in general �nite
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1: h
; �i �! h
; �i

2: hrecP:t; �i �! ht[recP:t=P ]; �i

3: hx := e:t; �i �! ht; �[v=x]i; where v = [[e]]�

4: [[be]]� = T implies hbe! t; u; �i �! ht; �i

[[be]]� = F implies hbe! t; u; �i �! hu; �i

5: hop(t

1

; : : : ; t

k

); �i �! op(ht

1

; �i; : : : ; ht

k

; �i); op 2 �

1

[ �

2

6: hc?x:t; �i �! c?x:ht; �i

hc!e:t; �i �! c!v:ht; �i where v = [[e]]�

7: �� � �! �

�! �

8: �

i

�! �

0

i

impliesop(�

1

; : : : ; �

i

; : : : ; �

k

) �! op(�

1

; : : : ; �

0

i

; : : : ; �

k

)

op 2 �

1

[ �

2

n f�g

9: �

a

�! �

0

; �

a

�! �

0

implies� j � �! �

0

j �

0

� j � �! �

0

j �

0

Fig. 6. Rules for �!

branching as any con�guration of the form c?x:ht; �i can have an in�nite number

of derivations since for every v 2 Val c?x:ht; �i

c?v

�! ht; �[x=v]i. However we have

the following results similar to that in [HI 89]. First some notation:

InC(�) = fc j 9�

0

; v:�

c?v

�! �

0

g

OutD(�) = f�

0

j 9c; v:�

c!v

�! �

0

g

IntD(�) = f�

0

j � �! �

0

g

D(�; a) = f�

0

j �

a

�! �

0

g

Theorem 3.1.1. For every � in Con, InC(�), OutD(�) and IntD(�) are �nite.

Proof. By structural induction on �. Note that the case hrecP:t; �i is trivial since

IntD(hrecP:t; �i) = fht[recP:t=P ]; �ig and InC(hrecP:t; �i) = OutD(hrecP:t; �i) =

;. The only nontrivial case is when � has the form � j �, but the proof for this

case is the same as the corresponding one in [HI 89], Theorem 2.2.1 and is there-

fore omitted.

The following lemma follows immediately from the de�nition of the opera-

tional semantics:
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1: c?x:ht; �i

c?v

�! ht; �[v=x]i for any v 2 V al

c!v:ht; �i

c![[e]]

�! ht; �i

2: �

a

�! �

0

implies �+ �

a

�! �

0

� + �

a

�! �

0

3: �

a

�! �

0

implies � j �

a

�! �

0

j �

� j �

a

�! � j �

0

4: �

a

�! �

0

implies � n c

a

�! �

0

n c

if name(a) 6= c

Fig. 7. Rules for

a

�!

Lemma 3.1.1. For all � 2 BCon, other than hSTOP; �i,

1. there exists exactly one � where � �! �

2. � 6

a

�! for all a.

3.2. Testing

In this section we extend the general theory of testing from [He 88] and [HI 89] to

the language VPLA. As in [HI 89] we will only look at the MUST case. The main

di�erence is that now testing is de�ned by interaction between con�gurations

instead of terms. Thus a test is de�ned as a con�guration which may use, in

addition to the channels in Chan, a special channel w for reporting success. We

let tests be ranged over by e and say � must e, where � is a con�guration if in

every maximal computation

�je = �

0

je

0

�! �

1

je

1

� � ��

k

je

k

�! � � �

there exists some n � 0 such that e

n

is successful, i.e. e

n

w!v

�! for some value

v. Note that by this de�nition the test has no access to the private memory of

the con�guration other than what can be obtained by communication. Thus the

content of the stores of the con�guration in the �nal state of a computation can

never be checked.

We de�ne �

<

�

M

� if for every test e,

� must e implies � must e:

For two terms t; u, we let t

<

�

M

u if for all stores, �, ht; �i

<

�

M

hu; �i. Further we

let

�

�

M

denote the equivalence relation over con�gurations/terms obtained by

taking the kernel of

<

�

M

over con�gurations/terms.
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To simplify reasoning about the operational behaviour we give an alternative

characterisation of

<

�

M

in terms of the operational semantics of con�gurations.

This is essentially the same as the alternative characterisation in [HI 89]. As

there the actions are of the form c?v or c!v and when representing internal states

using acceptance sets we need only remember the names of the channels along

which an output can be sent or an input received but not the actual values

themselves. As in x2.3 these will be called events.

Ev = fc! j c 2 Chang [ fc? j c 2 Chang:

Now acceptance sets will be �nite collections of �nite sets of events. Note the

di�erence to the acceptance sets in the de�nition of the Acceptance Trees. Here

the acceptance sets are not necessarily saturated.

To de�ne the alternative characterisation we need some notation, taken di-

rectly from [HI 89].

� For s 2 Act

�

de�ne �

s

=) � by

i) �

"

=) � if � �!

�

�

ii) �

as

0

=) � if for some �

0

, �

00

, �

"

=) �

0

, �

0

a

�! �

00

and �

00

s

0

=) �

� L(�) = fs j for some �, �

s

=) �g

� De�ne #, # s, " and " s by:

i) � # if there is no in�nite internal computation

� = �

0

�! �

1

�! � � �

ii) � # " if � #

iii) � # as

0

if � # and if �

a

=) �

0

then �

0

# s

0

iv) � " if � # is false and � " s if � # s is false.

� De�ne S(�) � Ev by

S(�) = fc? j for some v, �

c?v

=)g [ fc! j for some v, �

c!v

=)g

� De�ne A(�; s), the acceptance set of events of � after s by:

A(�; s) = fS(�

0

) j �

s

=) �

0

g:

De�nition 3.2.1. For �; � 2 Con, ��

M

� if for every s 2 Act

�

� # s =) a) � # s

b) A(�; s) �� A(�; s)

where A �� B is de�ned by

for every A 2 A there is some

B 2 B such that B � A:

Note that if A and B are saturated then A �� B reduces to A � B, i.e. an

ordinary set inclusion, under the assumption that

S

A =

S

B.

In this de�nition of �

M

the con�gurations play the role of processes in the

de�nition of �

M

in [HI 89]. Thus we can state an alternative characterization

theorem in the same way as in that paper. Although the proof is essentially the

same as the corresponding proof in [HI 89] we will give the details of the \if" part
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of it to demonstrate how the existing proofs can be reused with con�gurations

in the role of processes.

Theorem 3.2.1. For all �, � 2 Con

��

M

� if and only if �

<

�

M

�:

Proof. In the following we use 1:w as a shorthand notation for the term

(int?x:w!0:STOP j int!0:STOP ) n int:

This represents a process which is not yet in a successful state but can sponta-

neously evolve to such a state.

For each s 2 Act

�

and a 2 Act de�ne the terms c(s) and e(s; a) as follows:

i) c(") = 1:w

c(c?v:s) = c!v:c(s) + 1:w

c(c!v:s) = (c?x: x = v ! c(s); 1:w) + 1:w

ii) e("; c?v) = c!v:STOP + 1:w

e("; c!v) = (c?x: x = v ! STOP; 1:w) + 1:w

e((c?v)s; a) = c!v:e(s; a) + 1:w

e((c!v)s; a) = (c?x: x = v ! e(s; a); 1:w) + 1:w

Take any store �. We de�ne the tests c(s) = hc(s); �i and e(s; a) = he(s; a); �i.

Note that as the term is closed these tests are independent of the store �. With

these de�nitions one can show that

� must c(s) if and only if � # s

and

if � # s then � must e(s; a) if and only if sa 62 L(�):

As a corollary we have

if �

<

�

M

� and � # s then � # s

and

if �

<

�

M

� then � # s and s 2 L(�) implies s 2 L(�):

Now suppose �

<

�

M

� we show that ��

M

�. Assume � # s. This implies � # s.

Let A 2 A(�; s). From above A(�; s) is not empty and, since � # s, it is �nite,

say A(�; s) = fB

1

; : : : ; B

n

g. We have to show, that B

i

� A for some i. Assume

that this is not true. This means B

i

nA 6= ; for all i and we can choose b

i

2 B

i

nA

for i = 1; : : : ; n. Now for e 2 Ev and L � Ev let b(e) be de�ned by

b(c?) = c!0:w!0:STOP

b(c!) = c?x:w!0:STOP

b(s; L) by

b("; L) = �fb(a) j a 2 Lg

b((c?v)s; L) = c!v:b(s; L) + 1:w

b((c!v)s; L) = (c?x:x = v ! b(s; L); w!0:STOP ) + 1:w

and b(s; L) by

b(s; L) = hb(s; L); �i
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Then � must b(s; B) where B = fb

1

; : : : ; b

n

g, but � m6 ust b(s; B) because of the

unsuccessful computation

b(s; B)j� �!

�

b("; B)j

where �

s

=)  and S() = A.

As a corollary to the theorem we have the following:

Corollary 3.2.1.

<

�

M

over con�gurations is preserved by all the operations in

�.

Proof. Similar to the proof for the corresponding result in [HI 89].

3.3. Full Abstractness

This last subsection is devoted to the proof of the full abstractness for con�gura-

tions of the denotational model AT

v

with respect to the testing preorder

<

�

M

.

First we have to extend the de�nition of the interpretation of terms to that of

con�gurations. We write [[ ]] instead of AT

v

[[ ]].

De�nition 3.3.1. The semantics of con�gurations is given as a function:

[[ ]] : Con �! (Env

D

�! D)

de�ned by:

i) [[ht; �i]]� = [[t]]��

ii) [[op(�)]]� = op([[�]]�):

Also the de�nition of the �nite approximations extends to con�gurations in the

obvious way, and we can easily deduce that the meaning of a con�guration is the

limit of the meaning of its �nite approximations:

[[�]] =

G

f[[�

(n)

]] j n � 1g:

By full abstractness of the model we mean as usual

[[�]] � [[�]] , �

<

�

M

�

for all con�gurations �; �.

The proof follows very much the same lines as the corresponding one for

the applicative case in [HI 89]. In the following we will outline the proof of

full abstractness in [HI 89] and show how our new theory can be �tted into this

existing proof which thus can be more or less reused. Recall that the denotational

model is the same and that the con�gurations in the new settings play the role

of processes in the previous one.

In [HI 89] we de�ned a transition relation and a divergence predicate in AT

v

,

and from that deduced an alternative characterization for the preorder �, called

�

M

. As we use the same model we can use the same de�nition. Thus we de�ne

the transition relation by

(A; f)

c�v

�! T if � 2 f!; ?g; c� 2

[

A and f(c�)(v) = T



Communicating Processes with Value-passing and Assignments 29

The divergence predicate, ", is de�ned by letting ? " and extending it in the

usual way for s 2 Act

�

. # s denotes the the negation of " s. The acceptance set

of a tree after s, A(T; s) is de�ned by:

i) A(?; ") = ;

A((B; f); ") = B

ii) A(T; as) =

�

A(T

0

; s) if T

a

�! T

0

; otherwise

Now we de�ne the preorder �

M

on AT

v

by:

For all T;U 2 AT

v

let T �

M

U if for every s 2 Act

�

,

T # s) i)U # s

ii)A(U;s) � A(T; s)

Further we have from [HI 89], that�

M

=� in AT

v

. We have also proved that for

con�gurations�

M

=

<

�

M

and therefore, for the full abstractness, it is su�cient

to prove that

[[�]]�

M

[[�]] , ��

M

�:

This follows as an immediate consequence of the following two properties:

For all � 2 Con and s 2 Act

�

i) [[�]] # s if and only if � # s

ii) if � # s then A([[�]]; s) = c(A(�; s))

We have therefore reduced the proof of the full abstractness to the proof of of i)

and ii). To prove this we again rely on the similarities to [HI 89].

To prove i) above in the mentioned paper we introduced the notion of weak

sum forms and proved that each �nite process can be rewritten via the proof

system to such a weak sum form. Similarly we used the notion of head normal

forms and a normalization theorem for convergent processes to prove ii). To reuse

this proof we have to de�ne the notion of weak sum forms and head normal forms

such that they �t into the original proof. But �rst we de�ne a proof system over

con�gurations. We will use this proof system to transform con�gurations to weak

normal forms and head normal forms.

The equations are now of two types. The �rst type consists of the equations

already introduced for processes in x2.5, Figure 2 and 4. The variables are now

supposed to be instantiated by con�gurations instead of processes. Also STOP

and 
 are instantiated by hSTOP; �i for arbitrary �. The second type (Figure 8)

gives the connection between the semantics of basic con�gurations (of the form

ht; �i) and the more complex ones. Here the variables are instantiated by terms.

The inference rules are given in Figure 9 and are the same as those introduced in

x2.5 except that the rules concerning recursion are omitted. The soundness of the

whole system is with respect to con�gurations in the �rst two sets of equations

and the inference rules but with respect to terms in the third set of equations.

We call this new system A and the corresponding preorder v

A

.

Theorem 3.3.1. (Soundness) For all � 2 Con:

� v

A

� implies [[�]]� [[�]]

and �

<

�

M

�

From Lemma 3.1.1 and the de�nition of the proof system we get:
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h(x := e);X;�i = hX;�[v=x]i where v = [[e]]�

hbe! X

1

; X

2

; �i =

�

hX

1

; �i if [[be]]� = true

hX

2

; �i if [[be]]� = false

hop(X); �i = op(hX;�i)

hc?x:t; �i = c?x:ht; �i

hc!e:t; �i = c!v:ht; �i where v = [[e]]�

Fig. 8. Equations for Basic Con�gurations

Lemma 3.3.1. For all � 2 BCon there exists at most one � such that � �! �.

For this �, � =

A

�.

Proof. The �rst result is already stated in lemma 3.1.1. The second one follows

easily from this and the equations in Figure 8

Now we de�ne weak sum forms for con�gurations. As now the meaning of the

con�gurations hSTOP; �i and h
; �i is completely independent of the store �,

both in the operational and the denotational semantics, we use the notation

STOP respectively 
 for these con�gurations.

De�nition 3.3.2. (Weak Sum Forms) The set of weak sum forms, wSF , is

the least set which satis�es

1. STOP;
 2 wSF

2. If �

ij

2 BCon and pre

ij

are input/output pre�xings, i = 1; : : : ; i

j

; j =

1; : : : ; N , then

N

X

j=1

�

i

j

X

i�1

pre

ij

:�

ij

2 wSF:

We have the following:

Theorem 3.3.2. If � is �nite then � =

A

wsf(�) for some wsf(�) 2 wSF .

Proof. Using the equation

hx := e:X:�i = hX;�[[[e]]�=x]i

we can remove assignment from the terms which appear in any �nite con�gura-

tion. Then we proceed in the same way as in the corresponding proof in [HI 89].

An easy consequence of this theorem is:
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I � v �

� v �; � v 

� v 

II

�

i

v �

i

op(�) v op(�)

for every op 2

P

III

� v �

c!e:� v c!e:�

�[v=x] v �[v=x] for every v 2 V

c?x:� v c?x:�

IV

� v �

�� v �� � v �

for every equation � v �

V

[[e]] = [[e

0

]]

c!e:� = c!e

0

:�

VI

c?x:� = c?y:�[y=x]

if y does not occur free in �

Fig. 9. Proof System

Corollary 3.3.1. For all �nite �

� " , � =

A


:

Proof. By theorem 3.3.2 we may assume, that � is in wSF . The result follows im-

mediately from the structure of the weak sum forms and the strictness equations

in Figure 2.

Finally we introduce head normal forms for con�gurations. The de�nition is

basically the same as the one given in [HI 89].

De�nition 3.3.3. (Head Normal Forms) HNF is the least set which satis�es

1. STOP 2 HNF

2. Let A 2 sat(EV ) and f a partial function, which associates with every e 2

S

A of the form c! a �nite nonempty set, f(c), of pairs of values and basic

con�gurations. Then any con�guration of the form

X

� f

X

f�

e;f

je 2 AgjA 2 Ag

is in HNF , where

a) if e is c? then �

e;f

is a con�guration of the form c?x:ht; �i.
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b) if e is c! then �

e;f

is the con�guration

X

fc!v:�

v

j(v; �

v

) 2 f(c)g

We have the following normalization theorem for convergent con�gurations:

Theorem 3.3.3. (Normalization) If � # then � =

A

h(�) for some h(�) 2

HNF .

Proof. Similar to the proof for Proposition 4.2.1 in [HI 89].

For the sake of completeness we state the above mentioned properties as a propo-

sition:

Proposition 3.3.1. For all � 2 Con and s 2 Act

�

i)[[�]] # s if and only if � # s

ii) if � # s then A([[�]]; s) = c(A(�; s))

Proof. Now when we have de�ned weak sum forms and head normal forms for

con�gurations and proved the corresponding normalization theorems, the proof

can proceed in exactly the same way as the corresponding proof in [HI 89]

As motivated at the beginning of this section our main theorem, the full ab-

stractness theorem, follows as a corollary to Proposition 3.3.1.

Theorem 3.3.4. (Full Abstractness) For all con�gurations �; �

[[�]] � [[�]] if and only if �

<

�

M

�

Proof. Follows immediately from Proposition 3.3.1

We will end this section by summarising the results and compare them to the

results in the previous section.

In x2 we have a completeness result for the proof system with respect to closed

terms whereas in this section we have proved full abstractness of the denotational

model with respect to con�gurations. These two results are now combined in the

following theorem:

Theorem 3.3.5. For all processes p; q

p v

A

q if and only if [[p]]� [[q]] if and only if p

<

�

M

q

Proof. The �rst statement is just the content of Theorem 2.5.1. For the second

one we recall that by de�nition p

<

�

M

q if and only if hp; �i

<

�

M

hq; �i for all �.

Theorem 3.3.4 implies that this is true if and only if [[hp; �i]] � [[hq; �i]] for all

�. But as p and q are closed, this is equivalent to [[p]] � [[q]]. This completes the

proof.
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4. Conclusion

In this paper we have represented a semantic theory for a process algebra which

supports value-passing and is equipped with the imperative assignment con-

struct. This is an direct extension of [HI 89], which handles an applicative version

of the language, i.e. the same language but without assignment and stores.

As in the mentioned paper, the theory is approached from three di�erent

angles. Thus we de�ne a denotational model for the language as a version of the

model Acceptance Trees([He 88],[HI 89]). Further we give an axiomatization of

the model and �nally we de�ne an operational behaviour in terms of testing. We

show the equivalence of all three approaches.

Following the standard approach the semantic interpretation is given with

respect to a store whereby we mean a total function which keeps track of the

bindings of the variables to values. Our approach is based on the idea, which al-

ready occurs in [Hoa 78], that each subcomponent of a system has it own private

store, only accessible for other processes by communication. Thus the possible

side e�ects are localised and can only take place within the subcomponents of

the system. This implies that a con�guration, a pair of a term and a corre-

sponding store, behave very much like processes in the applicative case with the

consequence that we can reuse most of the theory already developed for this

case ([HI 89]). Thus the denotational model is exactly the same and most of the

equations are still valid; we only have to add a few very intuitive ones, dealing

with assignment, to obtain a sound and complete proof system.

Our language can be considered as an extension of the programming lan-

guage Occam which in turn can be considered as an descendant of the original

programming language CSP. In one respect we are more limited than Occam in

our language as we do not allow sequential composition in general but only as

action pre�xing but we believe that this does not a�ect the usefulness of the

language too much.

Some theoretical work has been done on CSP and Occam. An operational

semantics for CSP is given in [Plo 82], a denotational model for Occam in [Ros 87]

and an axiomatic description of Occam in [HR 88]. Our theory is more complete

in the sense that we give all three approaches and show that they all coincide. The

operational semantics is very similar to that in [Plo 82]. As pointed out in the

introduction our denotational semantics is quite di�erent to that in [Ros 87] and

moreover we do not need to introduce any restrictions on the use of channels and

variables. Further our axiomatization is much simpler and more intuitive than

in the previous case.

As mentioned earlier we restrict the sequential composition to a simple action

pre�xing. It could be the subject to future work to extend our language with

the more general form for sequential composition and termination. The main

problem we meet in this connection is how to handle the termination of a parallel

composition of two processes.

Further, like in [HI 89], the proof system introduced in this paper is mainly

of theoretical interest but could be extended along the lines of [He 89] to a more

practical proof system.
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Appendix: Operators in AT

v

Output:

De�ne out

AT

: Chan� V al � AT �! AT by

out

AT

(c; v; t) = hffc!gg; fi

where

domain(f) = fc!g

f(c!) = fhv; tig

Input:

De�ne in

AT

: Chan� (V al �! AT ) �! AT by

in

AT

(c; g) = hffc?gg; fi

where

domain(f) = fc?g

f(c?) = g

STOP :

Let STOP

AT

be the tree hffgg; fi, where

f is the empty function


 :

Let 


AT

be ?

AT

Internal Nondeterminism:

De�ne �

AT

: AT � AT �! AT as

Y �I:�t:�u: if t = ? or u = ?

then ?

else let

hA; fi = t

hB; gi = u

in hc(A [ B); hi

where c(X) is the least saturated set containing X and h is de�ned

by:

h(c?)= I(f(c?); g(c?)) if c? 2 domain(f) \ domain(g)

= f(c?) if c? 2 domain(f) n domain(g)

= g(c?) if c? 2 domain(g) n domain(f)

and

h(c!) = f(c!) if c! 2 domain(f) n domain(g)

= g(c!) if c! 2 domain(g) n domain(f)

= k if c! 2 domain(f) \ domain(g)

where

k(v)= I(f(c!)(v); g(c!)(v)) if v 2 domain(f(c!)) \ domain(g(c!))

= f(c!)(v) if v 2 domain(f(c!)) n domain(g(c!))

= g(c!)(v) if v 2 domain(g(c!)) n domain(f(c!))

External Nondeterminism:

De�ne +

AT

: AT � AT �! AT by

t+

AT

u = if t = ? or u = ?

then ?
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else let

hA; fi = t

hB; gi = u

in hA�B; hi

where

A�B = fA [BjA 2 A; B 2 Bg

and h is de�ned by

h(a) = f(a) if a 2 domain(f) n domain(g)

= g(a) if a 2 domain(g) n domain(f)

h(c?)= f(c?) �

AT

g(c?) if c? 2 domain(f) \ domain(g)

and for c! 2 domain(f) \ domain(g), h(c!) is de�ned by

h(c!)(v)= f(c!)(v) �

AT

g(c!)(v)

if v 2 domain(f(c!)) \ domain(g(c!))

= f(c!)(v) if v 2 domain(f(c!)) n domain(g(c!))

= g(c!)(v) if v 2 domain(g(c!)) n domain(f(c!))

Restriction:

For each c 2 Chan let n

AT

c : AT �! AT denote

Y �R:�t: if t = ? then ?

else let hA; fi = t

in hB; gi

where

B = fA n fc?; c!g j A 2 Ag

and

g(e) = R(f(e)) for e 2 Ev(B)

Parallel:

De�ne j

AT

: AT � AT �! AT as

Y �F:�t:�u:if t = ? or u = ?

then ?

else let

hA; fi = t

hB; gi = u

in

P

� ft

AB

jA 2 A; B 2 Bg

where

t

AB

=if INT (A;B) = ;

then sumext(A;B)

else (sumext(A;B) + sumint(A;B)) � sumint(A;B)

where

sumext(A;B) =

P

EXT (A;B)

sumint(A;B) =

P

� INT (A;B)

where INT (A;B); EXT (A;B) are de�ned by

INT (A;B) = fF (f(c?)(v); g(c!)(v)) j c? 2 A; c! 2 B

and v 2 domain(g(c!))g

[fF (f(c!)(v); g(c?)(v)) j c! 2 A; c? 2 B

and v 2 domain(f(c!))g

EXT (A;B) = fin

AT

(c; �v:F (f(c?)(v); u) j c? 2 Ag
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[fin

AT

(c; �v:F (t; g(c?)(v)) j c? 2 Bg

[fout

AT

(c; v; F (f(c!)(v); u) j c! 2 A;

v 2 domain(f(c!))g

[fout

AT

(c; v; F (t; g(c!)(v)) j c! 2 B;

v 2 domain(g(c!))g
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