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Abstract

Milner's action calculus implements abstraction in monoidal categories,

so that familiar �-calculi can be subsumed together with the �-calculus

and the Petri nets. Variables are generalised to names: only a restricted

form of substitution is allowed.

In the present paper, the well-known categorical semantics of the �-

calculus is generalised to the action calculus. A suitable functional com-

pleteness theorem for symmetric monoidal categories is proved: we de-

termine the conditions under which the abstraction is de�nable. Alge-

braically, the distinction between the variables and the names boils down

to the distinction between the transcendental and the algebraic elements.

The former lead to polynomial extensions, like e.g. the ring Z[x], the

latter to algebraic extensions like Z[

p

2] or Z[i].

Building upon the work of P. Gardner, we introduce action categories,

and show that they are related to the static action calculus exacly as

cartesian closed categories are related to the �-calculus. Natural examples

of this structure arise from allegories and cartesian bicategories. On the

other hand, the free algebras for any commutative Moggi monad form an

action category. The general correspondence of action calculi and Moggi

monads will be worked out in a sequel to this work.

�
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1 Introduction

Algebraically, the �-abstraction arises from a property of certain structures |

namely, that each polynomial can be reduced to a normal form with a single

coe�cient. This property is known as combinatorial [5, ch. 6] or functional

completeness [13, sec. I.6]. Having developed the algebra of variables in terms of

polynomial extensions, one uses the functional completeness to de�ne �x:�(x) as

the coe�cient a of the normal form a�x of the polynomial�(x). The abstraction

thus appears as an inductively derivable operation.

The idea of hiding away the variables and eliminating the substitution for the

sake of function application goes back to Sch�on�nkel [31] and actually predates

the �-calculus. However, Sch�on�nkel's applicative algebras were properly under-

stood only when Curry [4] had displayed them as the combinatorially complete

kernel of the untyped �-calculus. The abstraction seemed easier to understand

as an operation, than as a property. The algebraic approach had been given

a boost much later, in Lambek's categorical treatment of the functional com-

pleteness, i.e. with respect to the composition rather than the application [10].

Cartesian closed categories, as the functionally complete kernel of the typed

�-calculus, soon became an indispensable part of semantics of functional pro-

gramming [3], and even induced a new algebraic interpretation of the untyped

calculus [13, sec. I.17]. In a sense, the cartesian closed structure is the algebra

of the function abstraction, and Dana Scott [32] had strongly argued that, in a

conceptual world, it should have been discovered before the �-calculus itself.

However, beyond the realm of functions, the notion of abstraction is far less

clear cut. And the realm of functions does not su�ce for studying computa-

tions, since they may yield no output, or may yield several outputs, as soon

as nondeterminism or concurrency enter scene. Moggi's computational monads

[23] measure the deviation from functionality which comes with various notions

of computation, while Abramsky speaks of processes as relations extended in

time [1]. In more than one way, the step from functions to computations echoes

the step to relations. One of the most conspicuous structural features in the

world of computations, as well as in the world of relations, is a tensor product,

induced by what used to be the cartesian product in the old world of functions.

Quite di�erent models share it: Petri nets [24], Chu spaces [30], action struc-

tures [18], interaction categories [1]. . .| they all carry this monoidal structure,

roughly corresponding to the parallel composition. A \simple type theory" of

processes seems to be emerging.

In this monoidal world, the abstraction arises in connection with parametri-

sed processes, just like the �-abstraction had arisen to bind parametrised families

of functions. As it is well known, the dependancy of a process on the values

of data can be eliminated, i.e. reduced to a choice between atomic actions

[17, sec. 2.8]. However, when processes are allowed to communicate to each

other names of communication channels as parameters, a genuinely new kind

of situation arises. The structure of a process depending on such a parameter
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may change during the execution, since di�erent communication channels that

may be received can open the di�erent computation paths, or preempt them.

This is the idea of a mobile process. The corresponding generalisation of the �-

calculus is the �-calculus [22]. The main di�erence is that a function is applied

to its input sequentially, while a mobile process can communicate with any

of the processes running in parallel with it, provided that there is a common

communication channel. The function application has been generalised to the

communication, which may be non-sequential and non-deterministic.

The main feature of the �-abstraction is that it does not just bind a param-

eter x, for which the received input is to be substituted, like the �-abstraction

does, but it also speci�es a communication channel y, where the sought input

must be received. A �-abstraction operator is thus in the form y(x), and it binds

x, and adds y as a free channel name, ready for the input. A process pre�xed

with such an operator will not consume just any argument immediately preced-

ing it, and substitute it for x, like an old �-term would do. A process/�-term

must �rst �nd a parallel process (another �-term) sending its output through

y. It can be recognized by a pre�x in the form yu, where u is the name being

sent. In case several such are running in parallel, pre�xed, say, with yu

1

, yu

2

etc., only one of their outputs/pre�xes will be consumed, and the choice will

be made nondeterministically. Any of the channels u

1

; u

2

: : : may thus end up

being substituted for x.

The action calculus provides means for reducing this complex reduction pro-

cedure to a familiar abstraction/application routine. There are two dimensions

of this apparent syntactic miracle: the controls, and the dynamics. The controls

mark the input and the output channels, and block the reduction unless these

coincide. The dynamics is the reduction preorder that, unlike the Church-Rosser

situations, cannot be hidden away from semantics. Indeed, upon di�erent com-

munications, processes may reduce in essentially di�erent ways.

However, in the present paper, we shall neglect the dynamic side, and try to

show that the remaining static action calculus is a kind of \monoidal�-calculus"

plus controls. The dynamics of the full-blown structure is undoubtedly essential

for its computational purposes, but the underlying abstraction mechanism seems

to be independant on this superstructure.

Peculiar as it may appear at the �rst sight (due to its unusual mixture of

categorical and syntactical features) the action calculus can be formalised as a

generalisation of Lambek's �-calculus [13, sec. I.6], the �rst-order version of the

typed �-calculus. It is extended in two directions: by adding certain graphic

operations, the mentioned controls, and by weakening the cartesian setting to

a special monoidal structure. In section 2, we extend the existing theory of the

functional completeness for cartesian (closed) categories [13, part I] in these two

directions. In section 3, action categories are introduced, and shown to generate

the action calculus in a similar way as cartesian closed categories generate the �-

calculus: the action abstraction arises from their functional completeness. This

provides a base for categorical semantics of the action calculus.
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Several classes of natural examples, modelling static action calculi, are de-

scribed in subsection 3.3. A di�erent application of the obtained semantics is

presented in subsection 3.2: it is shown how allowing the ordinary substitution

reduces the action calculus to the cartesian �-calculus. This sheds some light on

the degeneration of the extensional higher-order action calculus to the ordinary

�-calculus, described in [20] | and shows how narrow is the passage from the

cartesian to the monoidal abstraction. The simplicity with which the latter has

been introduced in the action calculus conceals a genuinely fundamental idea,

mostly behind the concept of a name, with its constrained substitution.

While weakening the cartesian setting leaves the abstraction operations vir-

tually unchanged, it has deep repercussions on the substitution, which on its

turn weakens the �-reduction. The original constraints, imposed on the sub-

stitution in the action calculus, were computationally motivated: if names are

channel parameters, then only the proper channel names should be substituted

for them, and surely not arbitrary process expressions. Variables, as the value

parameters, on the other hand, accomodate substitution of all expressions that

can be evaluated.

The algebraic treatment provides di�erent explanations. In algebra, the

substitution is implemented by means of extensions: a variable x, freely adjoined

to, say, the ring of integers Z, leads to the polynomial extension Z[x]. The fact

that x is free for substitution of any element means that it is transcendental,

unconstrained by any equations overZ. On the other hand, an algebraic element,

which does satisfy some equations, can only be replaced by elements satisfying

the same equations. E.g., if x

2

� 2 = 0 holds for x, then only �x can be

substituted for it, without invalidating the equation. Of course, this x is just

p

2 and the substitution constraint formally means that the extension Z[

p

2] =

Z[x]=(x

2

� 2) has exactly one nontrivial endomorphism �xing Z, induced by

the assignment

p

2 7! �

p

2. Conversely, the \name"

p

2 can be viewed as an

abbreviation of something like [x;x

2

= 2]. We shall later present names exactly

in this form.

The idea that names are some algebraic elements, as opposed to variables

as transcendental elements, suggests a general treatment of the constrained

substitution, along the lines of Galois theory. Luckily, this general treatment

need not be developed very far: the names arising in the action calculus turn

out to be the algebraic elements of a very special kind, characterised by a simple

set of equations (23{25). They are consequences of the conversion rules of the

name abstraction (cf. de�nition 3.2). The point of the functional completeness

is that the name abstraction, together with its conversion rules, can also be

derived as a consequence of the equations determining the names.

The basic category theory, to the extent of the �rst 30 pages of [13] is assumed

to be familiar to the reader. The next 50 pages of that book provide a succinct

exposition of the main ideas of categorical semantics, presently applied to the

action calculus. In order to align the presented constructions with that standard

material, I deviated from some of the action calculus notation. In particular,
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the composition is written in the form f � g, (referring to (f � g)(x) = f(g(x)))

rather than g � f . The connection with the pre�xing operation, which motivates

this latter notation, is not yet considered here.

2 �-calculus

2.1 Graph algebra

The elements of universal algebra over the category of graphs have been outlined

in [13]. The basic feature is that the operations take arrows as arguments. The

arity is thus not just a number, but may involve some equations imposed on

the sources and the targets. It is convenient to present such arities as deductive

systems, with Gentzen-style derivation rules. For instance, the pairing and the

currying can be respectively introduced:

f : k ! m g : k ! n

hf; gi : k �! m� n

h : k �m �! n

h

�

: k �! n

m

Of course, to be able to recover f and g from hf; gi, one needs the composition

and the projections, together with the equations to tie up the cartesian structure

[13, sec. I.3]; and to uncurry h

�

, one also needs the closed structure [ibidem].

In many cases, a deductive system can be reduced to a purely equational

theory in terms of functors and natural transformations. For instance, the

cartesian structure can be given by a symmetric tensor product 
 with a unit

> and natural transformations � : k ! k 
 k and ! : k ! >, making each k

into a commutative comonoid:

(! 
 k) �� = id

k

= (k 
 !) �� (1)

� � (�
 k) = � � (k 
�) (2)

� �� = � (3)

where � : k 
 k

�

! k 
 k is a component of the tensor symmetry. While

such algebraic presentations tend to be more succinct, deductive systems are

established as a more versatile tool for practical tasks.

De�nition 2.1 A graphic signature is a set K of operation symbols, here gener-

ically denoted by C, each of them given with an arity rule

a

1

: m

1

! n

1

a

2

: m

2

! n

2

� � � a

r

: m

r

! n

r

C(a

1

; : : : ; a

r

) : m �! n

(4)

Together with a set of well-formed equations, such a signature presents a graphic

theory K.
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The notion of a model is de�ned in the usual way. For each symbol C 2 K,

a K-graph A comes equipped with a distinguished partial mapping C : A

r

* A ,

satisfying whatever constraints may have been imposed.

In the present paper, we shall only be concerned with the theories that

extend symmetric monoidal categories [15, sec. VII.1]. Even if not mentioned,

the symmetry will be always assumed. Fix an arbitrary graphic theory K and

add the composition � with the identities id, and a symmetric tensor 
 with

the unit >. The resulting graphic theory will be denoted K




. For simplicity,

we assume that the monoidal structure is strictly associative and unitary. A

K




-category A is thus a commutative monoid in Cat, equipped with the K-

operations. Since every monoidal category is equivalent to a strict one, this

strictness assumption causes no loss of generality.

2.2 Extensions

Given a K




-category A , we want to extend it by a set of formal arrows X =

fx; y; z : : :g from > to various objects of A . X can thus be viewed as a set

symbols with a function type : X ! A , or as a multiset of objects from A .

Furthermore, a set Q of well-formed equations in the elements of X and K




may be imposed. The resulting extension will be denoted A [X;Q]. The pair

[X;Q] is a set of names. The extension A [X;Q] is the smallest K




-category

generated by A and [X;Q]. It is formed in the following stages:

� for each x 2 X of type k 2 A , add to the graph A an edge x : >! k;

� close the resulting graph under the K-operations and

� generate a 
-category; �nally

� enforce the Q-equations.

Clearly, the objects remain unchanged: the obvious functor ad = ad

[X;Q]

:

A �! A [X;Q] is identity on objects. It is furthermore universal among the

K




-functors from A to the categories with an interpretation of [X;Q].

Conventions. The arrows of an extension A [X;Q] will be denoted by �; �; : : : ; ',

while the arrows of A remain a; b; : : : ; f . The objects of both categories are

k; `;m; n.

As usually in the polynomial notation, instead of, say, A [fxg[Y [Z;Q], for

x 2 X and Y; Z � X, we simply write A [x; Y; Z;Q].

2.3 Functional completeness

Proposition 2.2 Let A be a K




-category and A [x;Q] its extension by a name

[x;Q] of type k 2 A . The following conditions are equivalent:
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(a) For each � : m �! n in A [x;Q] there is a unique �x:� : k 
m �! n in

A , such that

� = ad(�x:�) � (x
m) (5)

(b) The functor ad : A �! A [x;Q] has a left adjoint ab, such that the com-

posite ab� ad is just tensoring with k. The unit and the counit of the adjunction

are respectively in the forms �

m

= x
m and "

m

= !
m, for some ! : k!>.

(c) A [x;Q] is isomorphic with the Kleisli category for a comonad over the

endofunctor k 
 (�) : A �! A .

Proof. (a))(b) Consider the maps

A [x;Q]

�

m;n

�

//

�x:(�)

A

�

k 
m;n

�

oo

ad(�)�(x
m)

(6)

Condition (5) says that going to the right and back yields the same arrow. The

other way around, take any g 2 A (k
m;n) and apply (5) to � = ad(g)�(x
m).

Hence

ad(g) � (x
m) = ad

�

�x:ad(g) � (x
m)

�

� (x
m): (7)

The uniqueness part of (a) now gives

g = �x:ad(g) � (x
m): (8)

In other words, going on (6) to the left and back yields the same arrow again.

(6) is a bijection.

The required adjunction is now obtained by extending this bijection to a

natural isomorphism

A [x;Q]

�

m; ad(n)

�

�

=

A

�

ab(m); n

�

: (9)

The object part of ab : A [x;Q] �! A clearly maps m 7�! k 
 m. The re-

quirement that (9) be natural in m determines that ' 2 A [x;Q](m

0

;m) must

be mapped to

ab(') = �x:(x
m) � '; (10)

which is the only arrow making the square

m

0
//

x
m

0

��

'

k 
m

0

##

ad(�x:��')

G

G

G

G

G

G

G

G

G

��

ad�ab(')

n

m

//

x
m

k 
m

;;

ad(�x:�)

w

w

w

w

w

w

w

w

w

(11)
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commute. In the presence of (a), this commutativity is equivalent to the equa-

tion �x:� � ' = (�x:�) � ab('). This is the required naturality of (9) in m.

The naturality in n boils down to the equation �x:ad(f) � � = f � �x:�, for

all f 2 A (n; n

0

). But this is again a consequence of the uniquess part of (a).

Hence the adjunction ab a ad. By correspondence (6) its unit and counit

will be as asserted in (b). So it remains to prove that ab � ad(f) is k
 f for all

f from A .

Since A [x;Q] is a monoidal category, any ' : m

0

! m in it satis�es

(x
m) � ' = x
 ' = (k 
 ') � (x
m

0

): (12)

Putting ' = ad(f), we get that

m

0
//

x
m

0

��

ad(f)

k 
m

0

��

ad(k
f)

m

//

x
m

k 
m

(13)

commutes, since ad is a monoidal functor, identity on objects, and hence k 


ad(f) = ad(k 
 f). But (13), together with the uniqueness part of (a), implies

that k
 f is equal to �x:(x
m) � ad(f), which is just ab � ad(f), by de�nition

(10).

(b))(c) The adjunction ab a ad : A �! A [x;Q] induces a comonad in the

standard way [13, prop. I.6.2]. The isomorphism of A [x;Q] and the Kleisli

category A

k


is identity on objects, while its arrow part is given by the mapping

�x from (6). Indeed, the morphisms of A

k


are detemined exactly as to make

�x functorial.

1

(c))(a) When A [x;Q] is transformed along the given isomorphism into A

k


,

the mapping �x becomes the presentation of the Kleisli arrows as they appear

in A . Viewed in A

k


, the arrow x
m becomes the identity on k
m, while the

functor ad : A �! A

k


becomes the cofree one: it is identity on objects, and

sends a : m �! n to ! 
 a : k 
m �! n.

With the described data, and the Kleisli composition, equation (5) easily

follows. �

De�nition 2.3 A K-category A is functionally complete with respect to a name

[x;Q] if either of the equivalent conditions of proposition 2.2 is satis�ed. The

1

For a more abstract proof, note that that the Kleisli category A

G

for any comonad G :

A ! A can be characterised, up to isomorphism, by the existence of a functor I : A ! A

G

,

which is identity on objects and has a left adjoint.
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functor ad : A �! A [x;Q] adds a dummy x, whereas ab : A [x;Q] �! A

abstracts over x.

A is functionally complete with respect to a set of names [X;Q] if for all

x 2 X and Y � Xrfxg, A [Y ;Q] is functionally complete with respect to [x;Q].

Moreover, the abstraction should be uniform, in the sense that the diagram

A [x; Y ;Q]

//

ab

Y

x

��

ad

x;Y

Z

A [Y ;Q]

��

ad

Y

Z

A [x; Y; Z;Q]

//

ab

Y;Z

x

A [Y; Z;Q]

(14)

must commute for all Y; Z � X r fxg. Moreover, the canonical isomorphism

ab

Z

y

� ab

y;Z

x

�

=

ab

Z

x

� ab

x;Z

y

: A [x; y; Z;Q] �! A [Z;Q] (15)

induced by the fact that both sides are adjoint to ad

Z

x;y

, must come from the

symmetry � : k 
 `

�

! `
 k.

An abstraction situation is a pair (K; Q), such that every K




-category A is

functionally complete with respect to any set of names [X;Q].

Remarks. This last quanti�er over all sets of names is not as extensive as it

appears: by proposition 2.2, A is functionally complete for [X;Q] if and only it

is functionally complete for [X

0

;Q], where X

0

is the image of type : X ! A . To

check an abstraction situation, one only needs to consider the subsets X

0

of jA j

(but still for all K




-categories A , though).

The notion of functional completeness, as de�ned above, should not be con-

fused with its homonym in duality theory [12], where, say, the boolean algebra

2 is functionally complete because every function 2

n

! 2 corresponds to a

polynomial. In boolean algebras, there are thus enough polynomials to rep-

resent all functions, whereas we are concerned with the situations when there

are enough constants to represent all polynomials. The term polynomial com-

pleteness might be better, but the usage, at least for the cartesian case, seems

completely standard.

2.4 Characterising abstraction

Commutative comonoids and cartesianness. Let N be the full subcategory

of Set

op

spanned by the natural numbers: a morphism m ! n in N is just a

function m n. Since Set is the coproduct completion of 1, Set

op

is the product

completion [14]. The free cartesian category generated by 1 is thus Set

op

�n

, and
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N is the free strictly cartesian category over 1, with + as the cartesian product

and 0 as the terminal object.

Lemma 2.4 For every object k of a strict monoidal category A , there are bi-

jective correspondences between

(a) the monoidal functors N! A mapping 1 7! k,

(b) the commutative comonad structures on the functor k 
 (�) : A ! A ,

(c) the commutative comonoid structures on k.

As mentioned before, a commutative comonoid structure, dual to a commutative

monoid, is a pair >

!

 k

�

! k
 k, satisfying (1{3). A comonoid homomorphism

is an arrow u making the following diagram commute.

`

//

�

yy

!

r

r

r

r

r

r

r

��

u

` 
 `

��

u
u

>

k

//

�

ee

!

L

L

L

L

L

L

k 
 k

(16)

The general facts about the commutative (co)monads can be found in [9]. In the

particular case of the comonad k
 (�), though, the commutativity is probably

best understood simply as de�ned by the above lemma: it really boils down to

the commutativity of the corresponding comonoid. In the sequel, all comonoids

and comonads are commutative, even when this is not emphasized.

By proposition 2.2(c), the equivalent structures from the above lemma are

necessary for functional completeness: they ensure the existence of the Kleisli

category A

k


. This category is monoidal if and only if the comonad k 
 (�) is

commutative. The abstraction situations thus require that all objects are com-

mutative comonoids. The arrows do not have to be comonoid homomorphisms,

though. Hence the non-cartesian abstraction situations, properly extending the

existing categorical theory of abstraction [13, 3]. However, the adjoined names

do have to be comonoid homomorphisms: the isomorphism A [x;Q]

�

=

A

k


de-

pends on that.

The situations in which all objects are comonoids but some arrows are not

comonoid homomorphisms are ubiquitous. E.g., the category Rel of sets and

relations, with the tensor induced by the cartesian product from Set, inherits

the comonoid structures 1  k ! k � k, but the set-theoretical diagonals and

the terminal functions to 1 do not form natural families with respect to all

relations. Indeed, if diagram (16) is taken in Rel, the commutativity of the

square means that u is a single-valued relation; and the commutativity of the

triangle | that it is total. The comonoid homomorphisms in Rel are just the

functional relations.

Admissibility and controls. To ensure that the K




-structure extends from

A to A

k


, some additional conditions are needed. A type theoretical version is
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in [7, def. 3.6], categorical in [8, def. 8.1(4)] and [28, def. 4.1]. The following is

closer to the former.

De�nition 2.5 Let C

`

be a graphic operation with the arity

b

1

: `
m

1

! n

1

b

2

: `
m

2

! n

2

� � � b

r

: ` 
m

r

! n

r

C

`

(b

1

; : : : ; b

r

) : `
m �! n

(17)

Given two such, C

k

and C

`

, an arrow u : `! k in A is said to be admissible if

it satis�es

C

`

�

b

1

(u
m

1

); : : : ; b

r

(u
m

r

)

�

= C

k

(b

1

; : : : ; b

r

) � (u
m): (18)

A monoidal functor M ! A is admissible if its image consists of arrows admis-

sible with respect to a given family fC

`

g

`2M

.

Finally, a comonoid k in a K




-category A is admissible if every graphic

operation C 2 K induces a unique family making the monoidal functor N! A :

1 7! k admissible. Such an operation is called k-control.

Each morphism m  n of N decomposes as m  - m

0

' n

0

^ n, where the

�rst and the last components are monotone. It is not hard to see that a monoidal

functor N! A must take every monotone injectionm - m

0

to an arrow derived

from ! and 
, every monotone surjection n

0

^ n to an arrow derived from �

and ! and every bijectionm

0

' n

0

to a composite of the symmetries � . Since the

class of arrows satisfying (18) is clearly closed under the composition, checking

whether N! A is admissible boils down to checking separately the admissibility

of the arrows derived from ! and 
, from � and 
, and from � , 
 and �. These

three parts correspond to conditions 1{3 from [7, def. 3.6].

On the other hand, every tensor power k

j

of a commutative comonoid k

is a commutative comonoid again. Hence the Kleisli categories A

k

j




for all

natural numbers j. The mapping j 7! A

k

j




determines an indexed category

N

op

! Cat, with the reindexing induced by the precomposition. Condition (18)

now appears as the naturality with respect to this reindexing, and a k-control is

just an indexed graph operation on this indexed category. The setting described

in [8, def. 8.1(4)] and [28, def. 4.1] is built upon this idea

2

.

Proposition 2.6 A K




-category A is functionally complete with respect to the

extension by [x;Q] of type k if and only if

(i) k is an admissible commutative comonoid in A , and

(ii) x is an admissible comonoid homomorphism in A [x;Q].

2

However, it seems that these graphic operations as natural transformations must be total

and monotone with respect to the reduction preorder, so that, e.g., currying, or replication

[16] cannot be treated directly.

11



Proof. When A is functionally complete, the commutative comonoid structure

>

!

 k

�

! k 
 k is

! = �x:id

>

(19)

� = �x:x
 x: (20)

Its admissibility is proved as in [7, sec. 4.2].

The fact that x is an admissible comonoid homomorphism from >

id

 >

id

!

>
> follows directly from (5).

The other way around, assume (i) and (ii). The abstraction �x is de�ned

inductively. An arrow of A [x;Q] is either some a from A , or x itself, or a

composite of previously generated A [x;Q]-arrows, or their tensor. Finally, it

may be obtained using some C 2 K as the outermost operation.

The base cases

�x:a = ! 
 a

�x:x = id

k

and the step cases

k 
m

//

�x:� � �

��

�
m

p

k 
 k 
m

//

k
�x:�

k 
 n

OO

�x:�

k 
m 
m

0
//

�x:�
 �

0

��

�
m
m

0

n
 n

0

k 
 k 
m 
m

0
//

k
c
m

0

k 
m 
 k 
m

0

OO

(�x:�)
(�x:�

0

)

are standard [13, prop. I.2.1], and only depend on the assumption that k is a

commutative comonoid. The admissibility assumption is needed for

�x:C(�

1

; : : : ; �

r

) = C

k

(�x:�

1

; : : : ; �x:�

r

)

This step is the main contribution of [7]. The soundness of the resulting �x

abstractor is proved in [7, theorem 4.6].

Condition (ii) ensures the validity of (5): an inductive argument su�ces

again. The admissibility of x yields

ad

�

�x:C(�

1

; : : : ; �

r

)

�

� (x
m) = ad

�

C

k

(�x:�

1

; : : :

�

� (x
m)

12



= C

k

�

ad(�x:�

1

); : : :

�

� (x
m)

= C

�

ad(�x:�

1

) � (x
m); : : :

�

= C(�

1

; : : : ; �

r

):

The remaining cases only depend on x being a comonoid homomorphism. The

uniqueness part of 2.2(a) follows by a similar inductive argument. �

Corollary 2.7 (K; Q) is an abstraction situation if and only if

(i) K makes all objects into admissible commutative comonoids, while

(ii) Q makes all names into admissible comonoid homomorphisms.

3 Action calculi and control structures

3.1 Abstraction elimination

De�nition 3.1 A monoidal category where every object has a commutative

comonoid structure is said to be semi-cartesian.

An action category is a K




-category with a distinguished admissible commu-

tative comonoid structure on every object.

A semi-cartesian category is cartesian if and only if each object carries a

unique comonoid structure, and such structures form two natural families, � and

!. The naturality means that all morphisms of the category must be comonoid

homomorphisms.

In action categories, the property of semi-cartesianness is �xed as structure:

on each object, a particular comonoid structure is chosen. This choice may

be constrained by some given graphic operations, with respect to which the

structures must be admissible. The proof of proposition 2.6 shows that such

structures determine the abstraction operators, and are determined by them.

This is the essence of the equivalence of action categories and action calculi.

As the embodiment of 2.7(i), action categories satisfy

action calculi

action categories

=

typed �-calculi

cartesian closed categories

(21)

On both sides, the semantics of the numerator is developed using extensions

of the denominator: the polynomial ones on the right hand side, and the al-

gebraic ones, satisfying 2.7(ii), on the left. The former can actually be viewed

as a special case of the latter, since cartesian categories subsume under action

categories, while the �-calculus is isomorphic to the corresponding special case

of the �-calculus [13, sec. I.6]. In a sense, condition 2.7(ii) is thus the \value" of

13



fraction (21). To give a precise meaning to this idea, we need a formal de�nition

of the action calculus.

De�nition 3.2 [19, 16] Given a K




-category A and a multiset X over A, let

A [X ; ab] be the smallest K




-category obtained by extending A with

� ! : k !> for every k, and

� x : >! k for each x 2 X of type k,

and then closing the obtained K




-category under the operation

� : m! n

ab

x

� : k 
m �! k 
 n

(22)

which is required to be functorial and further to satisfy

� : (�x:�) � (y 
m) = �(y=x) (� : m! n)

� : �x:x
m = id

k
m

(x : >! k)

 : �x:a = ! 
 a (x 62 fn(a))

� : (�
 �) � p

km

= p

`n

� (� 
 �) (� : m! n; � : k! `)

where �x:' abbreviates (! 
 n) � ab

x

' and p

k`

is �xy:y 
 x for x : >! k and

y : > ! `. (The inductive de�nition of the set fn(�) of free names of � is as

usually, with ab

x

binding x.)

The resulting K




-category A [X; ab] is a (static) action calculus.

The dynamic part of the action calculus is a preorder enrichment of the

category A [X ; ab]. This reduction preorder is expanded from a set of reduction

rules, taking care that the free names are preserved, and that the identities do

not reduce to anything else. This enrichment is essential for capturing possibly

nondeterministic computations, which preclude reducing the reduction preorder

to a conversion relation. However, it may be that sharper specifying of the

reduction preorder is needed. With its current axioms, it only precludes some

models, but does not really change anything in the theory of abstraction: the

statements simply go through enriched.

In principle, the main point of this theory is to eliminating the abstraction

as an imposed structure, for the sake of an intrinsic property. In the action

calculus, just like in the �-calculus, the functional completeness is enforced by

the abstraction operators; and just like there, these operators can be omitted

from the presentation, and recovered as de�nable.

Proposition 3.3 A (static) action calculus A [X ; ab] is isomorphic with the ex-

tension A [X; �], where A is an action category, and � is the set of equations

! � x = id

>

; (23)

� � x = x
 x; (24)

C

k

(b

1

; : : :) � (x
m) = C (b

1

(x
m

1

); : : :) ; (25)
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on all x 2 X and all C 2 K.

Proof. � is the smallest set of equations satisfying condition 2.7(ii). A [X; �]

is thus the free functionally complete extension of the action category A by X.

The equivalent conditions of proposition 2.2 are thus satis�ed for every x 2 X.

We show that this setting coincides with the structure of action calculus.

First of all, axiom � trivially implies equation (5). The converse follows from

2.2(c).

Axioms  and � follow from the uniqueness part of 2.2(a). The converse uses

the functoriality of ab

x

.

Finally, axiom � corresponds to condition (15), while (14) remains implicit

in the de�nition of a uniform ab

x

in all contexts. �

Control structures [16]. While an action calculus is built up inductively, as

the extension of a given K




-category by names and abstractions, a (static) con-

trol structure is a K




-category readily given with the abstraction functors and

with names as distinguished arrows. The syntactic concepts, such as context,

or substitution, are then reconstructed algebraically.

Corollary 3.4 A K




-category C is a (static) control structure if and only if

it is equivalent with an extension A [X ;Q] of a action category A , with Q � �

(23{25).

Proof. By [16, thm. 4.15], C is a control structure if and only if it is a quo-

tient of an action calculus B [X; ab] along an abstraction preserving K




-functor.

Proposition 3.3 thus yields C as a quotient of B [X; �]. The subcategory A ,

spanned in C by the image of B ! B [X; �] ! C is an action category, since B

is.

We show that C is a quotient of A [X]. The functor A [X] ! C is induced

as an extension of A ,! C , by the universal property of polynomial categories.

This functor is full and essentially surjective, because such a functor B [X] ! C

factorises through it.

Letting Q identify two polynomials if and only if they are identi�ed by

A [X ] ! C , we get the equivalence A [X;Q] ! C . �

3.2 Substitution

On the basis of the preceding results, the logical status of names can perhaps

be determined a bit more precisely. While provided with the same abstraction

power as variables, they are quite constrained as regards the substitution: only

the renaming is allowed. In fact, a stronger rule than � can be conservatively

added.

15



Proposition 3.5 Let u : ` ! k be a morphism in an action category A , and

x; y names of the types k and ` respectively. The substitution of u � y for x

induces a structure preserving functor u

�

: A [x; �] ! A [y; �] if and only if u is

an admissible comonoid homomorphism.

Therefore, A is a cartesian category if and only if all of its morphisms induce

substitution functors.

Proof. Because of the functional completeness, the structure preserving func-

tors A [x;Q] �! A [y;Q] correspond to the structure preserving functors between

the Kleisli categories A

k


�! A

`


. But such functors are in a bijective cor-

respondence with the admissible comonoid homomorphisms ` ! k. (This is

routine category theory: the arrow part of lemma 2.4.) �

Restricted to the admissible comonoid homomorphisms, the action calculus

thus supports the usual substitution mechanism: names behave like variables.

Indeed, we have already seen that the comonoid homomorphisms in Rel are just

the old functions. As an action category, Rel thus contains all of the world of

substitution along functions, with the names playing the role of the variables.

But it also contains much more.

The �-rule can thus be consistently strengthened by allowing any comonoid

homomorphism u : ` ! k for substitution. Conversely, any action u : ` !

k, allowed for substitution, becomes a comonoid homomorphism. An action

calculus with an unconstrained �-rule thus degenerates into a cartesian category.

Allowing the substitution of arbitrary actions in the form d : > ! k, as in

[20, sec. 8], does not cause such degeneration immediately, but it does so in the

presence of extensional higher order, as Milner poinst out in [ibidem, sec. 10].

However, the essence of the problem does not seem to lie in the extensionality,

as suggested, but rather in the unconstrained substitution. Without either

extensionality or higher order, the unconstrained substitution of data d : >! k

alone will lead to cartesianness as soon as there are enough such data to generate,

i.e. ensure that

8d:u � d = v � d =) u = v:

And the unconstrained substitution of all u : ` ! k will of course enforce

cartesiannes without any further assumptions, by proposition 3.5 alone. And

cartesianness computationally means determinism. This can be formalised in

terms of computational monads, but already the fact that the cartesian kernel

of Rel consists of the functional relations provides an idea.

3.3 Examples

i. Since the comonoid structures in a cartesian category are unique, it is not just

semi-cartesian, but also an action category | in a unique way, and assuming

16



no controls. The action calculi, described in [18, 3.1{3.3], are of this kind:

cartesian categories, or their polynomial extensions, supporting the �-calculus.

No controls.

ii. The departure from the cartesian setting is essentially due to introducing

controls. In spite of their diversity, all the original action calculi can be sub-

sumed under a simple syntactic construction, molecular forms [21] | which

actually yields the free extension of a free cartesian category by a given set of

controls. Such extensions turn out to be action categories, of course.

Consider a formal expression (~x)h~yi, where all x

i

from ~x = x

0

� � �x

m�1

are

distinct, whereas each y

j

from of ~y = y

0

� � �y

n�1

occurs in ~x as some x

i

. Setting

f(j) = i whenever y

j

= x

i

, we get a function f : n ! m. The morphisms

m ! n of the free strictly cartesian category N, described in subsection 2.4,

can thus be presented as expressions (~x)h~yi, modulo the renaming of ~x, which

is just the �-conversion, provided that (~x) is construed as a binding operator.

In fact, this is a rudimentary version of the �-calculus, with (~x) as �~x. The

closed terms correspond to the arrows of N, while a term (~x)h~y; ~zi, with ~y � ~x

and ~z \ ~x = �, belongs to the polynomial extension N[~z]. On the other hand, if

the names from ~x; ~y; ~z are typed from some set �, the closed part of the calculus

will yield the free strictly cartesian category over �. The rest of the calculus

will give its polynomial extensions.

Milner's molecular forms are in principle obtained by adding suitable control

expressions, the molecules, to the terms of this �-calculus. For details, the reader

is referred to [21]. All action calculi provided so far can be presented as calculi

of molecular forms. On the other hand, closed molecular forms form action

categories: the canonical comonoid structures ! = (x)hi and � = (x)hxxi are

actually inherited from the free cartesian construction. The open forms form

the algebraic extensions of these action categories by names.

As the calculus of molecular forms thus boils down to the �-calculus plus

controls, the action categories derived from it are actually not far from being

the term models of action calculi.

iii. Moving to the less syntactical examples, we must �rst of all drop the

strictness assumption: as everyone knows, monoidal categories coming about

in nature tend to be non-strict. Nevertheless, the developed theory applies: in

view of the coherence of monoidal categories, it is a priori clear that all stated

results and de�nitions remain valid with the canonical isomorphisms introduced

whenever needed. Alternatively, one could use the fact that every monoidal

category is equivalent to a strict one

3

and extract strictly monoidal examples

from the concrete ones.

3

If a monoidal categoryVis viewed as a bicategory with one 0-cell, its strict version can be

obtained as its image under the bicategorical Yoneda embedding. Roughly, an object (1-cell)

i 2Vis represented by the endofunctor i
 (�) :V!V, so that the tensor product becomes

the endofunctor composition, which is, of course, strict.
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The �rst and the most basic concrete example is the mentioned category

Rel. Its monoidal structure and the commutative comonoids are induced by the

cartesian structure of Set. But note that these inherited comonoids are not the

only ones in Rel. In general, binary relations ! : k!

j

1 and � : k!

j

k 
 k (i.e.

! � k and � � k � k � k) will form a commutative comonoid if and only if for

every a 2 k holds

!(a) () 8bc:�(a; b; c), a = b = c (26)

:!(a) () 9!b: !(b) ^�(a; a; b)^�(a; b; a): (27)

These nonstandard comonoid structures o�er a choice of nonstandard action

category structures on Rel, with varying notions of name, extension etc. In fact,

the morphisms from m to n in the extension of Rel by any name x : 1!

j

k will

always be the k-indexed families of relations m!

j

n, but the composition and

the identities will vary with the comonoid on k. The reader can work this out

using 2.2(c), or noticing that the name x, as an arrow of the extension, is the

family fx

a

: 1!

j

kg

a2k

, where each x

a

� k is

x

a

(b) () a = b ^ !(a): (28)

Which controls can be added to Rel? In principle, this is a bit like asking

which operations can be added to the signature of a given algebra. For action

categories there is a canonical choice, though. The details will be explained

in [27], but let us here just display the control suitable for Rel (since this will

perhaps su�ce for some readers). The arity is

% : m!

j

}n

U% : m!

j

n

where }n = fn

0

� ng is the power set. The idea is that the U%-class of a 2 m

should be the union of its %-classes

U%(a; b) () 9n

0

2}n: %(a; n

0

): (29)

Since it leaves the domain m of % unchanged, U induces the family fU

k

g, where

each U

k

is just U itself, restricted to the relations in the form %

k

: k 
 m!

j

n.

Condition (18) is immeditate, and U is a control.

Mimicking the constructions of Rel over Set in more general settings yields

more examples. In the rest of this section, we consider two such constructions,

and the resulting action categories.

v. Abstract calculi of binary relations, presented as subobjects of products, can

be developed in arbitrary toposes, varieties, regular categories in general [6];

even regular �brations accomodate a similar construction [25]. One always gets

an action category, with the standard comonoid structures inherited from the

cartesian base, and with a choice of nonstandard comonoids, characterised by
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the formulas

!�

o

= ! 
 ! (30)

9' : k!

j

k 8! : k!

j

1:

�

''

o

� id ^ ! \ ! = � =) !�

o

= ('! 
 !) [ (! 
 '!)

�

(31)

which boil down to (26{27) when the classical logic is available.

In general, any allegory [6] or cartesian bicategory [2] subsumes an action

category: the latter structure even contains commutative comonoids as a part

of the de�nition. A range of familiar examples is obtained: categories of semi-

lattices, total orders, total relations, partial maps. . .| they all turn out to

support the name abstraction, with various classes of controls. The basic inter-

action categories [1] also fall into this group; SProc even appears as a category

of relations for a certain regular �bration [26].

At this point, however, it is probably fair to reiterate that these considera-

tions are restricted to the static action calculus. The abundance of the examples

suggests that the presented theory of abstraction is actually too general to re-

ally pin down the intended computational meaning of the full action calculus.

As pointed out before, an essential part remains to be captured by narrow-

ing down the dynamics. It conceptual importance is can be seen, e.g., in the

fact that the intuitive di�erence of interaction categories and action calculi can

only be captured on the level of dynamics, since interaction categories support

the static action calculus, but fail to satisfy the dynamic axioms. In fact, very

few of the mentioned examples, with their natural hom-set orders, satisfy these

axioms. Already in Rel, the identities are neither minimal nor maximal with re-

spect to the inclusion. They are maximal among the partial maps, and minimal

among the total relations, but more subtle dynamic requirements will perhaps

be needed to really capture ideas.

vi. A di�erent class of examples is obtained by generalising Rel as the Kleisli

category for the commutative monad [9] } : Set ! Set. The generalisation is

based on the following lemma (roughly from [29, 4.7]).

Lemma 3.6 A monad T on a monoidal category V is commutative if and only

if the Kleisli category V

T

and the canonical functor V!V

T

are monoidal.

Since a monoidal functor preserves comonoids, V

T

will be an action category

(semi-cartesian) as soon as V is.

According to Moggi [23], many notions of computation are naturally pre-

sented as strong monads on cartesian categories: the objects are sets of values,

and the monad assigns to each of them the corresponding set of computations.

If the base category depicts the maps on values, the induced Kleisli category

can be thought of as the category of computations. The above lemma now im-

plies that such a category of computations is an action category as soon as the

corresponding monad is commutative. And the commutativity in this setting

corresponds to the invariance of the order of execution.
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This correspondence between commutative computational monads and ac-

tion calculi is pursued in [27]: we show that there is a sense in which they are

actually equivalent. It remains to be seen whether anything can be gained by

extending Moggi's metalanguages, drawn from his monads, by features drawn

from action calculi: name abstraction, perhaps controls. And whether the ac-

tion calculus can be generalised from monoidal to premonoidal categories [29],

corresponding to general, not necessarily commutative Moggi monads.

4 Related work

The \cartesian closed connection" for action calculi, has been pursued for some

time, on type-theoretical [7, Concluding Remarks] or semantical [8, Introduc-

tion] grounds. The control calculi themselves belong to the latter line of research.

We have shown that the structure of the action calculus can be analysed into (i)

the closed part and (ii) its extensions by names | just like the �-calculus can be

decomposed into the cartesian closed structure and its polynomial extensions.

As mentioned before, the essential ideas for capturing (i) are due to Philippa

Gardner [7]: action categories are just the semantic counterpart of her closed

action calculi. However, the notion of extension was beyond the scope of her

work, and the actual reconstruction of the whole calculus from the closed part

has not been considered.

Claudio Hermida and John Power [8] have tried to eliminate names in a dif-

ferent manner: not by abstracting them away and studying the closed part, but

by presenting them categorically. Roughly, they represent the actions with a free

name x : >! k as the Kleisli arrows for the comonad k
 (�). All such Kleisli

categories are then arranged into an indexed category | a �brational control

structure. More recently [28], Power has proposed a simpli�cation, elementary

control structure, where these Kleisli categories are glued in one, rather than

indexed. Either way, we get a reorganised copy of the original control structure,

with the naming and the abstraction operators encoded in a reference-free fash-

ion. Such encodings are sometimes very important, like e.g. de Bruijn indices,

but they should not be confused with the actual elimination of the references,

like in combinatory logic or categorical semantics. Power and Hermida's con-

structions do not �t in the standard semantical framework: applying them them

to a control structure induced by a typed �-calculus does not yield a cartesian

closed category, but a categorical version of the whole calculus, with the Kleisli

abstraction instead of the usual, reference-driven one. The underlying cartesian

closed category is contained as a very small part: in the �brational case, a single

�bre. In general, the action category underlying a control structure is contained

as a single �bre of its �brational form. The point is that all of the structure is

also contained in this small part, in posse, and can be recovered from it, with

the abstraction derivable from its functional completeness.
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