
Unique Fixpoint Induction for Message{Passing

Process Calculi

�

M. Hennessy & H. Lin

y

Computer Science

School of Cognitive and Computing Sciences

University of Sussex

Abstract

We present a proof system for message-passing process calculi with recursion.

The key inference rule to deal with recursive processes is a version of Unique

Fixpoint Induction for process abstractions .

We prove the proof system is sound and also complete for a restricted form of

regular message-passing processes. We also show that the system is incomplete in

general and discuss possible extensions with inductive inference rules.

1 Introduction

The last decade has seen much research into veri�cation techniques for concurrent sys-

tems. However in order to realise the potential bene�ts of this research it is essential that

these techniques be applicable to in�nite state systems. There are many di�erent sources

for the in�nite nature of concurrent systems and in a series of papers, [HL95b, HL95a],

we have investigated one such source, by focusing on message-passing processes algebras.

Systems described in these languages are typically in�nite state because of the domain

of messages transmitted between processes are often in�nite.

Our general approach has been to abstract from concrete reasoning about the trans-

mission of actual data values, and its e�ect on the behaviour of processes, and to

develop symbolic methods for such reasoning. For example in [HL95b] we have de-

veloped symbolic transition systems for message-passing processes and generalised the

well-known bisimulation checking algorithms, [CPS89], to work at this symbolic level,

while in [HL95a] we have generalised the equational approach to veri�cation, [Mil89], by

developing a proof system for deducing that message-passing processes are semantically

equivalent. The present paper is a contribution to this latter line of research.

Let us �rst review this proof system. It uses judgements of the form

b� T = U

�

Supported by the EU KIT Project SYMSEM.

y

On leave from the Institute of Software, Chinese Academy of Sciences, Beijing.

1

where b is a boolean expression and T;U are message-passing process descriptions. This

is interpreted as: in all instantiations which satisfy the boolean expression b the processes

T and U are semantically equivalent. The proof rules are suitable generalisations of the

simple equation based proof systems, which allow the instantiation of a set of equations

and the substitution of equals for equals, together with some rules which depend on

establishing identities between message expressions. For example consider processes

P;Q of the form

c?x: if b then T else U ; c?x:R

respectively. Intuitively P is a process which accepts some message on the channel c

and applies the boolean test b. If this evaluates to true then T , with the variable x

instantiated, is executed and otherwise U is executed. On the other hand Q is a process

which simply inputs a message v and executes R with x instantiated to v.

In order to establish

true � P = Q;

an instance of substitution of equals for equals will reduce it to the proof obligation

true� (if b then T else U) = R:

A proof rule for case analysis will then reduce this to the two obligations

b� T = R and :b� U = R:

The proof then proceeds by trying to discharge both of these obligations. Presumably

the reasoning will be at least a little di�erent in both cases and in general will depend

on the messages involved; speci�cally on the consequences of the boolean expression b.

An example of a proof rule which depends on the message domain is

b j= e = e

0

; b� T = U

b� c!e:T = c!e

0

:U

Here c!e:T denotes a process which sends the value of the message expression e along the

channel c and then execute T . To establish that two such processes c!e:T and c!e

0

:U are

semantically equivalent under the assumption b it is su�cient to establish two subgoals.

The �rst, b j= e = e

0

, is an assertion about the message-passing domain which must be

established with some independent theorem prover, while the second, b � T = U , is a

subgoal which can be tackled within the main proof system.

In [HL95a] we design a proof system along these lines and show that by choosing

appropriate sets of equations complete proof systems can be obtained for a variety of

bisimulation based semantic equivalences, speci�cally early and late strong bisimulation

equivalences, and early and late weak bisimulation congruences. Of course these are

actually relative completeness theorems, relative to su�ciently powerful theorem provers

for establishing properties of data expressions. More importantly they only apply to �nite

message-passing processes, i.e. processes with no recursion or iteration constructs. The

aim of this paper is to extend these proof systems to recursively de�ned message-passing

processes and to investigate the extent to which they are complete.

A typical example of a recursively de�ned process is given by

P(= c?x:d!jxj:P:

2

This de�nes a process which repeatedly inputs a value, say an integer n , on the channel

c and outputs its absolute value jnj on the channel d. A natural proof rule to handle

such processes is Unique Fixpoint Induction, [Mil89]. In general if P is a process de�ned

recursively by a de�nition

P(= D

where P is guarded in D, then to prove that Q is semantically equivalent to P it is

su�cient to establish that Q is a �xed point of the equation P = D. In terms of the

proof system of [HL95a] this can be expressed as a proof rule such as

b�Q = D[Q=P]

b�Q = P

So for example to show that the process Q, de�ned by

Q(= c?x: if x < 0 then d!(�x):Q else d!x:Q ;

is semantically equivalent to P , de�ned above, it is su�cient, by this rule, to establish

true�Q = c?x:d!jxj:Q:

This can easily be proved using the proof system of [HL95a], if we are allowed a Recur-

sion Unfolding rule for recursively de�ned processes, whereby the term Q can be freely

rewritten to its de�nition c?x: if x < 0 then d!(�x):Q else d!x:Q ; the proof relies on two

facts about the domain of messages,

x < 0 j= jxj = �x and :(x < 0) j= jxj = x:

To have a reasonably expressive language it is natural to allow parameterised de�ni-

tion of processes such as

P hxi(= c!x:c?y:P (y):

However in the presence of such de�nitions the Unique Fixpoint Induction rule, as naively

expressed above, is unsound. As an example consider the de�nition

Qhxi(= c!jxj:c?y:Q(y):

The judgement

x � 0 � P (x) = Q(x)

is obviously untrue but is can be established using the Unique Fixpoint Rule above from

the judgement

x � 0 � P (x) = c!jxj:c?y:P (y):

This in turn can be established from the Recursion Unfolding rule together with the

standard rules of the proof system in [HL95a].

In this paper we develop a sound version of Unique Fixpoint Induction appropriate

to parameterised recursive de�nitions. The key point is to recognise that de�nitions such

as that for P hxi in fact de�ne abstractions which more formally could be written as

P(= �x c!x:c?y:P (y):

3

This means that our language for message-passing processes is extended in a functional

manner to allow abstractions over data domains, and the application of these abstractions

to data expressions. In this extended language Unique Fixpoint Induction is only applied

to abstractions and we show that restricted in this manner it is sound. Although this

might appear to limit its applicability we also show that we can derive a version of Unique

Fixpoint Induction for arbitrary terms which is also sound; this derived version contains

restrictions on the free variables occurring in the assumptions of judgements. We also give

a partial completeness theorem for the proof system. In [Mil89] the corresponding proof

system for pure processes is complete for regular processes, where process de�nitions are

only allowed to use action pre�xing and choice. Here we show that our proof system is

also complete for a suitable extension of the notion of guarded regular to message-passing

processes.

We end this section with a brief outline of the rest of the paper. The next section

contains a description of the process language we consider together with a brief review

of the late operational semantics. This is followed by a section devoted to an exposition

of the proof system which also contains the statement of the main completeness proof.

This is the topic of the next section which is then followed by a section showing how to

adapt the results in the previous section for late bisimulation to the early one. The �nal

section contains some concluding remarks and a comparison with related work.

2 The Language

We presuppose a set of base types for message values, such as int, bool etc., ranged over

by �. Then the set of types of process abstractions or terms is given by

� ::= process j �! �:

For each base type �, we assume a set of channel names Chan

�

= fc; :::g, a set of

message expressions Exp

�

= fe; :::g containing a set of values of that type, Val

�

, and a

set of data variables Var

�

= fx; y; z; :::g. We also assume a set of process identi�ers

ID

�

= fX ; Y ; Z ; :::g, for each abstraction type �.

The formation rules for terms in the language is given in Figure 1. The main type

for terms is process and the formation rules for these terms should be straightforward

for readers familiar with process algebras such as CCS ; in addition to the usual process

operators we have a simple form of boolean guards, b! T , rather than the more usual

if : : : then : : : else : : : construct. We also have elementary formation rules concerned

with abstraction with respect to base types and application. Throughout the remainder

of the paper we assume that all terms are well-typed according to these rules but to aid

readability we omit all references to types unless their inclusion is strictly necessary. We

will also write c?x:T for c?�xT .

In this language we have both data variables and abstraction identi�ers and we

assume an appropriate notion of substitution for both. A data substitution is a family of

partial functions from Var

�

to Exp

�

, indexed by base types. We use �; : : : to denote data

substitutions, and write [e=x] for the data substitution that sends x to e. The application

of data substitutions is slightly complicated because an abstraction such as �x:T binds

all occurrences of the data variable x in T . This induces the usual notions of bound and

free variables of terms; the set of free variables of a term T is denoted by fv(T). We

4

0 : process

X 2 ID

�

X 2 �

T; U : process

T jU : process

T; U : process

T + U : process

T : process; b : bool

b! T : process

T : process; c 2 Chan

Tnc : process

F : �! process; c 2 Chan

�

c?F : process

T : process; e 2 Exp

�

; c 2 Chan

�

c!eT : process

F : �! �; e 2 Exp

�

Fe : �

T : �; x 2 Var

�

�xT : �! �

Figure 1: The Formation Rules

also have the standard de�nition of �-equivalence between terms, denoted �

�

. So when

applying a data substitution � to a term T to obtain the term T� bound variables are

renamed when necessary to avoid capture and � is applied to all occurrences of data

expressions. This presupposes a reasonable notion of substitution on data expressions,

the application of � to a data expression e to obtain the data expression e�.

The set of abstraction identi�ers appearing in T is denoted Id(T). Since there are no

binding operators for abstraction identi�ers abstraction substitutions are more straight-

forward. An abstraction substitution is a type respecting partial function from process

identi�ers to data-closed terms, i.e. terms with no free occurrences of data variables. For

example [F=X], or [F

i

=X

i

j1 � i � m], is the abstraction substitution that sends X

i

to

F

i

for 1 � i � m. We will often simply write [F

i

=X

i

ji] when the range of i is clear

from the context. The application of an abstraction substitution to a term T syntacti-

cally replaces all occurrences of abstraction identi�ers in T by the corresponding terms.

The interested reader is referred to [Sto88] for precise de�nitions of the application of

these substitutions. Here we simply state the following facts, where we assume that X

and Y are lists of di�erent abstraction identi�ers, and F and G data-closed terms with

appropriate types

1. T [F=X][G=Y] = T [F [G=Y]; G=X; Y]. In particular, if Y \ Id(F) = ;, then

T [F=X][G=Y] �

�

T [F;G=X; Y].

2. T [e=x][F=X] �

�

T [F=X][e=x].

An data evaluation � is a particular kind of data substitution which maps every

variable to a value of the appropriate type. We use �(e), or e�, to denote the result of

applying the data evaluation to the data expression e. As in [HL95a] we assume some

natural but simplifying properties of the language of data expressions. We assume �(e),

always yields a value, i.e. the evaluation of data expressions always terminates, and so

5

our approach is to work modulo these evaluations. We also assume, for example, that

each expression e has associated with it a set of variables fv(e) such that if � and �

0

agree

on fv(e) then �(e) = �

0

(e). If an expression e has no variables, i.e. it is closed, then �(e)

is independent of � and we use [[e]] to denote its value. For expressions of type bool we

use the suggestive notation b j= b

0

to indicate that for every evaluation if �(b) is true

then so is �(b

0

). As a consequence, if b j= b

0

then b� j= b

0

� for any data substitution �.

We will also write � j= b to mean �(b) is true.

We now turn our attention to the operational semantics of the language. For readers

familiar with [Mil89, HL95a] this is perfectly straightforward. A term T of type process

may include abstraction identi�ers from ID

�

and the behaviour of T will depend on

declarations which associate abstraction terms with these identi�ers. Let Id(T) denote

the set of abstraction identi�er occurring in T . If X : �, where � has the form �

1

!

�

2

: : : �

n

! process, then a de�nition for X has the form

X (F

where F is a data{closed term of the form �x

1

�x

2

: : : �x

n

T . We will often informally

render such a de�nition as

Xhxi (T

where x represents the vector of variables x

1

; x

2

; : : : x

n

.

A set of de�nitions

D = fX

i

(F

i

j 1 � i � n g

is called a declaration if it satis�es the following conditions:

� Id(F

i

) � fX

1

; :::; X

n

g;

� X

i

= X

j

implies i = j.

When such a D is a declaration we say each X

i

is declared in D. X

i

is guarded in D if

every occurrence of X

i

in any F

j

is within some subexpression �:T of F

j

. D is guarded

if every X

i

is guarded in D. We will con�ne our attention to guarded declarations.

Let T

D

be the set of terms using only the identi�ers declared in D. The operational

semantics given below will assume a given declaration D and will consequently describe

the operational behaviour of terms in T

D

relative to D. As is well-known, in the setting

of message{passing process algebras there are two reasonable notions of bisimulation

equivalence, namely late and early, [MPW92, HL95b]. The main body of this paper will

concentrate on late bisimulation but we will outline brie
y in Section 6 how the theory

developed for the late case can be adapted to early bisimulation.

The (late) operational semantics of our language is given in Figure 2, where symmetric

rules for + and j have been omitted. It uses three kinds of next state relations:

�

�

�!

l

a relation over data-closed terms of type process

� for each value v and channel c of the same type a relation

c!v

�!

l

also over data-closed

terms of type process

� for each channel c of type � a relation

c?

�!

l

from data-closed terms of type process

to terms of type �! process.

6

�:P

�

�!

l

P

c!e:P

c!v

�!

l

P where [[e]] = v

c?:F

c?

�!

l

F

P

a

�!

l

P

0

implies P +Q

a

�!

l

P

0

P

a

�!

l

P

0

implies P j Q

a

�!

l

P

0

j Q

P

c?

�!

l

F; Q

c!v

�!

l

Q

0

implies P j Q

�

�!

l

Fv j Q

0

P

a

�!

l

P

0

; [[b]] = true implies b! P

a

�!

l

P

0

P

a

�!

l

P

0

; c 62 Chan(a) implies Pnc

a

�!

l

P

0

nc

Fe

a

�!

l

P implies X(e)

a

�!

l

P

X (F is a de�nition

T [e=X]

a

�!

l

P implies (�xT)e

a

�!

l

P

Figure 2: Late Operational Semantics

Lemma 2.1 Suppose X is guarded in P and P [F=X]

a

�!

l

P

0

. Then P

0

is of the form

Q[F=X] for some Q and P [G=X]

a

�!

l

Q[G=X] for any G.

Proof: By induction on the structure of P . 2

Using these relations we can now de�ne a notion of (strong) bisimulation equivalence.

De�nition 2.2 A symmetric relation R between data-closed terms of type process is a

strong late bisimulation if it satis�es: (P;Q) 2 R implies that

If P

c?

�!

l

F then Q

c?

�!

l

G and for all v 2 V al (Fv;Gv) 2 R

If P

a

�!

l

P

0

; a 2 f�; c!vg; then Q

a

�!

l

Q

0

and (P

0

; Q

0

) 2 R

We use �

l

to denote the largest late strong bisimulation. This de�nition only applies

to data-closed terms of type process. However it is extended to data-closed terms of

arbitrary type by structural induction on types: for F;G of type � ! � we let F �

l

G

if Fv �

l

Gv for all v 2 Val

�

. Finally it is extended to arbitrary open terms by letting

T �

l

U if T� �

l

U� for every data-instantiation �. 2

The object of the paper is to develop a proof system to deduce statements of the

form T �

l

U .

3 The Proof System

The proof system we design is an extension of that used in [HL95a] for �nite processes.

Judgements are of the form

`

D

b� T = U

where D is a declaration, b is a boolean expression and T;U are terms of the same type.

Its intended meaning is: T� �

l

U� for every � such that � j= b. We usually abbreviate

7

EQUIV

`

D

true� T = T

`

D

b� T = U

`

D

b� U = T

`

D

b� T = U `

D

b� U = V

`

D

b� T = V

EQN

`

D

T� = U�

T = U is an axiom

CONGR

`

D

b� T

i

= U

i

i = 1; 2

`

D

b� T

1

+ T

2

= U

1

+ U

2

�-CONV

`

D

T = U

T �

�

U

INPUT

`

D

b� T = U

`

D

b� c?x:T = c?x:U

x 62 fv(b)

OUTPUT

b j= e = e

0

; `

D

b� T = U

`

D

b� c!e:T = c!e

0

:U

TAU

`

D

b� T = U

`

D

b� �:T = �:U

GUARD

`

D

b ^ b

0

� T = U `

D

b ^ :b

0

� 0 = U

`

D

b� b

0

! T = U

CUT

`

D

b j= b

1

_ b

2

; b

1

� T = U b

2

� T = U

`

D

b� T = U

ABSURD

`

D

false � T = U

Figure 3: The Old Inference Rules

`

D

true � T = U to `

D

T = U . Strictly speaking we should annotate the terms with

their types but again we omit this information for the sake of readability. The inference

rules are divided into two groups. The �rst, for manipulating process terms, are given in

Figure 3 and are taken directly from [HL95a]. They are a minimal formal basis for the

reasoning outlined in the Introduction. In [HL95a] we have seen that these rules can be

extended by a number of natural derived rules which ease the use of the proof system.

A typical example is the following rule of consequence:

CONSEQ

b j= b

1

; `

D

b

1

� T = U

`

D

b� T = U

which can be derived from the CUT rule.

The rules given in Figure 4 are speci�cally designed to handle the new constructs

in the language, recursive declarations, abstraction and application. The �rst two are

concerned with the introduction of new de�nitions, a step which can always be carried

8

dec-I

`

D

b� T = U

`

D[E

b� T = U

dec-E

`

D[E

b� T = U

`

D

b� T = U

T; U 2 T

D

UNFOLD

`

D

�X = F

X (F 2 D

UFI

`

D

G

i

= F

i

[G=X]; 1 � i � n

`

D[E

G

1

= X

1

E = fX

i

(F

i

j 1 � i � n g

is a guarded declaration

�-I

`

D

b� Tx = Ux

`

D

b� T = U

x 62 fv(b; T; U)

�-E

b j= e = e

0

; `

D

b� T = U

`

D

Te = Ue

0

�

`

D

�(�xT)e = T [e=x]

Figure 4: The New Inference Rules

out, and their elimination, which is allowed provided the de�nitions being eliminated do

not concern abstraction identi�ers which occur in the conclusion. This is followed by

the UNFOLD rule, also discussed in the Introduction, and a version of Unique Fixpoint

Induction. Finally we have very standard rules for the introduction, application and

elimination of �-abstractions and �-reduction.

As with the rules for process manipulation in Figure 3 these rules form a basis for

a proof system for manipulating abstractions and recursive de�nitions, and on top of

which more interesting rules can be derived. Two such examples are:

� � `

D

�x(Tx) = T

� �-cong

T = U

�xT = �xU

whose derivation we leave to the reader.

It is interesting to re-examine, in the light of these inference rules, the unsound

reasoning in the Introduction which leads to the false conclusion

`

D

x � 0 � P (x) = Q(x)

where P; Q are de�ned by

P hxi(= c!x:c?y:P (y) and Qhxi(= c!jxjc?y:Q(y)

9

respectively. Because of the syntactic form of Unique Fixpoint Induction (UFI) in our

proof system it can not be applied to obtain a conclusion of the form

`

D

x � 0 � P (x) = Q(x):

As an approximation we could try to derive

`

D

x � 0 � P = Q;

to conclude this from an application of UFI we must establish the judgement

`

D

x � 0 � P = �x c!jxj:c?y:P (y):

This however is not possible. The most likely proof strategy is to apply an instance of

�-I to reduce it to

`

D

x � 0 � Pz = (�x c!jxj:c?y:P (y))z:

Note that here we can not use x in place of z because of the side condition in �-I. By

�-reduction the above is the same as

`

D

x � 0 � Pz = c!jzj:c?y:P (y):

Here the only way forward is to unfold the occurrence of P on the left handside and use

�-reduction to obtain the proof obligation

`

D

x � 0� c!z:c?y:P (y) = c!jzj:c?y:P (y)

which of course can not be established; the assumption x � 0 can not be used (and

correctly so) to establish the equality of the output expressions.

As an example of a proof within the system consider the declaration D:

Ahxi (c!x:c?z:A(x+ z)

Bhyi (c!(y + 1):c?z:B(y+ z)

We show how to derive

`

D

x = (y + 1) �A(x) = B(y);

Using the rules �-I and CONSEQ this can be reduced to

`

D

A(y + 1) = B(y):

By �-E and � this can be further reduced to

`

D

�yA(y + 1) = B:

Now UFI can be applied to obtain this conclusion if we can establish

`

D

0

�yA(y + 1) = �yc!(y + 1):c?z:(�yA(y + 1))(y + z);

i.e.

`

D

0

�yA(y + 1) = �y c!(y + 1):c?z:A(y+ z + 1):

10

where D

0

contains the de�nition of A. We can now apply �-I to reduce this to

`

D

0

(�yA(y + 1))w = (�yc!(y + 1):c?z:A(y+ z + 1))w;

which by �-reduction reduces to

`

D

0

A(w + 1) = c!(w + 1):c?z:A(w+ z + 1);

which follows in a straightforward fashion by an instance of UNFOLD and �-reduction.

This is a somewhat laborious derivation of a relatively simple result but many of the

proof steps are trivial applications of �-reduction and �-introduction and elimination,

which can be handled in a semi-automatic way in any implementation of the system. The

proof is however complicated by the fact that UFI can only be applied to abstractions,

in the sense that one of the terms in the conclusion must be an abstraction identi�er.

But this restriction can be relaxed a little by using the following derivable proof rule:

If E = fX

i

(�x

i

(b

i

! T

i

) j 1 � i � n g is a guarded declaration then

UFI-O

`

D

b

i

� U

i

= T

i

[F=X]; 1 � i � n

`

D[E

b

1

� U

1

= X

1

(x

1

)

where F

i

� �x

i

(b

i

! U

i

); 1 � i � n.

Here the conclusion can involve an abstraction identi�er,X

1

applied to a list of variables,

x

1

, which makes the rule much easier to use. In particular when all b

i

are true then the

rule reduces to

UFI-O-t

`

D

U

i

= T

i

[F=X]; 1 � i � n

`

D[E

U

1

= X

1

(x

1

)

where F

i

� �x

i

U

i

; 1 � i � n.

Now revisiting the proof above,

A(y + 1) = B(y)

can be derived directly by one application of UFI-O-t from the judgement

`

D

A(y + 1) = (c!(y + 1):c?z:B(y + z))[�yA(y+ 1)=B];

i.e.

`

D

A(y + 1) = (c!(y + 1):c?z:A(y+ 1 + z);

which follows immediately from UNFOLD and �-reduction.

Proposition 3.1 The proof rule UFI-O is derivable.

Proof: In this proof we assume some familiarity with the capabilities of the basic proof

system, that based on the process manipulation rules. All of the properties we require

are summarised in Proposition 3.2, stated below.

Suppose

`

D

b

i

� U

i

= T

i

[F=X]; 1 � i � n:

11

S1 X + 0 = X

S2 X +X = X

S3 X + Y = Y +X

S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Axioms A

Using elementary reasoning, as detailed in the just mentioned Proposition, this means

we can infer

`

D

b

i

! U

i

= b

i

! T

i

[F=X]; 1 � i � n:

By �-cong we have

`

D

�x

i

(b

i

! U

i

) = �x

i

(b

i

! T

i

[F=X]); 1 � i � n:

Since `

D

�x

i

(b

i

! T

i

[F=X]) = �x

i

(b

i

! T

i

)[F=X], applying UFI we obtain

`

D[E

�x

1

(b

1

! U

1

) = X

1

:

Using �-E, Proposition 3.2 and �-cong, we can derive X

1

= �x

1

(b

1

! X

1

(x

1

)). Hence

`

D[E

�x

1

(b

1

! U

1

) = �x

1

(b

1

! X

1

(x

1

))

Applying �-E we obtain

`

D[E

b

1

! U

1

= b

1

! X

1

(x

1

);

which, again using Proposition 3.2, gives

`

D[E

b

1

� U

1

= X

1

(x

1

):

as required. 2

This new form of UFI does make the system easier to use but there is still an apparent

restriction to the application of UFI-O because conclusions must involve terms of the

form X(x). As an example of where this might cause problems consider the following

de�nitions:

Ahxi (c!(3x):A(x+ 2)

Bhxi (c!(2x):B(x+ 3):

The two terms A(2x) and B(3x) are semantically equivalent but none of our versions of

UFI can be used to directly conclude

` A(2x) = B(3x):

However the way forward is to introduce a new de�nition

Chxi (c!(6x):C(x+ 1)

12

and to use two applications of UFI-O-t to establish

` A(2x) = C(x) and ` B(3x) = C(x):

This is an instance of quite a general strategy which indicates the power of the derived

rule UFI-O.

In general the usefulness of our proof system depends on the equations which we

apply in the inference rule EQN. At the very least the equations in Figure 5 are necessary;

these characterise strong bisimulation equivalence for CCS. Let `

L

D

b�T = U mean that

`

D

b�T = U can be derived in the proof system using the equations A (the superscript

L stands for \Late"). The following are some simple yet useful facts about `

L

D

whose

proofs can be found in [HL95a]:

Proposition 3.2 1. `

L

D

b! b

0

! T = b ^ b

0

! T

2. `

L

D

T = T + b

0

! T

3. b j= b

0

implies `

L

D

b� T = b

0

! T

4. `

L

D

b ^ b

0

� T = U implies `

L

D

b� b

0

! T = b

0

! U

5. `

L

D

b! (T + U) = b! T + b! U

6. `

L

D

b! U + b

0

! U = b _ b

0

! U

7. If fv(b) \ bv(�) = ; then `

L

D

b! �:T = b! �:(b! T)

We end this section with another example where in addition the � -laws of CCS and

the Expansion Theorem, [Mil89], come into play. We take the version of the expansion

theorem from [HL95a] and list it in Figure 6. We will only need the �rst � -law in the

example to follow:

T1 �:�:T = �:T

We will also need two sound equations IF-PAR and IF-RES, to distribute the parallel

and restriction operators over if then else :

IF-PAR (if b then T else U) j R = if b then (T j R) else (U j R)

IF-RES (if b then T else U)ns = if b then Tns else Uns

where if b then T else U abbreviates b! T + :b! U .

Consider a personal bank account Account which holds the current amount m and

can accept two requests credit and withdraw; when the amount of money to be withdrawn

exceeds the current amount the withdraw request will be rejected:

Accounthmi (credit?n:Account(m+ n) +

withdraw?n:if m � n then payout!n:Account(m � n)

else reject !:Account(m)

(when the content of an output action is immaterial it is omitted, as in the case of reject !.

Similarly the variable in an input action will also be omitted when it is not used later.)

13

Let T; U denote �

i

�

i

:T

i

; �

j

�

j

:U

j

; with fv(T) \ bv(U) = fv(U) \ bv(T) = ;

where fv(T) and bv(T) are free data variables and bound data variables in

the term T , respectively. Then

T j U = sync move(T;U) + async move(T;U)

where

sync move(T;U) = �f �:(T

i

fe=xg j U

j

) j �

i

� c?x; �

j

� c!e g +

�f �:(T

i

j U

j

fe=xg) j �

i

� c!e; �

j

� c?x g

async move(T;U) = �

i

�

i

:(T

i

j U) + �

j

�

j

:(T j U

j

)

Figure 6: The Expansion Theorem

Such an account can be implemented by two processes running in parallel: Count

interfaces to the account holder and passes all calculating tasks to the process Calc. The

two processes are synchronised using an internal channel s:

Counthmi (credit?n:add!(m;n):result?r:Count(r) +

withdraw?n:sub!(m;n):(result?r:payout!n:s!:Count(r) +

under
ow?:reject!:s!:Count(m))

Calc (add?(m;n):result!(m+ n):Calc +

sub?(m;n):if m � n then result !(m� n):s?:Calc

else under
ow !:s?:Calc

We show that such an implementation is correct by deriving, in the proof system,

` Account(m) = (Count(m) j Calc)nR

where R denotes the set fadd ; sub; under
ow ; result ; sg. By UFI-O this can be reduced

to (we use CC(m) to denote Count(m) j Calc)

` CC(m)nR = credit?n:CC(m+ n)nR +

withdraw?n: if m � n then payout!n:CC (m � n)nR

else reject !:CC (m)nR

Unfolding the recursive de�nitions in the left handside, then applying the expansion

theorem and T1 three times, we get

` CC(m)nR =

credit?n:CC(m+ n)nR +

withdraw?n:((if m � n then result!(m� n):s?:Calc else under
ow !:s?:Calc) j

(result?r:payout!n:s!:Count(r) + underflow?:reject!:s!:Count(m)))nR

So we are done if we can show

` withdraw?n:((if m � n then result!(m� n):s?:Calc else under
ow !:s?:Calc) j

(result?r:payout!n:s!:Count(r) + under
ow?:reject!:s!:Count(m)))nR

= withdraw?n: if m � n then payout!n:CC(m� n)nR else reject !:CC(m)nR :

14

This can be achieved by using IF-PAR and IF-RES, as well as Proposition 3.2, to push

the parallel and restriction operators over if then else in the left hand-side of the

equation, followed by three applications of the expansion theorem and T1.

4 Soundness and Completeness

The soundness of the system is relatively straightforward. The only di�culty is the

Unique Fixpoint Induction rule whose soundness depends on the following Proposition,

a generalisation of Proposition 14, page 104 of [Mil89].

Proposition 4.1 Suppose H is a sequence of terms of arbitrary type which only use

abstraction identi�ers from X , and all occurrences of these identi�ers are guarded. Let

F and G be sequences of data-closed terms such that F �

l

H [F=X] and G �

l

H[G=X].

Then F �

l

G.

Proof: Let

R = f (C[F=X]�; C[G=X]�) j Id(C) � X;C[F=X]; C[G=X] : processg:

First suppose R is a bisimulation. We show that it follows from this that F

j

�

l

G

j

for

each j. Let the type of X

j

be �

1

! : : : ! �

k

! process. We need to demonstrate that

for all v

i

2 Val

�

i

, F

j

v

1

: : : v

k

�

l

G

j

v

1

: : : v

k

. Let C[] be the context X

j

z

1

: : : z

k

, where z

i

are fresh variables, and let � map z

i

to v

i

. Then C[F=X]� is F

j

v

1

: : : v

k

and C[G=X]� is

G

j

v

1

: : : v

k

.

So it remains to show that R is a (late) bisimulation. For this we shall show R is a

bisimulation up to �

l

([Mil89]). By symmetry it is enough to prove

C[F=X]�

a

�!

l

U implies C[G=X]�

a

�!

l

V with U �

l

R �

l

V

For this we apply induction on why C[F=X]�

a

�!

l

U . Consider the possible cases for

C[].

� C � X

i

(e). Then C[F=X]� � F

i

e�

a

�!

l

U . Since F

i

�

l

H

i

[F=X], we have

H

i

e�[F=X]

a

�!

l

U

0

�

l

U . SinceX

i

is guarded inH

i

, by Lemma 2.1 U

0

is of the form

C

0

[F=X]� and H

i

e�[G=X]

a

�!

l

C

0

[G=X]�. But C[G=X]� � G

i

e� �

l

H

i

e�[G=X],

so C[G=X]�

a

�!

l

V �

l

C

0

[G=X]�. Hence U �

l

R �

l

V .

� C

1

j C

2

. There are three cases.

{ C[F=X]� � C

1

[F=X]� j C

2

[F=X]�

a

�!

l

U is because C

1

[F=X]�

a

�!

l

U

0

with

U � U

0

j C

2

[F=X]�. By induction C

1

[G=X]�

a

�!

l

V

0

with U

0

�

l

R �

l

V

0

.

Hence C[G=X]�

a

�!

l

V � V

0

j C

2

[G=X]�, and U � U

0

j C

2

[F=X]� �

l

R �

l

V

0

j C

2

[G=X]� � V .

{ C[F=X]�

a

�!

l

U is because C

2

[F=X]�

a

�!

l

U

0

with U � C

1

[F=X]� j U

0

. This

case is symmetric to the �rst case.

{ C[F=X]�

�

�!

l

U is because C

1

[F=X]�

c?

�!

l

F

0

, C

2

[F=X]�

c!v

�!

l

U

0

and U �

F

0

v j U

0

. By induction C

1

[G=X]�

c?

�!

l

G

0

, C

2

[G=X]�

c!v

�!

l

V

0

with F

0

v �

l

R �

l

G

0

v; U

0

�

l

R �

l

V

0

. Then C[G=X]�

�

�!

l

G

0

v j V

0

and F

0

v j U

0

�

l

R �

l

G

0

v j V

0

.

15

The other cases are similar. 2

Proposition 4.2 (Soundness of `

L

D

) `

L

D

b� T = U implies T� �

e

U� for any � j= b.

Proof: It is su�cient to show that each axiom in A is sound and each of the proof

rules preserves soundness. We concentrate on UFI.

Suppose G �

l

F [G=X]. Directly from the operational semantics we can check that

X �

l

F [X=X] and so, since the declaration is guarded, we can immediately apply the

previous Proposition to conclude G �

l

X. 2

It is unrealistic to expect that the system is complete. Even pure CCS, or our

language with a trivial one point message-domain, is Turing complete in the presence of

the parallel and restriction operators. However in [Mil84, Mil89, BK88] complete proof

systems are obtained for regular processes, where action pre�xing and choice, +, are the

only operators allowed in declarations. This leads to the following de�nition.

De�nition 4.3 A declaration

D = fX

i

(F

i

j 1 � i � n g

is called regular if the only operators allowed in F

i

are

� action pre�xing, c?x: , c!e: and �: ;

� choice, + ;

� guards, b! .

It is called restricted regular if in addition every occurrence of an abstraction identi�erX

is of the form X(v) : process, such that each v

i

is either a variable or a data constant. A

term is called restricted regular if it can be used as part of a restricted regular de�nition.

2

Theorem 4.4 Let D be a restricted regular declaration and T;U are restricted regular

terms in T

D

. If T� �

l

U� for every � such that � j= b, then `

L

D

b� T = U . 2

This completeness theorem is not true in general for arbitrary unguarded regular decla-

rations; a counter-example can be found in the conclusion. However the question is still

open for guarded regular declarations.

The remainder of the section is devoted to proving this result which follows closely

the corresponding result in [Mil84], but technically working at a symbolic level.

The �rst step in the completeness proof is to outline a series of transformations on

restricted regular processes which make them easier to handle. We may assume that

de�nitions, and therefore associated terms, are formed by applying pre�xing, choice or

boolean guard to terms of the form X(v) or 0. Moreover all use of constants can be

16

eliminated by introducing appropriate new abstraction identi�ers with fewer parameters.

For example the declaration

Ahxi (c?y:x > y ! c!y:A(0) + y > x! c!y:A(y)

can be replaced by

Ahxi (c?y:x > y ! c!y:B + y > x! c!y:A(y)

B (c?y:0 > y ! c!y:B + y > 0! c!y:A(y)

without a�ecting the provability relation between the original terms; these are called

equivalent de�nitions, which is clari�ed below. The same technique may be used to

eliminate multiple occurrences of the same data variable in x of any X(x). So we may

assume that in every declaration all occurrences of abstraction identi�ers are of the form

X(x), where x is a vector of distinct data variables. However in a given declaration the

abstraction identi�ers may be of di�erent types. We now outline two transformations

which may be applied to declarations to transform them into uniform declarations where

all declarations have exactly the same type.

The �rst consists of a transposition of types. For example suppose a declaration D

has a de�nition

A (�x�yT

Then this can be replaced by a de�nition of the form

A

0

(�y�x(T�)

where � substitutes all occurrences of a term of the form A(z

1

; z

2

) with A

0

(z

2

; z

1

). Let

D

0

be the declaration obtained from D by carrying out this replacement and in addition

also applying � to every other de�nition in D. Now one can show that

`

L

D[D

0

�A = A

0

and therefore in order to establish a judgement of the form

`

L

D

b� T = U

it is su�cient to establish

`

L

D

0

b� T� = U�:

In this case we say that D

0

is equivalent to D.

The second transformation consists of adding on an extra (dummy) parameter to the

de�nition of an abstraction parameter. This consists in replacing a de�nition

A (F

in a declaration D by a de�nition of the form

A

0

(�x(F�)

with � replacing all occurrences of A by A

0

(z) where both x; z : � are new variables.

Once more if � is systematically applied to the other de�nitions in D then we obtain an

equivalent declaration.

17

�:T

true;�

�! T � 2 f �; c!e j c 2 Chan; e 2 Exp g

c?x:T

true;c?y

�! T [y=x] y 62 fv(c?x:T)

T

b

0

;�

�! T

0

implies b! T

b^b

0

;�

�! T

0

T

b;�

�! T

0

implies T + U

b;�

�! T

0

U + T

b;�

�! T

0

U [x=z]

b;�

�! T

0

implies X(x)

b;�

�! T

0

X (�zU is a de�nition

Figure 7: Symbolic Operational Semantics

De�nition 4.5 A restricted regular declaration fX

i

hx

i

i (T

i

j 1 � i � n g is called

uniform if all the x

i

are of the same length and type. 2

Proposition 4.6 Every restricted regular declaration can be transformed into a uniform

declaration.

Proof: By systematic application of the above transformations. 2

So for the rest of this section we can assume that we are working with respect to

a uniform declaration, using a �xed sequence of variables z

1

; : : : z

n

. For terms with

respect to these kinds of de�nitions it is straightforward to develop a version of symbolic

semantics as de�ned in [HL95a, HL95b], to which we refer the reader for details. The

symbolic operational semantics is given in Figure 7 which uses abstract actions of the

form fc?x; c!e; �g. Based on these relations we de�ne symbolic bisimulations, which

requires some auxiliary notation. A �nite collection of boolean expressions B is called a

b-partition if

W

B = b. For two abstract actions �;�

0

and a boolean b we write � =

b

�

0

to mean: if � � c!e then �

0

� c!e

0

and b j= e = e

0

; otherwise � � �

0

. This notation

generalises to vectors in the obvious way.

Let S = fS

b

j b 2 BExp g be a family of relations over terms, indexed by boolean

expressions. Then LSB(S) is the family of symmetric relations de�ned by:

(T;U) 2 LSB(S)

b

if whenever T

b

1

;�

�! T

0

with bv(�) \ fv(b; T; U) = ;, there is

a b ^ b

1

-partition B with the property that fv(B) � fv(b; T; U) and for each

b

0

2 B there exists a U

b

2

;�

0

�! U

0

such that b

0

j= b

2

, � =

b

0

�

0

and (T

0

; U

0

) 2 S

b

0

.

De�nition 4.7 (Symbolic Bisimulations)

S is a (late) strong symbolic bisimulation if S � LSB(S), where � is point-wise inclusion.

2

Let �

L

= f�

b

L

g be the largest (late) strong symbolic bisimulation.

Theorem 4.8 (Soundness and completeness of �

L

) T �

b

L

U i� T� �

l

U� for every

evaluation � such that � j= b.

18

Proof: Following the lines in the proofs of Theorem 4.5 in [HL95b] and Theorem

3.6 in [HL95a]. 2

It can be seen from the above theorem that the free data variables appearing in

T �

b

L

U is interpreted universally. This fact is stated in the following proposition which

can be easily proved using the theorem.

Proposition 4.9 T �

b

L

U implies T� �

b�

L

U� for any data substitution �.

If T �

b

L

U then the de�nition of symbolic bisimulation requires a boolean partition

for each symbolic transition from T or U . As there are only �nite many such transitions

(modulo �-equivalence), it is possible to �nd a \uniform" partition which works for all

symbolic transitions from T or U . Here we show a slightly weaker result: There exists

a \uniform" partition from all transitions from T or U which have the same type, as

this is su�cient for our purpose. Symbolic actions �; � are of the same type, if either

� � � � � , or � � � � c?x for some x, or � has the form c!e and � has the form c!e

0

.

Lemma 4.10 Suppose T �

P

i2I

�

i

:T

i

; U �

P

j2J

�

j

:U

j

, where all �

i

and �

j

are of the

same type and bv(�

i

)\bv(�

j

)\ fv(b; T; U) = ;. Then T �

b

L

U i� there exists a b-partition

B with fv(B) � fv(b; T; U) such that for each b

0

2 B the following hold

� For each i 2 I there is a j 2 J s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

� For each j 2 J there is an i 2 I s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

Proof: Since T �

b

L

U , for each i 2 I there exists a b-partition B

i

with fv(B

i

) � fv(T; U)

such that for each b

i

2 B

i

, 9j �

i

=

b

i

�

j

and T

i

�

b

i

L

U

j

; for each j 2 J there exists a b-

partition B

0

j

with fv(B

0

j

) � fv(b; T; U) such that for each b

0

j

2 B

0

j

, 9i �

i

=

b

i

�

j

and T

i

�

b

i

L

U

j

.

Let D

I

denote the set of booleans f^

i2I

b

i

j b

i

2 B

i

g, D

J

the corresponding set

f^

j2J

b

0

j

j b

0

j

2 B

j

g and let B be the set f b

1

^ b

2

j b

1

2 D

I

; b

2

2 D

J

g. Then

W

B =

b; fv(B) � fv(b; T; U) and each b

0

2 B has the form (^

i

b

i

)^ (^

j

b

0

j

) with b

i

2 B

i

; b

0

j

2 B

0

j

.

For each i 2 I b

0

j= b

i

for some b

i

2 B

i

, so there is a j 2 B

0

j

s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

For each j 2 J b

0

j= b

0

j

for some b

0

j

2 B

0

j

, so there is an i 2 B

i

s.t. �

i

=

b

0

�

j

and T

i

�

b

0

L

U

j

.

2

Remark 4.11 The booleans in partition B in the above lemma can be made disjoint

as follows: Suppose B = f b

i

j 1 � i � n g. Set B

0

= f b

0

i

j 1 � i � n g with b

0

i

=

b

i

^

V

1�j<i

:b

j

. It is easy to check that

W

B

0

=

W

B, b

0

i

^ b

0

j

= false for any i 6= j, and B

0

enjoys the same property of B mentioned in the lemma.

From Theorem 4.8 we now know that to prove the completeness of `

L

it is su�cient

to show

T �

b

L

U implies `

L

D

b� T = U

where T;U are de�ned with respect to the uniform declaration D. There are two major

steps in the proof of this statement. The �rst reduces uniform declarations further to

special standard forms and the second shows that if T �

b

L

U then there is a standard

declaration which both T and U provably satisfy, with respect to b.

19

De�nition 4.12 A uniform declaration D = fX

i

hx

i

i (T

i

g

i2I

is standard if each T

i

has

the form

X

k2K

i

b

ik

!

X

p2P

ik

�

ikp

:X

f(i;k;p)

(x

ikp

)

where

W

k

b

ik

= true for each i and b

ik

^ b

ik

0

= false for k 6= k

0

. 2

Proposition 4.13 Let D be a guarded declaration. For any T 2 T

D

with fv(T) � w

there is a standard declaration E = fX

i

(F

i

g

i2I

such that `

L

D[E

T = X

1

(w).

Proof: We �rst show that any guarded declaration D = fY

i

(G

i

g

i2I

can be trans-

formed into a pre-standard declaration E = fZ

j

(H

j

g

j2J

with `

L

D[E

Y

1

= Z

1

, where

each H

j

is of the form

�z

j

X

l2L

j

b

jl

! �

jl

:Z

f(j;l)

(z

jl

)

We illustrate the necessary rearrangements by use of an example. Let D be the declara-

tion

Y hyi (c?x:(x � y ! (d!x:Y (x) + x � 0! d!(x� 1):0)) +

c!y:Y (y)

As the �rst step, using Proposition 3.2 we can derive

`

L

D

Y hyi = c?x:(x � y ! d!x:Y (x) + x � y ^ x � 0! d!(x� 1):0) +

c!y:Y (y)

Now let D

0

be

Z

1

hyi (c?x:Z

2

(y; x) + c!y:Z

1

(y)

Z

2

hy; xi (x � y ! d!x:Z

1

(x) + x � y ^ x � 0! d!(x� 1):0

Then D

0

is pre-standard and `

L

D[D

0

Y = Z

1

by UFI. D

0

can be further transformed into

a uniform declaration D

00

:

Z

1

hy; xi (c?x:Z

2

(y; x) + c!y:Z

1

(y; x)

Z

2

hy; xi (x � y ! d!x:Z

1

(x; y) + x � y ^ x � 0 ! d!(x� 1):0

Next we show that a pre-standard declaration E can be transformed into a standard

one. Consider a pre-standard de�nition in E:

Zhxi (

X

i

b

i

! �

i

:Z

f(i)

(x

i

):

Let b

K

= (

V

k2K

b

k

)^(

V

k

0

2I�K

:b

k

0

) for eachK � I. Then

W

K�I

b

K

= true and b

K

^b

K

0

=

false whenever K 6= K

0

. Hence

Xhxi (

X

K�I

b

K

!

X

k2K

�

k

:X

f(k)

(x

k

)

is a standard de�nition.

Let E

0

be the declaration obtained by applying the above transformation to each

de�nition in E. Then E

0

is standard and it is easy to see that `

L

E[E

0

X

1

= Z

1

.

20

As an illustrative example let us apply this procedure to each of the de�nitions in

D

00

above. For convenience we ignore resulting de�nitions where the body is guarded by

the boolean false. The �rst de�nition Z

1

hy; xi remains essentially the same, giving rise

to

X

1

hy; xi (c?x:X

2

(y; x) + c!y:X

1

(y; x)

while the second, Z

2

hy; xi, gives rise to:

X

2

hy; xi (x � y ^ x � 0 ! (d!x:X

1

(x; y) + d!(x� 1):0) +

:x � 0 ! d!x:X

1

(x; y)+

:x � y ! 0

For an arbitrary T 2 T

D

with fv(T) � w, we can �rst eliminate any unguarded

identi�er occurrences in T by unfolding them, obtaining a term T

0

provably equal to T .

We then add a de�nition X

0

(�wT

0

to D, and �nally transform it to standard form.

2

We say two vectors of variables x = x

1

x

2

: : : x

n

and x

0

= x

0

1

x

0

2

: : : x

0

n

di�er at most

at a (possibly empty) set of variables V , if x

i

= x

0

i

for any 1 � i � n such that

x

i

62 V . A standard declaration D = fX

i

hx

i

i (T

i

g

i2I

, where T

i

�

P

k2K

i

b

ik

!

P

p2P

ik

�

ikp

:X

f(i;k;p)

(x

ikp

), is parameter-saturated if x

ikp

and x

f(i;k;p)

di�er at most at

bv(�

ikp

) for every i; k; p.

Proposition 4.14 Every standard declaration D = fX

i

hx

i

i (T

i

g

i2I

can be trans-

formed into an equivalent standard and parameter-saturated declaration.

Proof: For each i and each permutation x

0

of x

i

add a de�nition X

0

hx

0

i (T

i

[x

0

=x

i

] into

D, and replace each occurrence of X

i

(x

0

) by X

0

(x

0

) in the enlarged declaration. Let the

result be D

0

. Then D

0

is standard and parameter-saturated. Moreover it is equivalent

to D. 2

Proposition 4.15 Let D

1

= fX (Gg; D

2

= fY (Hg be two standard and

parameter-saturated declarations. If X

1

(z) �

b

L

Y

1

(z) then there is a standard declara-

tion E = fZ (Fg such that `

L

D

1

[E

b�X

1

(z) = Z

11

(z) and `

L

D

2

[E

b� Y

1

(z) = Z

11

(z).

Proof: Let

X

i

hzi (

X

k2K

i

c

ik

!

X

p2P

ik

�

ikp

:X

f(i;k;p)

(x

ikp

)

Y

j

hzi (

X

l2L

j

d

jl

!

X

q2Q

jl

�

jlq

:Y

g(j;l;q)

(y

jlq

)

We assume that all input pre�xes in D

1

; D

2

use the same data variable z which is

di�erent from any other data variables used so far.

For each pair (i; j), let b

ij

with fv(b

ij

) � z be such that X

i

(z) �

b

ij

L

Y

j

(z) and for

any b

0

with X

i

(z) �

b

0

L

Y

j

(z) it holds b

0

j= b

ij

. In particular, b j= b

11

. So by CONSEQ

to prove the proposition we only need to show `

L

D

1

[E

b

11

�X

1

(z) = Z

11

(z) and `

L

D

2

[E

b

11

� Y

1

(z) = Z

11

(z).

21

Let b

ikjl

= c

ik

^ d

jl

^ b

ij

. Since X

i

(z) �

b

ij

L

Y

j

(z), c

ik

^ c

ik

0

= false for k 6= k

0

,

d

jl

^ d

jl

0

= false for l 6= l

0

, we know

T

ik

�

b

ikjl

L

U

jl

where

T

ik

�

X

p2P

ik

�

ikp

:X

f(i;k;p)

(x

ikp

)

U

jl

�

X

q2Q

jl

�

jlq

:Y

g(j;l;q)

(y

jlq

)

According to the types of the pre�xes we group the summands of T

ik

into T

�

; T

c!

; T

c?

for each c 2 Chan(T

ik

). We have

`

L

D

1

T

ik

= T

�

+

X

c

T

c!

+

X

c

T

c?

:

Similarly for U

jl

:

`

L

D

2

U

jl

= U

�

+

X

c

U

c!

+

X

c

U

c?

:

We then have T

�

�

b

ikjl

L

U

�

and T

c!

�

b

ikjl

L

U

c!

, T

c?

�

b

ikjl

L

U

c?

for each c 2 Chan(T

ik

).

Let B

�

; B

c!

; B

c?

be the b

ikjl

-partitions guaranteed by Lemma 4.10 for the above

symbolic bisimulations.

For each b

0

2 B

�

de�ne

I

�

b

0

= f (p; q) j X

f(i;k;p)

(x

ikp

) �

b

0

L

Y

g(j;l;q)

(y

jlq

); x

ikp

� y

jlq

g:

Similarly de�ne I

c!

b

0

for b

0

2 B

c!

and I

c?

b

0

for b

0

2 B

c?

. I

�

b

0

; I

c!

b

0

and I

c?

b

0

are total and

surjective because of the property enjoyed by B

�

; B

c!

; B

c?

and the fact that D

1

and D

2

are parameter-saturated.

Let fZ

ij

j 1 � i � m; 1 � j � n g be a set of new process identi�ers. Also write

z

ikpjlq

for x

ikp

� y

jlq

. Consider the standard declaration

E = fZ

ij

hzi (b

ij

!

X

k;l

c

ik

^ d

jl

! (V

�

+

X

c

V

c!

+

X

c

v

c?

)g

where

V

�

=

X

b

0

2B

�

b

0

! V

�

b

0

V

�

b

0

=

X

(p;q)2I

�

b

0

�:Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

)

V

c!

=

X

b

0

2B

c!

b

0

! V

c!

b

0

V

c!

b

0

=

X

(p;q)2I

c!

b

0

�

ikp

:Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

)

V

c?

=

X

b

0

2B

c?

b

0

! V

c?

b

0

V

c?

b

0

=

X

(p;q)2I

c?

b

0

c?z:Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

)

We are to prove that, for each i; j

`

L

D

1

b

ij

�X

i

(z) = (

X

k;l

c

ik

^ d

jl

! (V

�

+

X

c

V

c!

+

X

c

V

c?

))� (1)

22

where � � [�z(b

ij

! X

i

(z))=Z

ij

ji; j]. If this can be done then by UFI-O we obtain the

required

`

L

D

1

[E

b

11

�X

1

(z) = Z

11

(z):

By Proposition 3.2, (1) is equivalent to

`

L

D

1

b

ij

� b

ij

! X

i

(z) =

X

k;l

c

ik

^ d

jl

^ b

ij

! (V

�

+

X

c

V

c!

+

X

c

V

c?

)�: (2)

Since

W

k;l

(c

ik

^ d

jl

) = (

W

k

c

ik

) ^ (

W

l

d

jl

) = true,

`

L

D

1

b

ij

� b

ij

! X

i

(z) =

X

k;l

c

ik

^ d

jl

^ b

ij

! T

ik

:

So (2), hence (1), will hold if we can show

`

L

D

1

b

ij

�

X

k;l

b

ikjl

! T

ik

=

X

k;l

b

ikjl

! (V

�

+

X

c

V

c!

+

X

c

V

c?

)�:

Since both f c

ik

j k g and f d

jl

j l g are sets of disjoint booleans, this reduces to: for

each k; l

`

L

D

1

b

ikjl

� T

ik

= (V

�

+

X

c

V

c!

+

X

c

V

c?

)�

which further reduces to

`

L

D

1

b

ikjl

� T

�

= V

�

� (3)

`

L

D

1

b

ikjl

� T

c!

= V

c!

� (4)

`

L

D

1

b

ikjl

� T

c?

= V

c?

� (5)

for each c 2 Chan(T

ik

).

We �rst consider (5).

Now

V

c?

� �

X

b

0

2B

c?

b

0

! V

c?

b

0

�: (6)

By the construction of V

c?

b

0

, for each (p; q) 2 I

c?

b

0

it holds that

X

f(i;k;p)

(z

ikpjlq

) �

b

0

L

Y

g(j;l;q)

(z

ikpjlq

):

By Proposition 4.9

X

f(i;k;p)

(z) �

b

0

[z=z

ikpjlq

]

L

Y

g(j;l;q)

(z):

By the de�nition of b

ij

b

0

[z=z

ikpjlq

] j= b

f(i;k;p)g(j;l;q)

:

Hence

b

0

j= b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]: (7)

23

Therefore

`

L

D

1

b

0

� V

c?

b

0

�

= (

X

(p;q)2I

c?

b

0

c?z:Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

))�

=

X

(p;q)2I

c?

b

0

c?z:(b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

0

! b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z]! X

f(i;k;p)

(z

ikpjlq

))

(7)

=

X

(p;q)2I

c?

b

0

b

0

! c?z:(b

0

! X

f(i;k;p)

(z

ikpjlq

))

=

X

(p;q)2I

c?

b

0

b

0

! c?z:X

f(i;k;p)

(z

ikpjlq

)

=

X

(p;q)2I

c?

b

0

c?z:X

f(i;k;p)

(z

ikpjlq

):

Since I

c?

b

0

is total T

c?

can be obtained by duplicating and reordering the summands of

the last line above, using S2; S3; S4. This means

`

L

D

1

b

0

� V

c?

b

0

� = T

c?

: (8)

Therefore

`

L

D

1

V

c?

�

(6)

=

X

b

0

2B

c?

b

0

! V

c?

b

0

�

(8)

=

X

b

0

2B

c?

b

0

! T

c?

3:2

= b

ikjl

! T

c?

;

Using Proposition 3.2 again we then obtain

`

L

D

1

b

ikjl

� V

c?

� = T

c?

;

which is the required (5) above. The proofs for (3) and (4) are similar.

This completes the proof of (1). In a symmetric way we can prove `

L

D

2

[E

b�Y

1

(z) =

Z

11

(z). 2

Theorem 4.16 (Completeness of `

L

) Let T; U 2 T

D

, D a guarded declaration. Then

T �

b

L

U implies `

L

D

b� T = U .

Proof: Let fv(T;U) = z. By Propositions 4.13 and 4.14 there exist standard and

parameter-saturated declarations D

1

= fX (Gg and D

2

= fY (Hg such that `

L

D[D

1

T = X

1

(z); `

L

D[D

2

U = Y

1

(z).

By Proposition 4.15 there exists a standard declaration E = fZ (Fg such that

`

L

D[D

1

[E

b�X

1

(z) = Z

11

(z)

`

L

D[D

2

[E

b� Y

1

(z) = Z

11

(z)

24

Hence `

L

D[D

1

[D

2

[E

b � X

1

(z) = Y

1

(z), and so `

L

D[D

1

[D

2

[E

b � T = U . By dec-E

`

L

D

b� T = U . 2

5 Early Bisimulation

The theory we studied so far is for late bisimulation. In this section we will outline how

it can be carried over to the early case with some systematic modi�cations. It is not

surprising that only the parts involving input actions need changing.

The early operational semantics of our language can be obtained by simple changes

to the rules in Figure 2. The rule for input transitions is changed to

c?F

c?v

�!

e

Fv v 2 Val

and the communication rule becomes

P

c?v

�!

e

P

0

; Q

c!v

�!

e

Q

0

implies P j Q

�

�!

e

P

0

j Q

0

:

In the remaining rules we simply replace �!

l

by �!

e

. Note that in the early semantics

the actions are of the form f�; c!v; c?vg and the type of input transitions are now from

processes to processes.

De�nition 5.1 A symmetric relation R between data{closed terms is a strong early

bisimulation if it satis�es: (P;Q) 2 R implies that

whenever P

a

�!

e

P

0

then there exists Q

a

�!

e

Q

0

and (P

0

; Q

0

) 2 R

We use �

e

to denote the largest early strong bisimulation. 2

This relation generalizes naturally to open terms by letting T �

e

U i� T� �

e

U� for any

�, and to abstractions by letting F �

e

G i� Fx �

e

Gx.

For early symbolic operational semantics we use the same set of rules as in Figure 7.

Early symbolic bisimulation is de�ned similarly as in the late case:

Let S = fS

b

j b 2 BExp g be a family of relations over terms, indexed by boolean

expressions. Then ESB(S) is the family of symmetric relations de�ned by:

(T;U) 2 ESB(S)

b

if whenever T

b

1

;�

�! T

0

with bv(�) \ fv(b; T; U) = ;, there is

a b ^ b

1

-partition B with the property that fv(B) � bv(�) [fv(b; T; U) and

for each b

0

2 B there exists some U

b

2

;�

0

�! U

0

such that b

0

j= b

2

, � =

b

�

0

and

(T

0

; U

0

) 2 S

b

0

.

De�nition 5.2 (Early Symbolic Bisimulations)

S is a early strong symbolic bisimulation if S � ESB(S). 2

Let �

E

= f�

b

E

g be the largest late strong symbolic bisimulation. Note that the only

di�erence between early and late symbolic bisimulations is in the restriction on the free

data variables of the partition B when matching an input action: in the early case B

is allowed to have the input variable free, so that the value space for the input variable

can be partitioned; while in the late case this is forbidden.

25

Theorem 5.3 (Soundness and completeness of �

E

) T �

b

E

U i� T� �

e

U� for every

evaluation � such that � j= b.

Proposition 4.9 and Lemma 4.10 all hold in this new setting, with the expected

modi�cation that in Lemma 4.10 it is now required fv(B) � bv(�

i

) [fv(b; T; U) instead

of fv(B) � fv(b; T; U).

The inference system for early bisimulation can be obtained by generalising that for

late in two di�erent ways: adding the following axiom schema

EA c?x:T + c?x:U = c?x:T + c?x:U + c?x:(b! T + :b! U)

or replacing the INPUT rule by the more general rule schema

E-INPUT

b�

X

i2I

�:T

i

=

X

j2J

�:U

j

b�

X

i2I

c?x:T

i

=

X

j2J

c?x:U

j

x 62 fv(b):

It is easy to see that both EA and E-INPUT are sound with respect to early bisimulation.

EA is adapted from Parrow and Sangiorgi's axiomatisation for early bisimulation of the

�-calculus ([PS93]), while E-INPUT was used in our earlier work on proof systems for

recursion{free message{passing processes ([HL95a]). EA can be derived from E-INPUT

in the presence of other proof rules.

In what follows we will use the EA extension. So let us write `

E

D

b � T = U if

b� T = U can be derived from this new inference system.

First we have a generalised form of EA:

Proposition 5.4 For any �nite non-empty collection of booleans f b

i

j i 2 I g such that

W

i2I

b

i

= true and b

i

^ b

j

= false for i 6= j,

`

E

D

X

i2I

c?x:T

i

=

X

i2I

c?x:T

i

+ c?x:

X

i2I

b

i

! T

i

:

The proof of this Proposition can be found in [HL95a].

To obtain the completeness result for `

E

D

, only the input case in the proof of Propo-

sition 4.15 needs modifying. Since now z may appear free in fv(B

c?

), the de�nition of

V

c?

has to be changed. Let

V

c?

= V

c?

1

+ V

c?

2

V

c?

1

=

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

)

V

c?

2

=

X

�

jlq

�c?z

�

jlq

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

)

Now to show (5), i.e.

`

E

D

1

b

ikjl

� T

c?

= V

c?

�;

26

We argue as follows: we know

T

c?

�

X

f�

ikp

�c?zjp2P

ik

g

�

ikp

:X

f(i;k;p)

(z

ikpjlq

)

and we have (7) by the same argument as in the proof of Proposition 4.15. Hence

`

E

D

1

V

c?

1

�

= (

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! Z

f(i;k;p)g(j;l;q)

(z

ikpjlq

))�

=

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! (b

f(i;k;p)g(j;l;q)

[z

ikpjlq

=z

f(i;k;p)g(j;l;q)

]! X

f(i;k;p)

(z

ikpjlq

))

(7)

=

X

�

ikp

�c?z

�

ikp

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

=

X

�

ikp

�c?z

�

ikp

:(b

ikjl

! X

f(i;k;p)

(z

ikpjlq

))

The last step of the above derivation uses the fact that I

c?

b

0

is total.

Similarly we can derive

`

E

D

1

V

c?

2

� =

X

�

jlq

�c?z

�

jlq

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

Now for each q such that �

jlq

� c?z, we know that

W

B

c?

= b

ikjl

. Also by Remark 4.11

we may assume the booleans in B

c?

are mutual disjoint. And, �nally, we know I

c?

b

0

is

surjective. So we can apply Proposition 5.4 to obtain

`

E

D

1

b

ikjl

�

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

) =

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

) + �

jlq

:

X

b

0

2B

c?

(p;q)2I

c?

b

0

b

0

! X

f(i;k;p)

(z

ikpjlq

)

Repeating this process for each q we obtain

`

E

D

1

b

ikjl

� V

c?

1

� = V

c?

1

� + V

c?

2

�

Because z 62 fv(b

ikjl

), from this (5) follows immediately:

`

E

D

1

b

ikjl

� V

c?

� =

X

�

ikp

�c?z

�

ikp

:(b

ikjl

! X

f(i;k;p)

(z

ikpjlq

))

=

X

�

ikp

�c?z

�

ikp

:X

f(i;k;p)

(z

ikpjlq

)

= T

c?

This completes the proof for the early version of Proposition 4.15, thus giving the

completeness result for the early case:

27

Theorem 5.5 (Completeness of `

E

) Let D be a guarded declaration and T; U 2 T

D

.

Then T �

b

E

U implies `

E

D

b� T = U .

6 Conclusions

In this paper we have suggested one method, based on Unique Fixpoint Induction, of

extending the proof system of [HL95a] to recursively de�ned message-passing processes.

We have limited ourselves to considering strong bisimulation equivalence, in its two

varieties of early and late, and guarded recursive de�nitions. We believe that these

results can be extended to the weak versions of early and late bisimulation congruences

by adding the appropriate � -laws [Mil89], again as in [HL95a]. We have developed an

interactive veri�cation tool VPAM ([Lin93]) based on our theoretical results, where the

implementation of the unique �xpoint induction rule demands special care [Lin95b]. All

the examples in this paper have been checked in VPAM.

However extending the results to unguarded de�nitions is more complicated. For

example with pure processes, if we have the de�nitions

X (X + T

Y (T

in the declaration D then the sound rule

`

D

�X = Y

can be used to convert all unguarded regular declarations to guarded ones. However

a simple generalisation of this rule is no longer sound for value-passing processes. For

example consider the de�nitions

Xhx; yi (X(y; x) + c!x:c?z:X(y; z)

Y hx; yi (c!x:c?z:Y (y; z):

It is not in general true that X �

l

Y . For example X(1; 0) can immediately perform the

actions c!0 and c!1 whereas Y (1; 0) can only perform c!1. In order to obtain a guarded

de�nition equivalent to X we instead have to use the abstraction de�ned by

Y

0

hx; yi (c!x:c?z:Y

0

(y; z) + c!y:c?z:Y

0

(x; z):

A general rule is somewhat complicated to formulate. An unguarded de�nition of the

form

X (�x(T +

X

i2I

X(x

i

)) X guarded in T

where each x

i

is a permutation of x, can be replaced by a guarded de�nition of the form

X (�x

X

fT� j � 2 Perm

x

(f x

i

j i 2 I g) g

where Perm

x

(f x

i

j i 2 I g) is the set of permutations of x generated by x

i

; i 2 I, under

permutation composition, and we identify a permutation x

0

of x with the substitution

28

[x

0

=x]. Note that Perm

x

(f x

i

j i 2 I g) is always �nite and includes x. Returning to

the above example, since Perm

(x;y)

(f(y; x)g) = f(x; y); (y; x)g, applying this rule to the

de�nition discussed before

Xhx; yi (X(y; x) + c!x:c?z:X(y; z)

we get

Xhx; yi = (c!x:c?z:X(y; z))[x; y=x; y]+ (c!x:c?z:X(y; z))[y; x=x; y]

= c!x:c?z:X(y; z) + c!y:c?z:X(x; z):

Despite these extensions there is nevertheless an inherent limitation on proof systems

whose only mechanism for deriving judgements on recursive processes is Unique Fixpoint

Induction. For example consider the following process declaration over natural numbers

S (c?x:d!0:S

R (c?x:D(x)

Dhxi (x = 0! d!0:R + x 6= 0! D(x� 1):

The process S inputs any natural number and immediately outputs 0. R, on the other

hand, inputs a number, counts down the number to 0 and then outputs 0. It is apparent

that these two processes are semantically equivalent but they can not be proved equiv-

alent in our proof system, or indeed in any straightforward extension of it. Intuitively

the semantic equivalence between these two processes depends on the inductive nature

of the natural numbers which is not re
ected anywhere in our proof system. Formally

the judgements of our proof system are satis�ed in any model of the natural numbers,

including non-standard ones; however S and R are not semantically equivalent when the

data expressions are interpreted in a non-standard model and therefore S = R can not

be a judgement of the system.

In order to develop proof systems in which judgements such as S = R can be derived

it seems necessary to have the ability, within the proof system, to derive statements of

type process using induction over the data domain. One way to introduce this type of

induction, for example for the natural numbers, is as follows:

Assume T;U : N ! process. Then

`

D

T (0) = U(0)

T (n) = U(n) `

D

T (n+ 1) = U(n + 1)

`

D

T = U

With such a rule one can derive judgements such as `

D

S = R although Unique

Fixpoint Induction is also required.

One possible method for implementing such a proof system is using a general purpose

theorem prover such as Isabelle ([Pau94]) and COQ ([DFH

+

93]). A new type of object

would be required, called process, and this type would have associated with it particular

proof rules, essentially those of our proof system, Figures 3 and 4. Then the extra

inductive proof strategies based on the data domains would be automatically inherited

from the representation of the data within the general purpose theorem prover.

29

Nevertheless we conjecture that our restricted proof system will still of considerable

use for a large class of problems, particularly those connected with protocol speci�cation

where by and large relatively simple use is made of the data being transmitted and

received. However this conjecture can only be tested by examining a wide range of case

studies and seeing where it is necessary to have the power of induction over the data

domains.

This paper has concentrated entirely on extending the approach of [HL95a] to recur-

sively de�ned message passing processes but we end with some brief pointers to some

other approaches to handling data dependent processes. Standard techniques from the

theory of algebraic speci�cations are used in [GP90] to develop a modularised algebraic

approach to the process language ACP augmented with message-passing while in [CR94]

the theory of abstract interpretation is brought to bear on a language very similar to

which we have considered. A much more practical approach, based on similar ideas, is

taken in [YY91] to verifying ADA programs. Finally [CGL92] contains an instance of

the use of abstraction in model checking.

While this paper was rewritten one of the authors formulated a version of unique

�xpoint induction for the �-calculus ([Lin95a]). The �x operator is used there and the

UFI rule appears the same as in the pure-CCS [Mil89]:

F = G[F=X]

F = �xXG

The only di�erence is that this rule works at a more abstract level: here F; G are (closed)

abstractions. In the present work we have used de�nitions and declarations instead of the

�x operator, because one objective of the current work is to provide a theoretical basis

for practical applications, and recursive de�nitions with process constants are easier to

used in applications than the �x operator.

Acknowledgement: The authors would like to thank Julian Rathke for reading a draft

of this paper and making many useful suggestions for improvement.

References

[BK88] J. Bergstra and J.W. Klop. A complete inference system for regular processes

with silent moves. In Proceedings, Logic Colloquium'86, pages 21{81. North-

Holland, 1988.

[CGL92] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In

POPL'92, pages 343 { 354. ACM Press, 1992.

[CPS89] R. Cleaveland, J. Parrow, and B. Ste�en. A semantics based veri�cation tool

for �nite state systems. In Proceedings of the 9

th

International Symposium

on Protocol Speci�cation, Testing and Veri�cation, North Holland, 1989.

[CR94] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing sys-

tems. In CONCUR'94, number 836 in Lecture Notes in Computer Science,

pages 417 { 432. Springer{Verlag, 1994.

30

[DFH

+

93] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-

Mohring, and B. Werner. The Cog proof asistant user's guide, version 5.8.

Report, INRIA-Rocquencourt and CNRS-ENS Lyon, 1993.

[GP90] L.F. Groote and A. Ponse. The syntax and semantics of �CRL. Report

CS-R9076, CWI, Amsterdam, 1990.

[HL95a] M. Hennessy and H. Lin. Proof systems for message-passing process alge-

bras. To appear in Formal Aspects of Computing, 1995. Extended abstract

in CONCUR'93, LNCS 715, pp. 202-216, 1993.

[HL95b] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer

Science, 138:353 { 389, 1995.

[Lin93] H. Lin. A veri�cation tool for value-passing processes. In Proceedings of 13

th

International Symposium on Protocol Speci�cation, Testing and Veri�cation,

IFIP Transactions. North-Holland, 1993.

[Lin95a] H. Lin. Unique �xpoint induction for mobile processes. In CONCUR'95,

volume 962 of Lecture Notes in Computer Science, pages 88{102. Springer{

Verlag, 1995.

[Lin95b] H. Lin. On implementing unique �xpoint induction for value-passing pro-

cesses. In Workshop on Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 104{118. Aarhus, Denmark, May 1995.

[Mil84] R. Milner. A complete inference system for a class of regular behaviours. J.

Computer and System Science, 28:439{466, 1984.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part I,II.

Information and Computation, 100:1{77, 1992.

[Pau94] L.C. Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture Notes

in Computer Science. Springer{Verlag, 1994.

[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi.

Report ECS-LFCS-93-262, LFCS, University of Edinburgh, 1993.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research

Notes in Theoretical Computer Science, Pitman/Wiley, 1988.

[YY91] W.J. Yeh and M. Young. Compositional reachability analysis using process

algebra. In TAV'91, pages 49 { 59. ACM SIGSOFT, ACM Press, 1991.

31

