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Abstract

Recently there has been considerable interest in studying formats of Plotkin style inference

rules which ensure that the induced labelled transition system semantics have certain properties.

In this note, I shall give a contribution to this line of research by giving a restricted version of

Bloom, Istrail and Meyer's GSOS format [7, 6] which induces �nite labelled transition systems.
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1 Introduction

Labelled transition systems [18] are a widely used model of program behaviour, and form the

basis of Plotkin's structural approach to giving operational semantics to programming languages

[24]. The states of the transition system are usually programs of the language one wants to give

an operational semantics to, and the transitions between states are de�ned by means of a set of

inference rules over the syntax of the language. These rules allow one to infer the semantics of a

program from that of its subparts.

Recently there has been considerable interest in studying formats of Plotkin style inference

rules which ensure that the induced labelled transition system semantics have certain properties.

Contributions to this line of research may be found in, e.g., [25, 7, 6, 8, 27, 13, 28]. In this note, I

shall give a contribution to this line of research by giving a restricted version of Bloom, Istrail and

Meyer's GSOS format [7, 6] which induces �nite labelled transition systems.

Finite labelled transition systems may be used to describe many interesting concurrent systems,

e.g. several communication protocols and mutual exclusion algorithms [29], and form the basis of all

the semantic-based automated veri�cation tools which have been developed. See, e.g., [9, 11, 12, 26].

As (subsets of) programming languages which can be given semantics in terms of �nite labelled

transition systems are, at least in principle, amenable to automated veri�cation techniques, it is

important to develop techniques to check whether languages give rise to �nite labelled transition

systems. In particular, as this property is in general undecidable, it is interesting to develop

su�cient syntactic conditions on the rules giving the operational semantics of programs which

ensure �niteness of the de�ned labelled transition systems. The contribution of this note is one

such syntactic condition over the GSOS format of operational rules.

I now give a brief outline of the contents of this note. Section 2 is devoted to preliminaries on

GSOS systems and labelled transition systems. The format of simple GSOS rules is presented in
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Section 3, where it is also shown that simple GSOS systems associate �nite process graphs with

each term. Section 4 is devoted to a possible generalization of this result to simple GSOS systems

with recursive de�nitions. The note ends with some remarks on an in�nitary version of GSOS

systems and a discussion of related literature.

2 Preliminaries

Let Var be a denumerable set of variables ranged over by x; y. A signature � consists of a set of

operation symbols, disjoint from Var, together with a function arity that assigns a natural number

to each operation symbol. The set (�) of terms over � is the least set such that

� Each x 2 Var is a term.

� If f is an operation symbol of arity l, and P

1

; : : : ; P

l

are terms, then f(P

1

; : : : ; P

l

) is a term.

I shall use P;Q; : : : to range over terms and the symbol � for the relation of syntactic equality on

terms. T(�) is the set of closed terms over �, i.e., terms that do not contain variables. Constants,

i.e. terms of the form f(), will be abbreviated as f .

A �-context C[~x] is a term in which at most the variables ~x appear. C[

~

P ] is C[~x] with x

i

replaced by P

i

wherever it occurs.

Besides terms we have actions , elements of some given �nite set Act, which is ranged over by

a; b; c. A positive transition formula is a triple of two terms and an action, written P

a

! P

0

. A

negative transition formula is a pair of a term and an action, written P

a

9. In general, the terms

in the transition formula will contain variables.

De�nition 2.1 (GSOS Rules and GSOS Systems [7]) Suppose � is a signature. A GSOS

rule � over � is an inference rule of the form:

S

l

i=1

n

x

i

a

ij

! y

ij

j1 � j � m

i

o

[

S

l

i=1

n

x

i

b

ik

9 j1 � k � n

i

o

f(x

1

; : : : ; x

l

)

c

! C[~x; ~y]

(1)

where all the variables are distinct, m

i

; n

i

� 0, f is an operation symbol from � with arity l, C[~x; ~y]

is a �-context, and the a

ij

, b

ik

, and c are actions in Act. In the above rule, f is the principal

operation of the rule and C[~x; ~y] is its target.

A GSOS system is a pair G = (�

G

; R

G

), where �

G

is a �nite signature and R

G

is a �nite set of

GSOS rules over �

G

.

GSOS systems have been introduced and studied in depth in [7, 6]. The interested reader is

referred to those references for much more on them. Intuitively, a GSOS system gives a language,

whose constructs are the operations in the signature �

G

, together with a Plotkin-style operational

semantics [24] for it de�ned by the set of conditional rules R

G

. As usual, the operational semantics

for the closed terms over �

G

will be given in terms of the notion of labelled transition system.

De�nition 2.2 (Labelled Transition Systems) Let A be a set of labels. A labelled transition

system (lts) is a pair (S;!), where S is a set of states and !� S�A�S is the transition relation.

As usual, I shall write s

a

! t in lieu of (s; a; t) 2!, and s ! t when the label associated with the

transition is immaterial. A state t is reachable from state s if there exist states s

0

; : : : ; s

n

and labels

a

1

; : : : ; a

n

such that

s = s

0

a

1

! s

2

a

2

! � � �

a

n

! s

n

= t
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The set of states which are reachable from s, also known as the set of derivatives of s, will be

denoted by der(s).

A process graph is a triple (r; S;!), where (S;!) is an LTS, r 2 S is the root, and each state

in S is reachable from r. If (S;!) is an lts and s 2 S then graph(s; (S;!)) is the process graph

obtained by taking s as the root and restricting (S;!) to the part reachable from s. I shall write

graph(s) for graph(s; (S;!)) whenever the underlying lts (S;!) is understood from the context.

An lts (S;!) is �nite i� S and ! are �nite sets. A process graph graph(s; (S;!)) is �nite if the

restriction of (S;!) to the part reachable from s is.

For the sake of completeness, I shall now formally de�ne the lts induced by a GSOS system following

[7, 6].

De�nition 2.3 A closed �-substitution is a function � from variables to closed terms over the

signature �. For each term P , P� will denote the result of substituting �(x) for each x occurring

in P .

De�nition 2.4 A transition relation over a signature � is a relation ; � T(�)� Act � T(�).

Let ; be a transition relation and � a closed substitution. For each transition formula ', the

predicate ;; � j= ' is de�ned by

;; � j= P

a

! Q

�

= P�

a

; Q�

;; � j= P

a

9

�

= 6 9Q : P�

a

; Q

For H a set of transition formulas, I de�ne

;; � j= H

�

= 8' 2 H : ;; � j= '

and for

H

'

a GSOS rule,

;; � j=

H

'

�

=

�

;; � j= H ) ;; � j= '

�

:

De�nition 2.5 Suppose G is a GSOS system and ; is a transition relation over �

G

. Then ;

is sound for G i� for every rule � 2 R

G

and every closed �

G

-substitution �, we have ;; � j= �.

A transition P

a

; Q is supported by some rule

H

'

2 R

G

i� there exists a substitution � such that

;; � j= H and '� =

�

P

a

! Q

�

. The relation ; is supported by G i� each transition in ; is

supported by a rule in R

G

.

The requirements of soundness and supportedness are su�cient to associate a unique transition

relation with each GSOS system.

Lemma 2.6 ([7]) For each GSOS system G there is a unique sound and supported transition

relation.

I write !

G

for the unique sound and supported transition relation for G. The lts speci�ed

by a GSOS system G is then given by lts(G) = (T(�

G

);!

G

) and the process graph de�ning the

operational semantics of a closed term P is graph(P; lts(G)) (abbreviated to graph(P ) throughout

the remainder of this note).
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3 Finite Labelled Transition Systems from GSOS Rules

In this section, I shall show how to impose syntactic restrictions on the format of rules in a GSOS

system G which ensure that graph(P ) is a �nite process graph for each P 2 T(�

G

).

De�nition 3.1 A GSOS rule of the form (1) is simple i� C[~x; ~y] is either a variable in ~x; ~y or it

is of the form g(z

1

; : : : ; z

n

) where each z

i

is a variable in ~x; ~y. A GSOS system G = (�

G

; R

G

) is

simple i� each rule in R

G

is.

I shall now proceed to show that if G is a simple GSOS system, then graph(P ) is a �nite process

graph for all P 2 T(�

G

). The following de�nition will be useful in the remainder of this note.

De�nition 3.2 Let G = (�

G

; R

G

) be a simple GSOS system. The operator dependency graph

associated with G is the directed graph with

� �

G

as set of nodes, and

� set of edges E given by: (f; g) 2 E i� there exists a rule � 2 R

G

with f as principal operation

and target g(z

1

; : : : ; z

n

), for some z

1

; : : : ; z

n

2 Var.

I shall write f �

G

g i� fE

?

q in the operator dependency graph for G.

The following theorem, which gives a characterization of the set of derivatives of a term P in

terms of those of its subterms, will be the key to the proof of the main result of this note.

Theorem 3.3 Let G = (�

G

; R

G

) be a simple GSOS system and P � f(P

1

; : : : ; P

l

) 2 T(�

G

). Then

der(P ) � fg(R

1

; : : : ; R

n

) j f �

G

g ^ 8i 2 f1; : : : ; ng9j 2 f1; : : : ; lg : R

i

2 der(P

j

)g [

l

[

i=1

der(P

i

)

Proof: Let Q 2 der(P ). By the de�nition of the set der(P ), this means that P !

?

G

Q. I shall now

show that

Q 2 fg(R

1

; : : : ; R

n

) j f �

G

g ^ 8i 2 f1; : : : ; ng9j 2 f1; : : : ; lg : R

i

2 der(P

j

)g [

l

[

i=1

der(P

i

)

by induction on the length of the derivation P !

?

G

Q.

Base Case: P � Q. The claim follows immediately as �

G

is reexive by de�nition and R 2 der(R)

for all R 2 T(�

G

).

Inductive Step: P !

G

R !

?

G

Q for some R 2 T(�

G

). As !

G

is supported by G, P !

G

R

because there exist a simple rule � 2 R

G

, with f as principal operation, of the form (1) and a

substitution � such that P � f(x

1

; : : : ; x

l

)�, R � C[~x; ~y]� and !

G

; � j= H , where H stands

for the set of hypotheses of �. As � is a simple, there are two forms that the target context

C[~x; ~y] may take. I shall examine them in turn:

1. C[~x; ~y] is either x

i

or y

ij

, for some i; j. In this case, R is syntactically equal to either

�(x

i

) or to �(y

ij

) for some i; j. Then surely R 2 der(P

i

) for some i 2 f1; : : : ; lg. As

R !

?

G

Q, it follows that Q 2 der(P

i

) for some i 2 f1; : : : ; lg. The proof for this case is

then complete.
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2. C[~x; ~y] � g(z

1

; : : : ; z

n

) for some g 2 �

G

and z

1

; : : : ; z

n

in ~x; ~y. In this case, R �

g(z

1

; : : : ; z

n

)� and, as !

G

; � j= H , it follows that

8h 2 f1; : : : ; ng9j 2 f1; : : : ; lg : �(z

h

) 2 der(P

j

) (2)

Let �(z

h

) � R

h

for all h 2 f1; : : : ; ng. Then R � g(R

1

; : : : ; R

n

) !

?

G

Q by a shorter

derivation. Applying the inductive hypothesis to R � g(R

1

; : : : ; R

n

) !

?

G

Q, it follows

that

(a) Q 2 der(R

k

) for some k 2 f1; : : : ; ng, or

(b) Q � g

0

(Q

1

; : : : ; Q

s

) for some g

0

2 �

G

and Q

1

; : : : ; Q

s

2 T(�

G

) such that g �

G

g

0

and

8k 2 f1; : : : ; sg9h 2 f1; : : : ; ng : Q

k

2 der(R

h

) (3)

I shall proceed by examining these two possibilities in turn.

(a) Assume that Q 2 der(R

k

) for some k 2 f1; : : : ; ng. In this case, as R

k

2 der(P

j

)

for some j 2 f1; : : : ; lg by (2), by transitivity it follows that Q 2 der(P

j

) for some

j 2 f1; : : : ; lg.

(b) Assume that Q � g

0

(Q

1

; : : : ; Q

s

) for some g

0

2 �

G

and Q

1

; : : : ; Q

s

2 T(�

G

) such

that g �

G

g

0

and

8k 2 f1; : : : ; sg9h 2 f1; : : : ; ng : Q

k

2 der(R

h

)

As f �

G

g, by the transitivity of �

G

it follows that f �

G

g

0

. Moreover, by (2) and

(3), I immediately have that

8k 2 f1; : : : ; sg9j 2 f1; : : : ; lg : Q

k

2 der(P

j

)

Hence, in this case, Q is an element of the set

fg(R

1

; : : : ; R

n

) j f �

G

g ^ 8i 2 f1; : : : ; ng9j 2 f1; : : : ; lg : R

i

2 der(P

j

)g

This completes the inductive argument and the proof of the theorem.

2

Theorem 3.4 Let G = (�

G

; R

G

) be a simple GSOS system. Then, for all P 2 T(�

G

), graph(P )

is a �nite process graph.

Proof: It is su�cient to show that der(P ) is �nite for all P 2 T(�

G

). This I prove by induction

on the structure of P .

Assume then that P � f(P

1

; : : : ; P

l

). By the inductive hypothesis, der(P

i

) is �nite for each

i 2 f1; : : : ; lg. Using the �niteness of each der(P

i

), I can now show that der(P ) is itself �nite.

Indeed this follows easily from the above theorem as der(P ) is contained in the set

fg(R

1

; : : : ; R

n

) j f �

G

g ^ 8i 2 f1; : : : ; ng9j 2 f1; : : : ; lg : R

i

2 der(P

j

)g [

l

[

i=1

der(P

i

)

which is �nite as �

G

and each der(P

i

) are. 2
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The above theorem gives a purely syntactic way of checking whether the process graphs giving

semantics to programs in a GSOS system are �nite. To this end, it is su�cient to check that

all the rules are simple. The reader familiar with the literature on process algebras, see e.g.

[22, 17, 15, 5], will have already noticed that most of the standard operations used in process

algebras are given operational semantics in terms of simple rules. Two exceptions known to me

are the \desynchronizing" � operation present in the early versions of Milner's SCCS [21] studied

in [20, 14], and the parallel composition operation in Milner, Parrow and Walker's �-calculus [23].

The � operation has rules (one such rule for each a):

x

a

! x

0

�x

a

! ��x

0

where � is the delay operation of SCCS. The rules for the parallel composition operation in the

�-calculus which are not simple are those dealing with the so-called scope extrusions. (See [23, Part

II].) These take the form

P

�x(w)

! P

0

; Q

x(w)

! Q

0

P j Q

�

! (w)(P

0

j Q

0

)

where (w) denotes the restriction operation of the �-calculus.

An example of an interesting operation whose operational rules are simple and use negative

premises is the priority operation � of Baeten, Bergstra and Klop [4]. Fix a partial ordering

relation > on Act. For each a the operation � has a rule

x

a

! x

0

; x

b

9 (for all b > a)

�(x)

a

! �(x

0

)

(4)

which is simple. An example of an operation de�nable in terms of simple rules, but not de�nable in

process algebras like CCS and ACP up to strong bisimulation equivalence is the operation a-if-b(�)

from [6]. This is given by the rule

x

a

! y

1

; x

b

! y

2

a-if-b(x)

a

! a-if-b(y

1

)

In addition, the format of simple GSOS rules allows for copying of arguments of operations. For

example, the unary operation double with rule

double(x)

a

! xkx

where k denotes the parallel composition operator of Milner's CCS [22], is simple.

Theorem 3.4 would, however, not hold if I allowed for GSOS rules with more than one function

symbol in their target, as the following example shows.

Example: Consider a GSOS system with a constant ! given by the rules

!

a

! 0 !

a

! f(!)

where the unary function symbol f is speci�ed by the rules

f(x)

a

! x

x

a

! y

f(x)

a

! f(y)

It is easy to see that graph(!) is the following in�nite labelled transition system:
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-

?

?

?

-

-

-

6

6

6

6

6

6

6

6

?

6

! 0

f(!) f(0)

f

2

(!) f

2

(0)

f

3

(!) f

3

(0)

.

.

.

.

.

.: : : : : : : : :

a

a

a

a

a a

a

a

a

a

a a a

a

a

a

Notice that this labelled transition system is in�nite-state even modulo bisimulation equivalence

[22],

$

{{

. In fact, it is immediate to see that, for all n 6= m, f

n

(0)

$

{{

a

n

= a

m

$

{{

f

m

(0). 2

The example above shows that the condition on the contexts allowed as targets of simple GSOS

rules cannot be relaxed in any obvious way. In fact, already admitting two function symbols in the

targets of GSOS rules invalidates Theorem 3.4.

4 Adding Explicit Recursion

As shown by the previous example, GSOS processes can exhibit in�nite behaviour even in the

absence of a facility for recursive de�nitions of processes. Indeed, as stated in [7, 6], one can

add guarded recursive processes as constants to GSOS systems. However, most process algebras

which have been presented in the literature include a facility for recursive de�nitions. It is thus

interesting to see how the result I have presented in the previous section can be extended to

deal with languages which include explicit recursion. In this section I shall present one possible

generalization of Theorem 3.4 to a class of these languages.

De�nition 4.1 (Guarding Operations) Let G = (�

G

; R

G

) be a simple GSOS system. An op-

eration f 2 �

G

is guarding i� every rule in R

G

with f as principal operation has an empty set of

hypotheses, i.e. it is of the form

f(x

1

; : : : ; x

l

)

a

! C[~x]

An operation f 2 �

G

is said to be hereditarily guarding i� every g 2 �

G

such that f �

G

g is

guarding.

The notion of guarding operation is closely related to the more general one of guarded term intro-

duced by F. Vaandrager for de Simone systems in [28, De�nition 3.1]. Indeed, an operation f is

guarding in the sense of De�nition 4.1 i� the term f(X; : : : ; X), where X is a process name (see

below), is guarded in the sense of [28, De�nition 3.1].

The reader familiar with the literature on CCS will have noticed that the only guarding opera-

tions in CCS are the action-pre�xing operations. These operations are also hereditarily guarding.

As an example of an operation which is guarding, but not hereditarily guarding, consider the unary

operation given by the rules:

f(x)

a

! g(x) g(x)

a

! 0

x

a

! y

g(x)

a

! g(y)

(5)
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where 0 denotes a stopped process. The operation f is guarding, but not hereditarily so, as g is

not.

In order to add a facility for recursive de�nitions to simple GSOS systems, I shall assume a

given, �nite set of constant function symbols N , whose elements will be referred to as process

names. I shall use X; Y; : : : to range over N . Without loss of generality, I shall assume that the

constant symbols in N are fresh, in the sense that they do not appear in the signature of any simple

GSOS system G.

The intended interpretation of process names will be given in terms of a declaration function.

This is made precise in the following de�nition.

De�nition 4.2 (Simple GSOS Systems with Explicit Recursion) Let G = (�

G

; R

G

) be a

simple GSOS system. Let � : N ! T(�

G

[N ) be such that, for all X 2 N , �(X) � f(X

1

; : : : ; X

l

)

for some hereditarily guarding f 2 �

G

and X

1

; : : : ; X

l

2 N . The extension of G with recursive

de�nitions G

�

is the pair (�

�

; R

�

) such that:

� �

�

= �

G

[ N and

� R

�

is obtained by extending R

G

with the rules (one such rule for each X 2 N and a 2 Act)

�(X)

a

! y

X

a

! y

By structural induction on closed �

�

-terms, it is easy to see that there is a unique transition

relation !

G

�

that is sound and supported for G

�

. In particular, this transition relation has the

property that, for all X 2 N ,

X

a

! P , �(X) � f(X

1

; : : : ; X

l

)

a

! P

, 9� =

�

f(x

1

; : : : ; x

l

)

a

! C[~x]

�

2 R

G

: C[

~

X] � P

With abuse of notation, I shall use graph(P ) to denote the process graph de�ning the operational

semantics of a closed �

�

-term P . I shall now show that graph(P ) is �nite for all P 2 T(�

�

).

By inspecting the proof of Theorem 3.3, it is immediate to see that the statement also holds

over G

�

. In fact, only properties of simple rules were used in the proof of that result.

Lemma 4.3 Let G = (�

G

; R

G

) be a simple GSOS system, and G

�

be as in De�nition 4.2. Then,

for all P � f(P

1

; : : : ; P

l

) 2 T(�

�

),

der(P ) � fg(R

1

; : : : ; R

n

) j f �

G

g ^ 8i 2 f1; : : : ; ng9j 2 f1; : : : ; lg : R

i

2 der(P

j

)g [

l

[

i=1

der(P

i

)

In order to prove that simple GSOS systems with explicit recursion give rise to �nite process

graphs, I shall need a sharpened version of the above result for process names.

Theorem 4.4 Let G = (�

G

; R

G

) be a simple GSOS system, and G

�

be as in De�nition 4.2. Then,

for all hereditarily guarding f 2 �

G

and X

1

; : : : ; X

l

2 N ,

der(f(X

1

; : : : ; X

l

)) � fg(Y

1

; : : : ; Y

n

) j g 2 �

G

^ Y

1

; : : : ; Y

n

2 Ng [ N
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Proof: Let Q 2 der(f(X

1

; : : : ; X

l

)). This means that f(X

1

; : : : ; X

l

)!

?

G

�

Q. I shall now show that

Q 2 fg(Y

1

; : : : ; Y

n

) j g 2 �

G

^ Y

1

; : : : ; Y

n

2 Ng [ N

by induction on the length of the derivation f(X

1

; : : : ; X

l

)!

?

G

�

Q. The base case of the induction

is trivially seen to hold.

For the inductive step, assume that f(X

1

; : : : ; X

l

) !

G

�

P !

?

G

�

Q, for some P 2 T(�

�

). As

!

G

�

is supported by G

�

and f is hereditarily guarding, f(X

1

; : : : ; X

l

)!

G

�

P because there exists

a simple rule � 2 R

G

such that

� = f(x

1

; : : : ; x

l

)

a

! C[~x] and C[

~

X] � P

As f is simple, there are two possible forms C[~x] may take; namely, C[~x] � g(z

1

; : : : ; z

m

), where

each z

i

is a variable in the set fx

1

; : : : ; x

l

g, or C[~x] � x

i

for some i 2 f1; : : : ; lg.

If C[~x] � g(z

1

; : : : ; z

m

), then P � g(

~

Z), where each Z

i

is in

~

X. As f is hereditarily guarding

and f �

G

g, so is g. The claim then follows immediately by using the inductive hypothesis.

Otherwise, P � X

i

for some i 2 f1; : : : ; lg. Now, P � X

i

!

?

G

�

Q i� either Q � X

i

or

�(X

i

) � g(Y

1

; : : : ; Y

m

) !

+

G

�

Q. If Q � X

i

then the claim follows trivially. Otherwise, by the

construction of G

�

, I have that g is itself hereditarily guarding. The claim then follows by applying

the inductive hypothesis to the derivation g(Y

1

; : : : ; Y

m

)!

+

G

�

Q. 2

The following result generalizes Theorem 3.4 to simple GSOS systems with explicit recursive

de�nitions.

Theorem 4.5 Let G = (�

G

; R

G

) be a simple GSOS system, and G

�

be as in De�nition 4.2. Then,

for all P 2 T(�

�

), graph(P ) is a �nite process graph.

Proof: It is su�cient to show that der(P ) is �nite for all P 2 T(�

�

). This I prove by induction on

the structure of P . The proof follows that of Theorem 3.4, using Theorem 4.4 for process names,

and Lemma 4.3 for the inductive step. 2

Theorem 4.5 would, however, not hold if I allowed for extensions of simple GSOS systems

with recursive de�nitions involving operations which are not hereditarily guarding, as the following

example shows.

Example: Consider a simple GSOS system with constant 0 and unary operations f; g speci�ed by

the rules given in (5). As previously noted, f is guarding, but not hereditarily guarding. Let X be

a process name in N , and take �(X) � f(X). Then it is easy to see that graph(X) is an in�nite

state process graph. In fact, X !

+

G

�

g

n

(X), for all n.

Note, moreover, that graph(X) is in�nite-state even modulo bisimulation equivalence. In fact,

it can be seen that each term of the form g

n

(X) can perform n a-actions in a row and become 0 in

doing so, while no g

m

(X) with m < n can. 2

5 Concluding Remarks

5.1 In�nitary GSOS Systems

In keeping with the standard treatment of GSOS languages [7, 6], I have only considered languages

of a �nitary nature, i.e. languages over a �nite set of combinators and �nite sets of actions and

GSOS rules. Process algebras like CCS [22] and Meije [3], however, postulate an in�nite action

9



set. Consequently, the results presented in this note cannot be applied directly to the full versions

of these calculi. I shall now briey sketch a possible extension of the results presented in Section 3

to a class of \in�nitary" GSOS systems. For the purpose of this section, I assume that the set of

actions Act is countable

1

.

De�nition 5.1 An in�nitary GSOS system is a pair G = (�

G

; R

G

), where �

G

is a countable

signature and R

G

is a countable set of GSOS rules over �

G

.

In the presence of a possibly in�nite action set and signature, care must be taken to preserve

the basic sanity properties of GSOS systems [7, 6] which have bearing on the aim of this note.

For instance, processes which give rise to in�nitely branching process graphs can now be easily

speci�ed, and should be ruled out. An example of such a process is the constant all-actions with

rules (one such rule for each a 2 Act):

all-actions

a

! all-actions

The process graph associated with all-actions is in�nitely branching, if Act is in�nite. As a technical

notion that will be useful in identifying an interesting class of \well-behaved" in�nitary GSOS

systems, I de�ne the notion of a positive trigger of an l-ary operation f : an l-tuple over Act which

gives the positive constraints under which some rule for f might �re.

De�nition 5.2 The positive trigger of rule (1) is the l-tuple he

1

; : : : ; e

l

i, where

e

i

= fa

ij

j1 � j � m

i

g

For example, the positive trigger of the operation a-if-b(�) is the tuple hfa; bgi.

The following de�nition presents an adaptation of the notion of bounded de Simone system, due

to F. Vaandrager [28, De�nition 3.2], to in�nitary GSOS systems. The interested reader is referred

to [28] for more information on the notion of boundedness.

De�nition 5.3 (Boundedness) An in�nitary GSOS system is bounded i� for each operation

and for each positive trigger, the corresponding set of rules is �nite.

All the standard operations used in the literature on process algebras satisfy the boundedness

condition. An operation which does not is the constant all-actions given above.

A bounded in�nitary GSOS system associates a �nitely branching process graph with each

term. (See [28, Theorem 3.3] for a similar result over de Simone systems.)

Proposition 5.4 For each in�nitary GSOS system G there is a unique sound and supported tran-

sition relation, !

G

. If G is bounded, then !

G

is �nitely branching, i.e. for all P 2 T(�

G

), the

set

n

Q j 9a 2 Act : P

a

! Q

o

is �nite.

1

A set X is countable if it is empty or if there exists an enumeration of X, that is a surjective mapping from the

set of positive integers onto X.

10



Proof: The proof of the �rst part of this proposition follows the standard lines of that of Lemma 2.6.

To prove the second statement, it is su�cient to show that, for bounded in�nitary GSOS systems,

the sets

n

a 2 Act j 9Q 2 T(�

G

) : P

a

! Q

o

and

n

Q j P

a

! Q

o

are �nite, for all P 2 T(�

G

) and

a 2 Act. This can be easily shown by structural induction on P . 2

In general, the condition of boundedness is not enough to ensure that the process graph associ-

ated with each term in a simple in�nitary GSOS system is �nite. Consider, for example, a simple

in�nitary GSOS system with constants c

i

, i 2 !, and rules

c

i

a

! c

i+1

Such a GSOS system is obviously bounded, but der(c

i

) is in�nite for all i 2 !. This pathological

behaviour is due to the fact that the operator dependency relation �

G

associated with such an

in�nitary GSOS system is not image-�nite [16]. For the sake of completeness, I recall that a binary

relation R over a set E is image-�nite i� for all e 2 E the set fe

0

j eR e

0

g is �nite.

Theorem 5.5 Let G = (�

G

; R

G

) be a simple, bounded in�nitary GSOS system such that �

G

is

image-�nite. Then, for all P 2 T(�

G

), graph(P ) is a �nite process graph and the sort of P

sort(P ) =

n

a 2 Act j 9Q;R 2 der(P ) : Q

a

! R

o

is �nite.

Proof: By structural induction on P , one proves that der(P ) is �nite using Theorem 3.3 and the

fact that �

G

is image-�nite. Next, by Lemma 5.4, I obtain that graph(P ) is �nite branching. These

two facts imply that graph(P ) is indeed �nite, and sort(P ) is a �nite set. 2

The operator dependency graph associated with the recursion-free sublanguages of all the pro-

cess algebras I am aware of is image-�nite. Indeed, �

G

is the identity in CCS, CSP, Meije and

ACP.

5.2 Related Work

After the technical part of this note was written, I. Castellani and F. Vaandrager pointed out to me

the important reference [19]. In that paper, E. Madelaine and D. Vergamini study some syntactic

conditions on operational rules in de Simone's format [25] which ensure that the process graphs

giving the operational semantics of terms are �nite. This they do by identifying two classes of well-

behaved operations, which they call non-growing operations and sieves. Intuitively, non-growing

operations are operations which, when fed with (terms denoting) �nite process graphs, build �nite

process graphs. Sieves are a special class of unary non-growing operations whose operational rules

have the form

x

a

! x

0

f(x)

a

! f(x

0

)

The reader familiar with standard process algebras will have noticed that operations like CCS

restriction and renaming [22], and hiding [17] are sieves.

In view of Theorem 3.4, all GSOS operations given in terms of simple rules are non-growing in

the sense of Madelaine and Vergamini. Moreover, the rule for sieves are all simple. The syntactic

condition used by Madelaine and Vergamini to establish the fact that some operations are non-

growing is based on term rewriting techniques; namely, on �nding a simpli�cation ordering over
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terms (see [19, De�nition 4]). This is similar in spirit to the technique proposed in [2, Section 6] to

show that linear GSOS systems, which are a generalization of de Simone systems, are syntactically

well-founded. The notion of simple rule, albeit less powerful than term-rewriting techniques based

on simpli�cation orderings, o�ers a much simpler syntactic criteria which guarantees the �niteness

of the semantics of terms. It is also a criteria which applies well to general GSOS rules; for instance,

it can be used to show that some operations which use negative premises, like the priority operation

speci�ed by (4), generate �nite process graphs from �nite ones.

Specialized techniques which can be used to show that certain processes give rise to �nite

process graphs have been proposed for CCS and related languages. The interested reader is invited

to consult [10] and the references therein. Not surprisingly, these specialized methods tend to be

more powerful than general syntactic ones as they rely on language-dependent semantic information.

For instance, a method to check the �niteness of a large set of CCS processes based on abstract

interpretation techniques [1] has been proposed in [10]. However, the language dependency of these

techniques, which is the source of their power, makes it di�cult to generalize them to classes of

languages.

Acknowledgements: Many thanks to Bard Bloom for his useful comments on this note, and to

Ilaria Castellani and Frits Vaandrager for pointing out the reference [19].
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