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Abstract

The asynchronous �-calculus is considered the basis of experimental programming lan-

guages (or proposal of programming languages) like Pict, Join, and TyCO. However, at a

closer inspection, these languages are based on an even simpler calculus, called Localised �

(L�), where: (a) only the output capability of names may be transmitted; (b) there is no

matching or similar constructs for testing equality between names.

We study the basic operational and algebraic theory of L�. We focus on bisimulation-

based behavioural equivalences, precisely on barbed congruence. We prove two coinductive

characterisations of barbed congruence in L�, and some basic algebraic laws. We then show

applications of this theory, including: the derivability of the delayed input ; the correctness of

an optimisation of the encoding of call-by-name �-calculus; the validity of some laws for Join;

the soundness of Thielecke's axiomatic semantics of the Continuation Passing Style calculus.

�

An extended abstract has appeared in the Proceedings of 25th International Colloquium on Automata, Lan-

guages and Programming, volume 1443, of Lecture Notes in Computer Science, Springer Verlag, July 1998.
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1 Introduction

The asynchronous �-calculus, abbreviated �

a

, is a variant of the �-calculus, where message emission

is non-blocking. Formally, the output pre�x ab.P of the �-calculus is replaced with the simpler

output particle ab, which has no continuation. The asynchronous �-calculus has been introduced

by Honda and Tokoro [21], and independently Boudol [10], who showed that it is expressive enough

to encode the (synchronous) �-calculus. Asynchronous communications are interesting from the

point of view of concurrent and distributed programming languages, because they are easier to

implement and they are closer to the communication primitives o�ered by available distributed

systems.

The asynchronous �-calculus is considered the basis of experimental concurrent and/or dis-

tributed programming languages (or proposal of programming languages) like Pict [44], Join [15],

and TyCO [59]. However, at a closer inspection, the programming languages above are based on

an even simpler calculus, where:

(a) the recipient of a name may only use it in output actions; that is, only the output capability

of names may be transmitted;

(b) there is no matching construct (or similar constructs like mismatching) for testing equality

between channel names.

1

These restrictions are explicit in Join. In Pict and TyCO, (b) is explicit; (a) is not, but most

programs comply with it. We call Localised �, abbreviated L�, the asynchronous �-calculus with

the additional simpli�cations (a) and (b).

By restriction (a), the recipients of a channel are local to the process that has created the

channel. More precisely, in a process (�a)P the inputs at channel a are statically determined: no

further inputs at a may be created, inside or outside P . For instance, the process

(�a)(ba.P j a(x).Q) j b(z). z(y).R

is not in L� because, after a reduction along b, a new input at a is created. Locality of channels

makes L� particularly suitable for giving semantics to, and reasoning about, concurrent or dis-

tributed object-oriented languages. For instance, locality can guarantee the fundamental property

that an object has unique identity. In object-oriented languages, the name a of an object may

be transmitted; the recipient may use a to access its methods, but it cannot create a new object

called a. When representing objects in the �-calculus, this usually translates into the constraint

that the process receiving the object name may only use it in output [60, 25, 51, 26, 42, 53, 30].

Restriction (b), that is the absence of matching, is an important requirement too. Indeed,

name-testing, like testing equality between pointers in imperative languages, prevents many use-

ful program optimisations and transformations. Also from a programming point of view, the

usefulness of matching is questionable. For instance, Join, Pict, and TyCO do not provide any

construct for testing channels.

In this paper, we study the operational and algebraic theory of L�. We focus on bisimulation-

based behavioural equivalences, and more precisely on barbed congruence [37]. Barbed congruence

equates processes that, very roughly, in all contexts give rise to the same set of observable actions.

Like other contextually-de�ned forms of bisimulation, barbed congruence is sensitive to the set of

operators of a calculus. L� is a sub-calculus of �

a

and �-calculus, and therefore has fewer contexts.

This allows us to gain useful process equalities. In this respect, the most important algebraic law

of asynchronous � that is not in the theory of the synchronous �-calculus is the asynchrony law:

a(x). ax = 0.

The asynchrony law essentially says that inputs can not be observed in �

a

. Although this law is

useful (it is used for instance by Nestmann and Pierce to prove the correctness of an encoding of

1

We may also view (b) as a consequence of (a), since testing the identity of a name requires more than the

output capability.
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guarded choice [38]), it seems fair to say that the restriction to asynchronous contexts does not

allows us to gain much.

By contrast, asynchrony has strong semantic consequences under simpli�cations (a) and (b).

Consider the following laws which are valid (under the speci�ed conditions) in L�, but are false

in �

a

and in �-calculus:

ab = (�c)(ac j !c(x). bx) (1)

(�a)(!a(x).R j P j Q) = (�a)(!a(x).R j P ) j (�a)(!a(x).R j Q) (2)

(�a)(!a(x).R j C[ab]) = (�a)(!a(x).R j C[Rf

b

=xg]) (3)

(�c)(ac) = (�c)(ac j c(x).0) (4)

(�c)(ac) = (�c)(ac j cb) (5)

Law 1, where c6=b, equates processes that may perform syntactically di�erent outputs: the process

on the left performs the output of a global name b, whereas that on the right the output of a

private name c. The forwarder process !c(x). bx makes the two processes indistinguishable. Law 2

is a distributivity law for replicated resources known as one of Milner's replication theorems [31].

This law is true in the �-calculus, under the hypothesis that name a is never transmitted and never

used in input by processes P;Q and R. In L�, Law 2 is still valid when name a is transmitted by

P;Q or R to the environment. Law 3 is reminiscent of inline expansion, an optimisation technique

for functional languages which replaces a function call (the particle ab) with an instance of the

function body (the process Rf

b

=xg). This laws holds in L� provided that name a does not appear

free in input in process R and context C[�]. (Also, by �-conversion we assume that all bound names

are di�erent from each other.) Finally, Laws 4 and 5 represent two forms of garbage collection.

Notice that, in both laws, after the initial output, the derivatives are very di�erent.

The main di�culty when proving that two processes are barbed congruent is represented by

the quanti�cation over contexts in the de�nition of barbed congruence. This quanti�cation makes

very hard to prove process equalities, and makes mechanical checking impossible. Simpler proof

techniques are based on labelled bisimulations whose de�nitions do not use context quanti�cation.

These bisimulations should imply, or (better) coincide with, barbed congruence. In �-calculus

barbed congruence coincides with the closure under substitutions of synchronous early bisimi-

larity [46]. Similarly, in �

a

barbed congruence coincides with the closure under substitutions of

asynchronous early bisimilarity [3]. In these proofs, a central role is played by the matching con-

struct, for testing equality between names. If matching is removed from the language, then (the

closure under substitutions of) early bisimilarity still implies barbed congruence, but the vice versa

does not hold. Both characterisations are given on the class of the image-�nite processes and

exploit the n-approximants of the labelled equivalences.

In this paper, we give two characterisations of barbed congruence in L� (as usual, on image-

�nite processes). The �rst is based on an embedding of L� into a subcalculus where all names

emitted are private. Barbed congruence between processes of L� coincides, on their images, with

(a slight variant of) asynchronous ground bisimilarity [3]. The second characterisation is based

on a new labelled transition system (LTS) which modi�es the standard one so to reveal what is

observable in L�, that is, what an external observer that behaves like a L� process can see by

interacting with a L� process. Barbed congruence in L� coincides with the standard asynchronous

ground bisimilarity de�ned on the new LTS. We then show enhancements of the coinductive proof

methods presented by means of up{to proof techniques, some of which are standard up{to proof

techniques for �-calculus bisimilarities, others are new.

Technical di�erences of our characterisations with respect to those in �

a

and �-calculus [3, 46]

are: (i) the labelled bisimilarities of L� are congruence relations and therefore do not have to be

closed under substitutions to obtain barbed congruence; (ii) the labelled bisimilarities in L� are

ground, rather than early, which means that they do not need universal quanti�cations on the

received names; (iii) the characterisations in L� are proved without the matching construct, which

is essential in the proofs in �

a

and �-calculus.
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Proof techniques for L� can be exploited to reason about languages such as Pict, Join, and

TyCO, either by directly adapting the techniques to these languages, or by means of encodings

into L�. The theory of L� (for instance, its algebraic properties and labelled bisimulations) is also

useful in calculi where the usage of some names goes beyond the syntax of L�. For instance, there

could be a distinct set of synchronous names, or names that can be tested for identity (see, for

instance, [30]). A type system could be used to distinguish between \L� names" and the other

names, and the theory of L� can then be applied to the formers.

For simplicity we develop the theory for a monadic calculus (where exactly one name may be

transmitted); the generalisation to the polyadic version (where tuple of names may be transmitted)

is straightforward.

1.1 Related work

Calculi similar to Localised � are discussed by Honda and Tokoro [22], Amadio [2], Boreale [7],

and Yoshida [62]. A number of characterisations of barbed congruence on asynchronous mobile

processes exist [3, 8, 2]. However, in the labelled bisimilarities used, matching transitions of

processes have the same labels, therefore laws like (1�5) do not hold.

Other studies on barbed congruence, or similar context-based bisimulations, for mobile pro-

cesses have been conducted, for instance by Honda and Yoshida [24, 61] Kobayashi, Pierce, and

Turner [27], Hennessy and Riely [19] (and, for a coordination language, by Busi, Gorrieri, and Za-

vattaro [12]). Boreale and Sangiorgi [9] have studied barbed congruence in synchronous �-calculus

with capability types and no matching, where L� can be treated as a special case. Our character-

isations are simpler than those in [9], but the latter are more general, in that they can be applied

to several �-calculus languages (although the extension to asynchronous languages is not straight-

forward). The technical approaches are di�erent: in [9] bisimilarities have a type environment (in

fact, closures) whereas our bisimilarities are directly de�ned on processes.

By the time the writing of this paper has been completed, the theory of L� has already been

used in some works. In [29], the �rst author gives an encoding of polyadic L� into monadic L�.

Unlike Milner's encoding of polyadic � into monadic � [31], the encoding in [29] is fully-abstract

with respect to barbed congruence. In [54], the second author gives a fully-abstract encoding of

higher-order L� (where processes can be transmitted) into L�. The theory of L� allows proofs

simpler than those of analogous results for other �-calculi [46, 49]. Finally, in [30] L� is used to

give a translational semantics of (an appropriate abstraction of) Cardelli's distributed object-based

programming language Obliq [13]. The theory of L� (precisely a typed variant of Lemma 5.17) is

used to prove the correctness of object migration.

In Join and Blue calculus, polymorphic type systems �a la ML have been introduced [17, 14].

In both cases, the constraint on the output capability of names is crucial. We believe that similar

polymorphic type systems can be de�ned in L�.

1.2 Outline

In Section 2 we give syntax and operational semantics of L�. In Section 3 we recall some common

bisimulation-based behavioural equivalences for �-calculi. In Section 4 we present some special

processes, the link processes, which are important in the theory of L�. In Section 5 we give the

�rst proof technique for barbed congruence. In Section 6 we give the second proof technique for

barbed congruence. In Section 7 we prove that these two proof techniques completely describe

barbed congruence. In Section 8 we enhance the second proof technique with a new form of

up-to proof technique. Section 9 is entirely devoted to applications: in subsection 9.1 we use

link processes to express name substitutions; in Subsection 9.3 we prove that the delayed input

(a form of non-blocking input pre�xing) is derivable in L�, and present some of its algebraic

properties. In Subsection 9.2 we prove a sharpened form of Milner's replication theorems [31]. In

Subsection 9.4 we give an optimisation of the encoding of call-by-name �-calculus and, exploiting

delayed input, we derive an encoding of strong call-by-name. In Subsection 9.5 we prove some laws

for Fournet and Gonthier's Join-calculus [15]. In Subsection 9.6 we prove some non-full abstraction
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and full abstraction results for Boreale's encoding [7] of external mobility (communication of free

names) in terms of internal mobility (communication of private names). Finally, in Subsection 9.7

we prove that Thielecke's axiomatic semantics of the Continuation Passing Style calculus [57] is

operationally sound.

2 The calculus L�

L� is a subset of asynchronous �-calculus. L� has operators of inaction, input pre�x, asynchronous

output, parallel composition, restriction and replicated input.

De�nition 2.1 Let N be a countable in�nite set of names, ranged over by small letters (a; b; c; : : : ;

x; y; z). The grammar of L�-processes is

P ::= 0 j a(b).P j ab j P j P j (�a)P j !a(b).P

with the syntactic constraint that in processes a(b).P and !a(b).P name b may not occur free in

P in input position.

Input pre�x a(b).P and restriction (�b)P acts as binders for name b leading to the usual notions

of free and bound occurrences of names, fn(�) and bn(�), and �-conversion, �

�

. We will identify

processes up to �-conversion. More formally we will view process terms as representatives of

their equivalence class with respect to �

�

, and these representatives will always be chosen so that

bound names are distinct from free names. The names of a process P , written n(P ), are given by

fn(P ) [ bn(P ). Sometimes, fn(P;Q) is used as a shorthand for fn(P ) [ fn(Q), and similarly for

n(P;Q) and bn(P;Q). In a statement, a name declared fresh is supposed to be di�erent from any

other name appearing in the objects of the statement, like processes or substitutions.

Substitutions, ranged over by �; �

0

; : : : are functions from N to N ; for any process P , we write

P� for the process obtained by applying � to P with renaming possibly involved to avoid capture

of free names. The following order precedence when writing processes is assumed: substitution >

f restriction, input pre�x, replicated input g > parallel composition. We write a and a.P when

the name transmitted at a is not important. We write � .P as an abbreviation for (�a)(a j a.P )

where a 62 fn(P ). We write ea to denote a tuple of names, such as a

1

; : : : ; a

n

. We write (�ea)P for

(�a

1

) : : : (�a

n

)P .

L� does not have a summation operator. This is because in asynchronous calculi the meaning of

summation, other than input-guarded, is unclear [3]. Nestmann and Pierce have showed that input-

guarded summation can be coded up using asynchronous communications [38] (their encoding

respects the constraints of L�).

L�, like several other dialects of the �-calculus, adopts replicated inputs instead of recursion.

This is because: (i) replicated input has the same expressive power as full replication [23] and

recursion [31, 56]; (ii) replicated input has a simpler semantics and is handy for implementations.

The theory and the results presented in this paper would however hold also with full replication

or recursion.

The operational semantics of L� is given by means of labelled transition system (LTS) in the

SOS style of [45]. The LTS is the standard one, in the late style [36, 52], and is presented in

Table 1. Transition are of the form P

�

��! P

0

, where action � can be: � (interaction), a(b)

(input), ab (free output) and a(b) (bound output, that is the emission of a private name b at a).

In these actions, a is the subject and b the object. Free and bound names of actions and processes

are de�ned as usual. We write

�̂

��! to mean P

�

��!Q, if � 6= � , and either P = Q or P

�

��!Q,

if � = � . Relation =) is the reexive and transitive closure of

�

��!; moreover,

�

==) stands for

=)

�

��!=), and

�̂

==) for

�

==) if � 6= � , and for =) if � = � .

Finally, in the sequel, we use the symbol � to denote structural congruence, a relation used to

rearrange the structure of processes [31].

De�nition 2.2 (Structural congruence) Structural congruence, �, is the smallest congruence

relation satisfying the axioms below:
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inp:

a(x).P

a(x)

����!P

out:

ab.P

ab

���!P

open:

P

ab

���!P

0

a 6= b

(�b)P

a(b)

����!P

0

close:

P

a(c)

����!P

0

Q

a(c)

����!Q

0

P j Q

�

��!(�c)(P

0

j Q

0

)

com:

P

ab

���!P

0

Q

a(x)

����! Q

0

P j Q

�

��!P

0

j Q

0

f

b

=xg

par:

P

�

��!P

0

bn(�) \ fn(Q) = ;

P j Q

�

��!P

0

j Q

new:

P

�

��!P

0

a 62 n(�)

(�a)P

�

��!(�a)P

0

rep:

!a(x).P

a(x)

����!P j !a(x).P

Table 1: Labelled transition system for L�

� P j 0 � P , P j Q � Q j P , P j (Q j R) � (P j Q) j R

� (�a)0 � 0, (�a)(�b)P � (�b)(�a)P , (�a)(P j Q) � P j (�a)Q if a 62 fn(P ).

3 Some background on behavioural equivalences

A crucial notion in a process calculus is that of behavioural equality between processes. As said

in the introduction, we focus on bisimulation-based behavioural equivalences, and more precisely

on barbed congruence. Barbed congruence can be de�ned in any calculus possessing: (i) an inter-

action relation (the � -steps in the �-calculus), modelling the evolution of the system; and (ii) an

observability predicate #

a

for each name a, which detects the possibility of a process of accepting

a communication with the environment at a. More precisely, we write P #

a

if P can make an

output action whose subject is a, that is, if there exist P

0

and b such that P

ab

���!P

0

or P

a(d)

�!P

0

.

We write P +

a

if P =) P

0

and P

0

#

a

. Unlike synchronous �-calculus, in asynchronous calculi

it is natural to restrict the observation to output actions [3]. The reason is that in asynchronous

calculi the observer has no direct way of knowing when a message emitted is received. Below, we

de�ne barbed congruence on a generic subset P of �-calculus processes. A P-context is a process

of P with a single hole [�] in it.

De�nition 3.1 (Barbed relations) A symmetric relation S on processes is a barbed bisimula-

tion if P S Q implies:

1. If P

�

��!P

0

then there exists Q

0

such that Q =) Q

0

and P

0

S Q

0

.

2. If P #

a

then Q +

a

.

Two processes P and Q are barbed bisimilar, written P �

�

Q, if P S Q for some barbed bisimu-

lation S. Let P be a set of �-calculus processes, and P;Q 2 P. We say that P and Q are barbed

congruent in P, written P

�

=

P

Q, if for each P-context C[�], it holds that C[P ] �

�

C[Q].

Characterisations of barbed congruence in terms of labelled bisimilarities are usually given on

the class of image-�nite processes, by exploiting the n-approximants of the labelled equivalence.

De�nition 3.2 The class of image-�nite processes is the largest subset I of �-processes which is

derivation closed and such that P 2 I implies that, for all �, the set fP

0

: P

�

==) P

0

g, quotiented

by alpha conversion, is �nite.
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In �-calculi, barbed congruence coincides with the closure under substitutions of early bisimi-

larity [46, 3]. In asynchronous calculi without matching, like L�, early bisimilarity is a congruence

and it coincides with its simpler ground variant [20, 48], which di�er from the early one in that

there is no universal quanti�cation in the input clause.

De�nition 3.3 A symmetric relation S on �-terms is an o� -bisimulation if P S Q, P

�

��!P

0

, �

is not an input and bn(�)\ fn(Q) = ;, implies that there exists Q

0

such that Q

b�

==)Q

0

and P

0

S Q

0

.

De�nition 3.4 (Ground bisimilarities)

� Synchronous ground bisimulation is the largest o� -bisimulation S on processes such that

P S Q and P

a(b)

����!P

0

, with b 62 fn(Q), implies that there exists Q

0

such that Q

a(b)

====)Q

0

and

P

0

S Q

0

.

Two processes P and Q are synchronous ground bisimilar, written P � Q, if P S Q for

some synchronous ground bisimulation S.

� Asynchronous ground bisimulation is the largest o� -bisimulation S on processes such that

P S Q and P

a(b)

����!P

0

, with b 62 fn(Q), implies that there exists Q

0

such that:

1. either Q

a(b)

====)Q

0

and P

0

S Q

0

2. or Q =) Q

0

and P

0

S (Q

0

j ab).

Two processes P and Q are asynchronous ground bisimilar, written P �

a

Q, if P S Q for

some asynchronous ground bisimulation S.

Sometimes, it may be useful to count the number of silent moves performed by a process. The

synchronous expansion [5], written ., is an asymmetric variant of � such that P . Q holds if

P � Q, and Q has at least as many � -moves as P .

Similarly, one can de�ne asynchronous expansion.

De�nition 3.5 (Expansions)

� A relation S on processes is a synchronous ground expansion if P S Q implies:

1. If P

�

��!P

0

, � 2 f�; ab; a(b); a(b)g and bn(�) \ fn(Q)=;, then there exists Q

0

such that

Q

�

==)Q

0

and P

0

S Q

0

.

2. If Q

�

��!Q

0

, � 2 f�; ab; a(b); a(b)g and bn(�) \ fn(P )=;, then there exists P

0

such that

P

�̂

��!P

0

and P

0

S Q

0

.

We write P . Q if P S Q for some synchronous ground expansion S.

� A relation S on processes is an asynchronous ground expansion if P S Q implies:

1. If P

�

��!P

0

, � is not an input, and bn(�) \ fn(Q) = ;, then there exists Q

0

such that

Q

�

==)Q

0

and P

0

S Q

0

.

2. If P

a(b)

����!P

0

, b 62 fn(Q), there exists Q

0

such that:

(a) either Q

a(b)

====)Q

0

and P

0

S Q

0

(b) or Q

�

==)Q

0

and P

0

S (Q

0

j ab).

3. If Q

�

��!Q

0

, � is not an input, and bn(�) \ fn(P ) = ;, then there exists P

0

such that

P

�̂

��!P

0

and P

0

S Q

0

;

4. if Q

a(b)

����!Q

0

, b 62 fn(P ), then there exists P

0

such that:

8



(a) either P

a(b)

����!P

0

and P

0

S Q

0

(b) or P

�̂

��!P

0

and (P j ab) S Q

0

.

We write P .

a

Q, if P S Q for some asynchronous ground expansion S.

4 The link processes

The theory of L� is based on special processes called links which behave as name bu�ers receiv-

ing names at one end-point and retransmitting them at the other end-point (in the �-calculus

literature, links are sometimes called forwarders [24] or wires [56]).

De�nition 4.1 (Static link) Given any two names a and b, we call static link the process below:

a . b

def

= !a(x). bx.

We sometimes use a more sophisticated form of link a! b, which does not perform free outputs:

the name sent at b is not x, but a link to x (this is the de�nition of links in calculi where all outputs

emit private names [50]).

De�nition 4.2 (Dynamic link) Given two names a and b, we call dynamic link the process

de�ned by the following recursive de�nition:

a! b

def

= !a(x). (�c)(bc j c! x).

Being recursively de�ned, the process a! b is not in L�. However, there exists a process in

L� which is synchronous bisimilar to it. In the following we explain how this process can be built

up. In [31], Milner shows that recursive de�nitions can be encoded, up to bisimilarity, in terms

of replication. When applying Milner's encoding to a dynamic link we get a processes which does

not respect the L� constraint on the output capability. This problem can be avoided by rewriting

the de�nition of dynamic links thus:

a! b

def

= !a(x). out(b; x)

where out(b; x) is recursively de�ned as:

out(b; x)

def

= (�c)(bc j !c(y). out(x; y)).

Process out(b; x) can be expressed in (polyadic) L� in terms of replication as follows:

out(b; x) � (�o)(ohb; xi j !o(b; x). (�c)(bc j !c(y). ohx; yi)).

As already pointed out in Section 3, in asynchronous calculi, the relation � is a congruence. So,

the process a! b can be rewritten, up to �, in (polyadic) L�. Finally, by exploiting the encoding

fj � jg de�ned below, we get the desired process of L� which is bisimilar to the recursive process

a! b. The encoding fj � jg is a slight variant of Milner's encoding [31] of polyadic processes into

monadic ones

2

. fj � jg is an homomorphism on all operators except input and output for which we

have:

� fja(x

1

; x

2

).P jg

def

= a(w). (�c

1

c

3

)(wc

1

j c

1

(c

2

). (c

2

c

3

j c

3

(x

1

). c

1

(x

2

). fjP jg))

� fjahb

1

; b

2

i jg

def

= (�w)(aw j w(c

1

). (�c

2

)(c

1

c

2

j c

2

(c

3

). (c

3

b

1

j c

1

b

2

))).

To conclude the section we show how links can be joined with each other.

2

For our purposes it su�ces to consider the encoding where only pairs are taken into account.

9



[[P

1

j P

2

]]

def

= [[P

1

]] j [[P

2

]] [[a(x).P ]]

def

= a(x). [[P ]] [[!a(x).P ]]

def

= !a(x). [[P ]]

[[(�a)P ]]

def

= (�a)[[P ]] [[ab]]

def

= (�c)(ac j c! b) [[0]]

def

= 0

Table 2: The encoding of free outputs in terms of bound outputs

Proposition 4.3 Let a and b be names di�erent from c. Then:

1. (�b)(a . b j b . c) & a . c

2. (�b)(a! b j b! c) & a! c

3. (�b)(a . b j b! c) & a! c

4. (�b)(a! b j b . c) & a! c.

Proof: Parts 1, 3, 4 are proved by simply exhibiting the appropriate expansion relations. Part

2 has been already proved in [7] and requires up-to context proof techniques. �

5 A \translation-based" proof technique

In this section, we give a proof technique for barbed congruence in L� based on an encoding of free

outputs in terms of bound outputs (see Table 2). The encoding, written [[�]], is an homomorphism

on all operators except output. The output particle ab is mapped into the process (�c)(ac j c! b)

where c 62 fa; bg. Our encoding is essentially the asynchronous version of an encoding used by

Boreale [7] to compare internal and external mobility. In Boreale's encoding, an output ab is

mapped onto the synchronous process (�c)(ac. c! b). This process is behaviourally the same as

(�c)(ac j c! b): in both cases the link c! b becomes active only when the bound output at a is

consumed. Note that the process (�c)(ac j c! b) coincides with the recursive de�nition out(a; b)

seen in Section 4.

In Section 5.1, we present some results on [[�]] already proved by Boreale [7] for its encoding

and that trivially apply to our encoding as well. Then, in Section 5.2, we give the proof technique.

5.1 Background

The encoding [[�]] commutes with substitutions, i.e., for each substitution � it holds that [[P�]] =

[[P ]]�. In [7] Boreale proves an operational correspondence between processes P and [[P ]]; he also

gives an adequacy result for [[�]] with respect to barbed bisimulation.

Lemma 5.1 (Boreale [7]) Let P be a process in L�.

1. Suppose that P

�

��!P

0

. Then we have:

(a) if � = a(c) then [[P ]]

a(c)

����! & [[P

0

]]

(b) if � = ab then [[P ]]

a(c)

����! & c! b j [[P

0

]], with c 62 fn(P

0

)

(c) if � = a(b) then [[P ]]

a(c)

����! & (�b)(c! b j [[P

0

]]), with c 62 fn(P

0

)

(d) if � = � then [[P ]]

�

��! & [[P

0

]].

2. Suppose that [[P ]]

�

��!P

1

. Then there exists P

0

2 L� such that:

10



(a) if � = a(c) then P

a(c)

����!P

0

, with P

1

& [[P

0

]]

(b) if � = a(c) then:

i. either P

ab

���!P

0

, with c 62 fn(P

0

) and P

1

& (c! b j [[P

0

]])

ii. or P

a(b)

����!P

0

, with c 62 fn(P

0

) and P

1

& (�b)(c! b j [[P

0

]])

(c) if � = � then P

�

��!P

0

with P

1

& [[P

0

]].

The proof of the lemma above relies on Proposition 4.3(2) and a technical but important lemma

that we report below.

Lemma 5.2 (Boreale [7]) Let P be an L�-process, and a and b two names such that a 6= b and

a does not occur free in P in input-subject position. Then:

(�a)(a! b j [[P ]]) & [[P ]]f

b

=ag.

From Lemma 5.1 Boreale derives the following adequacy result for [[�]].

Theorem 5.3 (Boreale [7]) Let P and Q be two processes in L�. Then:

P �

�

Q i� [[P ]] �

�

[[Q]].

5.2 The proof technique

For technical reasons, it is convenient to de�ne a calculus, called L�, whose operators are the same

as those of L� but with the output construct ab replaced by its translation [[ab]]. Formally, the

syntax of L� is the following:

P ::= 0 j a(x).P j [[ab]] j P j P j (�a)P j !a(x).P

with the same constraint on received names as in L�. L� is the image of L� under the encoding [[�]].

Lemma 5.4 If P is an L�-process then [[P ]] is an L�-process. Vice versa, for each L�-process Q

there exists an L�-process P such that [[P ]] = Q.

It is easy to see that L� is closed under under labelled transitions:

Lemma 5.5 Let P be an L�-process. If P

�

��!P

1

then P

1

2 L�.

Proof: By structural induction. The most interesting case is when

P = [[ab]]

def

= (�c)(ac j c! b) = (�c)(ac j !c(x). [[bx]]).

In this case, � = a(c) and P

1

= !c(x). [[bx]] which, by de�nition, is in L�. �

The proof technique to verify if two L�-processes are barbed congruent consists in translat-

ing them, by means of [[�]], and then checking if their images are related by the bisimilarity �

a

de�ned below. The relation �

a

is a slight variant of the asynchronous ground bisimilarity (c.f.

De�nition 3.4) in which the output particle ab in clause 2 is replaced by [[ab]].

De�nition 5.6 (�

a

-bisimilarity) A symmetric relation S on processes of L� is a �

a

-bisimula-

tion if whenever P S Q the following holds:

1. If P

�

��!P

0

, then there exists Q

0

such that Q =) Q

0

and P

0

S Q

0

.

2. If P

a(b)

����!P

0

, b 62 fn(Q), then there exists Q

0

such that Q

a(b)

====)Q

0

and P

0

S Q

0

.

3. If P

a(b)

����!P

0

, b 62 fn(Q), then there exists Q

0

such that:

11



(a) either Q

a(b)

====)Q

0

and P

0

S Q

0

(b) or Q =) Q

0

and P

0

S (Q

0

j [[ab]]).

Processes P and Q are �

a

-bisimilar, written P �

a

Q, if P S Q for some �

a

-bisimulation S.

Relation �

a

is designed to be used on L�-processes and therefore its de�nition does not contain

clauses for free output actions. In order to prove that �

a

is a congruence relation over L� we

adapt the up-to expansion proof technique of [55].

De�nition 5.7 (�

a

-bisimulation up to & and �) A symmetric relation S is a �

a

-bisimula-

tion up to & and � if whenever P S Q the following holds:

1. If P

�

��!P

0

, then there exists Q

0

such that Q =) Q

0

and P

0

&S � Q

0

.

2. If P

a(b)

����!P

0

, b 62 fn(Q), then there exists Q

0

such that Q

a(b)

====)Q

0

and P

0

&S � Q

0

.

3. If P

ab

���!P

0

, b 62 fn(P;Q), then there exists Q

0

such that:

(a) either Q

ab

===)Q

0

and P

0

&S � Q

0

(b) or Q =) Q

0

and P

0

&S � (Q

0

j [[ab]]).

Lemma 5.8 If S is a �

a

-bisimulation up to & and � then S ��

a

.

Proof: The proof is analogous to that in [55]. If S is a �

a

-bisimulation up to & and �, then one

shows that the relation �S� is a �

a

-bisimulation. This follows from the transitivity of � and the

fact that � is preserved by parallel composition (The latter result is necessary to deal with clause

(3b) of De�nition 5.6). Finally, since S � �S � � �

a

, we can conclude. �

In the sequel, we often use a �

a

-bisimulation up to � proof technique. The soundness of this

technique follows from Lemma 5.8 and the fact that � is contained in & (and therefore also in �).

The following lemma gives us some information about the structure of the L�-processes which

may perform an output action. Part 2 of Lemma 5.9 will be needed to prove that �

a

is preserved

by parallel composition.

Lemma 5.9 Let P be an L�-process.

1. If P

a(c)

����!P

1

then P � (�ez)((�c)(ac j c! b) j P

2

) and P

1

� (�ez)(c! b j P

2

) for some ez, b

and P

2

such that fa; cg \ ez = ; and c 62 fn(P

2

).

2. If P

a(c)

����!P

1

then P � (�c)([[ac]] j P

1

).

Proof:

1. By transition induction.

2. By part 1 P � (�ez)((�c)(ac j c! b) j P

2

) and P

1

� (�ez)(c! b j P

2

) for some ez, b and

P

2

such that fa; cg \ ez = ; and c 62 fn(P

2

). Picking some fresh name d we have, using

proposition 4.3(2):

P � (�ez)((�d)(ad j d! b) j P

2

)

� (�ez)((�d)(ad j (�c)(d! c j c! b)) j P

2

)

� (�c)((�d)(ad j d! c) j (�ez)(c! b j P

2

))

� (�c)([[ac]] j P

1

).

�

12



Lemma 5.10 Let P and Q be two L�-processes such that P �

a

Q. Then:

1. (�a)P �

a

(�a)Q

2. P j R �

a

Q j R, for all L�-process R .

Proof: Here we give a sketch of the proof. A detailed proof can be found in Appendix A.1

1. We show that the relation

S= f((�a)P ; (�a)Q) : P;Q 2 L� and P �

a

Qg

is a �

a

-bisimulation up-to structural congruence. The proof is straightforward because the

output actions performed by an L�-process are always bound and therefore the restriction

operator cannot bind names in output object position. We work up to structural congruence

when dealing with the asynchronous clause for input.

2. We prove that the relation

S = f((�~a)(P j R); (�~a)(Q j R)) : P;Q;R 2 L� and P �

a

Qg

is a �

a

-bisimulation up to & and �. The proof requires both the up-to proof technique of

De�nition 5.7 and Lemma 5.9. In general, proving that a ground bisimulation is preserved

by parallel composition is hard. In our case the proof is simple because processes in L�

never perform free output actions.

�

We can now prove that �

a

is an equivalence relation.

Lemma 5.11 Let P , Q and R be L�-processes. Then:

1. P �

a

P

2. P �

a

Q implies Q �

a

P

3. P �

a

Q and Q �

a

R implies P �

a

R.

Proof: The only nontrivial property is transitivity. We essentially need to prove two results:

� �

a

is preserved by injective substitutions. The proof is analogous to that of � in the �-

calculus.

� P �

a

Q and b 62 fn(P;Q) implies P j [[ab]] �

a

Q j [[ab]]. This result is necessary to deal with

clause (3b) of De�nition 5.6 and is just a particular case of Lemma 5.10(2). Notice that the

proof of Lemma 5.10(2) does not rely on the transitivity of �

a

.

�

Lemma 5.12 Let P and Q be two L�-processes such that P �

a

Q. Then:

1. a(x).P �

a

a(x).Q

2. !a(x).P �

a

!a(x).Q.

Proof: Here we give a sketch of the proof. A detailed proof can be found in Appendix A.1

1. We prove that the relation

S= f(a(x).P ; a(x).Q) : P;Q 2 L� and P �

a

Qg

is a �

a

-bisimulation. Since �

a

is in ground style it su�ces to prove that �

a

is preserved by

injective substitution. The proof is analogous to that of � in the �-calculus.
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2. We prove that the relation S de�ned below

f(P

1

j !a(x).Q

1

; P

2

j !a(x).Q

2

) : P

1

; P

2

; Q

1

; Q

2

2 L� ; P

1

�

a

P

2

; Q

1

�

a

Q

2

g

is a �

a

-bisimulation up to structural congruence (it is a special case of the proof technique

of De�nition 5.7). The proof relies on the fact that �

a

is preserved by injective substitu-

tions, parallel composition, and restriction. By transitivity of �

a

(Lemma 5.11(3)) we then

conclude.

�

By Lemmas 5.10, 5.11, and 5.12 we can conclude that �

a

is a congruence.

Corollary 5.13 �

a

is a congruence relation.

Finally, we can prove the soundness of our \translation-based" technique for barbed congruence

in L�.

Theorem 5.14 (Soundness) Let P and Q be two processes in L�. Then:

[[P ]]�

a

[[Q]] implies P

�

=

L�

Q.

Proof: By Lemmas 5.4 and Corollary 5.13 it holds that [[C[P ]]]�

a

[[C[Q]]] for any context C[�] in

L�. Since �

a

� �

�

, it holds that [[C[P ]]] �

�

[[C[Q]]] and therefore, by Theorem 5.3, C[P ] �

�

C[Q].

�

Corollary 5.15 Let P and Q be two processes in L�. Then:

[[P ]] � [[Q]] implies P

�

=

L�

Q.

Proof: � implies �

a

. By applying Theorem 5.14 we get the result. �

Remark 5.16 Theorem 5.14 (resp. Corollary 5.15) does not hold when replacing �

a

(resp. �)

and barbed congruence with their expansion variants, respectively. This because, as we will see in

the next section, the encoding [[�]] may introduce a few �-steps changing the balance of silent moves

between two processes. Had such an expansion variant of Theorem 5.14 (and Corollary 5.15) been

available, then proof of a key result in Section 9.3 would have been much simpler (see Remark 9.11).

The encoding [[�]] is essentially based on the law below, relating free and bound output actions:

ab

�

=

L�

(�c)(ac j c! b) (6)

However, in L�, it holds an even simpler law which relates free and bound output actions. We

recall that c . b denotes the static link of De�nition 4.1.

Lemma 5.17 Let a and b be two names di�erent from c. Then:

ab

�

=

L�

(�c)(ac j c . b).

Proof: We code up, via [[�]], both members of the equation obtaining, respectively:

(�d)(ad j d! b) and (�c)((�d)(ad j d! c) j c! b).

By Proposition 4.3(2) the two processes above are synchronous bisimilar. By Corollary 5.15, we

can conclude. �

From Lemma 5.17 we can derive a \translation based" proof technique for barbed congruence

simpler than that given by Theorem 5.14, whereby in the encoding [[�]], static links c . b are used

instead of dynamic links c! b. However, as we will prove in Section 7, this proof technique is

sound but not complete, that is, it does not completely describe barbed congruence.
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free-out:

P

ab

���!P

0

p 62 fn(P )

P

a(p)

7�! (p . b j P

0

)

bound-out:

P

a(b)

����!P

0

p 62 fn(P )

P

a(p)

7�! (�b)(p . b j P

0

)

sync:

P

�

��!P

0

P

�

7�!P

0

input:

P

a(b)

����!P

0

P

a(b)

7�!P

0

Table 3: A new labelled transition system for L�

6 A \run-time" proof technique

The main drawback of the proof technique of Theorem 5.14 is that the encoding [[�]] adds a dynamic

link to all outputs in the source processes, slowing down computation. A process [[P ]] will normally

take more steps to simulate the computation of P . For instance, if P is

ab j a(x).xc j b(z). zw

then P needs two � -steps before producing an output at c, whereas its image

[[ab]] j a(x). [[xc]] j b(z). [[zw]]

will take 5 steps. We conjecture that in L� the encoding [[�]] does not introduce divergences, that

is, in�nite internal computations. Notice that if we would add full replication in L� the encoding

would not be divergence-free. As an example, take the process

P

def

= ab j a(x). !xc

This process does not diverge, but [[P ]] does.

In this section, we introduce a more powerful technique based on a new LTS

�

7�! for L�. The

new LTS, reported in Table 3, is de�ned on top of the original one, and transforms the output

of a name b into the output of a fresh pointer p to b. We call p a pointer to b because a link

p . b is introduced through which any output along p is redirected onto b. The new LTS makes

explicit the constraint that in L� only the output capability of names may be transmitted, by

transforming the occurrence of a name in output object position with an occurrence of the same

name in output subject position.

The weak transitions

�

Z=) and Z=) for the new LTS are de�ned from the strong transitions

�

7�! and

�

7�! in the usual way. We write �

a

7!

to denote the relation obtained by replacing in the

de�nition of asynchronous ground bisimulation (De�nition 3.4) arrow �! with 7�! and arrow

=) with Z=). We prove that asynchronous ground bisimulation de�ned on the new LTS implies

barbed congruence. To avoid reasoning with two LTSs, we reformulate the de�nition of �

a

7!

on the

original LTS.

De�nition 6.1 (Link bisimilarity) A symmetric relation S on L�-processes is a link bisimula-

tion if whenever P S Q the following holds:

1. If P

�

��!P

0

then Q =) Q

0

and P

0

S Q

0

.

2. If P

a(p)

����!P

0

, and p 62 fn(Q), then

(a) either Q

a(p)

====)Q

0

and P

0

S Q

0

(b) or Q =) Q

0

and P

0

S (Q

0

j ap).

3. If P

ab

���!P

0

, then
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(a) either Q

ad

===)Q

0

and 9 p 62 fn(P;Q) such that (p . b j P

0

) S (p . d j Q

0

)

(b) or Q

a(c)

====)Q

0

; with c 62 fn(P ), and 9 p 62 fn(P;Q) such that

(p . b j P

0

) S (�c)(p . c j Q

0

).

4. If P

a(c)

����!P

0

, with c 62 fn(Q), then

(a) either Q

ab

===)Q

0

and 9 p 62 fn(P;Q) such that (�c)(p . c j P

0

) S (p . b j Q

0

)

(b) or Q

a(c)

====)Q

0

, 9 p 62 fn(P;Q) such that (�c)(p . c j P

0

) S (�c)(p . c j Q

0

).

P and Q are link bisimilar, written P �

l

Q, if P S Q for some link bisimulation S.

The only di�erence between link bisimilarity and asynchronous ground bisimilarity is in the clauses

for output actions: In link bisimilarity the name emitted by the two processes may be di�erent.

To mask this di�erence, links are added in the derivatives. It is immediate to see that �

a

7!

and �

l

coincide.

Lemma 6.2 Let P and Q be two processes in L�. Then:

P �

a

7!

Q i� P �

l

Q.

The following lemma relates the translation-based and the run-time proof techniques.

Lemma 6.3 Let P and Q be two processes in L�. Then:

P �

l

Q i� [[P ]] �

a

[[Q]].

Proof: We give a sketch of the proof. A detailed proof can be found in Appendix A.2. In the

implication from left to right, we use a variant of the operational correspondence between processes

P and [[P ]] to show that the relation

S = f([[P ]]; [[Q]]) j P;Q 2 L� and P �

l

Qg

is a �

a

-bisimulation up-to & and �. In the implication from right to left, we show that the relation

S = f(P;Q) j P;Q 2 L� and [[P ]] �

a

[[Q]]g

is a link bisimulation. �

Finally, we prove the soundness of the \run-time" proof technique.

Theorem 6.4 (Soundness) Let P and Q be two processes in L�. Then

P �

a

7!

Q implies P

�

=

L�

Q.

Proof: By applying, in sequence, Lemma 6.2, Lemma 6.3, and Theorem 5.14. �

Both the \translation-based" and the \run-time" proof techniques are based on the use of links.

In the former, links are added statically via an encoding (at \compile-time"); in the latter, they

are added dynamically in the bisimulation game (at \run-time"). The advantages of the latter

proof-technique are that: (i) it uses simpler links p . b instead of links p! b; (ii) links are not

added in case of internal communications; (iii) the input clause uses the particle ab instead of [[ab]]

(that produces links); (iv) in the latter proof technique, the number of added links may be further

reduced using the up to link proof technique (see Section 8).
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7 Two characterisations of barbed congruence

In this section we show that the translation-based and the run-time proof techniques mentioned

above are not only sound but also complete, that is, they completely characterise barbed congru-

ence in L�. As usual when proving labelled characterisations of barbed congruence [3, 46], we

prove the completeness for image-�nite processes (see De�nition 3.2). The challenge here is that,

unlike similar results in the literature, our calculus does not provide any construct for testing

equality between names (such as matching).

Lemma 7.1 Let P and Q be two image-�nite L�-processes. Then

P

�

=

L�

Q implies P �

l

Q.

Proof: Let '

l

be the variant of �

l

obtained by replacing

�

��! with

�

==) in the hypothesis of each

clause in De�nition 5.6. Let '

�

be the variant of �

�

obtained by replacing

�

��! with

�

==) and #

a

with +

a

in the hypothesis of each clause in De�nition 3.1. It holds that '

l

=�

l

and '

�

= �

�

. So,

we prove that

(8R2L� P j R '

�

Q j R) =) P '

l

Q.

Let F be the monotone operator over P(L� � L�) associated with the de�nition of '

l

. Suppose

'

0

l

= L��L�, '

k+1

l

= F('

k

l

), and '

!

l

=

T

k<!

'

k

l

. On image-�nite LTS the operator F preserves

co-directed sets (the dual of directed sets). In particular, F('

!

l

) = '

!

l

. This means that on

image-�nite processes '

l

='

!

l

. Therefore, we are left with proving:

(8R 2 L� P j R '

�

Q j R) imply that P '

!

l

Q.

We de�ne a collection of tests R(n;L;M) depending on the integer n and the �nite sets of

channel names L, M. Intuitively, L contains the free names along which the processes P and

Q may perform some observable actions which have to be tested by R(n;L;M); M contains

the names in L which cannot be used in input subject position by the test process. We show

by induction on n that there exist L;M;L

0

such that L � fn(P;Q); L

0

� L; M � L and

(�L

0

)(P j R(n;L;M)) '

�

(�L

0

)(P j R(n;L;M)) implies P '

n

l

Q.

If the property above holds then we can conclude the proof by observing that:

8R2L� (P jR'

�

Q jR) implies (�L

0

)(P jR(n;L;M))'

�

(�L

0

)(Q jR(n;L;M))

for each n 2 ! with L = fn(P;Q),

M = ;, and L

0

= ;.

implies 8n 2 ! P '

n

l

Q

implies P '

!

l

Q

implies P '

l

Q.

For de�ning the tests R(n;L;M) we introduce an internal choice operator �. This is a derived

operator de�ned as follows:

P

1

� : : :� P

n

def

= (�a)(a.P

1

j : : : j a.P

n

j a) with a 62 fn(P

1

; : : : ; P

n

)

We suppose that the collection of channel names Ch has been partitioned in two in�nite ordered

sets Ch

0

and Ch

00

. In the following we have L

0

� L, M� L, L � Ch

00

. We also use the sequences

fb

n

; b

0

n

: n 2 !g [ fc

�

n

: n 2 !; � 2 f�; a; a : a 2 Ch

00

gg

of distinct names in Ch

0

. The test R(n;L;M) is de�ned by induction on n as follows, where we

pick a

0

to be the �rst name in the ordered set Ch

00

nL. When emitting or receiving a name which

is not in L we work up to injective substitution to show that P '

n

l

Q. The relation R(n;L;M) is

de�ned as follows:

R(0;L;M) = b

0

� b

0

0
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R(n;L) = b

n

� b

0

n

(for n > 0)

�(c

�

n

�R(n� 1;L;M))

�fc

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [ fa

0

g;M))) j a 2 Lg

�fc

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)) ja2L; a 62Mg.

The proof is by induction on n. Details can be found in Appendix A.3. �

By Lemma 7.1 we can derive the completeness of our two proof techniques.

Theorem 7.2 (First characterisation) Let P and Q be two processes in L�. Then:

1. P

�

=

L�

Q implies [[P ]]�

a

[[Q]], for P and Q image-�nite;

2. [[P ]]�

a

[[Q]] implies P

�

=

L�

Q.

Proof: Part 1 follows by applying in sequence Lemmas 7.1 and 6.3. Part 2 follows from Theo-

rem 5.14 �

Our translation based proof technique relies on the algebraic law

ab

�

=

L�

(�c)(ac j c! b) (7)

As already pointed out in Section 5, a simpler translation [[[ � ]]] can be de�ned by replacing this

law with:

ab

�

=

L�

(�c)(ac j c . b) (8)

(we recall that c . b

def

= !c(x). bx). The encoding [[[ � ]]] obtained by using Law 8 instead of 7 is still

sound but it is not complete. As a counterexample, take the processes:

P

def

= ab

Q

def

= (�c)(ac j c! b) = (�c)(ac j !c(x). (�d)(bd j d! x)).

Then, P

�

=

L�

Q whereas [[[P ]]] and [[[Q ]]] are not related by either �

a

or �. Indeed,

[[[P ]]]

def

= (�h)(ah j !h(x). bx)

[[[Q ]]]

def

= (�c)((�h)(ah j !h(x). cx) j !c(x). (�d)((�r)(br j !r(x). dx) j [[[ d! x ]]])).

and both relations �

a

and � can distinguish the two processes after performing two visible actions.

More precisely, [[[P ]]]

a(h)

����!

h(s)

����!

bs

��! whereas [[[Q ]]]

a(h)

����!

h(s)

����!

b(r)

====).

Theorem 7.3 (Second characterisation) Let P and Q be two processes in L�. Then:

1. P

�

=

L�

Q implies P �

a

7!

Q, for P and Q image-�nite processes;

2. P �

a

7!

Q implies P

�

=

L�

Q.

Proof: Part 1 follows by applying in sequence Lemmas 7.1 and 6.2. Part 2 follows from Theo-

rem 6.4. �

Theorem 7.3 says that, on image-�nite processes, asynchronous ground bisimilarity, de�ned on

the new LTS, coincides with barbed congruence in L�. We recall that, in presence of matching,

the closure under substitutions of asynchronous early bisimilarity on the LTS

�

��! coincides with

barbed congruence in �

a

[3]. Therefore, somehow, the di�erence between the two LTSs essentially

shows the di�erence between what is observable in L� and what is observable in �

a

with matching.
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8 Up-to link proof techniques

As for standard bisimilarity, link bisimilarity can be enhanced by means of up to expansion tech-

niques [55].

De�nition 8.1 (Link bisimilarity up to expansion) A symmetric relation S on L�-proces-

ses is a link bisimulation up to & if whenever P S Q the following holds:

1. If P

�

��!P

0

, then Q =) Q

0

and P

0

& S . Q

0

.

2. If P

a(p)

����!P

0

, and p 62 fn(Q), then

(a) either Q

a(p)

====)Q

0

and P

0

& S . Q

0

(b) or Q =) Q

0

and P

0

& S . (Q

0

j ap).

3. If P

ab

���!P

0

, and p 62 fn(P;Q), then

(a) either Q

ad

===)Q

0

and (p . b j P

0

) & S . (p . d j Q

0

)

(b) or Q

a(c)

====)Q

0

, with c 62 fn(P ), and (p . b j P

0

) & S . (�c)(p . c j Q

0

).

4. If P

a(c)

����!P

0

, with c 62 fn(Q) and p 62 fn(P;Q), then

(a) either Q

ab

===)Q

0

and (�c)(p . c j P

0

) & S . (p . b j Q

0

)

(b) or Q

a(c)

====)Q

0

and (�c)(p . c j P

0

) & S . (�c)(p . c j Q

0

).

Lemma 8.2 If S is a link bisimilarity up to expansion then S ��

l

.

Proof: The proof is analogous to that of standard bisimilarity [55]. �

Link bisimilarity can be strengthened by means of a more powerful up-to proof technique

which allows us to reduce the number of links introduced in the derivatives. Roughly speaking,

when comparing two processes P and Q this technique permits cutting the same links from both

processes, or to cut a private link from one process only.

De�nition 8.3 (Link bisimulation up to link) A symmetric relation S on L�-processes is a

link bisimulation up to link if whenever P S Q the following holds:

1. If P

�

��!P

0

then Q =) Q

0

and P

0

S Q

0

.

2. If P

a(p)

����!P

0

, and p 62 fn(Q), then

(a) either Q

a(p)

====)Q

0

and P

0

S Q

0

(b) or Q =) Q

0

and P

0

S (Q

0

j ap).

3. If P

ab

���!P

0

, and p 62 fn(P;Q), then

(a) either Q

ab

===)Q

0

and P

0

S Q

0

(b) or Q

ad

===)Q

0

, with d 6= b, and (p . b j P

0

) S (p . d j Q

0

)

(c) or Q

a(c)

====)Q

0

, with c 62 fn(P ), and

i. either (p . b j P

0

) S Q

0

f

p

=cg

ii. or (p . b j P

0

) S (�c)(p . c j Q

0

).
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4. If P

a(c)

����!P

0

, with c 62 fn(Q) and p 62 fn(P;Q), then

(a) either Q

ab

===)Q

0

and

i. either P

0

f

p

=cg S (p . b j Q

0

)

ii. or (�c)(p . c j P

0

) S (p . b j Q

0

)

(b) or Q

a(c)

====)Q

0

and

i. either P

0

S Q

0

ii. or P

0

f

p

=cg S (�c)(p . c j Q

0

)

iii. or (�c)(p . c j P

0

) S Q

0

f

p

=cg).

iv. or (�c)(p . c j P

0

) S (�c)(p . c j Q

0

).

Two processes P and Q are link bisimilar up to link, written P �

lut

Q, if P S Q for some link

bisimulation up to link S.

The up to link technique is inspired by the up to expansion [55] and up to context [47] techniques

(in which common contexts are factorised out). However, it cannot be reduced to them because

private links may be cut from only one process and not from both of them as required by the up

to context technique.

As usual in up-to proof techniques, we need not always apply a cut for reducing the size of the

derivative processes. This explains why we have the subclauses marked by i. : : : iv.

The proof of the completeness of the up to link technique is non trivial.

Theorem 8.4 Let P and Q be two L�-processes. Then:

P �

l

Q i� P �

lut

Q.

Proof: We give a sketch of the proof. Details can be found in Appendix A.4. In the implication

from left to the right, we prove that the relation

S = f(P;Q) : P �

l

Qg

is a link bisimulation up to link. The only interesting point in the proof is when dealing with the

clause in which a free output action ab is matched by the same free output action. In this case we

need a result (see Lemma A.4) saying that if

p 62 fn(P;Q) and (p . b j P ) �

l

(p . b j Q) then P �

l

Q.

In the implication from right to left we prove that the relation

S = f(P;Q) : P �

lut

Qg

is a link bisimulation. The proof requires the following results (see Lemma A.6)):

1. P �

lut

Q and p 62 fn(P;Q) implies (p . b j P ) �

lut

(p . b j Q).

2. P �

lut

Q and p 62 fn(P;Q) implies (�c)(p . c j P ) �

lut

(�c)(p . c j Q).

3. Pf

p

=cg �

lut

(�c)(p . c j Q) and p 62 fn(P;Q) implies

(�c)(p . c j P ) �

lut

(�c)(p . c j Q).

4. Pf

p

=cg�

lut

(p . b j Q) and c 62 fn(Q) implies (�c)(p . c j P )�

lut

(p . b j Q).

�

The up to link technique can be used in combination with up to expansion and up to context

techniques.
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9 Applications of the theory of Localised �

In this section we show a certain number of applications of the theory of L�.

9.1 Expressing substitution in L�

In �-calculus, the process Pf

b

=ag can be expressed as (�u)(ub j u(a).P ). In L�, there exists an

alternative way to express name substitution which presents a few advantages (see Sections 9.5

and 9.7, and [29]).

Proposition 9.1 Let P be an L�-process and a and b two names such that a 6= b and a does not

appear free in P in input position. Then:

(�a)(P j a . b)

�

=

L�

Pf

b

=ag.

Proof: We code up, via [[�]] (the encoding in Section 5), both members. By Lemma 5.2 we get

[[(�a)(P j a . b)]] = (�a)([[P ]] j a! b) & [[P ]]f

b

=ag = [[Pf

b

=ag]].

Since & implies �, we use Corollary 5.15 to conclude. �

The law in Proposition 9.1 is valid in L� but not in �

a

and �-calculus. A similar law, but with

the double link a . b j b . a in place of a . b, is given in [24] for the asynchronous �-calculus.

We exploit Proposition 9.1 to give an easy proof that early and ground link bisimilarities

coincide in L�. We denote with �

e

l

the early variant of �

l

, obtained by replacing input clause in

De�nition 6.1 with

2. P

a(x)

����!P

0

implies that for all b, there exists Q

0

such that:

(a) either Q

a(x)

====)Q

0

and P

0

f

b

=xg S Q

0

f

b

=xg

(b) or Q =) Q

0

and P

0

f

b

=xg S (Q

0

j ab).

Proposition 9.2 P �

e

l

Q i� P �

l

Q.

Proof: The implication from left to right is easy. An early bisimilarity has a universal quan-

ti�cation on the received names, whereas a ground bisimilarity has an existential quanti�cation.

Hence an early bisimilarity is included in its ground variant. For the implication from right to

left, we prove that the relation

S = f(P;Q) : P;Q 2 L�; P �

l

Qg

is an early link bisimulation. We focus on the input clause because this is the only di�erence

between the two bisimilarities. Suppose P

a(x)

����!P

0

. We want to prove that for every b there

exists Q

0

such that Q

a(x)

====)Q

0

and P

0

f

b

=xg S Q

0

f

b

=xg. The case b = x is trivial, so we suppose

b 6= x. Since P �

l

Q, there exists Q

0

such that Q

a(x)

====)Q

0

and P

0

�

l

Q

0

. Notice that, since

P

0

and Q

0

are L�-processes, x does not appear free in P

0

and Q

0

in input subject position. By

Lemma 6.3, and Corollary 5.13 link bisimilarity is an equivalence relation and it is preserved by all

operators of the calculus. So, (�x)(P

0

j x . b) �

l

(�x)(Q

0

j x . b) for every name b. By Lemma 5.2

and Lemma 6.3 it holds that P

0

f

b

=xg �

l

(�x)(P

0

j x . b) and Q

0

f

b

=xg �

l

(�x)(Q

0

j x . b). By

transitivity we have that P

0

f

b

=xg �

l

Q

0

f

b

=xg and therefore P

0

f

b

=xg S Q

0

f

b

=xg. �
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9.2 The replication theorems

The replication theorems [31] express useful distributivity properties of private replicated processes.

The assertions of the theorems can be read thus: A passive resource that is shared among a certain

number of clients can be made private to each of them.

Theorem 9.3 (Standard replication theorems) Assume that name a occurs free in processes

P , Q and R only in output subject position. Then:

1. (�a)

�

!a(x).R j P j Q

�

� (�x)(!a(x).R j P ) j (�a)(!a(x).R j Q).

2. (�a)(!a(x).R j !P ) � !(�a)(!a(x).R j P ).

The side condition in the theorems prevents the restricted name a from being exported. As a

consequence, the theorem cannot be used in situations where the set of clients of the resource

a(x).R may change dynamically. To see why this side condition is necessary, take:

P

1

def

= (�a)(!a(x).R j ba j Q)

P

2

def

= (�a)(!a(x).R j ba) j (�a)(!a(x).R j Q)

These processes are in general not equivalent in �-calculus. Intuitively, the environment external

to P

1

can receive a along b and then use it in input position to interfere with an attempt by Q

to activate a copy of R. This is not possible in P

2

, where Q has its own private access to R. The

di�erence between P

1

and P

2

can be observed in a context that receives a and then uses it in

input; in this way, the context may steal messages that were supposed to reach the resource.

Pierce and Sangiorgi [43] have shown that the side condition can be relaxed using the type

system with input/output capabilities, and requiring that the processes R, P and Q only possess

the output capability on a. The same result is proved in [52] by previously translating processes

(by means of an encoding very close to our [[�]]) and then proving that the image are bisimilar.

In both cases the sharpened replication theorems are shown valid with respect to (typed) barbed

congruence by proving a few barbed bisimilarities. Here we propose easier proofs of the sharpened

replication theorems without using typed bisimulations. While the results in [43, 52] are for the

(standard) �-calculus, our results only apply to L�.

Theorem 9.4 (sharpened replication theorems) Let P , Q, and R be processes in L� not

containing name a in input position. Then:

1. (�a)

�

!a(x).R j P j Q

�

�

=

L�

(�x)(!a(x).R j P ) j (�a)(!a(x).R j Q);

2. (�a)(!a(x).R j !P )

�

=

L�

!(�a)(!a(x).R j P ).

Proof: We code up, via [[�]], both members of each equation. By de�nition of [[�]] name a may

appear free in the translated terms only in output subject position. Therefore, the translated terms

comply with the hypotheses of Theorem 9.3 and we can assert that the images (of each equation)

are synchronous ground bisimilar. Since � implies �

a

, by theorem 5.14 we can conclude. �

The replication theorems have been proved in [31, 43] with respect to a strong form of bisimilarity

which is sensitive to � -actions. This strong form of bisimilarity implies �. On the other hand,

Theorem 9.4 is proved with respect to a weak version of barbed congruence. Our proof cannot be

adapted to strong barbed congruence because we rely on the encoding [[�]] which does not preserve

the number of � -actions performed by a process.

9.3 The delayed input

In an asynchronous calculus message emission is non-blocking. Milner, Parrow, Victor and others

have advocated also non-blocking message reception (which is among the motivations for the

Update and the Fusion calculi [40, 41] and for the Chi calculus [18]). Such a delayed input ,
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d-in:

a(b)P

a(b)

����!P

s-com:

P

ac

���!P

0

a(b)P

�

��!(�b)(P

0

f

c

=bg)

p-in:

P

�

��!P

0

b 62n(�) a 62bn(�)

a(b)P

�

��! a(b)P

0

s-cls:

P

�

c

ac

����!P

0

b 62 n(�

c

ac)

a(b)P

�

��!�

c

(P

0

f

c

=bg)

o-�:

P

�

��!P

0

[�=ac _ �=c(b)ab] a 6= c

(�c)P

(�c)�

����!P

0

o-in:

P

ab

���!P

0

b 6= a

c(b)P

c(b)ab

����!P

0

cls:

P

�

c

ac

����!P

0

Q

a(b)

����!Q

0

bn(�

c

) \ fn(Q)=;

P j Q

�

��!�

c

(P

0

j Q

0

f

c

=bg)

Table 4: New transition rules, for delayed input

written a(x)P , should allow the continuation P to evolve underneath the input guard, except

for observable actions along x. The delayed input replaces temporal precedencies, imposed by

plain input, with causal dependencies. This appears, for instance, in Abramsky's representation

of Linear Logic proofs as �-calculus processes [1, 6]. Non-blocking message reception has been

considered by Bellin and Scott [6], Boudol [11], Fu [18], Parrow and Victor [41], Yoshida [62] and

van Breugel [58]. Bellin and Scott give a reduction semantics for a version of �-calculus, proposed

by Milner, where both message emission and message reception are non-blocking [32]; van Breugel

de�nes a labelled transition system for such calculus and proves a correspondence with Bellin and

Scott's reduction semantics.

Let DL� be the calculus obtained by adding the delayed input construct a(b)P to the grammar

of L� (with the same constraint as plain input that b may not appear free in P in input position).

Actions are extended as follows:

� ::= � j a(b) j ab j �

b

ab

where

�

b

::= (�b) j c(b) j (�c)c(b) for some c.

�

b

represents the binding part of bound output actions. We extend free and bound names as fol-

lows: fn((�b)ab) = fag, bn((�b)ab) = fbg, fn(c(b)ab) = fc; ag, bn(c(b)ab) = fbg, fn((�c)c(b)ab) =

fag, bn((�c)c(b)ab) = fc; bg. In Table 4, we give the missing transition rules of DL�. More pre-

cisely, we enrich the rules in Table 1 as follows: (i) rule close is split into rules cls and s-cls;

(ii) rule open is split into rules o-in and o-�; (iii) the rules d-inp, s-com, and p-inp are similar

to the rules inp, com, and par, but involve the delayed input. Our labelled transition system has

two main di�erences with respect to that of van Breugel's [58]: (i) actions have a simpler syntax,

because only the output capability of name may be transmitted; (ii) a restriction (�b) is added in

rule s-com to model self communications, as in a(b)(ab j P )

�

��! (�b)P .

We prove that the delayed input is a derived operator in L�.

In Table 5 we give an encoding fj � jg of DL� into L� and prove that it is fully-abstract with

respect to barbed congruence. The encoding fj � jg is an homomorphism on all operators except

delayed input. (A similar encoding, but with the double link b . b

0

j b

0

. b in place of b . b

0

, has

been suggested by Yoshida in [62] for the asynchronous �-calculus.)

In order to prove the full abstraction of fj � jg, we �rst prove an adequacy result with respect

to barbed bisimulation. The proof of this adequacy result requires an operational correspondence
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fjP

1

j P

2

jg

def

= fjP

1

jg j fjP

2

jg fj(�a)P jg

def

= (�a)fjP jg fjab jg

def

= ab

fja(b).P jg

def

= a(b). fjP jg fj !a(b).P jg

def

= !a(b). fjP jg fj0 jg

def

= 0

fja(b)P jg

def

= (�b)(a(b

0

). b . b

0

j fjP jg)

Table 5: The encoding fj � jg

between processes P and fjP jg, up to some notion of expansion. As we will argue in Remark 9.11,

such an operational correspondence is not easy to prove. Thus, for convenience, we de�ne an

auxiliary encoding f[[�]]g as the composition of the encodings fj � jg and [[�]] (of Section 5). Precisely,

if P is a DL�-process

f[[P ]]g

def

= [[fjP jg]].

We prove that the encoding f[[�]]g satis�es an operational correspondence up to <

a

, where 4

a

denotes the expansion variant of �

a

(De�nition 5.6) in the same way as .

a

denotes the expansion

variant of �

a

(see De�nition 3.5). This operational correspondence, together with Theorem 5.3,

allows us to prove the soundness of fj � jg. Then, by exploiting the inclusion L� � DL� we prove

the completeness of fj � jg.

For proving the operational correspondence of f[[�]]g we need to know that 4

a

is a precongruence

in L� (simply adapt Corollary 5.13). We also need the following technical lemma.

Lemma 9.5 Given an L�-process P and a name a it holds that

(�a)(a! a j [[P ]]) <

a

(�a)[[P ]].

Proof: We have a! a <

a

0. Then we can conclude because <

a

is a precongruence. �

Lemma 9.6 (Operational correspondence of f[[�]]g) Let P be a process in DL�.

1. Suppose that P

�

��!P

0

. Then we have:

(a) if � = a(b) then f[[P ]]g

a(b

0

)

����! & f[[P

0

]]gf

b

0

=bg and b

0

62 fn(P )

(b) if � = ab then f[[P ]]g

(�c)ac

������! <

a

(c! b j f[[P

0

]]g), with c 62 fn(P )

(c) if � = (�b)ab then f[[P ]]g

(�c)ac

������! <

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P )

(d) if �=d(b)ab then f[[P ]]g

(�c)ac

������!<

a

(�b)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(e) if � = (�d)d(b)ab then

f[[P ]]g

(�c)ac

������! <

a

(�b)(�d)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(f) if � = � then f[[P ]]g

�

��! <

a

f[[P

0

]]g.

2. Suppose that f[[P ]]g

�

��!P

1

. Then there exists P

0

2 DL� such that:

(a) if � = a(b

0

) then P

a(b)

����!P

0

and P

1

<

a

f[[P

0

]]gf

b

0

=bg
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(b) if � = (�c)ac then:

i. either P

ab

���!P

0

and P

1

<

a

(c! b j f[[P

0

]]g), with c 62 fn(P )

ii. or P

(�b)ab

������!P

0

and P

1

<

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P )

iii. or P

d(b)ab

�����!P

0

and P

1

<

a

(�b)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

iv. or P

(�d)d(b)ab

����! P

0

and P

1

<

a

(�b)(�d)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(c) if � = � then P

�

��!P

0

with P

1

<

a

f[[P

0

]]g.

Proof: By transition induction. The proof relies on Proposition 4.3(2), Lemma 5.2, and Lemma 9.5.

Details can be found in Appendix A.5. �

From Lemma 9.6 we can derive a weak operational correspondence.

Lemma 9.7

1. If P =) P

0

then f[[P ]]g =)<

a

f[[P

0

]]g.

2. If f[[P ]]g =) P

1

then there is P

0

such that P =) P

0

and P

1

<

a

f[[P

0

]]g.

3. P +

a

i� f[[P ]]g +

a

.

Proof: Parts 1 and 2 are proven by induction on the number of � -moves by exploiting Lemma 9.6.

Part 3 is a consequence of parts 1 and 2, and Lemma 9.6. �

Lemma 9.7 allows us to prove that the encoding f[[�]]g is adequate with respect to barbed bisimu-

lation.

Lemma 9.8 Let P and Q be two processes in DL�. Then:

P �

�

Q i� f[[P ]]g �

�

f[[Q]]g.

Proof: In the implication from left to right, we use Lemma 9.7 to prove that the relation R =

f(f[[P ]]g; f[[Q]]g) : P �

�

Qg is a barbed bisimulation up-to <

a

. In the implication from right to left

we use Lemma 9.7 and the fact that .

a

�

�

<

a

� �

�

to prove that the relation R = f(P;Q) :

f[[P ]]g �

�

f[[Q]]gg is a barbed bisimulation. �

Lemma 9.8 allows us to prove that the encoding fj � jg is adequate with respect to barbed bisimu-

lation and therefore sound with respect to barbed congruence.

Lemma 9.9 Let P and Q be two DL�-processes. Then:

P �

�

Q i� fjP jg �

�

fjQ jg.

Proof: By the de�nition of f[[�]]g, Lemma 9.8, and Theorem 5.3. �

Notice that if P 2 L� then fjP jg = P . This will allow us to prove the completeness of fj � jg.

Theorem 9.10 (Full abstraction of fj � jg) Let P and Q be two processes in DL�. Then:

P

�

=

DL�

Q i� fjP jg

�

=

L�

fjQ jg.

Proof: The soundness follows from Lemma 9.9 and the compositionality of fj � jg. As regards the

completeness, we want to prove that for every L�-context C[�] it holds that C[fjP jg] �

�

C[fjQ jg].

Let C[�] be a such a context. By the compositionality of fj � jg and the fact that fj � jg does not

a�ect L�-processes, it follows that fjC[P ] jg = C[fj P jg] and fjC[Q] jg = C[fjQ jg]. Since an L�-

context is also a DL�-context, by hypothesis we have C[P ] �

�

C[Q]. By Lemma 9.9 this implies

fjC[P ] jg �

�

fjC[Q] jg. So, we conclude that C[fjP jg] �

�

C[fjQ jg]. �
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Remark 9.11 In order to clarify the usefulness of the auxiliary encoding f[[�]]g, notice that if one

wanted to prove the operational correspondence of fj � jg (instead of f[[�]]g), then Proposition 4.3(2)

and Lemma 9.5 would not be necessary anymore. By contrast, an expansion variant of Proposi-

tion 9.1 would be necessary. The proof of a such a result would require an expansion variant of

Theorem 5.14 (or Corollary 5.15), which, as already pointed out in Remark 5.16, does not hold.

Using fj � jg and the theory of L� we can prove laws for delayed input like:

a(b)(P j Q) = (a(b)P ) j Q if b 62 fn(Q) (9)

a(b)c(d)P = c(d)a(b)P if c 6= b and d 6= a (10)

(�a)(a(x)(ax j P )) = (�x)P if a 62 fn(P ) (11)

Laws 9 and 10 are similar to structural rules for restriction. Similar laws have been proposed

in [11]. Law 11 transforms a delayed input binder into a restriction binder (it might be interesting

to examine delayed input from within action calculi [34]; for instance, law 11 is reminiscent of the

de�nition of restriction in reexive action calculi [35]).

9.4 Encodings of the �-calculus

In this example, we use polyadicity, which is straightforward to accommodate in the theory of L�.

We write ahb

1

: : : b

n

i for polyadic outputs and a(x

1

; : : : x

n

).P for polyadic inputs. Below, we give

Milner's encoding of call-by-name �-calculus into �-calculus (more precisely, the variant in [39]).

(j �x.M j)

p

def

= (�v)(phvi j v(x; q). (jM j)

q

)

(j x j)

p

def

= xhpi

(jMN j)

p

def

= (�q)

�

(jM j)

q

j q(v). (�x)(vhx; pi j !x(r). (j N j)

r

)

�

This is also an encoding into (polyadic) L�. By applying Proposition 9.1, we can prove the

following optimisation of the de�nition of application in the case when the argument is a variable

(a tail-call-like optimisation):

(jMy j)

p

def

= (�q)

�

(jM j)

q

j q(v). vhy; pi

�

We can also exploit the delayed input operator, that is a derived operator in L�, to get an

encoding of the strong call-by-name strategy, where reductions can also occur underneath an

abstraction (i.e., the Xi rule, saying that if M �! M

0

then �x.M �! �x.M

0

, is allowed). For

this, we have to relax, in the translation of �x.M , the sequentiality imposed by the input pre�x

v(x; q) that guards the body (jM j)

q

of the function. Precisely, we have to replace this input with

a delayed input:

(j �x.M j)

p

def

= (�v)(phvi j v(x; q)(j M j)

q

)

(12)

Using (the polyadic variant of) the encoding of delayed input in Section 9.3, we get:

(j �x.M j)

p

def

= (�vxq)

�

phvi j v(y; r). (x . y j q . r) j (jM j)

q

�

Results of operational correspondence and validity of �-reduction, similar to those in [33, 47] for the

call-by-name �-calculus, hold for this encoding. (The modelling of strong reductions is a major

motivation behind Fusion and Chi; indeed both calculi allow us to encode strong call-by-name

�-calculus [41, 18].)
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hjahbi ji

def

= ab hjP j Q ji

def

= hjP ji j hjQ ji

hjdef ahxi jbhyi=P

1

in P

2

ji

def

= (�ab)(!a(x). b(y). hjP

1

ji j hjP

2

ji)

Table 6: Mapping of the Join calculus into L�

9.5 Some properties of the Join calculus

We apply the theory of L� to prove some laws in Fournet and Gonthier's Join calculus [15], a

calculus for distributed and concurrent programming.

The Join calculus is an o�-spring of the asynchronous �-calculus speci�cally designed to facil-

itate distributed implementations of channels mechanisms. The syntax of the (core) Join calculus

is given by the following grammar:

P ::= ahbi j P

1

j P

2

j def ahxi jbhyi=P

1

in P

2

.

The particle ahbi denotes the asynchronous output of name b at channel a. P

1

j P

2

denotes

two processes P

1

and P

2

running in parallel. The construct def ahxi jbhyi=P

1

in P

2

is a sort of

amalgamation of the operators of replication, parallel composition, and restriction, which allows

to model the joint reception of values from di�erent channels.

Free names and bound names of a process P , are de�ned as follows:

� fn(ahbi) = fa; bg

� fn(P

1

j P

2

) = fn(P

1

) [ fn(P

2

)

� fn(def ahxi jbhyi=P

1

in P

2

) = ((fn(P

1

) n fx; yg) [ fn(P

2

)) n fa; bg.

As for the �-calculus, the operational semantics of the Join calculus can be given in terms of a

reduction relation and a relation of structural congruence [28]. With J abbreviating a join pattern

ahxi j bhyi, the main (simpli�ed) reduction rule is:

def J = P in J� j Q �! def J = P in P� j Q

where the substitution � does not a�ect channels a and b.

The intuition is that if an instantiation J� of a de�nition join-patter J can be found at top-level

in the scope of the de�nition, then this instance may be replaced by the corresponding instantiation

P� of the de�ned continuation P .

The construct def ahxi jbhyi=P

1

in P

2

has the following properties:

1. channels a and b are locally de�ned, that is, they can be accessed only from within P

1

and P

2

;

2. channels a and b are uniquely de�ned , that is, they appear only in one de�nition (see also

[2, 52]).

A derived construct in Join is the single pattern de�nition

def ahxi=P

1

in P

2

which can be seen as an abbreviation for def ahxi jbhyi=P

1

jyhyi in P

2

jbhbi, where b is not free in

P

1

and P

2

and y is not free in P

1

. Barbed congruence can be de�ned in Join in the usual manner.

In order to compare the expressivity of Join and �-calculus, Fournet and Gonthier give the

encoding reported in Table 6 of the Join calculus into the �-calculus. This encoding, as an encoding

of Join into �

a

or �-calculus, is not fully-abstract. To obtain full abstraction, Fournet and Gonthier
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have to add a layer of \�rewalls" to the encoding. We conjecture that the above encoding is fully-

abstract with respect to barbed congruence as an encoding of Join into L� (a similar conjecture

is made by Fournet and Gonthier [15]). It is easy to prove soundness, and this su�ces for using

the encoding and the theory of L� for proving properties of Join processes.

Theorem 9.12 (soundness of hj � ji) Let P and Q be two processes of core Join. Then:

hjP ji

�

=

L�

hjQ ji implies P

�

=

J

Q

where

�

=

J

is barbed congruence in core Join.

Proof: The proof follows from the compositionality of the encoding and the operational corre-

spondence between a Join process P and its encoding hjP ji. Such an operational correspondence

has already been proved in [16]. �

Using this theorem and the theory of L� we can prove the following laws for the Join calculus:

def ahxi=R in P j Q

�

=

J

(def ahxi=R in P ) j (def ahxi=R in Q) (13)

def ahxi=bhxi in P

�

=

J

Pf

b

=ag if a 6= b (14)

def ahxi=P in (Q j ahbi)

�

=

J

def ahxi=P in (Q j Pf

b

=xg) (15)

def ahxi=P in C[ahbi]

�

=

J

def ahxi=P in C[Pf

b

=xg] (16)

where, in (16), context C[�] does not contain binders for a.

Law 13 is the Join calculus version of the replication theorem for parallel composition; it

is proved by applying Theorem 9.4(1). Law 14 is the Join calculus version of Proposition 9.1.

Law 15 shows a sort of insensitiveness to � -actions; it is proved in three steps: (i) we apply

Theorem 9.4(1), (ii) we use the law (�a)(!a(x).P j ab) � (�a)(!a(x).P j Pf

b

=xg), (iii) we apply

again Theorem 9.4(1). Law 16 is the Join counterpart of Law 3. The proof of Law 16 requires the

sharpened replication theorems of Theorem 9.4, plus the laws for pushing replications underneath

input pre�xes and restrictions. Note that none of these laws can be proved from the encoding hj � ji

and the theory of �

a

or �-calculus: the encodings of the processes in the laws are behaviourally

di�erent both in �

a

and in �-calculus. In [8], a labelled bisimilarity for the Join is introduced in

which the labels of matching transitions must be syntactically the same. As a consequence, this

labelled bisimilarity cannot be used to prove laws like 13 and 14.

9.6 External versus internal mobility

The mobility mechanism of �-calculus can be divided into internal mobility and external mobility

[50]. The former arises when an input meets the output of a private name, the latter when an

input meets the output of a free name. The �I-calculus is a subcalculus of �, where only private

names may be transmitted. The syntax is given by the following grammar:

P ::= 0 j a(x).P j (�b)(ab.P ) j P j P j (�a)P j Aha

1

; : : : ; a

n

i

In �I, recursive de�nitions are more appropriate than replication. This because, when only internal

mobility is allowed, recursion is strictly more expressive than replication [50]. Each constant A has

a unique de�ning equation of the form A

def

= (~x)P . In constant de�nition A

def

= (~x)P and constant

application Ah~ai, the parameters ~x and ~a are tuples of all distinct names whose length equals the

arity of A. In a constant de�nition A

def

= (~x)P all free occurrences of names ~x in P are bound and

fn(P ) � ~x. The transition rule for constants is the standard one [36].

Despite the use of only internal mobility, both �-calculus and higher-order communications

can be faithfully encoded in �I.

An asynchronous variant of �I can be de�ned by replacing, in the grammar, the blocking

output processes (�b)(ab.P ) with (�b)(ab j P ). We call �I

a

this calculus.
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In [7], Boreale gives an encoding of asynchronous �-calculus into �I. Boreale's encoding is

obtained by applying two di�erent encodings one after the other. The former maps the asyn-

chronous �-calculus into L�; the latter (essentially the encoding [[�]] of Section 5) maps L� into �I.

Boreale shows that the whole encoding is adequate with respect to barbed bisimilarity by prov-

ing the adequacy of the two encodings separately. This result is not quite satisfactory because

barbed bisimilarity is a very coarse relation, too coarse to be considered, per se, as an important

behavioural equivalence (for instance, it is not even preserved by parallel composition). Bore-

ale leaves as an open problem whether the encoding is fully-abstract for some �ner behavioural

equivalence. Here, we show that [[�]] is not fully-abstract as an encoding of L� into �I. As a

counterexample, we take

P = a(x). ax and Q = 0

By applying Theorem 5.14, we can show that P

�

=

L�

Q. However, [[P ]] 6� [[Q]], and since � and

�

=

�I

coincides (on image-�nite processes [50]) we conclude that [[P ]] 6

�

=

�I

[[Q]]. This negative

result is not surprising because the source language is asynchronous while the target language

is synchronous. However, even if we considered as target language the asynchronous variant of

�I, that is �I

a

, the encoding would not be fully-abstract. As a counterexample, take the same

processes P and Q above. Let

R

def

= (�p)(ap j a(y). (y(z). (�q)zq j (�r)(yr j r(x). (�u)bu)))

be a �I

a

-process. Since [[P ]] = a(x). (�d)(ad j d! x), the process [[P ]] j R would evolve after four

� -steps into the process A where:

A

def

= (�pdr)(d! p j (�h)(ph j h! r) j d(z). (�q)zq j r(x). (�u)bu).

It holds that A 6+

b

, while, for all processes B such that [[Q]] j R =) B, it holds that B +

b

. We

conclude that [[P ]] 6

�

=

�I

a

[[Q]].

In the remainder of this section we prove that the encoding [[�]] is fully-abstract when choosing

as target calculus the asynchronous variant of �I where only output capability of names may be

transmitted. We call Localised �I, in short L�I, this variant of �I.

The lemma below will be crucial for proving the desired full abstraction result. We recall that

�

l

denotes the link bisimilarity of De�nition 6.1.

Lemma 9.13 Let P be a process in L�. Then P �

l

[[P ]].

Proof: We prove that the relation

S = f(P; [[P ]]) : P 2 L�g

is a link bisimulation up to expansion. Let us consider the possible actions of P (we reason in a

similar manner when dealing with the possible actions of [[P ]]).

1. If P

�

��!P

0

, by Lemma 5.1, there exists P

1

such that [[P ]]

�

��!P

1

and P

1

& [[P

0

]]. So, P

0

&

P

0

S [[P

0

]] . P

1

.

2. If P

a(b)

����!P

0

we reason as in the previous case.

3. If P

ab

���!P

0

, by Lemma 5.1, P

1

exists such that [[P ]]

a(c)

����!P

1

and P

1

& (c! b j [[P

0

]]), with

c 62 fn(P

0

). Since & is a congruence, it holds that

(�c)(p . c j P

1

) & (�c)(p . c j c! b j [[P

0

]])

for p fresh. By Proposition 4.3(3) it holds that

p . b j P

0

S [[p . b j P

0

]] = p! b j [[P

0

]] . (�c)(p . c j P

1

).
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4. If P

a(b)

����!P

0

, by Lemma 5.1, P

1

exists such that [[P ]]

a(c)

����!P

1

& (�b)(c! b j [[P

0

]]) with

c 62 fn(P

0

). By �-conversion there exists P

2

such that

[[P ]]

a(b)

����!P

2

& (�c)(b! c j [[P

0

]]f

c

=bg).

This implies that

(�b)(p . b j P

2

) & (�b)(p . b j (�c)(b! c j [[P

0

]]f

c

=bg)).

By Proposition 4.3(3) we have

(�b)(p . b j (�c)(b! c j [[P

0

]]f

c

=bg)) & (�c)(p! c j [[P

0

]]f

c

=bg) = (�b)(p! b j [[P

0

]]).

We conclude by observing that

(�b)(p . b j P

0

) S (�b)(p! b j [[P

0

]]) . (�b)(p . b j P

2

).

�

Theorem 9.14 (Full abstraction of [[�]]) Let P and Q be two processes in L�. Then:

P

�

=

L�

Q i� [[P ]]

�

=

L�I

[[Q]].

Proof: The implication from right to left follows from Theorem 5.3 and the compositionality

of [[�]]. As regards the implication from left to right, we want to prove that for all contexts C[�]

in L�I it holds that C[[[P ]]] �

�

C[[[Q]]]. By Lemma 9.13 and transitivity of

�

=

L�

, it follows that

[[P ]]

�

=

L�

[[Q]], that is, for all contexts

^

C[�] in L� it holds that

^

C[[[P ]]] �

�

^

C[[[Q]]]. With a reasoning

similar to that in Section 4, it is possible to show that for each process P in L�I there exists a

process P

0

in L� such that P � P

0

. Similarly, given a context C[�] in L�I there exists a context

^

C[�] in L� such that C[[[P ]]] �

^

C[[[P ]]] �

�

^

C[[[Q]]] � C[[[Q]]]. Since � �

�

� � �

�

we can conclude.

�

9.7 Operational soundness of CPS axioms

In his PhD thesis, Thielecke studies the target calculi of Continuation Passing Style transforms [57].

He introduces a CPS-calculus similar to the intermediate language of Appel's compiler [4]. The

CPS-calculus is very simple and low-level: only variables may be passed as arguments, moreover

application is like a jump, with variables as argument. The terms of the (recursive) CPS-calculus

are given by the following grammar:

M ::= ahbi j Mfahbi(Mg

The intended meaning is that ahbi is a jump to the continuation a with actual parameter b,

while Mfahbi = Ng binds the continuation with body N and formal parameter b to a in M .

The calculus is recursive because in Mfahbi(Ng the term N may refer to itself under a. For

simplicity we consider a monadic variant of the CPS-calculus. The results of this sections can be

straightforwardly extended to the polyadic CPS-calculus.

The set of free variables fv(M) of a CPS term M is de�ned as follows.

� fv(ahbi)

def

= fa; bg

� fv(Mfahbi ( Ng)

def

= (fv(M) n fag) [ (fv(N) n fbg)

The axiomatic semantics for the CPS-calculus is de�ned as the congruence induced by the following

four axioms:
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(DISTR) Lfahbi(Mgfchdi(Ng = Lfchdi(Ngfahbi(Mfchdi(Ngg

such that a 6= c and a; b 62 fv(N)

(GC) ahbifchdi(Ng = ahbi; c 62 fv(ahbi)

(JMP) ahbifahci(Ng = Nf

b

=cgfahci(Ng

(ETA) Mfahbi(chbig =Mf

c

=ag, a 6= c.

The (JMP) law is in some sense what drives the computation. By contrast, (GC) and (DISTR)

are \structural" laws similar to those of the �-calculus. Most of the axioms above appear in [4].

We write CPS `M=N to denote that the equalityM = N can be derived by the above axiomatic

semantics.

Remark 9.15 The CPS term M

1

fahbi(M

2

g reminds us the construct def ahxi=M

2

inM

1

of

the Join calculus. Actually, the CPS-calculus can be seen as a conuent subset of the Join calculus.

In the remainder of this section we prove that the axiomatic semantics de�ned above is sound

with respect to the operational semantics. To our knowledge this is the �rst proof of this result.

Our proof relies on the theory of L�.

We give an operational semantics for the CPS-calculus (which is a slight variant of the oper-

ational semantics given by Thielecke). It is easy to see that every CPS-term M is in the form

ahbifa

1

hb

1

i(M

1

g : : : fa

n

hb

n

i(M

n

g for some n � 0. This allows us to model the behaviour of

CPS-terms by means of just one (global) reduction rule:

a

i

hbifa

1

hb

1

i(M

1

g : : : fa

i

hb

i

i(M

i

g : : : fa

n

hb

n

i(M

n

g

 

M

i

f

b

=b

i

gfa

1

hb

1

i(M

1

g : : : fa

i

hb

i

i(M

i

g : : : fa

n

hb

n

i(M

1

g

where 1 � i � n and a

j

62 fv(M

i

) for 1 � j < i. The rule above is a \contextual" variant of the

(JMP) axiom.

In the CPS-calculus the notion of observability is represented by the \external" jump that a

term may perform after some internal jumps. For instance, in a jump of the form ahbi, we can

observe (the occurrence of a jump to) a. More generally, a free variable in the leftmost position

can be observed.

De�nition 9.16 (Observability in CPS-calculus) Let M be a term of the CPS-calculus and

a a name, we write M #

a

if there are names b; a

1

; b

1

; : : : ; a

n

; b

n

, for some integer n � 0 with

a 6= a

i

for every 1 � i � n, such that M = ahbifa

1

hb

1

i(M

1

g : : : fa

n

hb

n

i(M

n

g. We write M +

a

if there exists a CPS-term N such that M  

�

N #

a

, where  

�

denotes the reexive and transitive

closure of  .

We denote with

�

=

CPS

the barbed congruence on CPS terms. We prove the soundness of the

axiomatics semantics with respect to

�

=

CPS

by exploiting a straightforward encoding of the CPS-

calculus into �-calculus already appeared in [57].

� (jahbi j)

def

= ab

� (jMfahbi(Ngj)

def

= (�a)((jM j) j !a(b). (jN j)).

There is a straightforward operational correspondence between a CPS-term M and its encoding

(jM j).

Lemma 9.17 (Operational correspondence of (j � j)) Let M be a CPS-term. Then:

1. If M  N then (jM j)

�

��! � (jN j).

2. If (jM j)

�

��!P then there is a CPS-term N such that M  N and P � (jN j).

3. M #

a

i� (jM j) #

a

.
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4. If M  

�

N then (jM j) =)� (jN j).

5. If (jM j) =) P then there is a CPS-term N s.t. M 

�

N and P � (jN j).

6. M +

a

i� (jM j) +

a

.

Proof: The proofs of parts 1, 2, and 3 are easy. Parts 4 and 5 are proved by induction on the

number of silent moves. Part 6 is a consequence of previous parts. �

Lemma 9.18 Let M and N be two CPS-terms. Then:

(jM j)

�

=

L�

(jN j) implies M

�

=

CPS

N .

Proof: It follows from the operational correspondence in Lemma 9.17 and the compositionality

of (j � j). �

Lemma 9.19 Let M and N be two CPS-terms. Then:

CPS `M=N implies (jM j)

�

=

L�

(jN j).

Proof: Since

�

=

L�

is a congruence, it su�ces to prove the soundness of the four axioms (DISTR),

(GC), (JMP), and (ETA). More precisely, we prove that if M = N is obtained by applying one of

these axioms then (jM j)

�

=

L�

(jN j). Let us consider the four possible cases.

1. (DISTR). By applying the encoding (j � j) to the distributive law we get an instance of

the replication theorems seen in Section 9.2. So, we prove this case by simply exploiting

Theorem 9.4 and Milner's replication theorem for restriction and input pre�x [31].

2. (GC). It su�ces to show that

(�c)(!c(d). (jN j) j ab) � ab

by exhibiting the appropriate bisimulation. Since � implies

�

=

L�

we can conclude.

3. (JMP). It su�ces to show that

(�a)(ab j !a(c).P ) � (�a)(Pf

b

=cg j !a(c).P )

by proving that the relation

S= f

�

(�a)(ab j !a(c).P ) ; (�a)(Pf

b

=cg j !a(c).P )

�

g[ �

is a synchronous ground bisimulation up to �. Since � implies

�

=

L�

we can conclude.

4. (ETA). This is an application of Proposition 9.1.

�

Note that in the previous proof, laws (DISTR) and (ETA) cannot be proved in � or �

a

.

Theorem 9.20 (Soundness of the axiomatic semantics) Let M and N be two CPS-terms.

Then:

CPS `M=N implies M

�

=

CPS

N .

Proof: By Lemmas 9.18 and 9.19. �

We do not know whether the above axiomatic semantics is complete.
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A Proofs

A.1 Proofs of Lemmas 5.10 and 5.12

For the sake of clarity we restate the result as follows.

Lemma A.1 Let P and Q be two L�-processes such that P �

a

Q. Then:

1. (�a)P �

a

(�a)Q

2. P j R �

a

Q j R, for all L�-process R

3. a(x).P �

a

a(x).Q

4. !a(x).P �

a

!a(x).Q.

Proof: 1. It su�ces to show that the relation

S= f((�a)P ; (�a)Q) : P;Q 2 L� and P �

a

Qg

is a �

a

-bisimulation up-to structural congruence. The proof is easy because the output ac-

tions performed by an L�-process are always bound. We work up to structural congruence

when dealing with the asynchronous clause for input.

2. We prove that the relation

S = f((�~a)(P j R); (�~a)(Q j R)) : P;Q;R 2 L� and P �

a

Qg

is a �

a

-bisimulation up to & and �. Let us consider the possible actions of (�~a)(P j R):

(a) If (�~a)(P j R)

b(c)

����!A, with c fresh and b 62 ~a, then there are two cases:

i. either R

b(c)

����!R

0

, for some R

0

, and A = (�~a)(P j R

0

). Process (�~a)(Q j R) can

match this action in the same way;

ii. or P

b(c)

����!P

0

for some P

0

. This means A = (�~a)(P

0

j R). Since P �

a

Q there exist

Q

0

such that Q

b(c)

====)Q

0

and P

0

�

a

Q

0

. So, (�~a)(Q j R)

b(c)

====)(�~a)(Q

0

j R) and

((�~a)(P

0

j R); (�~a)(Q

0

j R)) 2 S.

(b) If (�~a)(P j R)

b(c)

����!A, with c fresh and b 62 ~a, then there are two cases:

i. either R

b(c)

����!R

0

, for some R

0

, and then we can proceed as in case (1a);

ii. or P

b(c)

����!P

0

and A = (�~a)(P

0

j R). Since P �

a

Q, there are two possible cases:

A. either Q

b(c)

====)Q

0

, with P

0

�

a

Q

0

, and we can easily conclude;

B. or Q =) Q

0

, with P

0

�

a

Q

0

j [[bc]]. This means that

(�~a)(Q j R) =) (�~a)(Q

0

j R) with

(�~a)(P

0

j R)S (�~a)(Q

0

j [[bc]] j R) � (�~a)(Q

0

j R) j [[bc]],

which is enough because � is contained in � and S is a �

a

-bisimulation up to

& and �.

(c) If (�~a)(P j R)

�

��!A, there are four cases:

i. P

�

��!P

0

. This case is easy.

ii. R

�

��!R

0

. This case is easy.

iii. P

b(c)

����!P

0

, R

b(c)

����!R

0

and (�~a)(P j R)

�

��!(�~ac)(P

0

j R

0

). Since P �

a

Q there

exists Q

0

such that Q

b(c)

====)Q

0

and P

0

�

a

Q

0

. This means that (�~a)(Q j R) =)

(�~ac)(Q

0

j R

0

) and ((�~ac)(P

0

j R

0

); (�~ac)(Q

0

j R

0

)) 2 S.
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iv. P

b(c)

����!P

0

, R

b(c)

����!R

0

and (�~a)(P j R)

�

��!(�~ac)(P

0

j R

0

). Since P �

a

Q there are

two cases:

A. either there exists Q

0

such that Q

b(c)

====)Q

0

with P

0

�

a

Q

0

, and then we can

conclude;

B. or there exists Q

0

such that Q =) Q

0

and P

0

�

a

Q

0

j [[bc]]. In this case, by

Lemma 5.9(2), R � (�c)([[bc]] jR

0

) and therefore

(�~a)(Q j R) =) (�~a)(Q

0

j R)

with

(�~ac)(P

0

j R

0

)S (�~ac)(Q

0

j [[bc]] j R

0

) � (�~a)(Q

0

j R).

3. It su�ces to show that the relation

S= f(a(x).P ; a(x).Q) : P;Q 2 L� and P �

a

Qg

is a �

a

-bisimulation. The proof relies on the fact that �

a

is preserved by injective substitu-

tions: since �

a

is ground, in the input clause only fresh names are received.

4. We prove that the relation S de�ned below

f(P

1

j !a(x).Q

1

; P

2

j !a(x).Q

2

) : P

1

; P

2

; Q

1

; Q

2

2 L� ; P

1

�

a

P

2

; Q

1

�

a

Q

2

g

is a �

a

-bisimulation up to structural congruence (it is a special case of the proof technique

of De�nition 5.7). If P

1

j !a(x).Q

1

�

��!R for some action � and some process R then there

are three possible cases:

(a) P

1

�

��!P

0

1

and R = P

0

1

j !a(x).Q

1

. Then, since P

1

�

a

P

2

, we can easily conclude.

(b) � = a(w) and P

1

j !a(x).Q

1

a(w)

����!P

1

j Q

1

f

w

=xg j !a(x).Q

1

. On the other side we have

P

2

j !a(x).Q

2

a(w)

����!P

2

j Q

2

f

w

=xg j !a(x).Q

2

. Since Q

1

�

a

Q

2

, and �

a

is preserved by

injective substitutions, we have Q

1

f

w

=xg �

a

Q

2

f

w

=xg. By Lemma 5.10(2) we have

P

1

j Q

1

f

w

=xg �

a

P

2

j Q

1

f

w

=xg �

a

P

2

j Q

2

f

w

=xg. By transitivity (Lemma 5.11(3)) we

conclude that P

1

j Q

1

f

w

=xg j !a(x).Q

1

S P

2

j Q

2

f

w

=xg j !a(x).Q

2

.

(c) P

1

a(c)

����!P

0

1

and P

1

j !a(x).Q

1

�

��!(�c)(P

0

1

j Q

1

f

c

=xg) j !a(x).Q

1

. Since P

1

�

a

P

2

, there

exists P

0

2

such that P

2

a(c)

====)P

0

2

and P

0

1

�

a

P

0

2

. This means that P

2

j !a(x).Q

2

=)

(�c)(P

0

2

j Q

2

f

c

=xg) j !a(x).Q

2

. We reason as in the previous case, and by applying

Lemmas 5.10(2), 5.11(3), and 5.10(1) we conclude.

�

A.2 Proof of Lemma 6.3

We already pointed out in Lemma 5.1 that there exists an operational correspondence on strong

transitions between processes P and [[P ]]. Boreale also proved a weak operational correspondence

between processes P and [[P ]].

Lemma A.2 (Boreale [7]) Let P be an L�-process.

1. Suppose that P

�

==)P

0

. Then we have:

(a) if � = a(b) then [[P ]]

a(b)

====) & [[P

0

]];

(b) if � = ab then [[P ]]

a(p)

====) & (p! b j [[P

0

]]), with p 62 fn(P

0

);

(c) if � = a(b) then [[P ]]

a(p)

====) & (�b)(p! b j [[P

0

]]), with p 62 fn(P

0

);
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(d) if � = � then [[P ]]

�

==) & [[P

0

]].

2. Suppose that [[P ]]

�

==)P

1

. Then there exists P

0

2 L� such that:

(a) if � = a(b) then P

a(b)

====)P

0

, with P

1

& [[P

0

]];

(b) if � = a(p) then:

i. either P

ab

===)P

0

, with p 62 fn(P

0

) and P

1

& (p! b j [[P

0

]]),

ii. or P

a(b)

====)P

0

, with p 62 fn(P

0

) and P

1

& (�b)(p! b j [[P

0

]]);

(c) if � = � then P

�

==)P

0

with P

1

& [[P

0

]].

This result will be used to prove Lemma 6.3 which we restate here.

Lemma A.3 Let P and Q be two processes in L�. Then:

P �

l

Q i� [[P ]] �

a

[[Q]].

Proof: We prove the implication from left to right.

We show that the relation

S = f([[P ]]; [[Q]]) j P;Q 2 L� and P �

l

Qg

is a �

a

-bisimulation up-to &. Let us consider the three possible actions for [[P ]]:

1. If [[P ]]

�

��!P

1

, by lemma 5.1, there exists P

0

such that P

�

��!P

0

and P

1

& [[P

0

]]. Since P �

l

Q,

there exists Q

0

such that Q =) Q

0

and also P

0

�

l

Q

0

. By Lemma A.2, there exists Q

1

such

that [[Q]]

�

==)Q

1

& [[Q

0

]].

2. If [[P ]]

a(c)

����!P

1

, by Lemma 5.1, there exists P

0

such that P

a(c)

����!P

0

and P

1

& [[P

0

]]. Since

P �

l

Q there are two possibilities:

(a) There exists Q

0

such that Q

a(c)

====)Q

0

and P

0

�

l

Q

0

. Then, by Lemma A.2, there exists

Q

1

such that [[Q]]

a(c)

====)Q

1

& [[Q

0

]].

(b) There existsQ

0

such thatQ =) Q

0

and P

0

�

l

Q

0

j ac. Then, by Lemma A.2, there exists

Q

1

such that [[Q]] =) Q

1

& [[Q

0

]]. Notice that Q

1

& [[Q

0

]] implies Q

1

j [[ac]] & [[Q

0

j ac]].

3. If [[P ]]

a(p)

����!P

1

, assuming p fresh, by Lemma 5.1, there are two possible cases:

(a) P

ab

���!P

0

and P

1

& (p! b j [[P

0

]]) = [[p . b j P

0

]]. Since P �

l

Q, there are still two cases:

i. There exists a process Q

0

such that Q

ad

===)Q

0

and (p . b j P

0

) �

l

(p . d j Q

0

). By

Lemma A.2 there exists Q

1

such that [[Q]]

a(p)

====)Q

1

& (p! d j [[Q

0

]]) = [[p . d j Q

0

]].

So, [[P ]]

a(p)

����!P

1

& [[p . b j P

0

]], and [[Q]]

a(p)

====)Q

1

& [[p . d j Q

0

]], and we can

conclude since ([[p . b j P

0

]]; [[p . d j Q

0

]]) 2 S.

ii. There exists a process Q

0

such that Q

a(c)

====)Q

0

and (p . b j P

0

) �

l

(�c)(p . c j Q

0

).

By Lemma A.2 there exists Q

1

such that [[Q]]

a(p)

====)Q

1

& (�c)(p! c j [[Q

0

]]). So,

[[P ]]

a(p)

����!P

1

& [[p . b j P

0

]] and [[Q]]

a(p)

====)Q

1

& [[(�c)(p . c j Q

0

)]], and we can

conclude since ([[p . b j P

0

]]; [[(�c)(p . c j Q

0

)]]) 2 S.

(b) P

a(c)

����!P

0

and P

1

& (�c)(p! c j [[P

0

]]) = [[(�c)(p . c j P

0

)]]. Since P �

l

Q, there are

two possibilities:
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i. There exists Q

0

such that Q

ab

===)Q

0

and (�c)(p . c j P

0

) �

l

(p . b j Q

0

). By

Lemma A.2, there exists a process Q

1

such that [[Q]]

a(p)

====)Q

1

& (p! b j Q

0

).

So, [[P ]]

a(p)

����!P

1

& [[(�c)(p . c j P

0

)]] and [[Q]]

a(p)

====)Q

1

& [[p . b j Q

0

]], and we can

conclude since ([[(�c)(p . c j P

0

)]]; [[p . b j Q

0

]]) 2 S.

ii. There exists Q

0

such that Q

a(c)

====)Q

0

and (�c)(p . c j P

0

) �

l

(�c)(p . c j Q

0

). By

Lemma A.2, there exists a process Q

1

such that [[Q]]

a(p)

====)Q

1

& (�c)(p! c j [[Q

0

]]).

So, [[P ]]

a(p)

����!P

1

& [[(�c)(p . c j P

0

)]] and [[Q]]

a(p)

====)Q

1

& [[(�c)(p . c j Q

0

)]], and we

can conclude since ([[(�c)(p . c j P

0

)]]; [[(�c)(p . c j Q

0

)]]) 2 S.

We prove the implication from right to left. We show that the relation

S = f(P;Q) j P;Q 2 L� and [[P ]] �

a

[[Q]]g

is a link bisimulation. Let us consider the four possible actions.

1. If P

�

��!P

0

, by Lemma 5.1, there exists P

1

such that [[P ]]

�

��!P

1

& [[P

0

]]. Since [[P ]] �

a

[[Q]],

there exists Q

1

such that [[Q]]

�

==)Q

1

and P

1

�

a

Q

1

. By Lemma A.2, there exists a process

Q

0

such that Q

�

==)Q

0

and Q

1

& [[Q

0

]]. So, we have [[P

0

]] . P

1

�

a

Q

1

& [[Q

0

]]. Since . and &

are included in �

a

, and �

a

is transitive, we conclude that (P

0

; Q

0

) 2 S.

2. If P

a(c)

����!P

0

, by Lemma 5.1, there exists P

1

such that [[P ]]

a(c)

����!P

1

& [[P

0

]]. Since [[P ]] �

a

[[Q]]

we have two cases:

(a) There exists a processes Q

1

such that [[Q]]

a(c)

====)Q

1

and P

1

�

a

Q

1

. By Lemma A.2 there

exists a process Q

0

such that Q

a(c)

====)Q

0

and Q

1

& [[Q

0

]]. So, we have [[P

0

]] . P

1

�

a

Q

1

& [[Q

0

]]. We can therefore conclude that (P

0

; Q

0

) 2 S.

(b) There exists Q

1

such that [[Q]] =) Q

1

and P

1

�

a

Q

1

j [[ac]]. By Lemma A.2 there exists

a process Q

0

such that Q =) Q

0

and Q

1

& [[Q

0

]]. Notice that Q

1

j [[ac]] & [[Q

0

j ac]]. So,

we have

[[P

0

]] . P

1

�

a

Q

1

j [[ac]] & [[Q

0

j ac]].

We can therefore conclude that (P

0

; Q

0

j ac) 2 S.

3. If P

ab

���!P

0

, by Lemma 5.1, there exists P

1

such that [[P ]]

a(p)

����!P

1

& p! b j [[P

0

]] = [[p . b j

P

0

]]. Since [[P ]] �

a

[[Q]] there exists Q

1

such that [[Q]]

a(p)

====)Q

1

and P

1

�

a

Q

1

. By Lemma A.2,

we have two possibilities:

(a) There exists Q

0

such that Q

ad

===)Q

0

and Q

1

& p! d j [[Q

0

]] = [[p . d j Q

0

]]. So, we

have [[p . b j P

0

]] . P

1

�

a

Q

1

& [[p . d j Q

0

]]. We can therefore conclude that ((p . b j

P

0

) ; (p . d j Q

0

)) 2 S.

(b) There exists Q

0

such that Q

a(c)

====)Q

0

and Q

1

& (�c)(p! c j [[Q

0

]]) = [[(�c)(p! c j Q

0

)]].

So, we have [[p . b j P

0

]] . P

1

�

a

Q

1

& [[(�c)(p . c j Q

0

)]]. We can therefore conclude

that ((p . b j P

0

) ; (�c)(p . c j Q

0

)) 2 S.

4. P

a(c)

����!P

0

, by Lemma 5.1 there exists P

1

such that [[P ]]

a(p)

����!P

1

& (�c)(p! c j [[P

0

]]) =

[[(�c)(p . c j P

0

)]]. Since [[P ]] �

a

[[Q]] there exists Q

1

such that [[Q]]

a(p)

====)Q

1

and P

1

�

a

Q

1

.

By Lemma A.2 we have two possibilities:

(a) There exists Q

0

such that Q

ab

===)Q

0

and Q

1

& p! b j [[Q

0

]] = [[p . b j Q

0

]]. So, we

have [[(�c)(p . c j P

0

)]] . P

1

�

a

Q

1

& [[p . b j Q

0

]]. We can therefore conclude that

((�c)(p . c j P

0

) ; (p . b j Q

0

)) 2 S.
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(b) There exists Q

0

such that Q

a(c)

====)Q

0

and Q

1

& (�c)(p! c j [[Q

0

]]). So, we have

[[(�c)(p . c j P

0

)]] . P

1

�

a

Q

1

& [[(�c)(p . c j Q

0

)]]. We can therefore conclude that

((�c)(p . c j P

0

) ; ((�c)(p . c j Q

0

)) 2 S.

�

A.3 Complement to the Proof of Lemma 7.1

Proof: The proof is by induction on n. The case n = 0 is trivial because '

0

l

= L��L�. If n > 0,

by induction, we suppose that

(�L

0

)(P j R(n;L)) '

�

(�L

0

)(Q j R(n;L)) and P

�

==)P

0

.

We proceed by case analysis on the action � to show that Q can match the action �.

1. � = � . Then:

(�L

0

)(P j R(n;L;M))

�

==)(�L

0

)(P j (c

�

n

�R(n� 1;L;M)))

To match this reduction up to barbed bisimulation we have to have:

(�L

0

)(Q j R(n;L;M))

�

==)(�L

0

)(Q

1

j (c

�

n

�R(n� 1;L;M)))

We make a further reduction on the left handside

(�L

0

)(P j (c

�

n

�R(n� 1;L;M)))

�

==)(�L

0

)(P

0

j R(n� 1;L;M))

Again this has to be matched by (note that we cannot run the process R(n�1;L;M) without

losing a commitment b

n

or b

0

n

):

(�L

0

)(Q

1

j (c

�

n

�R(n� 1;L;M)))

�

==)(�L

0

)(Q

0

j R(n� 1;L;M))

We observe that Q

�

==)Q

1

�

==)Q

0

and we conclude by applying the inductive hypothesis.

2. � = ab. We may suppose b 2 L. Then

(�L

0

)(Q j R(n;L;M))

�

==)

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

We take a further step on the lhs:

(�L

0

)(P j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g; )))

�

==)

(�L

0

)(P

0

j a

0

. b j R(n� 1;L [ fa

0

g;M[ fa

0

g))

We take a further step on the lhs:

(�L

0

)(P j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g; )))

�

==)

(�L

0

)(P

0

j a

0

. b j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This can be matched:

(a) either by

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g; )))

�

==)

(�L

0

)(Q

0

j a

0

. d j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This means that Q

�

==)Q

1

ad

===)Q

0

. By inductive hypothesis, and reasoning up to struc-

tural congruence, we can conclude that a

0

. b j P

0

'

n�1

l

a

0

. d j Q

0

.
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(b) or by

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

�

==)

(�L

0

)((�c)(Q

0

j a

0

. c) j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This means that that Q

�

==)Q

1

a(c)

====)Q

0

. By inductive hypothesis, and reasoning up to

structural congruence, we can conclude that a

0

. b j P

0

'

n�1

l

(�c)(a

0

. c j Q

0

).

3. � = a(c). We may suppose c 62 fn(Q). Then

(�L

0

)(P j R(n;L;M))

�

==)

(�L

0

)(P j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

This has to be matched by:

(�L

0

)(Q j R(n;L;M))

�

==)

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

We take a further step on the lhs:

(�L

0

)(P j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

�

==)

(�L

0

)((�c)(P

0

j a

0

. c) j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This can be matched:

(a) either by

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

�

==)

(�L

0

)(Q

0

j a

0

. b j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This means that Q

�

==)Q

1

ab

===)Q

0

. By inductive hypothesis, and reasoning up to struc-

tural congruence, we can conclude that (�c)(a

0

. c j P

0

) '

n�1

l

a

0

. b j Q

0

.

(b) or by

(�L

0

)(Q

1

j c

a

n

� a(x). (a

0

. x j R(n� 1;L [ fa

0

g;M[ fa

0

g)))

�

==)

(�L

0

)((�d)(Q

0

j a

0

. d) j R(n� 1;L [ fa

0

g;M[ fa

0

g))

This means that Q

�

==)Q

1

a(d)

====)Q

0

. Since c 62 fn(Q) we also have that Q

�

==)Q

1

and

Q

1

a(c)

====)Q

0

f

c

=dg. By inductive hypothesis, and reasoning up to structural congruence,

we can conclude that (�c)(a

0

. c j P

0

'

n�1

l

(�c)(a

0

. c j Q

0

).

4. � = aa

0

. We may suppose a

0

is the �rst element in Ch

00

nL (otherwise we rename and use

injective substitution). Then

(�L

0

)(P j R(n;L;M))

�

==)(�L

0

)(P j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [ fa

0

;Mg)))))

This has to be matched by

(�L

0

)(Q j R(n;L;M))

�

==)(�L

0

)(Q

1

j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [ fa

0

;Mg)))))
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We make a further reduction on the lhs:

(�L

0

)(P j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [ fa

0

;Mg)))))

�

==)

(�L

0

a

0

)(P

0

j R(n� 1;L [ fa

0

;Mg))

This is matched by:

(�L

0

)(Q

1

j (c

a

n

� ((�a

0

)(aa

0

j R(n� 1;L [ fa

0

;Mg)))))

�

==)Q

00

We have two possibilities:

(a) Q

1

�

==)Q

0

and Q

00

� (�L

0

a

0

)(Q

0

j aa

0

j R(n� 1;L [ fa

0

g;M)).

Then Q

�

==)Q

1

�

==)Q

0

and P

0

'

n�1

l

Q

0

j aa

0

by inductive hypothesis and up to structural

congruence.

(b) Q

1

aa

0

===)Q

0

and Q

00

� (�L

0

a

0

)(Q

0

j R(n� 1;L [ fa

0

;Mg)). Then Q

�

==)Q

1

aa

0

===)Q

0

and

P

0

'

n�1

l

Q

0

by inductive hypothesis and up to structural congruence.

�

A.4 Complement to the proof of Theorem 8.4

Lemma A.4 Let P and Q be two L�-processes and p a name such that p 62 fn(P;Q). Then

(p . b j P ) �

l

(p . b j Q) implies P �

l

Q.

Proof: We show that the relation

S = f(P;Q) : P;Q 2 L� and p 62 fn(P;Q) and (p . b j P ) �

l

(p . b j Q)g

is a link bisimulation up to structural congruence. The proof is straightforward and it is based

on the fact that p is a fresh name and therefore there cannot be any interaction between the link

p . b and the processes P and Q. �

Lemma A.5 Let P and Q be two L�-processes and b a name such that b 62 fn(P;Q). Then

P �

lut

Q implies P j ab �

lut

Q j ab.

Proof: We show that the relation

S = f(P j ab;Q j ab) : P;Q 2 L�; b 62 fn(P;Q); P �

lut

Qg[ �

lut

is a link bisimulation up to link up to �. It is enough to consider two cases:

1. P j ab

�

��!P

0

j ab, that is, P

�

��!P

0

. Then the process Q j ab can match this actions in the

same way.

2. P j ab

�

��!P

00

, that is, the output particle ab is consumed. Then there are two possibilities:

(a) P j ab

ab

���!P . Then the process Q j ab can match this actions in the same way.

(b) P j ab

�

��!P

0

. This means that P

a(b)

����!P

0

. Since P �

lut

Q we have two cases.

i. Q

a(b)

====)Q

0

and P

0

�

lut

Q

0

and the process Q j ab can match this actions in the

same way, or

ii. Q =) Q

0

and P

0

�

lut

Q

0

j ab. Then Q j ab =) Q

0

j ab and since P

0

�

lut

Q

0

j ab we

can conclude that (P

0

; Q

0

j ab) 2 S.

�
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The following lemma shows that �

lut

is preserved by the introduction of links.

Lemma A.6 Let P and Q be two L�-processes and p a name such that p 62 fn(P;Q). Then

1. P �

lut

Q implies (p . b j P ) �

lut

(p . b j Q).

2. P �

lut

Q implies (�c)(p . c j P ) �

lut

(�c)(p . c j Q).

3. Pf

p

=cg �

lut

(�c)(p . c j Q) implies (�c)(p . c j P ) �

lut

(�c)(p . c j Q).

4. Pf

p

=cg �

lut

(p . b j Q), c62 fn(Q), implies (�c)(p . c j P ) �

lut

(p . b j Q).

Proof: 1. It su�ces to show that the relation

S = f(p . b j P ; p . b j Q) : P;Q 2 L�; P �

lut

Q; p 62 fn(P;Q)g

is a link bisimulation up to link up to �. Since p 62 fn(P;Q) there cannot be an interaction

between the link and the processes. The most interesting case is when p . b j P

p(w)

����!p . b j

pw j P , with w fresh, and p . b j Q

p(w)

����!p . b j pw j Q. By Lemma A.5 we conclude that

((p . b j pw j P ); (p . b j pw j Q)) 2 S.

2. We prove that the relation

S = f((�c)(p . c j P ) ; (�c)(p . c j Q)) : P �

lut

Q; p 62 fn(P j Q)g

is a link bisimulation up to link up to �. We use the following abbreviation: A = (�c)(p . c j

P ) and B = (�c)(p . c j Q). We consider the possible actions of A.

(a) If A

�

��!A

1

, since p 62 fn(P;Q), there exists P

0

such that P

�

��!P

0

and A

1

= (�c)(p . c j

P

0

). Since P �

lut

Q there exists Q

0

such that Q =) Q

0

and P

0

�

l

Q

0

. This means that

there exists B

1

such that B =) B

1

, B

1

= (�c)(p . c j Q

0

) and (A

1

; B

1

) 2 S.

(b) If A

a(b)

����!A

1

, with a 6= c and b 62 fn(A;B). There are two cases:

i. a 6= p. This means that P

a(b)

����!P

0

and A

1

= (�c)(p . c j P

0

). Since P �

lut

Q there

are two possibilities:

A. Q

a(b)

====)Q

0

and P

0

�

lut

Q

0

. In this case B

a(b)

====)B

1

where B

1

= (�c)(p . c j Q

0

)

and (A

1

; B

1

) 2S.

B. Q =) Q

0

and P

0

�

lut

Q

0

j ab. In this case B =) B

1

= (�c)(p . c j Q

0

) with

A

1

S (�c)(p . c j (Q

0

j ab)) � B

1

j ab.

ii. a = p. Since p 62 fn(P j Q), it holds that A

1

= (�c)(p . c j cb j P ). So, B

a(b)

====)B

1

=

(�c)(p . c j cb j Q). Since P �

lut

Q and b 62 fn(P;Q), by Lemma A.5, we have

(P j cb) �

lut

(Q j cb). We conclude that A

1

� (�c)(p . c j P j cb) S (�c)(p . c j Q j

cb) � B

1

(c) If A

ab

���!A

1

. This means that P

ab

���!P

0

, fa; bg \ fc; pg = ; and A

1

= (�c)(p . c j P

0

).

Since P �

lut

Q, there are three possibilities:

i. Q

ab

===)Q

0

and P

0

�

lut

Q

0

. This implies B

ab

===)B

1

= (�c)(p . c j Q

0

) and (A

1

; B

1

) 2

S.

ii. Q

a(d)

====)Q

0

with d 62 fn(P j Q). We have two possible requirements for the deriva-

tives. We consider the most di�cult, that is, (w . b j P

0

) �

lut

(�d)(w . d j Q

0

) for

some fresh name w. We have,

B

a(d)

====)B

1

= (�c)(p . c j Q

0

)
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and

(w . b j A

1

) �

(�c)(p . c j (w . b j P

0

)) S

(�c)(p . c j ((�d)(w . d j Q

0

))) �

(�d)(w . d j B

1

).

iii. Q

ah

===)Q

0

, with h 6= b and (w . b j P

0

) S (w . h j Q

0

) for some fresh name w. We

reason as in the previous case.

(d) If A

a(b)

����!A

1

the reasoning is similar to that for case 3.

3. The proof follows from Lemma A.6(2) and Proposition 4.3. Let r be a fresh name, by

hypothesis we know that Pf

r

=cg �

lut

(�c)(r . c j Q). By Lemma A.6(2), we have

(�r)(p . r j Pf

r

=cg) �

lut

(�r)(p . r j (�c)(r . c j Q))

for p fresh. By Proposition 4.3 we have

(�r)(p . r j (�c)(r . c j Q)) � (�c)((�r)(p . r j r . c) j Q) & (�c)(p . c j Q).

Since (�c)(p . c j P ) � (�r)(p . r j Pf

r

=cg) and ��

lut

�& � �

lut

we can conclude that

(�c)(p . c j P ) �

lut

(�c)(p . c j Q).

4. As in Part 3, the proof can be derived by Lemma A.6(2) and Proposition 4.3.

�

A.5 Proof of Lemma 9.6

We restate Lemma 9.6.

Lemma A.7 (Operational correspondence of f[[�]]g) Let P be a process in DL�.

1. Suppose that P

�

��!P

0

. Then we have:

(a) if � = a(b) then f[[P ]]g

a(b

0

)

����! & f[[P

0

]]gf

b

0

=bg and b

0

62 fn(P )

(b) if � = ab then f[[P ]]g

(�c)ac

������! <

a

(c! b j f[[P

0

]]g), with c 62 fn(P )

(c) if � = (�b)ab then f[[P ]]g

(�c)ac

������! <

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P )

(d) if �=d(b)ab then f[[P ]]g

(�c)ac

������!<

a

(�b)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(e) if � = (�d)d(b)ab then

f[[P ]]g

(�c)ac

������! <

a

(�b)(�d)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(f) if � = � then f[[P ]]g

�

��! <

a

f[[P

0

]]g.

2. Suppose that f[[P ]]g

�

��!P

1

. Then there exists P

0

2 DL� such that:

(a) if � = a(b

0

) then P

a(b)

����!P

0

and P

1

<

a

f[[P

0

]]gf

b

0

=bg

(b) if � = (�c)ac then:

i. either P

ab

���!P

0

and P

1

<

a

(c! b j f[[P

0

]]g), with c 62 fn(P )

ii. or P

(�b)ab

������!P

0

and P

1

<

a

(�b)(c! b j f[[P

0

]]g), with c 62 fn(P )
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iii. or P

d(b)ab

�����!P

0

and P

1

<

a

(�b)(d(b

0

). b! b

0

j c! b j f[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

iv. or P

(�d)d(b)ab

����! P

0

and P

1

<

a

(�b)(�d)(d(b

0

). b! b

0

jc! b jf[[P

0

]]g),

with fb

0

; cg \ fn(P ) = ;

(c) if � = � then P

�

��!P

0

with P

1

<

a

f[[P

0

]]g.

Proof: The proof is by transition induction. We prove Part 1. The proof of Part 2 is similar.

1. � = a(b). The interesting case is when the last rule applied to get P

a(b)

����!P

0

is d-in. By

Lemma 5.2(1), since & implies <

a

, it holds that

fja(b)P jg = (�b)(a(b

0

). b! b

0

j fjP jg)

and

(�b)(a(b

0

). b! b

0

j fjP jg)

a(b

0

)

����!(�b)(b! b

0

j fjP jg) <

a

fjP jgf

b

0

=bg.

2. � = ab. Straightforward.

3. � = (�b)ab. Straightforward.

4. � = d(b)ab. The interesting case is when P

0

is derived by applying rule o-in. The result

follows from the de�nition of the encoding.

5. � = (�d)d(b)ab. The only signi�cant case is when the last rule applied to get P

0

is o-�. As

in the previous case, the result follows from the de�nition of the encoding.

6. � = � . The interesting cases are when P

0

is derived by applying one of the rules com, s-com,

cls, or s-cls. We consider each of these below.

(a) Suppose com is the last rule applied for deriving P

�

��!P

0

.

com:

P

ab

���!P

0

Q

a(x)

����!Q

0

P j Q

�

��!P

0

j Q

0

f

b

=xg

By induction hypothesis we have:

� fjP jg

(�c)ac

������! <

a

c! b j fjP

0

jg

� fjQ jg

a(c)

����! <

a

fjQ

0

jgf

c

=xg

with c 62 fn(P ). By Lemma 5.2 we have:

fjP j Q jg = fjP jg j fjQ jg

�

��! <

a

(�c)(c! b j fjP

0

jg j fjQ

0

jgf

c

=xg)

<

a

fjP

0

jg j fjQ

0

jgf

b

=xg

= fjP

0

j Q

0

f

b

=xgjg.

(b) Suppose s-com is the last rule applied for deriving P

�

��!P

0

.

s-com:

P

ac

���!P

0

a(b)P

�

��!(�b)(P

0

f

c

=bg)

.

There are two possibilities: either c 6= b or c = b.
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i. If c 6= b then (�b)(P

0

f

c

=bg) = P

0

f

c

=bg. By induction hypothesis it holds that

fjP jg

(�d)ad

������! <

a

d! c j fjP

0

jg

with d fresh. Since fj a(b)P jg

def

= (�b)(a(b

0

). b! b

0

j fjP jg), by Proposition 4.3(2)

and Lemma 5.2 it holds that:

fja(b)P jg

�

��! <

a

(�b)((�d)(b! d j d! c) j fjP

0

jg)

<

a

(�b)(b! c j fjP

0

jg)

<

a

fjP

0

jgf

c

=bg

= fjPf

c

=bgjg.

ii. If c = b then (�b)(P

0

f

c

=bg) = (�b)P

0

. By induction hypothesis it holds that

fjP jg

(�d)ad

������! <

a

d! c j fjP

0

jg

with d fresh. Since fj a(b)P jg

def

= (�b)(a(b

0

). b! b

0

j fjP jg), by Proposition 4.3(2)

and Lemma 9.5 it holds that:

fja(b)P jg

�

��! <

a

(�b)((�d)(b! d j d! b) j fjP

0

jg)

<

a

(�b)(b! b j fjP

0

jg)

<

a

(�b)fjP

0

jg.

(c) Suppose cls is the last rule applied for deriving P

�

��!P

0

.

cls:

P

�

b

ab

����!P

0

Q

a(b

0

)

����!Q

0

bn(�

b

) \ fn(Q)=;

P j Q

�

��!�

b

(P

0

j Q

0

f

b

=b

0

g)

We can suppose �

b

= d(b) for some d. The case when �

b

= (�d)d(b) is similar. By

induction hypothesis it holds that:

� fjP jg

(�c)ac

������! <

a

(�b)(d(b

0

). b! b

0

j c! b j fjP

0

jg), with fb

0

; cg \ fn(P ) = ;.

� fjQ jg

a(c)

����! <

a

fjQ

0

jgf

c

=b

0

g.

We recall that fjP j Q jg = fjP jg j fjQ jg. Then, by Lemma 5.2, we have:

fjP jg j fjQ jg

�

��! <

a

(�c)(�b)(d(b

0

). b! b

0

j c! b j fjP

0

jg j fjQ

0

jgf

c

=b

0

g)

� (�b)(d(b

0

). b! b

0

j (�c)(c! b j fjP

0

jg j fjQ

0

jgf

c

=b

0

g))

<

a

(�b)(d(b

0

). b! b

0

j fjP

0

jg j fjQ

0

jgf

b

=b

0

g)

= fjd(b)(fjP

0

jg j fjQ

0

jgf

b

=b

0

g) jg.

(d) Suppose s-cls is the last rule applied for deriving P

�

��!P

0

.

s-cls:

P

�

c

ac

����!P

0

b 62 n(�

c

ac)

a(b)P

�

��!�

c

(P

0

f

c

=bg)

We can suppose �

c

= d(c) for some d. The case when �

c

= (�d)d(c) is similar. By

induction hypothesis it holds that:

fjP jg

(�h)ah

������! <

a

(�c)(d(c

0

). c! c

0

j h! c j fjP

0

jg)

with fc

0

; hg \ fn(P ) = ;.

Since fj a(b)P jg

def

= (�b)(a(b

0

). b! b

0

j fj P jg), by Proposition 4.3 and Lemma 5.2 we

have:

fja(b)P jg

�

��! <

a

(�h)(�b)(b! h j d(c

0

). c! c

0

j h! c j fjP

0

jg)

� (�b)((�h)(b! h j h! c) j d(c

0

). c! c

0

j fjP

0

jg)

<

a

(�b)(b! c j d(c

0

). c! c

0

j fjP

0

jg)

<

a

d(c

0

). c! c

0

j fjP

0

jgf

c

=bg

= fjd(c)P

0

f

c

=bgjg.

�
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