
Adding recursion to Dpi

Samuel Hym and Matthew Hennessy

Abstract. Dpi is a distributed version of the pi-calculus, in which processes are
explicitly located, and a migration construct may be used for moving between locations.
We argue that adding a recursion operator to the language increases significantly its
descriptive power. But typing recursive processes requires the use of potentially infinite
types.

We show that the capability-based typing system of Dpi can be extended to co-
inductive types so that recursive processes can be successfully supported. We also
show that, as in the pi-calculus, recursion can be implemented via iteration. This
translation improves on the standard ones by being compositional but still comes with
a significant migration overhead in our distributed setting.

1 Introduction

The pi-calculus, [SW01], is a well-known formal calculus for describing,
and reasoning about, the behaviour of concurrent processes which interact
via two-way communication channels. Dpi, [HR02], is one of a number
of extensions in which processes are located, and may migrate between
locations, or sites, by executing an explicit migrate command; the agent
goto k.P , executing at a site l, will continue with the execution of P at
the site k. This extension comes equipped with a sophisticated capability-
based type system, and a co-inductive behavioural theory which takes
into account the constraints imposed by these types, [HMR03, HR02].
The types informally correspond to sets of capabilities, and the use which
a process may make of an entity, such as a location or a channel, depends
on the current type at which process owns the entity. Moreover this type
may change over time, reflecting the fact that processes may gradually
accumulate capabilities over entities.

The most common formulations of the pi-calculus use iteration to
describe repetitive processes. Thus

∗ c ?(x) d !〈x〉
represents a process which repeatedly inputs a value on channel c and
outputs it at d. An alternative would be to use an explicit recursion
operator, leading to definitions such as

rec Z. c ?(x) d !〈x〉Z
But it has been argued that explicit recursion is unnecessary, because it
offers no extra convenience over iteration; indeed it is well-known that

2 Samuel Hym and Matthew Hennessy

such a recursion operator can easily be implemented using iteration; see
pages 132–138 in [SW01].

However the situation changes when we move to the distributed world
of Dpi. In Section 2 we demonstrate that the addition of explicit recursion
leads to powerful programming techniques; in particular it leads to simple
natural descriptions of processes for searching the underlying network for
sites with particular properties.

Unfortunately this increase in descriptive power is obtained at a price.
In order for these recursive processes to be accommodated within the typed
framework of Dpi, we need to extend the type system with co-inductive
types, that is types of potentially infinite depth.

The purpose of this paper is to

• demonstrate the descriptive power of recursion when added to Dpi;

• develop a system of co-inductive types which support recursive pro-
cesses;

• prove that at the cost of significant migration costs recursion in Dpi
can still be implemented by purely iterative processes, in the absence
of network failures.

In Section 2 we describe the extension to Dpi, called recDpi, and
demonstrate the power of recursion by a series of prototypical examples.
This is followed in Section 3 with an outline of how the co-inductive types
are defined, and how the typing system for Dpi can be easily extended to
handle these new types. The translation of recursive processes into itera-
tive processes is explained in Section 5, and we give the proof of correctness
in Section 6. This requires the use of a typed bisimulation equivalence to
accommodate the typed labelled transition system for recDpi.

The paper relies heavily on existing work on Dpi, and the reader is
referred to papers such as [HMR03, HR02] for detailed explanations of
both the semantics of Dpi and its typing system.

2 The language recDpi

The syntax of recDpi is given in Figure 1, and is a simple extension of
that of Dpi; the new constructs are highlighted in bold font. As usual
it assumes a set of names, ranged over by letters such as a, b, c, k, l, . . .,
and a separate set of variables, ranged over by x, y, z, . . .; to handle recur-
sive processes we use another set of recursion variables, ranged over by
X, Y, Z, . . . The values in the language include identifiers, that is names
or variables, and addresses, of the form u@w; intuitively w stands for a

Adding recursion to Dpi 3

Figure 1 Syntax of recDpi

M, N ::= Systems
lJP K Located Process
M |N Composition
(new e : E)M Name Creation
0 Termination

P, Q ::= Processes
u !〈V 〉P Output
u ?(X : T)P Input
goto v.P Migration
if u1 = u2 then P else Q Matching
(newc c : C)P Channel creation
(newloc k : K)P Location creation
P |Q Composition
stop Termination
∗ P Iteration
here [x] P Location look up
rec (Z : R). P Recursion
Z Recursion variable

location and u a channel located there. In the paper we will consider only
closed terms, where all variables (recursion included) are bound.

The most important new construct is that for typed recursive pro-
cesses, rec (Z : R). P ; as we shall see the type R dictates the requirements
on any site wishing to host this process. We also have a new construct
here [x] P , which allows a process to know its current location.
Example 2.1 (Searching a network). Consider the following recursive pro-
cess, which searches a network for certain values satisfying some unspeci-
fied predicate p:

Search , rec Z : S. test ?(x)if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.Z

When placed at a specific site such as k, giving the system

kJSearchK,
the process first gets the local value from the channel test. If it satisfies
the test the search is over; the process returns home, and reports the
value. Otherwise it uses the local channel neigh to find a neighbour to the

4 Samuel Hym and Matthew Hennessy

current site, migrates there and launches a recursive call at this new site.
¥

We refrain from burdening the reader with a formal reduction seman-
tics for recDpi, as it is a minor extension of that of Dpi. However in
Section 5 we give a typed labelled transition system for the language, the
τ -moves of which provides our reduction semantics, see Figure 14. For the
current discussion we can focus on the following rules:

(lts-here)

kJhere [x] P K τ−→ kJP [k/x]K
(lts-iter)

kJ∗ P K τ−→ kJ∗ P K | kJP K
(lts-rec)

kJrec (Z : R). P K τ−→ kJP{rec (Z:R). P/Z}K
The first simply implements the capture of the current location by the
construct here. The second states that the iterative process at k, kJ∗ P K
can spawn a new copy kJP K, while retaining the iterated process. This
means that every new copy of this process will be located in k. The
final one, (lts-rec), implements recursion in the standard manner by
unwinding the body, which is done by replacing every free occurrence of
the recursion variable Z in P by the recursive process itself. This takes
an explicit τ -reduction to match the rule (lts-iter).
Example 2.2 (Self-locating processes). We give an example to show why the
construct here is particularly interesting for recursive processes. Consider
the system kJQuestK where

Quest , rec Z : R. here [x] (newc ans) neigh ?(y : R)
(ans ?(news) . . . | goto y.req !〈data, ans@x〉Z)

After determining its current location x, this process generates a new local
channel ans at the current site k, and sets up a listener on this channel to
await news. Concurrently it finds a neighbour, via the local channel neigh.
It then migrates to this neighbour and poses a question there, via the
channel req, and fires a new recursive call, this time at the neighbouring
site. The neighbour’s request channel req requires some data, data, and a
return address, which in this case is given via the value ans@x.

Note that at runtime the occurrence of x in the value proffered to the
channel req is substituted by the originating site k. After the first three
steps in the reduction of the system kJQuestK, we get to

(new ans)
kJneigh ?(y : R) (goto y.req !〈data, ans@k〉Quest | ans ?(news) . . .)K

Adding recursion to Dpi 5

Figure 2 Recursive pre-types

Base Types: B ::= int | bool | unit . . .
Local Channel Types: A ::= r〈U〉 | w〈T〉 | rw〈U,T〉
Capability Types: C ::= u : A
Location Types: K ::= loc[C1, . . . , Cn], n ≥ 0 | µY.K | Y
Value Types: V ::= B | A | (Ã)@K
Transmission Types: T, U ::= (V1, . . . , Vn), n ≥ 0

If k’s neighbour is l, this further reduces to (up to some reorganisation)

(new ans) kJans ?(news) . . .K | lJQK
| (new ans′) lJneigh ?(y : R) (goto y.req !〈data, ans′@l〉Quest

| ans′ ?(news) . . .)K
with Q some code running at l to answer the request brought by Quest.

The here construct can also be used to write a process initialising a
doubly linked list starting from a simply linked one. We assume for this
that the cells are locations containing two specific channels: n to get the
name of the next cell in the list, p for the previous. The initial state of
our system is

l0Jn !〈l1〉K | l1Jn !〈l2〉K | . . .
and we run the following code in the first cell of this network to initialise
the list:

rec Z : R. n ?(n′) here [p′] (n !〈n′〉 | goton′.(p !〈p′〉 |Z))

¥
Now we need to look more closely at the types, like R, involved in the

recursive construct.

3 Co-inductive types for recDpi

There is a well-established capability-based type system for Dpi, [HR02],
which we can adapt to recDpi.

3.1 The Types

In this type system local channels have read/write types of the form r〈U〉,
w〈T〉, or rw〈U, T〉 (meaning that values are written at type T and read
at type U on a channel of that type), provided the object types U and T
“agree”, as will be explained later. Locations have record types, of the
form

loc[u1 : A1, . . . , un : An]

6 Samuel Hym and Matthew Hennessy

indicating that the local channels ui may be used at the corresponding
type Ai.

However with recursive processes it turns out that we need to consider
infinite location types. To see this consider again the searching process
Search from Example 2.1. Any site, such as k, which can support this
process needs to have a local channel called neigh from which values can
be read. These values must be locations, and let us consider their type,
that is the object type of neigh. These locations must have a local channel
called test, of an appropriate type, and a local channel called neigh; the
object type of this local channel must be in turn the same as the type
we are trying to describe. Using a recursion operator µ, this type can be
described as

µY.loc[test : r〈Tt〉, neigh : r〈Y〉]
which will be used as the type S in the definition of Search; it describes
precisely the requirements on any site wishing to host this process.

The set of recursive pre-types is given in Figure 2, and is obtained by
adding the operator µY.K as a constructor to the type formation rules for
Dpi. Following [SW01] we can associate with each recursive pre-type T
a co-inductive pre-type denoted Tree(T), which takes the form of a finite-
branching, but possibly infinite, tree whose nodes are labelled by the type
constructors. For example Tree(S) is the infinite tree

Definition 3.1 (Contractive and Tree pre-type). We call a recursive
pre-type S contractive if for every µY.S′ it contains, Y can only appear
in S′ under an occurrence of loc. In the paper we will only consider
contractive pre-types.

For every contractive S we can define Tree(S), the unique tree satisfying
the following equations:

• unwinding recursive pre-types Tree(µY.S′) = Tree(S′{|µY.S′/Y|})

Adding recursion to Dpi 7

Figure 3 Dpi subtyping rules

(sub-base)

base <: base

(sub-cap)

A <: B

u : A <: u : B

(sub-tuple)

Ci <: C′i
(C̃) <: (C̃′)

(sub-chan)

T2 <: T1 <: U1 <: U2

w〈T1〉 <: w〈T2〉
r〈U1〉 <: r〈U2〉
rw〈U1, T1〉 <: r〈U2〉
rw〈U1, T1〉 <: w〈T2〉
rw〈U1, T1〉 <: rw〈U2, T2〉

(sub-hom)

A1 <: A2

K1 <: K2

A1@K1 <: A2@K2

(sub-loc)

Ai <: A′i, 1 ≤ i ≤ n

loc[u1 : A1, . . . , un : An, . . . , un+p : An+p] <: loc[u1 : A′1, . . . , un : A′n]

• not modifying any other construct; for instance

Tree(r〈U〉) = r〈Tree(U)〉
We call Tree(S) the tree pre-type associated with the recursive pre-type S.

¥

Note that Tree(S) might not be defined when the recursive pre-type S
is not contractive.

To make clearer the distinction between tree types and recursive types,
we slightly modify the notation and fonts of types. So the recursive type

µY.loc[test : r〈Tt〉, neigh : r〈Y〉]
corresponds to the tree pre-type

loc[test : r〈Tt〉, neigh : r〈loc[test : r〈Tt〉, neigh : r〈. . .〉]〉] .

To go from pre-types to types, we need to get rid of meaningless pre-
types like rw〈r〈〉, int〉, which would be the type of a channel on which
integers are written but channels are read. This is achieved using a notion
of subtype, and demanding that, in types of the form rw〈U,T〉, T must
be a subtype of U.

8 Samuel Hym and Matthew Hennessy

In Figure 3 we give the standard set of rules which define the subtyping
relation used in Dpi; a typical rule, an instance of (sub-chan), takes the
form

T <: U <: U′

rw〈U,T〉 <: r〈U′〉
However here we interpret these rules co-inductively, [GLP03, Pie02]. For-
mally they give rise to a transformation on relations over tree pre-types.
If R is such a relation, then Sub(R) is the relation given by:

Sub(R) = {(base, base)}
∪ {(u : A, u : B) if (A,B) is in R}
∪ {((C̃), (C̃′)) if (Ci,C

′
i) is in R for all i}

∪ {(w〈T1〉, w〈T2〉) if (T2,T1) is in R}
∪ {(r〈U1〉, r〈U2〉) if (U1,U2) is in R}
∪ {(rw〈U1,T1〉, r〈U2〉) if (T1,U1) and (U1,U2) are in R}
∪ {(rw〈U1,T1〉, w〈T2〉) if (T2,T1) and (T1,U1) are in R}
∪ {(rw〈U1,T1〉, rw〈U2,T2〉) if (T2,T1),

(T1,U1) and (U1,U2) are in R}
∪ {(A1@K1,A2@K2) if (A1,A2) and (K1,K2) are in R}
∪ {(loc[u1 : A1, . . . , un+p : An+p], loc[u1 : A′1, . . . , un : A′n])

if (Ai,A
′
i) is in R for all i ≤ n}

Note that Sub is a total monotonic function from relations to relations.
We can easily see the intuition in the definition of this function: every
case corresponds to one rule, even if a set of rules are grouped together,
like in (sub-chan) gathering all the different cases for the separate read
and write capabilities. Then, if the hypotheses of any rule of Figure 3 are
in R the conclusion is in Sub(R).

Now that the function Sub is defined, we can use it to define the notion
of subtyping on the tree pre-types and consequently obtain the notion of
types.

Definition 3.2 (Subtyping and types). We define the subtyping rela-
tion between tree pre-types to be the greatest fixpoint of the function Sub,
written νSub. For convenience we often write T <: T′ to mean that (T,T′)
is in νSub.

Then a tree pre-type is called a tree type if every occurrence of rw〈U,T〉
it contains satisfies T <: U.

Finally this is lifted to recursive pre-types. A pre-type T from Figure 2
is called a recursive type if Tree(T) is a tree type. ¥

Adding recursion to Dpi 9

3.2 Theory of tree types

Now that we have defined a notion of tree types out of recursive pre-
types, we want to prove some properties of subtyping over these types.
For this, the co-inductive definition of subtyping gives rise to a natural
co-inductive proof method, the dual of the usual inductive proof method
used for sub-typing in Dpi.

This proof method works as follows. To show that some element, say
a, is in the greatest fixpoint of any function f it is sufficient to give a set
S such that

• a is in S;

• S is a postfixpoint of f , that is S ⊆ f(S).

From this it follows that S is a subset of the greatest fixpoint of f , which
therefore contains the element a.

We will apply this technique to the function Sub, and this case showing
that a given S is a postfixpoint is facilitated by the fact that it is invertible,
in the meaning of [GLP03, Pie02]. The inverse is the partial function
defined as follows. Since there is always at most one conclusion in a rule,
we can consider this partial function only on pairs:

supportSub((T1,T2)) =
∅ if T1 = T2 = base

{(A,B)} if T1 = u : A and T2 = u : B

{(Ci,C
′
i)} if T1 = (C̃) and T2 = (C̃′), with same arity

{(T′2,T′1)} if T1 = w〈T′1〉 and T2 = w〈T′2〉
{(U′1,U′2)} if T1 = r〈U′1〉 and T2 = r〈U′2〉
{(T′1,U′1), (U′1,U′2)} if T1 = rw〈U′1,T′1〉 and T2 = r〈U′2〉
{(T′2,T′1), (T′1,U′1)} if T1 = rw〈U′1,T′1〉 and T2 = w〈T′2〉
{(T′2,T′1), (T′1,U′1), (U′1,U′2)}

if T1 = rw〈U′1,T′1〉 and T2 = rw〈U′2,T′2〉
{(A1,A2), (K1,K2)} if Ti = Ai@Ki

{(A1i,A2i)i} for all i ≤ n
if T1 = loc[u1 : A11, . . . , un+p : A1(n+p)]
and T2 = loc[u1 : A21, . . . , un : A2n]

undefined otherwise

Then it is naturally extended into a partial function from relations to
relations by:

supportSub(R) =
⋃

(T1,T2)∈R
supportSub((T1,T2))

10 Samuel Hym and Matthew Hennessy

supportSub(R) being undefined as soon as supportSub is undefined for some
tuple in R. Note that this definition implies that supportSub, as a function
from relations to relations, is monotonic on its definition domain.

Intuitively, supportSub computes the set of hypotheses needed to reach
a given conclusion by Sub. In this sense it can be considered to be an
inverse of Sub. Formally the relationship between these two functions is
given in the following lemma.

Lemma 3.3. (1) for a pair t if there exists R such that t ∈ Sub(R) then
supportSub(t) is defined;

(2) supportSub(Sub(R)) ⊆ R for any relation R.

Proof. First we prove (1). Suppose (T1,T2) is in Sub(R) for some R.
It must be by one of the cases in the definition of Sub, and each case
corresponds exactly to one case of the definition of supportSub.

Now consider (2). To prove that supportSub(Sub(R)) ⊆ R for any
relation R, it is enough again to do an analysis on a pair (T1,T2) in
supportSub(Sub(R)). For instance, let us do one case: if (T1,T2) is in
supportSub(Sub(R)) because there exists in Sub(R) a pair (T0

2,T
0
1) such

that T0
2 = rw〈U2,T2〉 and T0

1 = w〈T1〉 (seventh case of the definition of
supportSub), then we know that (T0

2,T
0
1) can be in Sub(R) only by the

seventh case of its definition which implies that (T1,T2) and (T2,U2)
must be in R which concludes this case.

Of course, since tree types are defined coinductively, equality must be
defined as the greatest fixpoint of a function, the following total one:

Eq(R) = {(base, base)}
∪ {(u : A, u : B) if (A,B) is in R}
∪ {((C̃), (C̃′)) if (Ci,C

′
i) is in R for all i}

∪ {(w〈T1〉, w〈T2〉) if (T1,T2) is in R}
∪ {(r〈U1〉, r〈U2〉) if (U1,U2) is in R}
∪ {(rw〈U1,T1〉, rw〈U2,T2〉) if (T1,T2) and (U1,U2) are in R}
∪ {(A1@K1,A2@K2) if (A1,A2) and (K1,K2) are in R}
∪ {(loc[u1 : A1, . . . , un : An], loc[u1 : A′1, . . . , un : A′n])

if (Ai,A
′
i) is in R for all i ≤ n}

So the notion of equality given by the greatest fixpoint of this function
uses the main “handle” we have on tree types: it is intuitively checking
that the “heads” of the terms are identical and that the “tails” are also
equal. From now on, we will write T1 = T2 when (T1,T2) is in νEq.

Adding recursion to Dpi 11

With this notion of equality, we show now how Lemma 3.3 can be used
to prove a simple and fundamental property, namely the fact that νSub is
a partial order, so that we have reflexivity, antisymmetry and transitivity.

Lemma 3.4 (Reflexivity). For any tree type T, T <: T.

Proof. Let us consider the relation

R = {(T,T) | T is a type} ∪ νSub

We prove that R is a postfixpoint of Sub.
Let us take a pair in R. If this pair is of the form (T,T), we reason

on the form of T.

• base then (T,T) is obviously in Sub(R).

• r〈U0〉 then, since (U0,U0) is in R, (T,T) is in Sub(R).

• rw〈U0,T0〉 then, by well-formedness of T, we know that T0 <: U0 so
(T0,U0) is inR. Of course, so are (T0,T0) and (U0,U0), which implies
that (T,T) is in Sub(R).

• The remaining cases are similar.

If the pair is in νSub, we know that it is also in Sub(νSub) which is
included in Sub(R).

Lemma 3.5 (Antisymmetry). Suppose that for some tree types T1 and
T2, T1 <: T2 and T2 <: T1. Then T1 = T2.

Proof. Consider the relation R over types defined by:

R = {(T1,T2) | T1 <: T2,T2 <: T1}
We show that this is a postfixpoint of Eq.

For this let us consider two types T1 and T2 such that (T1,T2) is in
R. Then we reason by cases on T1 <: T2. We give here only typical
examples:

• T1 = T2 = base then (T1,T2) is obviously in Eq(R);

• T1 = u : A1 and T2 = u : A2 with A1 <: A2; then T2 <: T1 implies
also that A2 <: A1 which means that (A1,A2) is also in R; this entails
that (T1,T2) is in Eq({(A1,A2)}) ⊆ Eq(R) by monotonicity of Eq;

• T1 = rw〈U′1,T′1〉 and T2 = r〈U′2〉 is impossible because T2 6<: T1.

• The remaining cases are similar.

This proves that R is included in Eq(R), from which the result follows.

12 Samuel Hym and Matthew Hennessy

Lemma 3.6 (Transitivity). Let us suppose that for some tree types T1,
T2 and T3, T1 <: T2 and T2 <: T3. Then T1 <: T3.

Proof. Let us write Tr for the function Tr(R) = R ∪ R ◦ R. Then, what
we want to prove can be formulated as

Tr(νSub) ⊆ νSub

for which we can use the coinduction proof principle. It is sufficient to
prove that

Tr(νSub) ⊆ Sub(Tr(νSub)) (1)

i.e. that Tr(νSub) is a postfixpoint of Sub.
For this, let us consider a pair (T1,T3) in Tr(νSub). By definition of

Tr this implies that either (T1,T3) is in νSub, in which case it is easy
to establish that it is also in Sub(Tr(νSub)) because νSub ⊆ Tr(νSub)
implies that νSub = Sub(νSub) ⊆ Sub(Tr(νSub)), or else there exists
some type T2 such that (T1,T2) and (T2,T3) are in νSub. Therefore
supportSub((T1,T2)) and supportSub((T2,T3)) are defined.

Now we prove that

(T1,T3) ∈ Sub(Tr(supportSub((T1,T2)) ∪ supportSub((T2,T3)))) (2)

by case analysis on the fact that (T1,T2) is in Sub(νSub). In all there are
ten possibilities, of which we examine two typical ones.

• Ti = rw〈U′i,T′i〉 with T′2 <: T′1, T′1 <: U′1 and U′1 <: U′2. Then T3 can
be any one of the forms r〈U′3〉, w〈T′3〉, or rw〈U′3,T′3〉, with the relevant
constraints among T′3 <: T′2, T′2 <: U′2 and U′2 <: U′3. In the case
where T3 = rw〈U′3,T′3〉, this implies:

supportSub((T1,T2)) ∪ supportSub((T2,T3)) =
{(T′2,T′1), (T′1,U′1), (U′1,U′2), (T′3,T′2), (T′2,U′2), (U′2,U′3)}

so Tr(. . .) contains (T′3,T
′
1), (T′1,U

′
1) and (U′1,U

′
3), the three pairs we

need so that their Sub contains (T1,T3) = (rw〈U′1,T′1〉, rw〈U′3,T′3〉).
On the other hand if T3 is only r〈U′3〉 or w〈T′3〉, one pair disap-

pears from supportSub(. . .) and Tr(. . .). But that pair is not needed to
establish that the application of Sub to contains (T1,T3).

• T1 = loc[u1 : A1, . . . , un+p+q : An+p+q] and T2 = loc[u1 : A′1, . . . ,
un+p : A′n+p] with Ai <: A′i for all i ≤ n + p. In this case T2 <: T3

implies that T3 is of the form loc[u1 : A′′1 , . . . , un : A′′n] and that A′j <:
A′′j for all j ≤ n. Then supportSub((T1,T2)) ∪ supportSub((T2,T3))
contains (Ai,A

′
i) for all i ≤ n + p and (A′j ,A

′′
j) for all j ≤ n so Tr

Adding recursion to Dpi 13

of this set contains exactly the pairs we need, namely (Aj ,A
′′
j) for all

j ≤ n, to get (T1,T3) via an application of Sub.

So we have established (2) above.
We now reason as follows. Since {(T1,T2), (T2,T3)} ⊆ νSub, and the

function supportSub is monotonic, we know

supportSub({(T1,T2), (T2,T3)}) ⊆ supportSub(νSub)
= supportSub(Sub(νSub))

But by the second part of Lemma 3.3 we know that supportSub(Sub(νSub))
is a subset of νSub and so

supportSub({(T1,T2), (T2,T3)}) ⊆ νSub

Therefore (2), together with the monotonicity of Sub and Tr ensures that

(T1,T3) ∈ Sub(Tr(νSub))

from which the required (1) follows.

We can also define a meet relation on our types. We proceed as with
the subtyping relation. Meets and joins are defined inductively in Dpi us-
ing the rules in Figures 4 and 5. Those rules involve statements of the form
T1 u T2 = T3 and T1 t T2 = T3. To adapt them to our coinductive set-
ting, we define triples of the form u(T1,T2,T3) and t(T1,T2,T3), where
the Ti are tree types. Then we use the rules from Figures 4 and 5 to define
a coinductive total function MeetJoin over relations of such triples. We
give in Figure 6 the definition of the function MeetJoin. All the individual
clauses in this definition are inherited from the rules in these figures. The
meet and the join operators must be defined at the same time since we
have to deal with contravariance in our types.

We will write T1 u T2 = T3 for types T1, T2 and T3 such that
u(T1,T2,T3) is in νMeetJoin.

We still need to show that the greatest fixpoint of this function actually
gives us operators with the same properties as those in the inductive types
of Dpi. For instance, since meet is defined as a relation over triples of tree
types, we need to first prove that this is a partial function.

Lemma 3.7 (Meet is a function). For any types T1, T2, T3 and T4,
T1 u T2 = T3 and T1 u T2 = T4 implies T3 = T4.

14 Samuel Hym and Matthew Hennessy

Figure 4 Dpi meet rules

(meet-base)

base1 u base2 = base3
base1 = base2 = base3

(meet-cap)

A1 u A2 = A3

u : A1 u u : A2 = u : A3

(meet-tuple)

Ci u C′i = C′′i
(C̃) u (C̃′) = (C̃′′)
(meet-chan)

U1 u U2 = U3

T1 t T2 = T3

rw〈U1,T1〉 u rw〈U2, T2〉 = rw〈U3, T3〉 T3 <: U3

(meet-hom)

A1 u A2 = A3

K1 u K2 = K3

A1@K1 u A2@K2 = A3@K3

(meet-loc)

Ui u U′i = U′′i
loc[(ui : Ui)i; (vj : Vj)j] u loc[(ui : U′i)i; (wk : Wk)k]

= loc[(ui : U′′i)i; (vj : Vj)j ; (wk : Wk)k]

Proof. Of course, we have to prove this result for both meet and join. Let
us consider the relation R over types defined by:

R = {(T3,T4) |
∃T1,T2 such that T1 u T2 = T3,T1 u T2 = T4

or such that T1 t T2 = T3,T1 t T2 = T4}
and we show that this is a postfixpoint of Eq.

Let us consider T3 and T4 such that T3RT4, and we write T1 and
T2 for the corresponding two types. We reason on the possible cases for
T1 u T2 = T3 or T1 t T2 = T3. We see here some typical examples.

• base u base = base; then the only possible T4 is base, so (T3,T4) is
obviously in Eq(R).

• u : A1 u u : A2 = u : A3 with A1 uA2 = A3; then the only possible T4

is of the form u : A4 with A1 u A2 = A4, so (A3,A4) also is in R. So

(T3,T4) ∈ Eq({(A3,A4)}) ⊆ Eq(R) .

Adding recursion to Dpi 15

Figure 5 Dpi join rules

(join-base)

base1 t base2 = base3
base1 = base2 = base3

(join-cap)

A1 t A2 = A3

u : A1 t u : A2 = u : A3

(join-tuple)

Ci t C′i = C′′i
(C̃) t (C̃′) = (C̃′′)
(join-chan)

U1 t U2 = U3

T1 u T2 = T3

rw〈U1, T1〉 t rw〈U2,T2〉 = rw〈U3,T3〉
T1 <: U1

T2 <: U2

(join-hom)

A1 t A2 = A3

K1 t K2 = K3

A1@K1 t A2@K2 = A3@K3

(join-loc)

Ui t U′i = U′′i
loc[(ui : Ui)i; (vj : Vj)j] t loc[(ui : U′i)i; (wk : Wk)k] = loc[(ui : U′′i)i]

• loc[u1 : A1, . . . , un : An, v1 : B1, . . .] t loc[u1 : A′1, . . . , un : A′n, w1 :
B′1, . . .] = loc[ui1 : A′′i1 , . . . , uip : A′′ip

] then we know that T4 must be
of the form loc[ui1 : A′′′i1 , . . . , uip : A′′′ip

] because the set of indices {ij}
is determined by the compatibility of the types Ai and A′i; this means
that (A′′ij

,A′′′ij
) are in R for every ij , so

(T3,T4) ∈ Eq({(A′′ij
,A′′′ij

)}) ⊆ Eq(R) .

So we have then proved that the relation νMeetJoin defines a function
from couples of types to types.

Of course, we want to prove that the meet operator we defined is indeed
a meet. This means that we want to prove that for any type T, T u T is
indeed T, that the meet of two types is a subtype of each of them, and
that any common subtype is also a subtype of the meet. To write these
proofs more conveniently, we start by proving that u is symmetric over its
two arguments.

16 Samuel Hym and Matthew Hennessy

Figure 6 MeetJoin definition

MeetJoin(R) =
{u(base, base, base)}

∪ {u(u : A1, u : A2, u : A3) if u(A1,A2,A3) is in R}
∪ {u((eC), (eC′), (fC′′)) if u(Ci,C

′
i,C

′′
i) is in R for all i}

∪ {u(r〈U1〉, r〈U2〉, r〈U3〉) if u(U1,U2,U3) is in R}
∪ {u(w〈T1〉, w〈T2〉, w〈T3〉) if t(T1,T2,T3) is in R}
∪ {u(r〈U1〉, w〈T2〉, rw〈U1,T2〉) if T2 <: U1}
∪ {u(w〈T1〉, r〈U2〉, rw〈U2,T1〉) if T1 <: U2}
∪ {u(rw〈U1,T1〉, r〈U2〉, rw〈U3,T1〉) if u(U1,U2,U3) is in R and T1 <: U3}
∪ {u(rw〈U1,T1〉, w〈T2〉, rw〈U1,T3〉) if t(T1,T2,T3) is in R and T3 <: U1}
∪ {u(r〈U1〉, rw〈U2,T2〉, rw〈U3,T2〉) if u(U1,U2,U3) is in R and T2 <: U3}
∪ {u(w〈T1〉, rw〈U2,T2〉, rw〈U2,T3〉) if t(T1,T2,T3) is in R and T3 <: U2}
∪ {u(rw〈U1,T1〉, rw〈U2,T2〉, rw〈U3,T3〉)

if t(T1,T2,T3), u(U1,U2,U3) are in R and T3 <: U3}
∪ {u(A1@K1,A2@K2,A3@K3) if u(A1,A2,A3) and u(K1,K2,K3) are in R}
∪ {u(loc[u1 : A1, . . . , un : An, v1 : B1, . . .], loc[u1 : A′1, . . . , un : A′n, w1 : B′1, . . .],

loc[u1 : A′′1 , . . . , un : A′′n, v1 : B1, . . . , w1 : B′1, . . .])
if u(Ai,A

′
i,A

′′
i) is in R for all i ≤ n}

∪ {t(base, base, base)}
∪ {t(u : A1, u : A2, u : A3) if t(A1,A2,A3) is in R}
∪ {t((eC), (eC′), (fC′′)) if t(Ci,C

′
i,C

′′
i) is in R for all i}

∪ {t(r〈U1〉, r〈U2〉, r〈U3〉) if t(U1,U2,U3) is in R}
∪ {t(w〈T1〉, w〈T2〉, w〈T3〉) if u(T1,T2,T3) is in R}
∪ {t(rw〈U1,T1〉, r〈U2〉, r〈U3〉) if t(U1,U2,U3) is in R and T1 <: U1}
∪ {t(rw〈U1,T1〉, w〈T2〉, w〈T3〉) if u(T1,T2,T3) is in R and T1 <: U1}
∪ {t(r〈U1〉, rw〈U2,T2〉, r〈U3〉) if t(U1,U2,U3) is in R and T2 <: U2}
∪ {t(w〈T1〉, rw〈U2,T2〉, w〈T3〉) if u(T1,T2,T3) is in R and T2 <: U2}
∪ {t(rw〈U1,T1〉, rw〈U2,T2〉, r〈U3〉)

if U1 ↑ U2, t(U1,U2,U3) is in R, T1 6 ↓ T2, T1 <: U1 and T2 <: U2}
∪ {t(rw〈U1,T1〉, rw〈U2,T2〉, w〈T3〉)

if T1 ↓ T2, u(T1,T2,T3) is in R, U1 6 ↑ U2, T1 <: U1 and T2 <: U2}
∪ {t(rw〈U1,T1〉, rw〈U2,T2〉, rw〈U3,T3〉)

if T1 ↓ T2, U1 ↑U2, u(T1,T2,T3), t(U1,U2,U3) are in R,
T1 <: U1 and T2 <: U2}

∪ {t(A1@K1,A2@K2,A3@K3) if t(A1,A2,A3) and t(K1,K2,K3) are in R}
∪ {t(loc[u1 : A1, . . . , un : An, v1 : B1, . . .], loc[u1 : A′1, . . . , un : A′n, w1 : B′1, . . .],

loc[ui1 : A′′i1 , . . . , uip : A′′ip
])

if Ak ↑ A′k for all k in {ij}, Ak 6 ↑ A′k for all k not in {ij},
t(Aij ,A′ij

,A′′ij
) is in R for all ij}

Adding recursion to Dpi 17

Lemma 3.8 (Symmetry on u arguments). For any types T1, T2 and
T3, T1 u T2 = T3 if and only if T2 u T1 = T3.

Proof. Since the definition of MeetJoin is completely symmetric on its first
two components, it is enough to consider the relation

R = {u(T2,T1,T3) | T1 u T2 = T3} ∪ {t(T2,T1,T3) | T1 t T2 = T3}
which is easily shown to be a postfixpoint of the operator MeetJoin.

Lemma 3.9 (Reflexivity of u and t). For any type T, we have TuT =
T and T t T = T.

Proof. We simply consider the relation

R = {u(T,T,T), t(T,T,T) | T is any type}
and prove that it is a postfixpoint of MeetJoin.

For this, let us consider a triple in R. We reason on the form of that
triple, namely on the head construct for the type it is based on, and on
the operator, u or t. All the cases are very similar, we give only a few of
them.

• u(base, base, base). Obviously this triple is also in MeetJoin(R).

• u(rw〈U,T〉, rw〈U,T〉, rw〈U,T〉). As we know that both u(U,U,U)
and t(T,T,T) are also in R, we can conclude that our triple is in
MeetJoin(R).

• t(loc[ui : Ai], loc[ui : Ai], loc[ui : Ai]) is in MeetJoin(R) because of the
triples t(Ai,Ai,Ai) in R.

Lemma 3.10 (Meet is a subtype). For any types T1, T2 and T3 such
that T1 u T2 = T3, we have T3 <: T1 and T3 <: T2.

Proof. We need to prove this result and its dual about t at the same time.
For this, let us consider the relation

R = {(T1,T2) | ∃T3 such that T2 u T3 = T1 or T1 t T3 = T2} ∪ νSub

We now prove that this relation is a postfixpoint of Sub.
Let us consider (T1,T2) in R. If that pair comes from the νSub part

of R, we know that it is in Sub(νSub) ⊆ Sub(R). Otherwise, let us write
T3 the type proving that (T1,T2) is in R. We reason on the proof of
T2 u T3 = T1 or of T1 t T3 = T2. Let us start with T2 u T3 = T1. We
give here only some typical examples.

• T1 = T2 = T3 = base, then (T1,T2) is obviously in R.

18 Samuel Hym and Matthew Hennessy

• Ti = C̃i, with C2
j u C3

j = C1
j for all j. Then, for all j, C1

j R C2
j , which

implies that (T1,T2) is in R.

• If the triple is u(r〈U2
0〉, w〈T3

0〉, rw〈U2
0,T

3
0〉) we know that T3

0 <: U2
0 so

(T3
0,U

2
0) is in particular in R. Moreover, by lemma 3.4, we know

that U2
0 <: U2

0. These two hypotheses allow us to conclude that
(rw〈U2

0,T
3
0〉), r〈U2

0〉) is in Sub(R).

• If the triple is u(rw〈U2
0,T

2
0〉, r〈U3

0〉, rw〈U1
0,T

2
0〉) we know that U2

0uU3
0 =

U1
0 so (U1

0,U
2
0) is in R and that T2

0 <: U1
0 so (T2

0,U
1
0) is in particu-

lar in R. Moreover, by lemma 3.4, we know that T2
0 <: T2

0. These
three hypotheses allow us to conclude that (rw〈U1

0,T
2
0〉, rw〈U2

0,T
2
0〉) is

in Sub(R).

• If the triple is t(loc[ui : A2
i , vj : B2

j], loc[ui : A3
i , wk : B3

k], loc[ui :
A1

i , vj : B2
j , wk : B3

k]), we know that (A1
i ,A

2
i) are in R and so are

(B2
j ,B

2
j) by Lemma 3.4. So (T1,T2) is in Sub(R).

The different cases for T1 t T3 = T2 are similar.
So we have proved that R is a subset of νSub, from which the result

follows.

Lemma 3.11 (Meet is the greatest subtype). For any types T1, T2,
T3 and T such that T1uT2 = T3, T <: T1 and T <: T2, we have T <: T3.

Proof. Let

R = {(T,T3) | ∃T1,T2 such that T <: T1,T <: T2,T1 u T2 = T3}
∪{(T3,T) | ∃T1,T2 such that T1 <: T,T2 <: T,T1 t T2 = T3}
∪νSub

We now prove that R is included in νSub.
Let us consider a pair in R. We have three possible cases. Let us first

suppose this pair is of the form (T,T3), with the corresponding types T1

and T2. We reason on T1 u T2 = T3. As usual, we give some typical
cases.

• (C̃1)u (C̃2) = (C̃3) then T <: T1 implies that T is of the form (C̃) and
for each i, we have Ci <: C1

i , Ci <: C2
i and C1

i uC2
i = C3

i , which means
that, for each i, (Ci,C

3
i) is in R. Consequently (T,T3) is in Sub(R).

• r〈U1
0〉 u w〈T2

0〉 = rw〈U1
0,T

2
0〉 then T <: T1 implies that T can only

be of the form r〈U0〉 or rw〈U0,T0〉 with U0 <: U1
0. Similarly, T <:

T2 implies that T can only be of the form w〈T0〉 or rw〈U0,T0〉 with
T2

0 <: T0. By combining those two constraints, we know it must of

Adding recursion to Dpi 19

the form rw〈U0,T0〉 with U0 <: U1
0 and T2

0 <: T0. By well-formedness
of T we also know that T0 <: U0. Which means that (T,T3) is in
Sub(νSub) ⊆ Sub(R).

• r〈U1
0〉 u rw〈U2

0,T
2
0〉 = rw〈U3

0,T
2
0〉, then T <: T2 implies that T is of

the form rw〈U0,T0〉 with U0 <: U2
0 and T2

0 <: T0. We also have that
U0 <: U1

0. Of course, we have that U1
0 uU2

0 = U3
0, so (U0,U

3
0) is in R.

As so is (T2
0,T0) and (T0,U0) by well-formedness of T, (T,T3) is in

Sub(R).

• loc[ui : A1i, vj : B1j] u loc[ui : A2i, wk : B2k] = loc[ui : A3i, vj :
B1j , wk : B2k], which implies that A1

i u A2
i = A3

i for all i. The fact T
is a common subtype of T1 and T2 implies that it must be of the form
loc[ui : AAi, vj : B4j , wk : B5k, xl : B6l] with Ai <: A1

i and Ai <: A2
i

for all i, and with B4
j <: B1

j and B5
k <: B2

k. This implies that (Ai,A
3
i),

(B4
j ,B

1
j) and (B5

k,B2
k) are in R. So (T,T3) is in Sub(R).

For the second case, let us now suppose that the pair is of the form
(T3,T), with the corresponding types T1 and T2. We reason on T1tT2 =
T3.

• rw〈U1
0,T

1
0〉 t rw〈U2

0,T
2
0〉 = r〈U3

0〉 which implies that U1
0 t U2

0 = U3
0

and T1
0T 6 ↓20. If T was of the form w〈T0〉 or rw〈U0,T0〉, T1 <: T and

T2 <: T would imply T0 <: T1
0 and T0 <: T2

0, which would contradict
the fact that those two types are incompatible. So T must be of the
form r〈U0〉, with U1

0 <: U0 and U2
0 <: U0 which means that (U0,U

3
0)

is in R and (T,T3) in Sub(R).

The last case is that the pair is in νSub, which means that it is obviously
in Sub(R).

So we have proved that R is a subset of νSub, which finishes our proof.

The major property of the meet operator is given by the following
lemma. This lemma is again proved by using that approach of coinductive
proofs. To state it, let us write T1 ↓T2 to mean that there is some T such
that T <: T1 and T <: T2, that is T1 and T2 are compatible.

Theorem 3.12 (Partial meets). The set of tree types, ordered by <:,
has partial meets. That is T1 ↓ T2 implies T1 and T2 have a meet.

Proof. Let us consider two types T1 and T2 that are compatible. Their
compatibility implies that the set {T | T <: T1,T <: T2} is not empty.
So we can consider its set of maximal elements, which are elements T such
that for any element T′, T <: T′ implies T = T′. Notice that this equality

20 Samuel Hym and Matthew Hennessy

is the one we previously defined by Eq. We write M(T1,T2) for this set of
maximal elements, and m(T1,T2) for its dual, namely the set of minimal
elements among the shared supertypes of T1 and T2.

Now, let us consider the relation

R ={u(T1,T2,T3) | T1 ↓ T2 and T3 ∈ M(T1,T2)}
∪{t(T1,T2,T3) | T1 ↑ T2 and T3 ∈ m(T1,T2)}
∪νMeetJoin

Now, let us prove that this is a postfixpoint of MeetJoin.
Let us consider t in R and let us prove that t is in MeetJoin(R). If t is

in νMeetJoin, this is obvious. If it is of the form u(T1,T2,T3), T3 <: T1

must correspond to one case of the definition of Sub.

• T3 <: T1 = base; then T2 must be base too since T3 <: T2 so they are
in νMeetJoin so in R.

• T3 = u : A3 <: u : A1 = T1; then T2 must be of the form u : A2

too. We also know that A3 is a common subtype of A1 and A2. Let
us consider A′3 a common subtype of A1 and A2 such that A3 <: A′3.
So we have T3 <: u : A′3 with u : A′3 a common subtype of T1 and T2.
By maximality of T3, this implies that T3 = u : A′3. Only one case
of the definition of Eq can be applied to get this pair (T3, u : A′3), so
we can deduce that A3 = A′3. So A3 is maximal in the set of common
subtypes of A1 and A2. This means that u(A1,A2,A3) must be in R
so t is MeetJoin(R).

• T3 = rw〈U1
3,T

1
3〉 <: r〈U1

1〉 = T1; as a supertype of T3, T2 can be of
the forms r〈U1

2〉, w〈T1
2〉 or rw〈U1

2,T
1
2〉.

– If it is of the form r〈U1
2〉 then r〈U1

3〉 would be a common subtype
of T1 and T2 contradicting the maximality of T3.

– If it is of the form w〈T1
2〉, we know that all the common subtypes

of T1 and T2 are of the form rw〈U2
3,T

2
3〉 with U2

3 <: U1
1 and T1

2 <:
T2

3, so rw〈U1
1,T

1
2〉 is the only maximal common subtype of T1 and

T2, so it must be the value for T3, in which case t is directly in
MeetJoin(R).

– And lastly, if it is of the form rw〈U1
2,T

1
2〉, with U1

3 <: U1
2 and

T1
2 <: T1

3. We know that T1
2 = T1

3 since T3 is maximal. That
maximality also implies that U1

3 is a maximal common subtype of
U1

1 and U1
2. So {u(U1

1,U
1
2,U

1
3)} must be in R which proves that t

is in MeetJoin(R).

Adding recursion to Dpi 21

If t is of the form t(T1,T2,T3), we reason on the fact that T3 is a super-
type of T1. Let us just see the most interesting case, loc[. . .].

• T1 = loc[u1 : A1, . . . , un : An, un+1 : An+1, . . . , v1 : B1, . . .] and
T3 = loc[u1 : A′′1 , . . . , un : A′′n]. Then T2 must be of the form loc[u1 :
A′1, . . . , un : A′n, un+1 : A′n+1, . . . , w1 : B′1, . . .]. Since T3 is mini-
mal among the common supertypes of T1 and T2, we know that,
for every j, An+j 6 ↑ A′n+j : otherwise, if An+1 ↑ A′n+1, we can de-
fine the type A′′n+1 as a supertype of An+1 and A′n+1, and consider
loc[u1 : A′′1 , . . . , un : A′′n, un+1 : A′′n+1], contradicting the minimality
of T3. By minimality of T3, we can also conclude that every A′′i is
minimal in its set of common supertypes. So every t(Ai,A

′
i,A

′′
i) is R

which implies that t must be in MeetJoin(R).

This concludes the proof because R is included in νMeetJoin, which
means that we have found a meet for every pair of compatible types.

3.3 Theory of recursive types

Notice that all the properties we mentioned deal with tree types, because
all the proofs rely on coinductive techniques. But, in the end, the types
we really want to use in our terms are recursive, since we want to be able
to denote them with the recursive operator µ. So we need to prove that
all the properties we considered on tree types can be lifted up to recursive
types.

For this, we define notions of subtyping and meet on recursive types
by using a set of rules of the form Σ ` T1 <: T2 or Σ ` T1 u T2 = T3.
The intuition is that the manipulation of regular trees relies on normal
operations with unfolding rules and some “memory”, Σ, to record which
subterms have already been “seen”.

The termination of the proofs we will give on those recursive types will
be based on the following notion of subterms.

22 Samuel Hym and Matthew Hennessy

Figure 7 Subtyping rules

(sr-ax)

Σ, T1 <: T2 ` T1 <: T2

(sr-base)

Σ ` base <: base

(sr-cap)

Σ ` A <: B

Σ ` u : A <: u : B

(sr-tuple)

Σ ` Ci <: C′i
Σ ` (C̃) <: (C̃′)

(sr-chan)

Σ ` T1 <: T2 <: U1 <: U2

Σ ` w〈T2〉 <: w〈T1〉
Σ ` r〈U1〉 <: r〈U2〉
Σ ` rw〈U1,T2〉 <: r〈U2〉
Σ ` rw〈U1,T2〉 <: w〈T1〉
Σ ` rw〈U1,T2〉 <: rw〈U2, T1〉

(sr-hom)

Σ ` A1 <: A2

Σ ` K1 <: K2

Σ ` A1@K1 <: A2@K2

(sr-loc)

Σ ` Ui <: U′i, 0 ≤ i ≤ n

Σ ` loc[u1 : U1, . . . , un : Un, . . . , un+p : Un+p] <: loc[u1 : U′1, . . . , un : U′n]
(sr-lrec)

Σ, µt1.T1 <: T2 ` T1{µt1.T1/t1} <: T2

Σ ` µt1.T1 <: T2

(sr-rrec)

Σ, T1 <: µt2.T2 ` T1 <: T2{µt2.T2/t2}
Σ ` T1 <: µt2.T2

Definition 3.13 (Subterm). The set of subterms of a recursive type T
is defined as the least set satisfying the following equations:

SubTerms(base) ={base}
SubTerms(r〈U0〉) ={r〈U0〉} ∪ SubTerms(U0)
SubTerms(w〈T0〉) ={w〈T0〉} ∪ SubTerms(T0)

SubTerms(rw〈U0, T0〉) ={rw〈U0, T0〉} ∪ SubTerms(U0) ∪ SubTerms(T0)
SubTerms(u : A) ={u : A} ∪ SubTerms(A)

SubTerms(loc[ui : Ai]) ={loc[ui : Ai]} ∪
⋃

i

SubTerms(Ai)

SubTerms(µY.K) ={µY.K} ∪ SubTerms(K{µY.K/Y})
SubTerms(A@K) ={A@K} ∪ SubTerms(A) ∪ SubTerms(K)

SubTerms((C̃)) ={(C̃)} ∪
⋃

i

SubTerms(Ci)

Adding recursion to Dpi 23

Figure 8 Meet inference rules

(meet-ax)

Σ, T1 u T2 = T3 ` T1 u T2 = T3

(meet-tuple)

Σ ` Ci u C′i = C′′i
Σ ` (eC) u (eC′) = (fC′′)
(meet-base)

Σ ` base1 u base2 = base3
base1 = base2 = base3

(meet-cap)

Σ ` A1 u A2 = A3

Σ ` u : A1 u u : A2 = u : A3

(meet-chan)

Σ ` U1 u U2 = U3

Σ ` T1 t T2 = T3

Σ ` rw〈U1, T1〉 u rw〈U2, T2〉 = rw〈U3, T3〉 T3 <: U3

(meet-hom)

Σ ` A1 u A2 = A3

Σ ` K1 u K2 = K3

Σ ` A1@K1 u A2@K2 = A3@K3

(meet-loc)

Σ ` Ui u U′i = U′′i
Σ ` loc[(ui : Ui)i; (vj : Vj)j] u loc[(ui : U′i)i; (wk : Wk)k]

= loc[(ui : U′′i)i; (vj : Vj)j ; (wk : Wk)k]
(meet-rec-1)

Σ, µY.T′1 u T2 = T3 ` T′1{µY.T′1/Y} u T2 = T3

Σ ` µY.T′1 u T2 = T3

(meet-rec-2)

Σ, T1 u µY.T′2 = T3 ` T1 u T′2{µY.T′2/Y} = T3

Σ ` T1 u µY.T′2 = T3

(meet-rec-3)

Σ, T1 u T2 = µY.T′3 ` T1 u T2 = T′3{µY.T′3/Y}
Σ ` T1 u T2 = µY.T′3

Note that the set of subterms of a given term is always finite even if
the definition for the recursion operator is a simple unfolding, since every
subsequent unfolding after the first one will not add any new term.

So to define subtyping on these terms, we keep all the rules we had
in Figure 3, and we add a few rules for unfolding, which is adding terms
to the memory, and axioms, when a given statement has already been

24 Samuel Hym and Matthew Hennessy

Figure 9 Join inference rules

(join-ax)

Σ, T1 t T2 = T3 ` T1 t T2 = T3

(join-tuple)

Σ ` Ci t C′i = C′′i
Σ ` (eC) t (eC′) = (fC′′)
(join-base)

Σ ` base1 t base2 = base3
base1 = base2 = base3

(join-cap)

Σ ` A1 t A2 = A3

Σ ` u : A1 t u : A2 = u : A3

(join-chan-rw-rw-r)

Σ ` U1 t U2 = U3

Σ ` rw〈U1, T1〉 t rw〈U2, T2〉 = r〈U3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 6 ↓ T2

(join-chan-rw-rw-w)

Σ ` T1 u T2 = T3

Σ ` rw〈U1, T1〉 t rw〈U2, T2〉 = w〈T3〉
T1 <: U1 T2 <: U2

U1 6 ↑ U2 T1 ↓ T2

(join-chan-rw-rw-rw)

Σ ` U1 t U2 = U3

Σ ` T1 u T2 = T3

Σ ` rw〈U1, T1〉 t rw〈U2, T2〉 = rw〈U3, T3〉
T1 <: U1 T2 <: U2

U1 ↑ U2 T1 ↓ T2

(join-hom)

Σ ` A1 t A2 = A3

Σ ` K1 t K2 = K3

Σ ` A1@K1 t A2@K2 = A3@K3

(join-loc)

Σ ` Ui t U′i = U′′i
Σ ` loc[(ui : Ui)i; (un+i : Un+i)i; (vj : Vj)j]
tloc[(ui : U′i)i; (un+i : U′n+i)i; (wk : Wk)k] = loc[(ui : U′′i)i]

Ui ↑ U′i
Un+i 6 ↑ U′n+i

(join-rec-1)

Σ, µY.T′1 t T2 = T3 ` T′1{µY.T′1/Y} t T2 = T3

Σ ` µY.T′1 t T2 = T3

(join-rec-2)

Σ, T1 t µY.T′2 = T3 ` T1 t T′2{µY.T′2/Y} = T3

Σ ` T1 t µY.T′2 = T3

(join-rec-3)

Σ, T1 t T2 = µY.T′3 ` T1 t T2 = T′3{µY.T′3/Y}
Σ ` T1 t T2 = µY.T′3

Adding recursion to Dpi 25

seen. The rules we obtain look like the ones in [AC93] in the Dpi setting.
We do exactly the same thing for the definition of u and t to put them
also in the purely recursive setting in Figures 8 and 9. In those rules, the
different missing cases of the definition of the operators on channel types
are obtained as degenerate instances of the given rules.

Of course, now that we have given two sets of rules to define what
should be the same relations, we need to formally prove that they coincide
on their common domain, namely the recursive types. This is the role of
the following two propositions.

Proposition 3.14 (Recursive subtyping is tree subtyping). For any
two types T1 and T2, Tree(T1) <: Tree(T2) if and only if ∅ ` T1 <: T2.

Proposition 3.15 (Recursive type meet is infinite tree meet). For
any three types T1, T2 and T3, Tree(T1)uTree(T2) = Tree(T3) if and only
if ∅ ` T1 u T2 = T3.

The proofs for these two propositions are really similar, as one would
expect, so we give only the proof of the second one, slightly trickier.

Proof. Let us consider some types T1, T2 and T3, and some Σ′, a set
of “hypotheses” of the forms T′1 u T′2 = T′3 and T′1 t T′2 = T′3, with
T′i a subterm of Ti. Let us prove that Tree(T′1) u Tree(T′2) = Tree(T′3)
implies Σ′ ` T′1 u T′2 = T′3 and its dual by reasoning on the forms of
T′i. More precisely, we proceed by induction on the lexicographic order
(|SubTerms(T1)| · |SubTerms(T2)| · |SubTerms(T3)|−|Σ′|, |T′1|+ |T′2|+ |T′3|).
• If one of the T′i is of the form µY.T, and if T′1 u T′2 = T′3 is in Σ′,

we apply the axiom rule (meet-ax). If there is no such statement in
Σ′, we apply rule (meet-rec-i), which means that |SubTerms(T1)| ·
|SubTerms(T2)| · |SubTerms(T3)| − |Σ′,T′1 u T′2 = T′3| is smaller, so we
can use the induction hypothesis to finish.

• If none of the types T′i is of the form µY.T, then, by definition of
Tree(T′i), T′i and Tree(T′i) have the same head construct. Each case of
the definition of MeetJoin corresponds to one rule in Figures 8 and 9.
We consider only one typical case.

– Σ′ ` r〈T′′1〉 ur〈T′′2〉 = r〈T′′3〉. We know that Tree(T′′1)uTree(T′′2) =
r〈T′′3〉 by definition of MeetJoin. So we can use our induction hy-
pothesis on T′′i to get Σ′ ` T′′1 u T′′2 = T′′3 , which entails that
Σ′ ` r〈T′′1〉 u r〈T′′2〉 = r〈T′′3〉 by rule (meet-chan).

26 Samuel Hym and Matthew Hennessy

Conversely, let us consider some proof of ∅ ` T1 uT2 = T3. We define
the relation

R = {u(Tree(T′1),Tree(T′2), Tree(T′3)) | ∃Σ′ such that
Σ′ ` T′1 u T′2 = T′3 appears in the proof of ∅ ` T1 u T2 = T3}

∪ {t(Tree(T′1),Tree(T′2), Tree(T′3)) | ∃Σ′ such that
Σ′ ` T′1 t T′2 = T′3 appears in the proof of ∅ ` T1 u T2 = T3}

Let us prove that this relation R is a postfixpoint of MeetJoin. We
consider a triple in R and we reason on the last rule used to reach the
corresponding statement in the proof of ∅ ` T1 u T2 = T3.

• (meet-ax). Then we know that T′1 u T′2 = T′3 can have been in-
troduced in Σ′ only by a rule (meet-rec-i) higher in that branch
of the proof. Since our types are contractive, we then know that
T′i must be of the form µY1.µY2 . . . loc[. . .]. So there must be a
(meet-loc) corresponding to that loc[. . .] in the proof under the
different (meet-rec-j)s. We write Σ′′ ` T′′1 u T′′2 = T′′3 the con-
clusion statement of that (meet-loc). By definition of the function
Tree(T′′i) = Tree(T′i). This means that we can proceed as in case
(meet-loc).

• (meet-loc). Then we have a proof of Σ′ ` U1
′
i u U2

′
i = U3

′
i which

means that every triple u(Tree(U1
′
i), Tree(U2

′
i), Tree(U3

′
i)) are in R

which proves that u(Tree(T′1), Tree(T′2),Tree(T′3)) is in MeetJoin(R).

• (meet-rec-1), with T′1 = µY.T′′1 . By definition of the function
Tree(·), Tree(T′1) = Tree(T′′1{µY.T′′1/Y}). As in the case (meet-ax) we
proceed until we reach a (meet-loc) and apply the same argument
as for (meet-loc).

Even if this establishes an equivalence between the coinductive and the
inductive versions of the system for u and <:, we feel that manipulation of
the coinductive types is easier because it is more intuitive: the intuitions
coming from induction on non-recursive types can guide the proof in the
coinductive setting.

4 Typing Systems

With these types we can now adapt the typing system for Dpi to recDpi.
At the system level the judgements take the form

Γ ` M

Adding recursion to Dpi 27

Figure 10 Well-formed environments

(e-empty)

` env

(e-base)

Γ ` env

Γ, u : base ` env
Γ(u) ↓ base

(e-new-lchan)

Γ ` env

Γ ` w : loc
Γ(u@w) = {Ai}
Γ, u@w : A ` env

{Ai} ↓ A

(e-loc)

Γ ` env

Γ, v : loc ` env
Γ(v) ↓ loc

(e-rec)

Γ ` env

Γ, Z : loc[(ui : Ai)] ` env
Z 6∈ Γ

(e-dec-at-rec)

Γ ` env

Γ(Z) = loc[. . . , u : A, . . .]
Γ, u@Z : A ` env

Figure 11 Typing values

(v-name)

Γ, u : T, Γ′ ` env

Γ, u : T, Γ′ ` u : T′
T <: T′

(v-located)

Γ ` u : T
Γ ` w : loc

Γ `w u : T

(v-channel)

Γ, u@w : A, Γ′ ` w : loc

Γ, u@w : A, Γ′ `w u : A′
A <: A′

(v-meet)

Γ `w u : T1

Γ `w u : T2

Γ `w u : T1 u T2

(v-tuple)

Γ `w ui : Ti

Γ `w (ũ) : (T̃)

(v-base)

Γ ` w : loc

Γ `w u : base
u ∈ base

(v-located-channel)

Γ `v ui : Ai

Γ `w v : K

Γ `w (ũ)@v : (Ã)@K

(v-loc)

Γ ` v : loc
Γ `v ui : Ai

Γ ` v : loc[u1 : A1, . . . , un : An]

and the rules used are identical to those for Dpi; see Figure 12. These
rules are based on the definition of well-formed environments to infer
judgements of the form Γ ` env, which is given in Figure 10. The no-
tion of well-formedness is, again, inherited from Dpi. Environments are
lists of elements of the form u : T with u a name or a variable (includ-

28 Samuel Hym and Matthew Hennessy

Figure 12 Typing Systems

(t-cnew)

Γ, c@k : C ` M

Γ ` (new c@k : C)M

(t-nil)

Γ ` env

Γ ` 0

(t-par)

Γ ` M
Γ ` N

Γ ` M |N
(t-proc)

Γ `k P

Γ ` kJP K

(t-lnew)

Γ, {k : K} ` M

Γ ` (new k : K) M

ing a recursion variable) and T its type or of the form u@w : A with u
a name or a variable standing for a channel and A its type. A given u
can appear more than once in that list as long as the types at which it
is known in a given location are compatible. This is useful for the names
received during communications: if you get some name at two different
types (through communication on two different channels), you can simply
consider the environment in which that name is given those two types. Of
course, the typing rules will ensure that this situation will arise only when
the channel types are indeed compatible. Note that the formation rules for
environments allow the presence of recursion variables with their declara-
tion types, because that information is needed for typing processes, as will
be explained shortly. We will also need some subtyping on environments.
We say that Γ <: Γ′ when

• dom(Γ′) ⊆ dom(Γ);

• for all recursion variable Z defined in Γ′, we have Γ(Z) = Γ′(Z);

• for all name or variable x defined in Γ′, we have
d

Γ(x) <:
d

Γ′(x), x
being possibly of the form u@w.

The other basic typing rules needed for typing systems and processes
are for values, see Figure 11. Those are directly taken from Dpi, without
modifications. Note though that recursion variables can be typed exactly
as locations in this setting.

To come back to the system typing, the main rule in Figure 12 is

(t-proc)

Γ `k P

Γ ` kJP K

Adding recursion to Dpi 29

Figure 13 recDpi processes typing system

(t-output)

Γ `w u : w〈T〉
Γ `w V : T
Γ `w P

Γ `w u !〈V 〉P

(t-input)

Γ `w u : r〈T〉
Γ,〈X : T〉 @w `w P

Γ `w u ?(X : T)P
(t-go)

Γ `m P

Γ `w goto m.P

(t-stop)

Γ ` env

Γ `w stop
(t-rec)

Γ ` w : R
Γ,〈〈Z : R〉〉 `Z P

Γ `w rec (Z : R). P

(t-recvar)

Γ ` w : Γ(Z)
Γ `w Z

Γ(Z) = loc[. . .]

(t-match)

Γ `w u : U, v : V
Γ `w Q
If Γ,〈u : V〉 @w,〈v : U〉 @w ` env,

Γ,〈u : V〉 @w,〈v : U〉 @w `w P

Γ `w if u = v then P else Q
(t-l-new)

Γ,〈k : K〉 `w P

Γ `w (newloc k : K)P

(t-c-new)

Γ, n@w : A `w P

Γ `w (newcn : A)P
(t-here)

Γ `w P [w/x]
Γ `w here [x] P

(t-rep)

Γ `w P

Γ `w ∗ P

(t-par)

Γ `w P
Γ `w Q

Γ `w P |Q

which in turn requires a set of inference rules for the judgements

Γ `k P

indicating that the process P is well-typed to run at location k. Once
more most of these rules are inherited from Dpi, see Figure 13, and we
concentrate here on explaining the three new rules required for recursion

30 Samuel Hym and Matthew Hennessy

and the here construct. The latter is straightforward:

(t-here)

Γ `w P [w/x]
Γ `w here [x] P

However in order to derive judgements about recursive processes, such as

Γ `k rec (Z : R). P (3)

we will need the entries for recursion variables. Recall that here the type
R is a location type, such as loc[u1 : A1, . . . un : An], indicating the min-
imal requirements on any location wishing to host a call to the recursive
procedure. So in some way we want to consider recursion variables in the
same manner as locations. But we must be careful as we need to know
exactly the type at which the recursion variable is declared when we are
typechecking the recursive calls. So, unlike locations, we have in the envi-
ronment entries of the form Z : loc[ui : Ai] and not merely Z : loc since
subtyping can not be allowed on the declared type for these variables.
Therefore we only allow unique entries for a given recursion variable in a
type environment. Then the natural rule for typing-checking a recursive
call, that is an occurrence of a recursion variable, is given by:

(t-recvar)

Γ ` w : Γ(Z)
Γ `w Z

In order to typecheck a recursive definition, such as (3) above, we need to

• check that k has at least the capabilities required in R, that is Γ ` k : R;

• ensure that the body P only uses the resources given in R.

To check this second point we again look at recursion variables as locations,
and check that P is well-typed to run “in the location Z”, which has all
the resources mentioned in the type R. The final rule is

(t-rec)

Γ ` w : R
Γ,〈〈Z : R〉〉 `Z P

Γ `w rec (Z : R). P

where Γ,〈〈Z : R〉〉 is a notation extending Γ with the information that Z
has all the capabilities in R:

〈〈Z : loc[u1 : A1, . . .]〉〉 = Z : loc[ui : Ai], u1@Z : A1, u2@Z : A2, . . .

Notice that, to type P at Z, we will really have to consider Z as a value
from the type point of view, but this will be only an artefact of the way

Adding recursion to Dpi 31

typing proceeds. Z will never be a value in real terms, this being syntac-
tically prohibited.
Example 4.1. Referring back to Example 2.1 let us see how these rules
can be used to infer Γ `k Search, assuming that Γ knows about locations
home, k, etc. and their channels. So, by (t-rec), this will amount to:

Γ,〈〈Z : S〉〉 `Z test ?(x)if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.Z

which will start by proving

Γ,〈〈Z : S〉〉 `Z test : r〈Tt〉
so, by expanding the notation 〈〈Z : S〉〉 with

S = µY.loc[test : r〈Tt〉, neigh : r〈Y〉]
we get

Γ, Z : S, test@Z : r〈Tt〉, neigh@Z : r〈S〉 `Z test : r〈Tt〉
where we can see that it is simply an axiom. The other judgement to
prove then is

Γ,〈〈Z : S〉〉 `Z if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.Z

which will amount to proving

Γ,〈〈Z : S〉〉 `Z goto home.report !〈x〉
and

Γ,〈〈Z : S〉〉 `Z neigh ?(y) goto y.Z

where this second statement is particularly interesting here. In fact, this
turns out as simply:

Γ,〈〈Z : S〉〉 , y : S `y Z

which is obtained directly because y has type S, exactly what is required
to “run” Z. ¥

The partial view of recursion variables as locations complicates some-
what the formal rules for the construction of valid environments. We do
not go into further details here, we refer the reader to [HMR03] for more
complete explanations. But we give the formation rules in Figure 10, to-
gether with these for value typing, in Figure 11. Notice that value typing
rules allow statements of the form Γ ` Z : loc, required when typing a
process “at Z”, even if, syntactically, recursion variables cannot be used
as values.

32 Samuel Hym and Matthew Hennessy

The main new technical property of the type inference system is given
by:

Lemma 4.1 (Recursion Variable Substitution). Suppose that Γ `w

rec Z : R. P . Then Γ `w P{rec Z:R. P/Z}.
Proof. This is done by induction on the proof that P is well-typed. So
we generalise the property we prove into: for any location or recursion
variable v and for any environment Γ if we have Γ `v P and if for any
Γ′ and w such that Γ′ <: Γ and Γ′ ` w : Γ′(Z) we have Γ′ `w Q then
Γ `v P{Q/Z}.
• (t-recvar) so P = Z and we know Γ ` v : Γ(Z). By hypothesis that

implies that Γ `v Q = P{Q/Z}.
• (t-output) so P = u !〈V 〉P ′. This implies that Γ `v P ′, on which we

can apply the induction hypothesis. Therefore we have

Γ `v u !〈V 〉 (P ′{Q/Z})
which is exactly Γ `v P .

• (t-input) so P = u ?(X : T) P ′ and Γ,〈X : T〉 @v `v P ′. By weakening
we know that, for any w such that Γ,〈X : T〉 @v ` w : (Γ,〈X : T〉 @v)(Z),
Γ,〈X : T〉 @v `w Q.

• (t-match) which implies that P = if u = u′ then P1 else P2 and
that Γ `v u : U, u′ : U′, Γ `v P2 and, if Γ,

〈
u : U′

〉
@v,〈u′ : U〉 @v ` env,

Γ,
〈
u : U′

〉
@v,〈u′ : U〉 @v `v P1. Then, by our induction hypothesis, we

know that Γ `v P2{Q/Z}. And since Γ,
〈
u : U′

〉
@v,〈u′ : U〉 @v <: Γ then

Γ,
〈
u : U′

〉
@v,〈u′ : U〉 @v `v P1{Q/Z}.

• (t-here) so P = here [x]P ′ and Γ `v P ′[v/x]. By our induction hypoth-
esis we have Γ `v P ′[v/x]{Q/Z} and P ′{Q/Z}[v/x] = P ′{Q/Z}[v/x] since the
two substitutions do not deal with the same objects (recursion vari-
ables as terms and location variables). So applying (t-here) again
gives Γ `v (here [x] P ′){Q/Z}.

• (t-rec) so P = rec Z ′ : R′. P ′ with Γ,
〈〈

Z ′ : R′
〉〉 `Z′ P ′. Since

Γ,
〈〈

Z ′ : R′
〉〉

is a subtype-environment of Γ we can apply our induction
hypothesis on it to get Γ,

〈〈
Z ′ : R′

〉〉 `Z′ P ′{Q/Z} which implies that
Γ `v P{Q/Z}.
Now we must prove that what we just proved indeed applies to pro-

cesses of the form rec Z : R. P . We know that Γ `w rec Z : R. P . This
implies that Γ,〈〈Z : R〉〉 `Z P . By weakening, we obtain that, for any Γ′

Adding recursion to Dpi 33

such that Γ′ <: Γ, Γ′,〈〈Z : R〉〉 `Z P . So, for any location v such that
Γ′ ` v : (Γ′,〈〈Z : R〉〉)(Z) = R, we have Γ′ `v rec Z : R. P .

So we can use rec Z : R. P as a “Q” in the previous proof and then
conclude.

This in turn leads to:

Theorem 4.2 (Subject Reduction). Γ ` M and M τ−→ M ′ implies
that Γ ` M ′.

Proof. This proof heavily relies on the preexisting proof of subject re-
duction in Dpi. We simply added two derivation rules (lts-here) and
(lts-rec) so we just have to deal with those two.

• M = kJhere [x] P K and M ′ = kJP [k/x]K. The result is direct since the
only rule to prove that Γ `k here [x] P assumes that Γ `k P [k/x].

• M = kJrec Z : R. P K and M ′ = kJP{rec Z:R. P/Z}K. By the previous
lemma Γ `k rec Z : R. P implies that Γ `k P{rec Z:R. P/Z}. That proves
that Γ ` M ′.

5 Implementing recursion using iteration

The problem of implementing recursion using iteration in Dpi, contrary
to the pi-calculus, is that any code of the form kJ∗ P K will force every
instance of P to be launched at the originating site k; this is in contrast to
kJrec (Z : R). P K where the initial instance of the body P is launched at
k but subsequent instances may be launched at arbitrary sites, provided
they are appropriately typed.

Nevertheless, at the expense of repeated migrations, we can mimic the
behaviour of a recursive process using iteration by designating a home base
to which the process must return before a new instance is launched. For
example if home is deemed to be the home base then we can implement
our example kJSearchK using

homeJ∗ IterSearchK | kJFireOneK
where

IterSearch , ping ?(l) goto l.test ?(x) if p(x) then goto home.report !〈x〉
else neigh ?(y) goto y.FireOne

FireOne , here [l] goto home.ping !〈l〉
With this example, we can easily see how the translation will mimic

the original process step by step: the body of the process is left unmodi-
fied, only the recursion parts are changed, by implementing the recursive

34 Samuel Hym and Matthew Hennessy

call with a few reductions. FireOne is the “translation” for the recursive
calls, which means going to the home base and firing a new instance. This
shows why the construct here is necessary: the translation for recursive
calls needs to detect its current location to indeed trigger the new in-
stance in the “proper” context. Then the replicated IterSearch starts off
by migrating to the actual location where it will run.

This approach underlies our general translation of recursive processes
into iterative processes, which we now explain.

As we want to ensure that our translation will be compositional, we will
have to dynamically generate the home bases for iterative processes where,
in the example IterSearch, the home base and the replicated process were
already set up. We will also dynamically generate the registered channel
ping used to provide to a new instance of the process the name of the
location where the recursive call took place. The last thing to do when
the recursion is unwound for the first time is to start the iterative process,
which means two things: move the code that will be replicated to its home
base and fire the first instance. As we explained with the example, the
replicated code will just have to wait for the name of a location when the
recursion is unwound, go there and behave as the recursive process.

• unrec(rec Z : R. P) = (newlochomeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

goto homeZ .
∗ pingZ ?(l : R) goto l.unrec(P))

• unrec(Z) = here [x] goto homeZ .pingZ !〈x〉
• unrec(u !〈V 〉P) = u !〈V 〉unrec(P); all the other cases are similar.

We stress the fact that this translation heavily relies on migration to
mimic the original process. We conjecture that in a Dpi setting where
locations or links can fail, like in [FH05], it would not be possible to get a
reasonable encoding of recursion into iteration.

We could also give another translation, which would be closer to the
one proposed for the pi-calculus in [SW01] by:

• closing the free names of recursive processes, and then communicating
their actual values through the channel ping, at the same time as the
location;

• creating all the home bases at the top-level of the process, once and
for all.

So the translation of a system would start by identifying the set of recur-
sion variables: let us write this set {Zi}, and their corresponding processes

Adding recursion to Dpi 35

{Pi} when “rec Zi : Ri. Pi” appear in the system. For any process Pi

among those we will note ñi its set of free names. Then the components
of the system are simply translated the following way:

• nc-unrec(Zi) = here [x] gotohomeZi .pingZi
!〈x, ñi〉

• nc-unrec(rec Zi : Ri. Pi) = nc-unrec(Zi)

• nc-unrec(u !〈V 〉P) = u !〈V 〉nc-unrec(P); all the other cases are
similar.

A system M is then translated, as a whole, into the following process:

(new pingZ1
) (new homeZ1) (new pingZ2

) (new homeZ2) . . .
homeZ1J∗ pingZ1

?(l : R1, ñ1) goto l.nc-unrec(P1)K |
homeZ2J∗ pingZ2

?(l : R2, ñ2) goto l.nc-unrec(P2)K | . . . |
nc-unrec(M)

But, of course, such an approach would not be compositional, as the name
nc-unrec(·) suggests.

Now that we have described our translation, we want to prove that
the translation and the original process are “equivalent”, in some sense.
Since we are in a typed setting, the first property we need to check is the
following.

Lemma 5.1. Γ ` M if and only if Γ ` unrec(M)

Proof. We define the function ϕ over environments:

ϕ(Γ,〈〈Zi : Ri〉〉 , uij @Zi : Aij) =
Γ, homeZi : loc,pingZi

@homeZi : rw〈Ri〉,〈li : Ri〉 , uij @li : Aij

ϕ−1 is defined as expected.
We now prove the following generalised statement:

• Γ ` M implies ϕ(Γ) ` unrec(M);

• Γ `v P implies that ϕ(Γ) `v unrec(P);

• Γ `Zi
P implies that ϕ(Γ) `li

unrec(P).

To get there, we first need to prove the equivalent property for value
typing:

• Γ ` Zi : K implies that ϕ(Γ) ` li : K;

• Γ ` u@Zi : A implies that ϕ(Γ) ` u@li : A;

• Γ ` u : T other than the previous cases implies that ϕ(Γ) ` u : T.

• Tuples components enter inductively in some of those cases.

36 Samuel Hym and Matthew Hennessy

We reason on the proof of Γ ` . . . for this result.

• (v-meet): we get the result by induction.

• (v-name): if the conclusion is Γ ` Zi : K, we know that ϕ(Γ) contains
〈li : Ri〉 with Γ(Zi) = Ri. So Ri <: K implies that (v-loc) gives
ϕ(Γ) ` li : K.

• Other cases simply involve induction.

Then we can reason on the proof of Γ ` M , etc.

• (t-proc): Γ ` kJP K implies that Γ `k P so our induction hypothesis
gives ϕ(Γ) `k unrec(P) which entails ϕ(Γ) ` unrec(M).

• (t-rec): we first assume that the statement is Γ `w rec Z : R. P , with
w a real location. We know that Γ,〈〈Z : R〉〉 `Z P and Γ ` w : R. This
means that, by induction, we have: ϕ(Γ,〈〈Z : R〉〉) `l unrec(P), with
ϕ(Γ,〈〈Z : R〉〉) = ϕ(Γ),homeZ : loc,pingZ@homeZ : rw〈Ri〉,〈l : R〉.
We can then proceed with:

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉,〈l : R〉
`homeZ

goto l.unrec(P)

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`homeZ

pingZ ?(l : R) goto l.unrec(P)

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`homeZ

∗ pingZ ?(l : R) goto l.unrec(P)

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`w goto homeZ . ∗ pingZ ?(l : R) goto l.unrec(P)

On the other side, Γ ` w : R implies that ϕ(Γ) ` w : R.

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉 `w w〈pingZ〉[w]

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`w goto homeZ .w〈pingZ〉[w]

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`w here [x] goto homeZ .w〈pingZ〉[x]

So we can join the two to get:

– ϕ(Γ), homeZ : loc, pingZ@homeZ : rw〈R〉
`w here [x] goto homeZ .w〈pingZ〉[x]

| goto homeZ . ∗ pingZ ?(l : R) goto l.unrec(P)

– ϕ(Γ) `w unrec(rec Z : R. P).

Adding recursion to Dpi 37

The reasoning would be identical for Γ `Zj
rec Zi : Ri. P but w

would have to be replaced by Zj when typing in Γ and by lj when in
ϕ(Γ).

• (t-recvar): Γ `w Z implies that Γ ` w : Γ(Z). Then ϕ(Γ) ` w :
Γ(Z), which implies that ϕ(Γ) `homeZ

w〈pingZ〉[w] since Z must be in
dom(Γ). So

ϕ(Γ) `w here [x] goto homeZ .w〈pingZ〉[w]

which is ϕ(Γ) `w unrec(Z). Again the reasoning would be identical
in a Zj location.

• (t-input): we have Γ `Zi
r〈u〉[X : T]P , Γ ` u@Zi : r〈T〉 and

Γ,〈X : T〉 @Zi `Zi
P . By induction we get ϕ(Γ) ` u@li : r〈T〉 and

ϕ(Γ,〈X : T〉 @Zi) `li
unrec(P), with ϕ(Γ,〈X : T〉 @Zi) being the envi-

ronment ϕ(Γ),〈X : T〉 @li. So an application of (t-input) gives ϕ(Γ) `
r〈u〉[X : T]unrec(P). The other case, with a real location w would
be similar.

• The other cases are similar.

We can also show that the behaviour of M and that of its translation
unrec(M) are closely related. Intuitively we want to show that whenever
Γ ` M then any observer, or indeed other system, which uses names
according to the type constraints given in Γ can not differentiate between
M and unrec(M). This idea has been formalised in [HMR03] as a typed
version of reduction barbed congruence, giving rise to the judgements

Γ |= M ∼=rbc N

To emphasise that, in those judgements, the mentioned environment is
an observer’s knowledge of the system, and therefore that it might not
be possible to type the system in that environment, we will write this
environment Ω and consider judgements of the form

Ω |= M ∼=rbc N

More generally, equivalences over systems are considered within a given
knowledge of the observer. So the objects we handle are composed of an
environment and a system at the same time. For this we define the notion
of configuration which requires subtyping over environments.

Definition 5.2 (Environment subtyping). We say that an environ-
ment Γ is a subtype of another one Γ′, written Γ <: Γ′, whenever

• dom(Γ′) ⊆ dom(Γ);

38 Samuel Hym and Matthew Hennessy

Figure 14 Labelled transition semantics. Internal actions.

(lts-go)

Ω ¤ kJgoto l.P K τ−→β Ω ¤ lJP K
(lts-split)

Ω ¤ kJP |QK τ−→β Ω ¤ kJP K | kJQK
(lts-iter)

Ω ¤ kJ∗ P K τ−→β Ω ¤ kJ∗ P K | kJP K
(lts-here)

Ω ¤ kJhere [x]P K τ−→β Ω ¤ kJP [k/x]K
(lts-rec)

Ω ¤ kJrec (Z : R). P K τ−→β Ω ¤ kJP{rec (Z:R). P/Z}K
(lts-l-create)

Ω ¤ kJ(newloc l : L)P K τ−→β Ω ¤ (new l : L) kJP K
(lts-c-create)

Ω ¤ kJ(newc c : C) P K τ−→β Ω ¤ (new c@k : C) kJP K
(lts-eq)

Ω ¤ kJif u = u then P else QK τ−→β Ω ¤ kJP K
(lts-neq)

Ω ¤ kJif u = v then P else QK τ−→β Ω ¤ kJQK when u 6= v
(lts-comm)

ΩM ¤ M (ñ:T̃)k.a!V−−−−−−−→ Ω′M ¤ M ′

ΩN ¤ N (ñ:Ũ)k.a?V−−−−−−−→ Ω′N ¤ N ′

Ω ¤ M |N τ−→ Ω ¤ (new ñ : T̃)M ′ |N ′

Ω ¤ N |M τ−→ Ω ¤ (new ñ : T̃)N ′ |M ′

ñ ∩ fn(N) = ∅

• for every u but recursion variables in dom(Γ′) we have Γ(u) <: Γ′(u);

• for every recursion variable Z in dom(Γ′) we have Γ(Z) = Γ′(Z). ¥
Definition 5.3 (Configurations). We call configuration a tuple of an
environment Ω and a system M , written Ω¤M , such that there exists an
environment Γ, with Γ <: Ω and Γ ` M . ¥

The reader is referred to [HMR03] for the formal details.

Theorem 5.4. Suppose Γ ` M . Then Γ |= M ∼=rbc unrec(M).

The proof uses a characterisation of this relation as a bisimulation
equivalence in a labelled transition system in which:

• the states are configurations;

• the actions take the form Ω ¤ M µ−→ Ω′ ¤ M ′; these are based on the
labelled transitions system given in Figure 14 and 15.

Adding recursion to Dpi 39

Figure 15 Labelled transition semantics. External actions.

(lts-out)

Ω ` k : loc
a@k : r〈T〉 ∈ Ω
Ω,〈V : T〉 @k ` env

Ω ¤ kJa !〈V 〉P K k.a!V−−−→ Ω,〈V : T〉 @k ¤ kJP K
(lts-in)

Ω ` k : loc
a@k : w〈U〉 ∈ Ω
Ω `k V : U

Ω ¤ kJa ?(X : T) P K k.a?V−−−→ Ω ¤ kJP{|V/X|}K
(lts-new)

Ω ¤ M µ−→ Ω′ ¤ M ′

Ω ¤ (new n : T)M µ−→ Ω′ ¤ (new n : T)M ′ n 6∈ µ

(lts-open)

Ω ¤ M (ñ:T̃)k.a!V−−−−−−−→ Ω′ ¤ M ′

Ω ¤ (new n : T)M (nen:TeT)k.a!V−−−−−−−−→ Ω′ ¤ M ′
n 6∈ {a, k}
n ∈ fn(V) ∪ n(T̃)

(lts-weak)

Ω,〈n : T〉¤ M (ñ:T̃)k.a?V−−−−−−−→ Ω′ ¤ M ′

Ω ¤ M (n:T,en:eT)k.a?V−−−−−−−−−→ Ω′ ¤ M ′ n 6∈ {a, k}

(lts-par)

Ω ¤ M µ−→ Ω′ ¤ M ′

Ω ¤ M |N µ−→ Ω′ ¤ M ′ |N bn(µ) ∩ fn(N) = ∅

Definition 5.5 (Actions). For configurations C of the form (Ω ¤ M),
we say that they can do the following actions:

• C τ−→ C′ or C (ñ:T̃)k.a?V−−−−−−−→ C′ if we can prove so with a derivation in the
LTS;

• C (ñ)k.a!V−−−−−→C′ if there exists some derivation proving C (m̃:T̃′)k.a!V−−−−−−−→C′ in
the LTS with (ñ) the names that are both in V and (m̃). ¥
Again we refer the reader to [HMR03] for further motivation; this paper

also contains the result that

(Γ ¤ M)≈bis (Γ ¤ N) implies Γ |= M ∼=rbc N

whenever Γ ` M and Γ ` N . So we establish Theorem 5.4 by showing

Γ ` M implies (Γ ¤ M)≈bis (Γ ¤ unrec(M)) (4)

40 Samuel Hym and Matthew Hennessy

6 Proof of recursion implementability

Let us hint the problems encountered in trying to prove the equation (4)
on an example. For this, let us consider a parameterised server version of
our Search process that would be exploring a binary tree instead of a list:

PSearch , search req ?(x, client)
goto k0.rec Z : S. test ?(y)if p(x, y) then goto client.report !〈y〉

else neigh ?(n1, n2) goto n1.Z | goto n2.Z

used in the system ServerJ∗ PSearchK. So this sets up a search server,
at Server; but the difference with Search from Example 2.1 is the fact
that the data to search for in the network is given in the search request
on search req, and is subsequently used as a parameter by the testing
predicate p.

Our translation of this process gives the following Dpi code:

IPSearch , search req ?(x, client)
goto k0. (newlocbase : loc[ping]) F | goto base. ∗ Inst

Inst , ping ?(k) goto k.test ?(y)
if p(x, y) then goto client.report !〈y〉
else neigh ?(n1, n2) goto n1.F | goton2.F

F , here [l] gotobase.ping !〈l〉
with Inst an instance of the iterative process, and F the triggering process,
written FireOne is the example in the previous section.

Since IPSearch is replicated, it will generate a new home base for Inst
for every request on search req. This means that, after servicing a number
of such requests we will end up with a system of the form:

(new ping1) (newbase1) (new ping2) (new base2) . . .

ServerJ. . .K . . .

|base1J. . .K | k1
1J. . . F1K | k2

1J. . . F1K | . . .
|base2J. . .K | k1

2J. . . F2K . . . (5)

Of course, this will correspond to the recDpi system:

ServerJ. . .K | k1
1J. . . rec Z. P K | k2

1J. . . rec Z. P K | . . . | k1
2J. . . rec Z. P K . . .

On this example, we can see quite clearly the main difference at run-
time between our translation and the standard, but non-compositional,
one used in the pi-calculus we previously mentioned, see [SW01], which
arises because of the replication of rec Z. P . A translation following the

Adding recursion to Dpi 41

lines of that in [SW01], would give rise to the following state, correspond-
ing to (5) above:

(new ping) (newbase) ServerJ∗ search req ?(x, client) goto k0.F(x, client)K
| baseJ∗ ping ?(k, x, client) goto k.test ?(y) . . .K
| k1

1J. . . F(x1, client1)K | k2
1J. . . F(x1, client1)K | . . .

| k1
2J. . . F(x2, client2)K . . .

F(x, client) , here [l] goto base.ping !〈l, x, client〉
Note that here all the free names used in the recursive process are closed
and the actual parameters are obtained when an instance is called via
ping. But more importantly only one home base is ever created. Thus the
loss of compositionality allows an easier proof of equivalence, since there
is only one base per recursion variable.

To return to the discussion of our translation, we have here a recDpi
process containing a number of recursive constructs but the way they
are to be translated to get the Dpi system (5) depends on the system
history. That is why our proof of (4) is based on an extended version of
the translation in which we specify whether a given occurrence of rec Z. P
has already been attributed a home base. If not, it should generate a
new one; if it has, then the actual home base needs to be recorded. In
the example, we need to attribute the same home base to the rec Z. P in
every ki

1, and different ones for the other ki
j .

Let us write unrecP(M) for the translation of M parameterised by
P, with P specifying how each rec Z. P should be translated in M .

Definition 6.1 (Occurrence). The occurrence o in a process P or a
system M , written P |o and M |o is defined inductively by:

• P |ε = P and M |ε = M ;

• (P1 |P2)|1o = P1|o, (P1 |P2)|2o = P2|o, and similarly for M ;

• u ?(X : T)P |0o = P |o;
• kJP K|0o = P |o;
• all other cases are similar.

For any occurrence o in a system M , we call system-prefix any prefix
o′ such that M |o′ is a system as opposed to a process.

For a given occurrence o and a given reduction Ω¤M µ−→Ω′¤M ′, we
will call residual of o the occurrence in M ′ of the system or process at o
in M , if it still exists.

42 Samuel Hym and Matthew Hennessy

Definition 6.2 (Residual). We call residual of an occurrence o in M
after a reduction Ω¤M µ−→Ω′¤M ′ the occurrence defined by the following
function:

• Res(ε, Ω ¤ M µ−→ Ω′ ¤ M ′) = ε

• Res(1o,Ω ¤ M |N µ−→ Ω′ ¤ M ′ |N) = Res(o,Ω ¤ M µ−→ Ω′ ¤ M ′)

• Res(2o,Ω ¤ M |N µ−→ Ω′ ¤ M ′ |N) = 2o

• Res(0,Ω ¤ kJa !〈V 〉P K k.a!V−−−→ Ω′ ¤ kJOK) = ⊥
• Res(00o,Ω ¤ kJa !〈V 〉P K k.a!V−−−→ Ω′ ¤ kJOK) = 0o

• Res(0o,Ω ¤ (new n : T)M (nñ:TT̃)k.a!V−−−−−−−−→ Ω′ ¤ M ′)
= Res(o,Ω ¤ M (ñ:T̃)k.a!V−−−−−−−→ Ω′ ¤ M ′)

• Res(0o,Ω ¤ (new n : T)M µ−→ Ω′ ¤ (new n : T) M ′)
= 0Res(o,Ω ¤ M µ−→ Ω′ ¤ M ′)

and the other cases are similar.

For a given system M , the Ps we will consider will be annotated par-
titions of a part of occurrences in M . We define the “valid” Ps as:

• if there exists o1, o2 and O such that oi ∈ O ∈ P then M |o1 = M |o2 =
rec Z : R. P ;

• for any O ∈ P, we call o the longest common system-prefix of all
occurrences in O; then all the free names in P are either free in M or
bound at an occurrence that is a prefix of o.

The intuition is that the various occurrences of rec Z : R. P in a given
set in P will be attributed the same “home-base”. The occurrences of the
rec Z : R. P will be translated by unrec(rec Z : R. P).

To perform that translation, we need to keep track of the “current”
occurrence within the system.

• if o0 is not in P,

unreco
P(kJ rec Z : R. P K) =

(newhomeZ{o0} : loc[pingZ{o0} : rw〈R{o0}〉])
homeZ{o0}J∗ pingZ{o0} ?(l : R) goto l.unreco00

P∪{{o0}1}(P)K
| homeZ{o0}JpingZ{o0} !〈k〉K

• if o is not in P, but the previous case does not apply because rec Z :
R. P occurs under a prefix,

unreco
P(rec Z : R. P) = (newloc homeZ : loc[pingZ : rw〈R〉])

(unrec(Z) |
goto homeZ . ∗ pingZ ?(l : R) goto l.unrec(P))

Adding recursion to Dpi 43

This will therefore heavily rely on implicit α-conversions.

• if o0 is in P, then it must be in some O in P;

unreco
P(kJrec Z : R. P K) =

homeZO
JpingZO

?(l : R) goto l.unreco00
P (P)K

| homeZO
JpingZO

!〈k〉K
• if o is in P, then it must be in some O in P, when the previous case

cannot apply;

unreco
P(rec Z : R. P) = here [x] goto homeZO

.pingZO
!〈x〉

• we write o′ for the occurrence of the binder of the occurrence o of Z;
if o′ is in P, then it must be in some O in P and Z must be “ZO”;

unreco
P(Z) = here [x] goto homeZO .pingZO

!〈x〉
• we write o′ for the occurrence of the binder of the occurrence o of Z;

if o′ is not in P:

unreco
P(Z) = here [x] gotohomeZ .pingZ !〈x〉

• unreco
P(u !〈V 〉P) = u !〈V 〉unreco0

P (P); all the other cases for pro-
cesses are similar;

• if o is the longest system-prefix of the occurrences in (Oi) ∈ P, we
translate the system this way, with ni the annotation of Oi in P and
oi one occurrence in Oi:

unreco
P((new e : E) M) =

(new e : E) (newhomeZO1
: loc[pingZO1

: rw〈RO1〉])
homeZO1

J∗ pingZO1
?(l : RO1) goto l.unrecoi0

P (M |oi0)K
...× n1

| homeZO1
J∗ pingZO1

?(l : RO1) goto l.unrecoi0
P (M |oi0)K

| homeZO2
J. . .K

...
|unreco0

P (M)

All other cases for system are similar, with the “generation” of all the
home-bases that are required at that occurrence before the inductive
case.

Notice that, up-to congruence for the order between the different locations
homeZ introduced by the last case of the definition, unreco

P(kJrec Z :
R. P K) when o0 is not in P is equal to unreco

P∪{{o0}1}(kJrec Z : R. P K).
Of course, we extend the notion of residual of an occurrence to the one

of residual of a set P.

44 Samuel Hym and Matthew Hennessy

We write unrecP(M) for unrecε
P(M). Note that we do not need

a special case for the translation of kJZK since we know that this is an
impossible situation.

To deal with the extra steps introduced by the translation, we will
resort to a proof technique given in [JR04], namely bisimulation up-to-β.
This is based on the remark that, among the reductions added by the
translation, only the communication on the channel ping is “dangerous”,
because it could fail if one of the two agents involved in the communication
were absent. Every other step is a so-called β-move, written τ−→β in
the LTS, in Figure 14. Thanks to bisimulations up-to-β we can focus
only on the communication moves. Then we can consider that the ping-
communication (which is a τ -move) in the translation corresponds to the
recursion unwinding in recDpi.

Lemma 6.3 (unrec() is an bisimulation). Suppose an environment Γ
and a system M . Then Γ ` M implies (Γ ¤ M)≈bis (Γ ¤ unrec(M))

Proof. We will prove that

R = {(Ω ¤ M, Ω ¤ unrecP(M)) | P is valid for M}
is a bisimulation up-to β.

Consider (Ω ¤ M, Ω ¤ unrecP(M)) in R. We know that there must
exist some Γ <: Ω such that Γ ` M . We write here Ω ¤ M µ−→ to express
the fact that there exists some configuration Ω′¤M ′ such that Ω¤M µ−→
Ω′ ¤ M ′.

• Ω ¤ M µ−→ Ω′ ¤ M ′. We prove that Ω ¤ unrecP(M) µ−→ τ−→∗
β ≡

Ω′ ¤ unrecP′(M ′) for some P ′, more precisely, if µ is an input or
output action, P ′ is the residual of P after that transition. This proof
is done by induction on the proof of Ω¤M µ−→Ω′¤M ′. To get into the
induction the property we prove is the fact that Ωo¤M |o µ−→Ω′o′¤M ′|o′
implies that Ω ¤ unreco

P(M |o) µ−→ τ−→∗
β ≡ Ω ¤ unreco′

P′(M
′|o′).

– (lts-go): M |o = kJgoto l.P K. This implies that unreco
P(M |o) is

kJgoto l.unreco00
P (P)K optionnally with some homeZO generation

so that the general form is

(new homeZO1
) (newhomeZO2

) . . .
homeZO1

J. . .K | . . . | kJgoto l.unreco00
P (P)K

which means that Ωo ¤ unreco
P(M |o) can perform the “match-

ing” move by some application of rules (lts-new), (lts-par) and

Adding recursion to Dpi 45

(lts-go). The term it reaches is

(new homeZO1
) (new homeZO2

) . . .
homeZO1

J. . .K | . . . | lJunreco00
P (P)K

which might need some extra β-reductions to become the transla-
tion of M ′|o′ = lJP K because there are different possible cases for
the form of P . If P is of the form rec Z : R. P ′:

∗ if o′0, the occurrence for the recursion operator, is in P ′ then it
must be in some set O′ in P ′ and unreco′

P′(M
′|o′) is

(new homeZO1
) . . . homeZO′ JpingZO′

!〈l〉K
| homeZO′ JpingZO′

?(l : R) goto l.unreco′00
P′ (P ′)K

but, we will take P ′ to be the residual of P after the move so
that o′0 is in P ′ exactly when o00 was in a set O in P. This
implies that lJunreco00

P (P)K is of the form

lJhere [x] goto homeZO .pingZO
!〈x〉K

which reduces by β-moves to homeZO
JpingZO

!〈x〉K. We also
know by definition of the translation unrecP(M) that at the
longest common system-prefix among occurrences in O is gen-
erated the server in the home-base:

(new homeZO
) homeZO

J∗ pingZO
?(l : R) goto l.unreco00

P (P)K
so one β-move generates a new instance of the replicated process

homeZOJ∗ pingZO
?(l : R) goto l.unreco00

P (P)K
which is exactly the system we need. And we can put this new
instance by o′ by congruence.

∗ if o′0 is not in P ′, we know that the translation we will give will
be of the form

(new homeZ{o′0} : loc[pingZ{o′0}
: rw〈R{o′0}〉])

homeZ{o′0}J∗ pingZ{o′0}
?(l : R) goto l.unreco′00

P′∪{{o′0}}(P
′)K

| homeZ{o′0}JpingZ{o′0}
?(l : R) goto l.unreco′00

P′∪{{o′0}}(P
′)K

| homeZ{o′0}JpingZ{o′0}
!〈k〉K

but in that case, we will have o00 not in P so lJunreco00
P (P)K

will be of the form

lJ(newloc homeZ : loc[pingZ : rw〈R〉])
(unrec(Z) |

gotohomeZ . ∗ pingZ ?(l : R) goto l.unrec(P))K

46 Samuel Hym and Matthew Hennessy

so by (lts-l-create), (lts-split), (lts-here), (lts-go) and
(lts-iter) this reduces by β-moves into the translation of M ′|o′ .
Otherwise, if P is not of the form rec Z : R. P ′, we know that it

cannot be of the simple form Z, since Z would in that case be a free
recursion variable in the system. So it must be one of the various
possible cases for processes. If we take the example of a !〈V 〉P ′, by
simply taking the residual of P for P ′, we get

unreco′0
P′ (a !〈V 〉P ′) = a !〈V 〉unreco′00

P′ (P ′)

= a !〈V 〉unreco000
P (P ′)

= unreco00
P (a !〈V 〉P ′) .

– (lts-split), (lts-iter), (lts-l-create), (lts-c-create),
(lts-eq), (lts-neq), (lts-out) and (lts-in): those rules are sim-
ilar to the previous case.

– (lts-here): this case is similar because the substitution commutes
with our translation.

– (lts-rec): M |o = kJrec Z : R. P K which reduces to M ′|o′ =
kJP{rec (Z:R). P/Z}K. so the translation will depend on whether o0 is
in P:

∗ if o0 is not in P, as we mentionned earlier, unreco
P(M |o) is

equal to unreco
P∪{{o0}}(M |o), so we can restrict our analysis

to the other case;

∗ if o0 is in O in P, we define P ′ as the residual of P, namely with
the occurrence o0 in P replaced by the occurrences of rec (Z :
R). P in M ′|o′ ; unreco

P(M |o) is of the form

homeZO
JpingZO

?(l : R) goto l.unreco00
P (P)K

|homeZO
JpingZO

!〈k〉K
By the rule (lts-comm), this can reduce by a τ move into
homeZOJgoto k.unreco00

P (P)K, so by an extra β-move, we reach
kJunreco00

P (P)K. And we want to prove that this system can
reduce in β-moves into unreco′

P′(kJP{rec (Z:R). P/Z}K). Now, re-
mark that

unreco′′
P′′(Z) = unreco′′

P′′(rec Z : R. P)

whenever o′′ is not an occurrence of the form o′′′0 with a system
of the form kJ. . .K at o′′′ and when o′′ is in P ′′. Since both
conditions are fulfilled in our case when considering the residual

Adding recursion to Dpi 47

of P for P ′, we get

unreco′
P′(kJP{rec (Z:R). P/Z}K) = unreco′

P′(kJP K)
As in the case for rule (lts-go), showing the adequation be-
tween this translation and kJunreco00

P (P)K turns out to be a
simple case analysis on the form of P .

– (lts-comm): M |o = M1 |M2 and there exists some Ω1 and Ω2 such
that Ω1 ¤ M |o1

(ñ:eT)k.a!V−−−−−−−→ Ω′1 ¤ M ′|o′′1 and Ω2 ¤ M |o2
(ñ:eU)k.a?V−−−−−−−→

Ω′2 ¤ M ′|o′′2. By our induction hypothesis, we can conclude that,
writing P ′ for the residual of P after the communication move

Ω1 ¤ unreco1
P (M |o1) (ñ:eT)k.a!V−−−−−−−→ τ−→∗

β ≡ Ω′1 ¤ unreco′′1
P′ (M ′|o′′1)

and

Ω2 ¤ unreco2
P (M |o2) (ñ:eU)k.a?V−−−−−−−→ τ−→∗

β ≡ Ω′2 ¤ unreco′′2
P′ (M ′|o′′2)

which implies

Ω ¤ unreco
P(M |o) τ−→ τ−→∗

β

≡ Ω ¤ (new ñ : T̃)unreco′′1
P′ (M ′|o′′1) |unreco′′2

P′ (M ′|o′′2)
= Ω ¤ (new ñ : T̃)unreco′′

P′(M
′|o′′)

= Ω ¤ unreco′
P′(M

′|o′)
these equalities being true with the omission of the extra homeZO

that might be generated by unreco
P(M |o) for the sake of simplicity.

They would be dealt with properly in the two intermediary steps,
keeping the same conclusion.

– (lts-new), (lts-open), (lts-weak) and (lts-par): we simply
apply, for those rules, the induction hypothesis.

• Ω ¤ unreco
P(M) µ−→Ω′ ¤ N ′. Here are the different possible cases for

the axiomatic rules in the proof of this reduction.

– (lts-iter) applied on a channel pingZO
: in that case we simply

modify the annotation on O in P from n to n + 1 to accomodate
for that new instance of the replicated process. That move is then
match by an absence of move in M , because N ′ is still a translation
of M .

– (lts-in) and (lts-out) on a channel pingZO
. Then the reduction

we are considering is a communication on that channel. Notice that
it is impossible to have only an input or only an input on a channel
pingZO

, since all those channels have restricted scopes.
Since we have an output prefix on that channel pingZO

, by
definition of the translation it must be due to some rec Z : R. P

48 Samuel Hym and Matthew Hennessy

in M . So we have Ω ¤ M τ−→Ω ¤ M ′, that τ corresponding to the
recursion unwinding. By a similar proof as in the matching of a
move in M by a move in its translation, we then show that Ω ¤ N ′

can further reduce into some Ω ¤ unrecP′(M ′) for some P ′.
– Otherwise, by definition of the translation, we know that the redex

in unrecP(M) must also exist in M , so Ω ¤ M µ−→ Ω′ ¤ M ′. By
a proof similar to the previous case, we can therefore show that
Ω ¤ unrecP(M) µ−→ τ−→∗

β ≡ Ω′ ¤ unrecP′(M ′), since the redex
reduced in the µ-move is the same.

7 Conclusion

In this paper we gave an extension of the Dpi-calculus with recursive
processes. In particular we described why this construct was more suited
to programming in the distributed setting, by allowing the description
of agents migrating through network, visiting and interrogating different
locations. We also gave a typing system for this extended calculus, which
involved recursive types, dealt with by using co-inductive proof techniques,
and showed that Subject Reduction remains valid. Finally we showed how
to encode our recursive processes into standard Dpi which uses iteration,
by resorting to the addition of extra migrations in the network. The
encoding was proved to be sound and complete, in the sense that the
original and translated processes are indistinguishable in a typed version
of reduction barbed congruence.

It would now be interesting to study the behaviour of recursive pro-
cesses in a setting where some parts of the network could fail (either
locations or links), since failures are of major importance in the study of
distributed computations. We conjecture that in such a setting there is no
translation of recursive processes into iterative ones, which preserve their
behaviour.

References
[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM

Transactions on Programming Languages and Systems, 15(4):575–631,
September 1993.

[FH05] Adrian Francalanza and Matthew Hennessy. Location and link failure in
a distributed pi-calculus. Computer Science Report 2005:01, University of
Sussex, 2005.

[GLP03] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive sub-
typing revealed. Journal of Functional Programming, 12(6):511–548, 2003.
Preliminary version in International Conference on Functional Programming

Adding recursion to Dpi 49

(ICFP), 2000. Also appears as Chapter 21 of Types and Programming Lan-
guages by Benjamin C. Pierce (MIT Press, 2002).

[HMR03] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a be-
havioural theory of access and mobility control in distributed systems. The-
oretical Computer Science, 322:615–669, 2003.

[HR02] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82–120, 2002.

[JR04] Alan Jeffrey and Julian Rathke. A theory of bisimulation for a fragment of
concurrent ml with local names. Theoretical Computer Science, 323:1–48,
2004.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[SW01] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University
Press, 2001.

