
A Fully Abstract Denotational Model for

Higher{Order Processes

�

M. Hennessy

University of Sussex

Abstract

A higher{order process calculus is de�ned in which one can describe processes

which transmit as messages other processes; it may be viewed as a generalisation of

the lazy �-calculus. We present a denotational model for the language, obtained by

generalising the domain equation for Abramskys model of the lazy �-calculus. It

is shown to be fully abstract with respect to three di�erent behavioural preorders.

The �rst is based on observing the ability of processes to perform an action in

all contexts, the second on testing and the �nal one on satisfying certain kinds of

modal formulae.

�

This work has been supported by the SERC grant GR/H16537

1

1 Introduction

Process algebras are simple speci�cation languages for concurrent communicating pro-

cesses. Typically they consist of a small number of combinators for constructing new

processes from existing processes and their meaning is then determined by a collection

of laws or equations expressed in terms of these combinators. For example CCS, [Mil89],

contains a parallel and a choice combinator, j and + respectively. The term p j q de-

scribes a process which consists of two subprocesses p and q running in parallel while

p + q describes a process which may either act like p or like q but not both. It also

contains a set of pre�xing combinators, one for each action from some prede�ned action

set. The term c:p is a process which can perform the action c and then proceed to

act like the process p. These actions may be interpreted in a variety of ways but typi-

cally they represent the sending or receipt of data along some communication channel

and communication is modelled by the simultaneous occurrence of a send and a receive.

Combinators similar in style to these appear in most process algebras as does some form

of scoping for channel names. Indeed it is this last concept which gives them much of

their descriptive power.

The underlying mathematical theory of these languages is well-developed and fairly

well understood, [Mil89, Hoa85, BW90, Hen88]. Much of this fundamental work has

been carried out for \pure" process algebras, where the actions are taken to be simple

synchronisation pulses along channels, but more recently theories have been developed for

languages where various kinds of data are passed along the communication channels. For

example in [HI91] simple data values such as the integers are allowed while in [MPW92a,

MPW92b] channels themselves are allowed. In [Tho89, Tho90] processes may pass other

processes as values and it is this type of process description language which is the topic

of the present paper.

There are now two kinds of pre�xing, c?X:P , meaning input a process along the

channel c and bind it to the process variableX in the term P , and c!Q:P , meaning output

the process Q along the channel c and then act like the process P . Thus c?X:(X j R)

represents a process which can input any process and run it in parallel with R. So

combining this with c!Q:P we obtain the process c!Q:P j c?X:(X j R) which can

perform a communication to become the process P j (Q j R). This idea is pursued

in depth in [Tho90] where a number of di�erent formalisations are investigated. The

resulting language is shown to be very powerful in that it can simulate, in some sense,

both the �-calculus and the �-calculus of [MPW92a]. The connection between the �-

calculus and various higher{order process calculi and their relative merits is further

pursued in [San92]. Here we do not address such issues. Rather we investigate the

possibility of providing an adequate semantic theory for higher{order process calculi.

In particular we provide a fully abstract denotational model for one such higher{order

language.

The starting point for the development of this model is the lazy �-calculus. At a very

naive level this is a primitive higher-order process language. The �-term �x:p may be

viewed as a process which is waiting to receive another process along the communication

channel � while the application term pq represents sending the process q to the process

p. In [Abr90] this language is interpreted in the model obtained by solving the domain

equation

D = F

?

2

F = D �! D

Each �-term is interpreted either as ?, in the case when it gives rise to a divergent

computation, or as an element of F, i.e. a function over �-terms. A higher-order process

can be viewed as having similar behaviour but now parametrised on channels; �-terms

being simple processes which can only receive input on one channel. Thus the input

behaviour of a higher{order process, in analogy with �-terms, can be captured by a

function from N , the set of channel names, to F

?

; with respect to each channel the

process may o�er no behaviour, modelled by ?, or may act like a function over processes.

Similarly its output behaviour, which has no real counterpart in the �-calculus, can be

modelled as a function from N to C

?

, where C is some space suitable for modelling

output. One simple suggestion for C is the Cartesian product D�D, with the elements

of the pair representing, respectively, the process sent along the channel and the residual

of the output action. We shall see that a slightly more complicated form of product is

actually necessary, which we denote by C

r

C.

The analogy between �-terms and higher{order processes given above is rather ten-

uous but it has helped us motivate a model obtained by solving the recursive domain

equation

P = (N �! C

?

) � (N �! F

?

)

F = P �! P

C = P

r

P

Moreover one can easily imagine how the combinators of input and output might be

interpreted over this model. But a reasonable process algebra contains other combinators.

At �rst glance the choice combinator + would appear to present problems. The �-

calculus is completely deterministic in its extensional behaviour but nondeterminism is

an essential aspect of process algebras. However in [Bou91] it is shown how to interpret

a nondeterministic version of the �-calculus in the domain D; this is in fact a complete

lattice and in particular it has a join operator _. The domain P is also a complete lattice

and thus we can use exactly the same approach, interpreting the choice combinator +

as _. Moreover having an interpretation of pre�xing and choice means that by means

of an expansion theorem we can obtain an interpretation of the parallel combinator j.

Finally it turns out that we can also interpret in a straightforward fashion certain forms

of channel scoping; that called dynamic scoping in [Tho90].

Having outlined a possible denotational semantics for a higher{order process calculus

the next question we must address is: how reasonable is this as a model of the behaviour

of processes? To answer this question we again pursue the analogy with the �-calculus.

How good is D as a model of the behaviour of �-terms ? This question is answered in a

very precise manner in [Abr90, Bou91] and we can give a very similar answer for P.

In [Abr90] an observational preorder is de�ned on �-terms in terms of their ability to

converge to a \functional term" of the form �x:r using a lazy evaluation strategy. This

is a variation on the original observational preorder on �-terms de�ned by Morris, see

exercise 16.5.5 of [Bar84]. Let us denote this by p + and for two �-terms p; q let p � q

if p + implies q +.

Let p

<

�

O

q if for every context C[], i.e. a term with one \hole" [] in it,

C[p] � C[q].

3

In [Abr90] it is shown that, subject to certain expressivity requirements, the domain D

is fully abstract with respect to the observational preorder

<

�

O

. That is, p

<

�

O

q if and

only if the interpretation of p in the domain D is dominated by the interpretation of q;

the domain properly reects the ability of �-terms to act like functions. A similar result

holds for the the nondeterministic or parallel version of the �-calculus of [Bou90a, Bou91]

but p + is interpreted as it is possible for p to converge to a functional term, although

in these papers a di�erent phraseology is used.

Viewing the �-calculus as a primitive higher{order process calculus p + can be inter-

preted as: p is willing to o�er a communication on the communication channel �. So

let us generalise this predicate + to arbitrary processes from our higher{order process

calculus by de�ning

p + if there exists some channel on which p is willing to o�er a communication

The main result of this paper is that, subject once more to expressivity requirements,

the model P is fully-abstract with respect to the observational preorder

<

�

O

, with this

new interpretation of +. That is, the interpretation of the process p in the domain P is

dominated by that of q if and only if for every context C[] if C[p] is willing to o�er a

communication on some channel then so is C[q].

We also prove full abstraction for two other observational preorders between processes

and both can also be motivated by reference to similar results for the lazy �-calculus.

The ability to examine a �-term in an arbitrary context gives one complete control over

that term; the context can for example send the term to a collection of subterms each

of which can examine an aspect of its behaviour and then pass it on to other subterms

for further examination. However each of these subterms can only use the term under

examination in a limited manner: they can only supply an argument for the term to be

applied to. So a simpler behavioural preorder may be de�ned on �- terms based on their

reaction to a sequence of arguments:

p

<

�

T

q if (: : : (pr

1

) : : : r

n

) + implies (: : : (qr

1

) : : : r

n

) + for every sequence of

�-terms r

1

; : : : ; r

n

.

The model D is also fully abstract with respect to this preorder, i.e.

<

�

O

and

<

�

T

coincide over �-terms. This view of �-terms treats them as \black boxes". One has no

control over them; the only way of �nding out about their behaviour is to send them a

parameter, i.e. communicate with them. This is very similar in spirit to the theory of

testing for processes, originally presented in [DH84] and expounded at length in [Hen88].

There a test e (represented as another process) is applied to a process p by running e and

p in parallel, thereby allowing them to communicate, and the application is successful if

e reaches some \successful" state. The test e may be viewed as a generalisation of the

sequence of parameters r

1

; : : : r

n

supplied to the �-term and the successful state plays

the role of +. So let us generalise

<

�

T

to higher-order processes by saying p may satisfy

the test e if there is a successful application of e to p and

p

<

�

T

q if p may satisfy e implies q may satisfy e for every test e.

We show that P is also fully abstract with respect to

<

�

T

.

The full abstraction results in [Abr90, Bou91] rely heavily on a logical characterisation

of the domainD, [CC90, Abr91]. Essentially the compact elements ofD can be described

4

by formulae from a logic in such a way that D is isomorphic to the �lters generated by

the logic. Further the interpretation of the �-calculus in D can be completely captured

by a program logic whose judgements are of the form ` p : � and this program logic

is central to the proofs of full abstraction. A similar program can be carried out for

the model P and the resulting logic is a simple modal logic whose formulae express the

ability of processes to receive and transmit along communication channels. Furthermore

we can interpret this modal language operationally over processes using a satisfaction

relation j= between processes and formulae; it is called a realizability interpretation in

[Bou91]. This gives a further method for comparing behaviourally processes:

let p

<

�

L

q if p j= � implies q j= � for every formulae �

We also show that P is fully abstract with respect to

<

�

L

. This is analogous to the

modal characterisation of bisimulation equivalence for processes given in [HM85].

To sum up the three behavioural preorders

<

�

O

;

<

�

T

and

<

�

L

coincide over higher{

order processes de�nable in our language and further they are characterised precisely by

the model P.

We now describe in some detail the contents of each section of the paper. The

next section is a review of the mathematical properties of the domains which we use,

prime algebraic lattices. In section three the language for higher order processes is

given together with its operational semantics. The syntax is di�erent from that used in

[Tho90] as we borrow some syntactic constructs from [Mil91], namely abstractions and

concretions.

The language is typed, having terms of type process, abstraction and concretion.

The input construct c?X:T is replaced by the term of type process c?F where F is of

type abstraction. For simplicity we restrict abstraction terms to have the form (X)T

where T is of type process although this could easily be generalised. Thus c?X:T is

replaced by c?(X)T and the term (X)T can be seen as a functional abstraction and

will indeed be interpreted in much the same way as the �-term �X:T . Similarly the

output construct c!T:U is replaced by c!C where C is a term of type concretion. All

concretion terms have the form [R]S where R and S have type process; R is the process

sent along the channel c while S represents the subsequent behaviour of c![R]S after the

output has been performed. The language also contains the standard choice operator +

and a generalised parallel construct

A

j

B

over process terms where A; B are any subsets

of the of channels N . Intuitively in P

A

j

B

Q Pand Q can communicate at will using

common channels but P may only communicate with processes other than Q using

channels from A and similarly for Q and B. This generalisation of the usual parallel

construct automatically incorporates a form of channel scoping. The usual channel

restriction combinator PnA, where P may not use the channels from A for external

communication, can be implemented as P

B

j

N

NIL where NIL is the usual constant

representing the \empty" process and B is N �A. Our language may be viewed as an

extension of CHOCS, [Tho90], and therefore we refer the reader to that publication in

order to get some idea of its expressiveness.

Section three also contains the operational semantics. This is expressed in terms of

three judgements:

5

� P

�

�! Q: This means that the process P may perform a communication and

thereby be transformed into Q. This is in turn de�ned in terms of the two other

judgements.

� P

n!

�! C: This formalises the fact that P is willing to send a communication to

the channel n and C encodes a possible result of that action

� P

n?

�! F : Here P is willing to receive a process from the channel n and F encodes

what will be done with any such process received.

Finally section three also contains formal de�nitions of the three behavioural relations

<

�

O

;

<

�

T

and

<

�

L

, all de�ned in terms of the operational semantics.

The denotational model P is de�ned in section four and its properties elaborated.

The main result is its characterisation in terms of a modal logic.

The next two sections are devoted to the semantic interpretation of the language.

This is carried out in two ways. The �rst is a fairly standard denotational semantics

in that each combinator is interpreted as a function of the appropriate type over the

domains. The second consists of a program logic with judgements of the form ` P : �

where P is a process and � a modal formulae or more generally � ` T : � where �

is a set of assumptions about the free variables in the term T . There are two main

results concerning the interpretations. The �rst shows that the two interpretations are

essentially equivalent; each can be recovered from the other. This is proved in section

six. The second, in section �ve, is a de�nability result which says that every compact

element of the model is denotable by a term in the language.

The full abstraction results are then given in section six. This is a relatively short

section as it merely combines the various results which have been accumulated in the

previous sections. The principal technical result is called adequacy. This states that the

interpretation of a process in the model is equal to ?, the least element of the domain P,

if and only if the process can never o�er a communication on any channel. This adequacy

result together with that on de�nability are the central components in the proofs of full

abstraction. In turn the logical characterisation of the semantic interpretation is crucial

to the proof of adequacy.

The paper ends with a short conclusion outlining possible future research and related

work.

2 Mathematical Preliminaries

In this section we de�ne our notion of domains and outline some of their properties.

A complete lattice is a partial order (D;�) such that each subset of X of D has a

least upper bound which we denote by

W

X. We write the lub of two elements as x _ y.

An element c in a complete lattice is compact if for each subset X of D such that c �

W

X

there exists a �nite subset Y of X such that c �

W

Y . Let K(D) denote the compact

elements of the complete lattice D. A complete lattice D is algebraic if for every d 2 D

d =

_

f c 2 K(D) j c � d g:

An compact element p of D is prime if p � d _ e implies either p � d or p � e. Let

KP(D) be the set of prime elements of the complete lattice D. Then a lattice is said to

6

be prime algebraic if for every d 2 D

d =

_

f c 2 KP(D) j c � d g:

In this paper we use domain to mean a prime algebraic lattice. Note that every

domain D has a least element ? =

W

; and a greatest element > =

W

D. Also every

compact element c is the join of a �nite number of primes, c = p

1

_ : : : _ p

n

.

A function f :D 7�! E between two domains is strict if f(?) = ?, monotonic if

d � d

0

implies f(d) � f(d

0

) and injective if f(d) � f(d

0

) implies d � d

0

. A subset X of

a domain D is directed if every �nite Y � X has an upper bound in X, i.e. there exists

some d in X such that

W

Y � d. It follows that every directed set is non-empty since

it must contain an upper bound for the empty set. The function f is continuous if for

every directed subset X of D f(X) = f f(x) j x 2 X g is directed and f(

W

X) =

W

f(X).

Note that continuous functions are automatically monotonic. We say f is linear if in

addition f(x _ y) = f(x) _ f(y) and more generally if f :D

k

7�! E then it is multilinear

if f(d

1

; : : : ; d

i

_ d

0

i

; : : : d

k

) = f(d

1

; : : : ; d

i

; : : : d

k

) _ f(d

1

; : : : ; d

0

i

; : : : d

k

).

Domains are completely determined by their primes, as we shall now see. Moreover

continuous functions are determined by their e�ect on compact elements and multilinear

functions by their e�ect on primes.

For any partial order (P;�) with a least element ? let Fin(P) be the set of �nite

non-empty subsets of P and for u; v 2 Fin(P) let

u �

l

v if 8x 2 u9y 2 v:x � y:

Then (Fin(P);�

l

) is a pre-partial order or ppo, i.e. �

l

is reexive and transitive, and it

has a least element, namely f?g. Let P

l

(P) denote its ideal completion, [Gue81]. This

is often refered to as the lower or Hoare powerdomain of P .

Lemma 2.1

1. P

l

(P) is a domain with (the embedding of) Fin(P) as its compact elements and

(the embedding of) P as its primes

2. Every domain D is isomorphic to P

l

(KP(D)). 2

As a result if KP(D) and KP(E) are isomorphic as \partial orders with ?" then D and

E are isomorphic as domains.

For any monotonic f :K(D) 7�! E let f

1

:D 7�! E be de�ned by

f

1

(d) =

_

f f(c) j c � d g

and for any f :D 7�! E let f

c

:K(D) 7�! E be the natural restriction. In a similar

manner for any monotonic f :KP(D)

k

7�! E let f

1

:D

k

7�! E be de�ned by

f

1

(d) =

_

f f(p) j p � d g

and for f :D

k

7�! E let f

p

:KP(D)

k

7�! E be the natural restriction.

Lemma 2.2

1. f is continuous if and only if f = (f

c

)

1

2. f is multilinear if and only if f = (f

p

)

1

2

7

Thus for continuous functions f = g if and only if f

c

= g

c

and similarly for multilinear

functions. It follows that in order to de�ne a continuous (multilinear) function it is

su�cient to de�ne it on the compact (prime) elements.

We now review briey the constructions of domains which are required in the paper;

most are standard. For any set N let (N �! E) be the set of all functions from N

to the domain E. These functions are ordered in the standard way, namely f � g if

f(n) � g(n) for every n in N . With this ordering (N �! E) is a domain where the

primes are all those functions f whose range is KP(E) and which return ? for all but

at most one element of N .

Let [D �! E] be the set of continuous functions from the domain D to the domain E.

This, ordered in the standard way, can also be seen to be a domain where the primes

are step functions of the form c) p for c 2 K(D) and p 2 KP(E). Recall that the step

function d) e is de�ned by

d) e(x) =

(

e d � x

? otherwise.

The Cartesian product D � E also yields a domain as does the \lifting operation" D

?

.

We use d

?

to denote the element in

?

(d) of D

?

where in

?

:D 7�! D

?

is the natural

injection.

The most complicated construction we require is a form of tensor product. In the

Cartesian product D

1

� D

2

the join is de�ned pointwise: (d

1

; d

2

) _ (d

0

1

; d

0

2

) = (d

1

_

d

0

1

; d

2

_ d

0

2

). This implies (d; d

1

_ d

2

) = (d; d

1

)_ (d; d

2

) and (d

1

_ d

2

; d) = (d

1

; d)_ (d

2

; d).

To model concretions, as outlined in the introduction, we require a product where the

former identity remains true but in general (d

1

_ d

2

; d) is di�erent from (d

1

; d) _ (d

2

; d).

This is de�ned in the following way. A continuous function f :D

1

�D

2

7�! E is called

right-linear if f(d

1

; d

2

_ d

0

2

) = f(d

1

; d

2

) _ f(d

1

; d

0

2

). For any two domains D

1

;D

2

let

D

1

r

D

2

be the domain characterised by the requirements

1. there exists a right-linear injection i

r

:D

1

�D

2

7�! D

1

r

D

2

2. for any right-linear f :D

1

�D

2

7�! E there exists a unique linear f

r

:D

1

r

D

2

7�!

E which makes the following diagram commute:

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

-

?

i

r

f

r

f

D

1

r

D

2

E

D

1

�D

2

Of course we have to show that such a D

1

r

D

2

exists. A standard \arrow-chasing"

argument will establish that if it exists it is unique (up to isomorphism) and we con-

tent ourselves with outlining the construction of one domain with both of the required

properties.

In fact to construct D

1

r

D

2

it is su�cient to de�ne its prime elements. Let

P = f (c; p) j c 2 K(D

1

); p 2 KP(D

2

) g

8

and let (c; p) � (c

0

; p

0

) if c �

D

1

c

0

and p �

D

2

p

0

. This is a ppo with a least element and

we let D

1

r

D

2

be P

l

(P). Let i:K(D

1

�D

2

) 7�! D

1

r

D

2

be de�ned by

i(c

1

; c

2

) = f (c

1

; p

i

) j c

2

= p

1

_ : : : _ p

n

g

where we identify Fin(P) with its injection into D

1

r

D

2

. Note that this is well de�ned

for if p

i

; q

j

are all prime and p

1

_ : : :_p

k

= q

1

_ : : :_ q

l

then f (c; p

i

) j i 2 I g =

l

f (c; q

j

) j

j 2 j g. One can also check that it is monotonic, right-linear and injective. Let i

r

be

de�ned as i

1

which is therefore a right{linear injection.

We must check that i

1

, de�ned in the way, has the required properties. To this end let

f :D

1

�D

2

7�! E be an arbitrary right-linear function. De�ne f

l

:KP(D

1

r

D

2

) 7�! E

by f

l

(c; p) = f(c; p). This is obviously monotonic and therefore we can de�ne f

r

to be

function f

1

l

. We must check

1. f

r

� i

r

= f:

Again it is su�cient to consider compact elements of D

1

�D

2

. Let c

i

2 K(D

i

) and

let c

2

= p

1

_ : : : _ p

n

. Then

f

r

� i

r

(c

1

; c

2

) = f

r

(f c

1

; p

i

j 1 � i � n g) by the de�nition of i

r

=

_

i

f

r

(c

1

; p

i

) since f

r

is linear

=

_

i

f(c

1

; p

i

) by the de�nition of f

r

= f(c

1

;

_

i

p

i

) since f is right-linear

= f(c

1

; c

2

)

2. If g:D

1

r

D

2

7�! E is linear and g � i

r

= f then g = f

r

.

It is su�cient to check that they coincide on the primes of D

1

r

D

2

which is

obvious since they both must coincide with f there.

We will usually use the notation d

1

r

d

2

in place of i

r

(d

1

; d

2

). Using this notation

we have

d

r

(d

1

_ d

2

) = d

r

d

1

_ d

r

d

2

but in general

(d

1

_ d

2

)

r

d 6= d

1

r

d _ d

2

r

d:

3 The Language

Let N be a set of channel names, ranged over by n;m; : : :, and X a set of process

variables, ranged over by X;Y; : : :. Then the syntax of the language is given by

Processes T ::= NIL j T + T j n?F j n!C j X

j FT j G(T); G 2 Aux

Abstractions F ::= (X)T

Concretions C ::= [T]T

9

where Aux is a set of auxiliary operators. In this paper we use a particular set of such

operators which are de�ned as follows:

1. parallelism

for each pair of subsets, A;B of N , a binary in�x parallel operator

A

j

B

2. renaming

for each function r from N to N which is almost everywhere the identity a unary

post�x renaming operator frg

In (X)T the pre�x (X) acts as a binder for occurrences of X in T and this leads to

the standard notion of free and bound occurrences of variables, �-conversion and of

substitution: TfU=Xg stands for the term obtained by substituting all free occurrences

of X in T by U where as usual the bound variables in T are renamed via �-conversion if

necessary so that no free variables in U are captured. More generally if � is a substitution,

i.e. a mapping from X to terms of type process, T� denotes the result of replacing all

free occurrences of each X in T by �(X). We use process to mean a closed process{term

from this language and P;Q; : : : are used to denote typical processes.

The language may be considered as an extension of CHOCS, [Tho90]. The CHOCS

processes a?X:P; a!P:Q are represented here by a?(X)P; a![P]Q respectively, the parallel

CHOCS term P j Q by P

N

j

N

Q and the restriction Pna by P

A

j

N

NIL whereA = N�fag.

So informally we shall view CHOCS via this representation as a sublanguage.

The operational semantics of the language is given in Figure 1 where for convenience

we have omitted the symmetric counterparts to the Choice and Parallelism rules and

the function name used in the latter has the obvious de�nition. There are three types

of judgements, of the form

P

n?

�! F

P

n!

�! C

P

�

�! Q;

where P and Q are processes, F is a closed abstraction term and C a closed concretion

term. The relations

n?

�! and

n!

�! describe the communication capabilities of processes

while

�

�! describes the a�ect of an actual communication; P

�

�! Q means that P may

perform a communication and thereby be transformed into Q.

The crucial rule in Figure 1 is that of communication. As an example of its application

we have

n?F

A

j

B

n![P]Q

�

�! FP

A

j

B

Q:

This follows because n![P]Q has the capability n![P]Q

n!

�! [P]Q, i.e. it can send a

communication to the channel n and if asked to do so will send the process P and its

residual will be Q, while n?F can receive a communication from the channel n and if

asked to do so will apply the abstraction F to the incoming value. The net e�ect of

the Communication rule is that in the process P

A

j

B

Q the sub-processes P and Q can

communicate using any channel they have in common while the Parallelism rule says

that it has all the capabilities of P which use channels from A and all those of Q which

use the channels from B. The behaviour of the remaining operators are well-known,

either from CCS, [Mil89], or in the case of Application from the �-calculus.

In our language the local scoping of channel names is carried out by the parallel

operator

A

j

B

. In P

A

j

B

Q all occurrences of names not from A in P are local to P and

10

Input n?F

n?

�! F

Output n!C

n!

�! C

Choice P

c

�! A implies P +Q

c

�! A

Application TfQ=Xg

c

�! A implies FQ

c

�! A

where F is (X)T

Parallelism P

c

�! A; name(c) 2 A [f�g implies P

A

j

B

Q

c

�! A

A

j

B

Q

Communication P

n?

�! F

Q

n!

�! [Q

1

]Q

2

implies P

A

j

B

Q

�

�! FQ

1 A

j

B

Q

2

Renaming P

c

�! A implies Pfrg

r(c)

�! Afrg

where

if F is (X)T then F

A

j

B

P denotes (X)(T

A

j

B

P) (and similarly for P

A

j

B

F) and Ffrg

denotes (X)(Tfrg)

if C is [Q

1

]Q

2

then C

A

j

B

P is [Q

1

](Q

2 A

j

B

P) (and similarly for P

A

j

B

C) and Cfrg

denotes [Q

1

](Q

2

frg)

Figure 1: The Operational semantics

similarly for B in Q. With this idea of channel scoping it turns out that our operational

semantics implements a dynamic scoping mechanism. To see this let us use the more

usual notation P j Q for P

N

j

N

Q and PnA in place of P

B

j

N

NIL where B is N �A; this

latter process acts like P except that all channels in A are local. Now consider the term

n?(X)(X j P) j (n![Q]R)nA

where Q is a process using some channels from A. The occurrences of channels from A

in Q are governed by the restriction, i.e. they are local. Now a communication using the

channel n is possible and when it happens the process is transformed into

(X)(X j P)Q j (R)nA:

The result is that Q has escaped from the restriction by being sent from one process to

the other. As another example consider

n?(X)((X j P)nA) j n![Q]R:

11

Here Q is not governed by the restriction but the e�ect of the communication is to

transform the process into

(X)((X j P)nA)Q j R

Because of the operational semantics of function application this has exactly the same

behaviour as

(Q j P)nA j R

where now all occurrences of channels from A in Q are considered local.

Based on this operational semantics we give three di�erent behavioural equivalences

or preorders. The �rst is motivated from the view of the lazy �-calculus advocated in

[Abr90, Bou90b]. Let

"

=) be the reexive transitive closure of the relation

�

�! and for

c of the form n?; n! or � let

c

=) denote

"

=) �

c

�!. We write P

c

=) to mean that there

exists some A such that P

c

=) A. This formalises a basic observation one can make of

a process, namely its capability of performing a communication. A direct comparison of

capabilities is given by

P � Q if for every c of the form n! or n? P

c

=) implies Q

c

=)

A behavioural preorder may now be de�ned by comparing capabilities in all possible

contexts. A context C[] is simply any term which contains one occurrence of a \hole"

[].

De�nition 3.1 P

<

�

O

Q if C[P] � C[Q] for every closed context C[]. 2

This is a generalisation of the observation preorder de�ned for the �-calculus in [Bou90b,

Abr90] although for simplicity we con�ne our attention to closed terms. There, as

explained in the introduction, the basic observation one can make of a �-term p is its

ability to converge, i.e. reduce to a functional term of the form �x: : : :; this is denoted

by p +. Then the observation preorder between �-terms is de�ned as above: p

<

�

O

q if

for every closing context C[] C[p] � C[q] where as before � is de�ned in terms of the

basic observation: p � q if p + implies q +.

The generalisation is even more direct if we de�ne the basic observation to be the

ability to perform some action: Let P =) mean that there is some n such that P

n!

=)

and let P �

0

Q be de�ned as P =) implies Q =) . Then let P

<

0

�

O

Q if for every

closed context C[] C[P] �

0

C[Q]: However the two resulting behavioural preorders are

equivalent.

Proposition 3.2 P

<

�

O

Q if and only if P

<

0

�

O

Q.

Proof: The \only if" direction is obvious. So suppose P

<

0

�

O

Q and P

c

=) for

some c. As an example take the case when c is n!. Then consider the context C[] =

[]

;

j

fmg

n?(X)m![NIL]NIL where m is any channel di�erent from n. Then C[P] =) and

since P

<

0

�

O

Q it follows that C[Q] =) . But this is only possible if Q

n!

=) . 2

The second behavioural preorder is a direct application of the general framework

of testing, [Hen88], originally developed for process algebras. Here the idea is that

two processes are deemed to be equivalent unless there is a test or experiment which

12

distinguishes between them. Processes are considered to be independent entities or

\black boxes" and a test consists of a series of interactions between the process and

the tester which continue until such time as the the tester reaches what it considers

to be a successful state. The tester has no control over the process; it simply tries to

communicate with the process, the process may deem to reply and if it does the tester

may proceed with the experiment in a manner dependent on the reply of the process.

In the present setting we take as a test any process which may use a new distinguished

name ! and say it is in a successful state if it can perform the action !!. The application

of the test E to the process P is de�ned to be a maximal sequence of the form

E j P = E

0

j P

0

�

�! E

1

j P

1

�

�! : : :

�

�! E

k

j P

k

�

�! : : :

and it is a successful application if there exists an n � 0 such that E

n

!!

�!. Then we say

P may E if there exists an application of E to P which is successful. Finally

De�nition 3.3 P

<

�

T

Q if for every test E P may E implies Q may E. 2

This preorder has an alternative characterisation which will later prove useful.

Proposition 3.4 P

<

�

T

Q if and only if for every n not appearing in P; Q and for

every process R; R

fng

j

;

P

n!

=) implies R

fng

j

;

Q

n!

=)

Proof: Note that P may E if and only if E

f!g

j

;

P

w!

=) since it is assumed that ! does

not occur in P . One direction follows immediately. The other direction is a consequence

of the fact that R

fng

j

;

P

n!

=) if and only if (n?(X)w![NIL]NIL

f!g

j

N

R)

f!g

j

;

P

w!

=)

provided n does not occur in P . 2

Applying a test to a process may be interpreted as observing its capability to perform

!! in a restricted context. For this reason we have

Proposition 3.5 P

<

�

O

Q implies P

<

�

T

Q.

Proof: This follows from the fact that P may E if and only if C[P]

!!

=) where C[] is

the context E

f!g

j

;

[]. 2

Observing the ability of a process to perform an action in a given context may also be

viewed as a form of test but in this case the tester, namely the context, has considerable

power over the process being tested. For example a test of the form n![[]]P j Q has the

ability to send the process being tested to the subprocess Q to be examined. Q may

have the form n?(X) : : :X : : :X : : : and so when it receives the process copies of it may

be in turn be distributed to subprocesses for examination. So apriori the observation

preorder

<

�

O

is much �ner than the testing preorder

<

�

T

. Nevertheless we show that

they coincide. This result may be viewed as a generalisation of the Context Lemma for

the �-calculus, see Proposition 2.3.6 of [AO89].

The third behavioural preorder is based on a \realizability" interpretation for the

language using a generalised modal language L. Here the motivation comes from two

13

di�erent areas of research. On the one hand there is the well-known modal character-

isation of the behavioural equivalence called bisimulation equivalence using the modal

language HML, [Mil89]. On the other there are the interpretations of property-logics in

terms of the �-calculus in work such as [Abr90, Bou91, Hin83, BCDC83].

For each of the syntactic categories, processes, abstractions and concretions, we have a

corresponding set of formulae, L

P

; L

F

; L

C

respectively. These are de�ned by

Processes : ! 2 L

P

� 2 L

F

implies hn?i� 2 L

P

� 2 L

C

implies hn!i� 2 L

P

Abstractions : �

1

; : : : ; �

k

; 2 L

P

implies �

1

; : : : ; �

k

! 2 L

F

Concretions : �

1

; : : : �

k

; 2 L

P

implies [�

1

; : : : �

k

] 2 L

C

For conveniencewe introduce the obvious vector notation for formulae so that for example

the formation rule for concretion formulae may be shortened to

�; 2 L

P

implies [�] 2 L

C

:

The satisfaction relation, j=

O

is also typed in that it only de�ned between closed terms

of each syntactic category and modal formulae from the corresponding language. It is

extended in the natural way to vectors of formulae so that for example P j=

O

� means

that for each i; 1 � i � k; P j=

p

�

i

. It is de�ned by induction over formulae as follows:

P j=

O

! for every process P

P

n?

=) F; F j=

O

� implies P j=

O

hn?i�

P

n!

=) C; C j=

O

� implies P j=

O

hn!i�

if (8P; P j=

O

� implies FP j=

O

) then F j=

O

�!

if Q

1

j=

O

� and Q

2

j=

O

 then [Q

1

]Q

2

j=

O

[�]

Note that j=

O

depends entirely on the behaviour of terms and not on their structure.

Let L(P) = f� j P j=

O

� g i.e. L(P) is the set of all formulae satis�ed by the process

P .

De�nition 3.6 Let P

<

�

L

Q if L(P) � L(Q). 2

We aim to show that the three behavioural preorders,

<

�

O

;

<

�

T

and

<

�

L

coincide.

The modal language is carefully chosen with this in mind and apparently simple changes

would make the result untrue. For example we do not have ^ as a connective and

adding it would change the relation

<

�

L

. As an example consider the processes P

1

; Q

1

de�ned respectively by m![NIL](n! + k!) and m![NIL]n! + m![NIL]k! where we use m!

as a shorthand for the process m![NIL]NIL, whenever it makes sense. It turns out that

P

1

<

�

O

Q

1

but P

1

j=

O

� and Q

1

6j=

O

� where � is hm!i[!](hn!i[!]! ^ hk!i[!]!). Similarly

14

sequences are necessary in the constructions [�] and �! . For consider P

2

; Q

2

de�ned

by m![n! + k!]NIL and m![n!]NIL +m![k!]NIL respectively. Then P

2

j=

O

� if and

only if Q

2

j=

O

� for every � not using sequences but P

2

6<

�

L

Q

2

.

The modal language is in fact determined by a denotational model which provides a

crucial link in establishing the equality between the behavioural preorders. The model

and the denotational interpretation of the language in it is described in the next two

sections. We then show that this model is fully abstract with respect to the three be-

havioural preorders.

4 The Model

Consider the domain equation

P = (N �! C

?

)� (N �! F

?

) Processes

F = [P �! P] Abstractions

C = P

r

P Concretions

Intuitively this models a process using two functions one, from N to C

?

, representing

its output potential on each of the possible channels and the other, from N to F

?

,

representing its input potential. Of course a process has a set of potentials on each

channel but this \set-theoretical union" of potentials will be modelled using the join

operation

W

. It may also be that for a particular name a process may have no associated

input or output potential. For this reason we use C

?

and F

?

rather than C and F as the

corresponding functions can map such names to ?; recall that the set of total functions

from N to D

?

is isomorphic to the set of partial functions from N to D. Terms of type

abstraction are interpreted as functions from processes to processes while concretions are

interpreted as tensor products of processes. It is tempting to use the simpler Cartesian

product but this would result in the identi�cation of the two processes P

2

; Q

2

, de�ned

in the previous section, which are behaviourally di�erent.

This equation has an initial solution in the standard category of cpos with embed-

dings, [Plo81], and since the constructions preserve domains the solution is also a domain.

We will omit all references to the isomorphisms generated by this construction. Thus for

example we will consider an element p of P as a pair of functions which we denote by p

!

and p

?

respectively. Moreover for each n in N it will be convenient to denote p

!

(n) and

p

?

(n) as p(n!) and p(n?) respectively. To illustrate the convenience of this informal view

of these domains we de�ne two functions which will be useful in later developments.

For each n 2 N let the function n

out

:C 7�! P be de�ned by

n

out

(c) =< �x 2 N :x = n! c

?

;? ; �x 2 N :? >

and let n

in

:F 7�! P be de�ned in an analogous manner:

n

in

(f) =< �x 2 N :?; �x 2 N :x = n! f

?

;? >

Proposition 4.1 The functions n

out

; n

in

are linear.

15

Proof: By calculation. 2

These domains are completely determined by their primes which we now proceed to

describe. For A = P;F;C respectively, let A

KP

be the least subsets of A satisfying

1. ? 2 A

KP

2. c 2 C

KP

implies n

out

(c) 2 P

KP

for all n 2 N

3. f 2 F

KP

implies n

in

(f) 2 P

KP

for all n 2 N

4. d

1

; : : : ; d

k

; e 2 P

KP

implies d

1

_ : : : _ d

k

) e 2 F

KP

5. d

1

; : : : ; d

k

; e 2 P

KP

implies (d

1

_ : : : _ d

k

)

r

e 2 C

KP

.

Theorem 4.2 For A = P;F;C respectively, KP(A) = A

KP

.

Proof: (Outline) It is very easy to prove by induction that if d 2 A

KP

then d is prime.

To prove the converse we must calculate the primes of the domains P; C and F. Let

F be the domain constructor for the domains. This can be represented as a triple of

functors

F

P

(P;F;C) = (N �! C

?

)� (N �! F

?

)

F

F

(P;F;C) = [P �! P]

F

C

(P;F;C) = P

r

P

Then the domains (P; F; C) are constructed as the inverse limit of the sequence of

domains

(P

0

;F

0

;C

0

) = (?;?;?)

(P

k+1

;F

k+1

;C

k+1

) = F(P

k

;F

k

;C

k

)

where here ? denotes the trivial domain consisting of one element. Moreover the prime

elements of the domains A are the (embeddings) of the prime elements of the \approxi-

mations" A

k

.

So we can prove by induction on k that p 2 A

k

implies p 2 A

KP

. 2

An element of the domain A is determined by the set of primes it dominates and fol-

lowing [Abr90] we could view the primes as properties or propositions. Such a proposition

is \satis�ed" by an element of A if the element dominates it and in this way elements are

determined by the propositions they satisfy. If we invent a logical language for describing

these propositions we then have a logical presentation of the domain, [Sco82].

The logical language we choose is L introduced in the previous section. We could

devise a proof system for this language with judgements of the form

� �

16

General :

Re � � �

Weak

� �

�; �

0

�

Trans

� � ; � �

� � �

Processes :

LP

1

� � !

LP

2

� �

hci� � hci

Abstractions :

LF

1

� � (! ! !)

LF

2

� � �

0

; �

0

�

0

! � �!

0

Concretions :

LC

1

� � �

0

; �

0

[�] � [�

0

]

0

Figure 2: The proof system for L

but in order to have slightly simpler proof rules we use judgements of the form

�

1

; : : : ; �

k

�

where all the formulae are assumed to be of the same type. Using vector notation

judgements are abbreviated to � � which may be read as the conjunction of � implies

 . The proof system is given in Figure 2 where in the rules Trans; LF

2

and LC

1

we use

� � �

0

as an abbreviation for the k judgements � � �

0

i

; 1 � i � k where k is the length

of the vector �

0

. We write L ` � � if � � can be derived in the proof system and

more generally L ` � � if � �

j

can be derived for each j.

We now show how to interpret the formulae as primes in the appropriate models by

17

de�ning a map [[]]:L

A

7�! KP(A). Then the statement L ` � � may be interpreted

semantically as saying that [[]] is dominated by the element [[�

1

]] _ : : : _ [[�

k

]] and since

[[]] will be a prime this means that there is some i such that [[]]� [[�

i

]]. For convenience

we use [[�]] to denote [[�

1

]] _ : : : _ [[�

k

]].

De�nition 4.3

Processes : [[!]] = ?

[[hn!i�]] = n

out

([[�]])

[[hn?i�]] = n

in

([[�]])

Abstractions : [[�!]] = [[�]]) [[]]

Concretions : [[[�]]] = [[�]]

r

[[]]

2

Using this interpretation

Theorem 4.4 For A = P; C; F respectively

1. The map [[]]:L

A

7�! KP(A) is surjective, i.e. for every p 2 KP(A) there exists a

formula � 2 L

A

such that [[�]] = p

2. L ` � � if and only if [[]] � [[�]].

Proof: It is straightforward to show by induction that for every p 2 A

KP

there exists

a formula � 2 L

A

such that [[�]] = p. For example if p has the form n

in

(f) and is in P

KP

because f 2 F

KP

then by induction we may assume that the exists a 2 L

F

such that

[[]] = f . It follows that [[hn?i]] = p.

The proof that L ` � � implies [[]] � [[�]] is equally straightforward. It proceeds

by induction on the proof of � � and this immediately implies the corresponding

result for vectors, namely if L ` � � then [[]] � [[�]]. We prove the converse and it

is su�cient to prove [[]] � [[�]] implies L ` � � . For suppose we have established

this and that [[]] � [[�]]. This means that [[

i

]] � [[�]] for each i and since [[

i

]] is prime

this implies [[

i

]] � [[�

j

]] for some j. Applying the result we obtain L ` �

j

�

i

and by

the rule weakening L ` � �

i

. Since this is true for each i it follows by de�nition that

L ` � � .

The proof that [[]] � [[�]] implies L ` � � proceeds by induction on the structure

of .

1. = !

Use Rule LP

1

2. = hn?i�

Note that since [[]] � [[�]] it follows that � must be of the form hn?i�; otherwise

[[�]](n?) = ? and so [[�]] would not dominate [[]]. Moreover it is easy to check

that [[�]]� [[�]] and therefore by induction L ` � � �. Then using the rule LP

2

we

obtain the required L ` � � .

The case when = hn!i� is similar.

3. = [

1

]

2

Let � have the form [�

1

]�

2

. So [[

1

]]

r

[[

2

]] � [[�

1

]]

r

[[�

2

]] and since i

r

is

18

injective it follows that [[�

1

]] � [[

1

]] and [[�

2

]] � [[

2

]]. We can apply induction to

obtain L ` �

1

�

1

and L ` �

2

�

2

and an application of the rule LC

1

yields

L[�

1

]�

2

� [

1

]

2

.

4. =

1

!

2

Let � have the form �

1

! �

2

. So we have [[

1

]]) [[

2

]] � [[�

1

]]) [[�

2

]]. There are

two cases to consider

(a) [[

2

]] = ?.

Every formula other than ! has a non-trivial interpretation and therefore

2

must be !. From the rule LF

1

we have �

1

! �

2

� ! ! ! while the

rules LF

2

; LP

1

and Weak give ! ! ! �

1

! ! from which the required

L ` �

1

! �

2

�

1

! ! follows.

(b) [[

2

]] 6= ?

This means that [[�

1

]] � [[

1

]] and [[

2

]] � [[�

2

]]. An application of induction

followed by the rule LF

2

once more gives the required result.

2

This theorem states that the models are in fact determined by the language L together

with it proof system. We now state this precisely. An A-�lter is a non-empty subset F

of vectors of formulae from L

A

with the property that � 2 F and L ` � � implies

 2 F . Let Fil

A

be the set of all A-�lters ordered by set inclusion.

Theorem 4.5 Fil

A

is a domain and isomorphic to A.

Proof: It is easy to check that

W

I

F

i

is given by f!

A

g[

S

I

F

i

where !

P

; !

F

and !

C

are

!; ! ! ! and ![!] respectively. Moreover the compact elements are all those �lters of

the form f� j � � g for some vector and the primes all have the form f� j � � g

for some single formula .

Let f :A 7�! Fil

A

be de�ned by f(x) = f� j [[�]] � x g and g: Fil

A

7�! A by

g(F) =

W

f [[�]] j � 2 F g. It follows more or less immediately from the previous theorem

that f and g determine an isomorphism. 2

We end this section with a soundness result for the logic with respect to the realiz-

ability interpretation of the previous section.

Proposition 4.6 For A = P; F; C respectively L ` � � and A j=

O

� implies

A j=

O

 .

Proof: By induction on the length of the proof of L ` � � . 2

19

5 The Interpretation of the Language

Using the model of the previous section we may interpret the language in a standard

fashion. Let ENV be the set of environments, i.e. mappings from X to P, ranged over

by �. Then for each term T of type A we de�ne [[T]]

A

: ENV 7�! A as follows:

� [[NIL]]

P

� = ?

� [[n?F]]

P

� = n

in

([[F]]

F

�)

� [[n!C]]

P

� = n

out

([[C]]

C

�)

� [[X]]

P

� = �(X)

� [[T + U]]

P

� = [[T]]

P

� _ [[U]]

P

�

� [[FT]]

P

� = [[F]]

F

�([[T]]

P

�)

� [[(X)T]]

F

� = �d 2 P:[[T]]

P

�[X 7! d]

� [[[T]U]]

C

� = [[T]]

P

�

r

[[U]]

P

�

� [[G(T)]]

P

� = g([[T]]

P

)

where for each auxiliary function symbol G we have a corresponding function g of

the appropriate type.

To complete the interpretation we need to de�ne the functions corresponding the function

symbols in Aux. To do so it is convenient to introduce some notational conventions.

The �rst concerns the \lifting" operation. Suppose t(x) is a meta-expression involving

the variables x with the property that t(v) 2 E for all values v

i

from a set E

i

. Then if

w

i

2 E

i

?

; t(w) denotes the value in E

?

determined by

t(w) =

(

? if 9i:w

i

= ?

t(v) otherwise where w

i

= (v

i

)

?

The second convention is a convenient way of describing functions over tensor products.

Let �(d

1

; d

2

) 2 D

1

� D

2

:t represent a right-linear function in [D

1

� D

2

�! E]. Then

we use �

r

(d

1

; d

2

) 2 D

1

�D

2

:t to represent its unique extension to a linear function in

[D

1

r

D

2

�! E].

The most di�cult function to de�ne is that corresponding to the parallel operator

A

j

B

. Informally the de�nition simply mimics the usual interleaving interpretation of

parallelism. Formally it takes the form Y Par

A;B

where Y is the least �xpoint operator

and Par

A;B

is a function of type [P � P �! P] �! [P � P �! P]. Intuitively

if F is of type P � P �! P then Par

A;B

F , when applied to two processes x and

y calculates the resulting process by \unioning" together three di�erent components.

The �rst considers possible moves from x and calculates their residuals by applying F

recursively, the second does the same for y while the third calculates the possible results

of communication between x and y using any channel in N . Formally Par

A;B

F (x; y) is

20

de�ned by

W

m2A

m

in

�d 2 P:F (x(m?)d; y)

_m

out

(�

r

(d; d

0

) 2 D �D:d

r

F (d

0

; y))x(m!)

_

W

m2B

m

in

�d 2 P:F (x; y(m?)d)

_m

out

(�

r

(d; d

0

) 2 P�P:d

r

F (x; d

0

))y(m!)

_

W

m2N

(�

r

(d; d

0

) 2 P�P:F (x(m?)d; d

0

))y(m!)

_ (�

r

(d; d

0

) 2 P�P:F (d

0

; y(m?)d))x(m!):

Renaming is interpreted in a similar manner as Y Ren

r

where for each renaming

r Ren

r

: [P �! P] 7�! [P �! P] is de�ned by

Ren

r

Fx =

W

m2N

r(m)

in

�d 2 P:F (x(m?)d)

_ r(m!)

out

(�

r

(d; d

0

) 2 P�P:d

r

F (d

0

))x(m!):

For the remainder of the paper we will omit the subscripts from these semantic func-

tions, rendering [[]]

A

simply as [[]]. When interpreting closed terms we will also usually

omit all reference to environments. We will also make use of the standard substitution

lemma for denotational semantics which states [[A]]�[X 7! [[T]]�] = [[AfT=Xg]]�.

Proposition 5.1 For every G 2 Aux the corresponding function g is multilinear.

Proof: As an example we consider the parallel operator. It is su�cient to show that

Par

A;B

F is multilinear provided F is. Let us introduce some abbreviations by rewriting

Par

A;B

F (x; y) as

W

m2A

m

in

f

m

in

(x; y) _m

out

f

m

out

(x; y)

_

W

m2B

m

in

g

m

in

(x; y) _m

out

g

m

out

(x; y)

_

W

m2N

com

m

l

(x; y) _ com

m

r

(x; y)

Then it is a matter of showing that the functions f

m

i

; g

m

i

and com

m

i

are linear in both

x and y. We give two examples:

� f

m

out

is multilinear.

f

m

out

(x; y) may be written as k

r

y

x(m!) where for any z k

z

is the function �(d; d

0

) 2

P�P:d

r

F (d

0

; z). Since (x_x

0

)(m!) = x(m!)_x

0

(m!) and k

r

y

is linear it follows

immediately that f

m

out

(x _ x

0

; y) = f

m

out

(x; y) _ f

m

out

(x

0

; y).

Since F is multilinear and i

r

is right{linear it follows that k

y_y

0

= k

y

_k

y

0

. A simple

consequence of the universal characterisation of the tensor product construction

is the fact that for any two functions (f

1

_ f

2

)

r

= f

r

1

_ f

r

2

. It follows that

21

k

r

y_y

0

= k

r

y

_ k

r

y

0

. Therefore

f

m

out

(x; y _ y

0

) = k

r

y_y

0

x(m!)

= k

r

y

x(m!) _ k

r

y

0

x(m!)

= f

m

out

(x; y) _ f

m

out

(x; y

0

):

� com

m

l

is multilinear.

Here let k

z

denote the function �(d; d

0

) 2 P�P:F (z(m?)d; d

0

). Then com

m

l

(x; y) =

k

r

x

y(m!) and linearity with respect to y follows immediately from the linearity of

k

r

x

. As in the previous case the multilinearity of F implies k

x_x

0

= k

x

_ k

x

0

and

therefore that k

r

x_x

0

= k

r

x

_ k

r

x

0

. So

com

m

l

(x _ x

0

; y) = k

r

x_x

0

y(m!)

k

r

x

y(m!) _ k

r

x

0

y(m!)

com

m

l

(x; y) _ com

m

l

(x

0

; y)

2

The fact that these semantic functions are multilinear means that they can be char-

acterised by their e�ect on primes. This gives a simple method of establishing their

properties. For example on can show that x

A

j

B

y is the same as y

B

j

A

x by examining

the case when x and y are prime. As we have seen the primes in the models can be

described by formulae from L and therefore we can also describe these functions entirely

in terms of the logic. We use exactly the same symbol to denote the operator in Aux,

the corresponding semantic function over the domain and now the corresponding char-

acterising function over formulae. This may sound confusing but the context will always

disambiguate its use.

Let P

f

(L

p

) denote the set of �nite non-empty subsets of formulae of type Process.

Each s 2 P

f

(L

p

) can be interpreted as an element of P in the obvious way:

[[s]] =

_

f� j [[�]] 2 s g:

So for each G in Aux of arity k we de�ne a function G: (L

p

)

k

7�! P

f

(L

p

) with the

property that G([[�

1

]]; : : : ; [[�

k

]]) = [[G(�)]]; on the left hand side G represents a semantic

function applied to the elements [[�

1

]]; : : : ; [[�

k

]] while on the right hand side it is a function

over formulae.

To make these de�nitions more compact let us introduce the notation hci(�) to

mean hn?i�) when c is m? and hm!i[�] when it is m!. Then the function frg over

formulae is de�ned by the two clauses

� !frg = !

� (hci(�))frg = r(c)(�)� where � = frg.

The main di�culty is in de�ning the parallel function

A

j

B

. This is given in tabular form

in Figure 3, where some of the symmetric cases have been omitted.

Theorem 5.2 For every G in Aux; [[G(�)]] = G([[�

1

]]; : : : ; [[�

k

]])

22

� � �

A

j

B

�

! ! !

! hci(�) f!g

[f hci(�)� j � 2 ; c 2 B g

hn?i�! hm?i�

0

!

0

f!g

[f hn?i� ! � j � 2

A

j

B

�; n 2 Ag

[f hn?i! ! � j � 2 !

A

j

B

�; n 2 Ag

[f hm?i�

0

! � j � 2 �

A

j

B

0

; m 2 B g

[f hm?i! ! � j � 2 �

A

j

B

!; m 2 B g

hn!i[�] hm!i[�

0

]

0

f!g

[f hn!i[�]� j � 2

A

j

B

�; n 2 Ag

[f hm!i[�

0

]� j � 2 �

A

j

B

0

; m 2 B g

hn?i�! hm!i[�

0

]

0

f!g

[f hn?i� ! � j � 2

A

j

B

�; n 2 Ag

[f hn?i! ! � j � 2 !

A

j

B

�; n 2 Ag

[f hm!i[�

0

]� j � 2 �

A

j

B

0

; m 2 B g

[f � j � 2 !

A

j

B

0

; m = n g

[f � j � 2

A

j

B

0

; L ` �

0

� �; m = n g

Figure 3: The Parallel Operator on Formulae

Proof: For each G the proof proceeds by structural induction on �. As an example we

consider one case for the parallel operator: we show [[�

A

j

B

�]] = [[�

A

j

B

�]] when �; � are

hn?i� ! ; hm!i[�

0

]

0

respectively in the case when n is in A, m is in B and m = n.

As in the proof of Theorem 5.1 we may introduce some notation by writing x

A

j

B

y

as

W

k2A

k

in

f

k

in

(x; y) _ k

out

f

k

out

(x; y)

W

k2B

k

in

g

k

in

(x; y) _ k

out

g

k

out

(x; y)

W

k2N

com

k

l

(x; y) _ com

k

r

(x; y):

In this case for each k [[�]](k!) = [[�]](k?) = ?. This means in turn that

f

k

out

([[�]]; [[�]]) = g

k

in

([[�]]; [[�]]) = com

k

r

([[�]]; [[�]]) = ? and that for every k di�erent from

n com

k

l

([[�]]; [[�]]) = ?. Therefore [[�]]

A

j

B

[[�]] can be simpli�ed to

n

in

f

n

in

([[�]]; [[�]])_m

out

g

n

out

([[�]]; [[�]])_ comm

m

l

([[�]]; [[�]]):

Let us also rewrite [[�

A

j

B

�]] to a convenient form. Because of the linearity of the pre�xing

functions n

in

; m

out

it may be written as

n

in

[[S

11

]]_ n

in

[[S

12

]]_m

out

[[S

2

]] _ [[S

3

]] _ [[S

4

]]

23

where

S

11

= f�! � j � 2

A

j

B

� g

S

12

= f! ! � j � 2 !

A

j

B

� g

S

2

= f [�]� j � 2 �

A

j

B

0

g

S

3

= f � j � 2

A

j

B

0

; L j= �

0

� � g

S

4

= f � j � 2 !

A

j

B

0

g

To prove the result it is therefore su�cient to establish

f

n

in

([[�]]; [[�]]) = [[S

11

]] _ [[S

12

]]

g

m

out

([[�]]; [[�]]) = [[S

2

]]

com

m

l

([[�]]; [[�]]) = [[S

3

]]_ [[S

4

]]:

� f

n

in

([[�]]; [[�]]) is the function �d 2 P:([[�]]) [[]]d)

A

j

B

[[�]]. But a simple analysis

shows that this may be written as

[[�]]) ([[]]

A

j

B

[[�]]) _ [[!]]) ([[!]]

A

j

B

[[�]]):

At this point we can use induction. For example

[[�]]) ([[]]

A

j

B

[[�]]) = [[�]]) [[

A

j

B

�]]) by induction

= _ f [[�]]) [[�]] j � 2

A

j

B

� g since) is right-linear

= [[S

11

]]:

In a similar fashion one can show [[!]]) ([[!]]

A

j

B

[[�]]) = [[S

12

]].

� Let k

x

denote the function �(d; d

0

) 2 P�P:d

r

(x

A

j

B

d

0

). Then

g

m

out

([[�]]; [[�]]) = k

r

[[�]]

([[�]](m!))

= k

r

[[�]]

([[�

0

]]

r

[[

0

]])

= k

[[�]]

([[�

0

]]; [[

0

]])

= [[�

0

]]

r

([[�]]

A

j

B

[[

0

]])

= [[�

0

]]

r

[[�

A

j

B

0

]] by induction

= _ f [[�

0

]]

r

[[�]] j � 2 �

A

j

B

0

g since i

r

is right-linear

= _ f [[[�

0

]�]] j � 2 �

A

j

B

0

g

= _ [[S

2

]]:

� Let k

x

denote the function �(d; d

0

) 2 P�P:x(m?)d

A

j

B

d

0

. Then

com

m

l

([[�]]; [[�]]) = k

r

[[�]]

([[�]](m!))

= k

r

[[�]]

([[�

0

]]

r

[[]])

= k

[[�]]

([[�

0

]]; [[]])

= ([[�]]) [[]])[[�

0

]]

A

j

B

[[

0

]]

24

There are now two cases. If [[�]] � [[�

0

]], i.e. L ` �

0

� �, then this reduces to

[[]]

A

j

B

[[

0

]] and by induction this coincides with [[S

3

]]. Moreover in this case, since

A

j

B

is monotonic, [[S

3

]] = [[S

3

]] _ [[S

4

]]. The second case is when [[�]] 6� [[�

0

]] where a

similar argument shows that the above expression reduces to [[S

4

]].

2

This view of the the auxiliary functions in terms of formulae is also consistent with

the realizability interpretation of processes given in section two. For convenience this is

extended to sequences or sets of formulae by letting p j=

O

S mean that p j=

O

� for every

formula � 2 S.

Theorem 5.3 For every G in Aux P

i

j=

O

�

i

implies G(P) j=

O

G(�)

Proof: We use two easily established properties of the relation j=

O

, namely

1. ((X)T)P j=

O

� if and only if TfP=Xg j=

O

�

2. If P

�

=) Q and Q j=

O

� then P j=

O

�.

We consider briey the proof of the theorem in the case when G is the parallel

operator

A

j

B

. We must show that if P

1

j=

O

�

1

and P

2

j=

O

�

2

then P

1 A

j

B

P

2

j=

O

� for

every � 2 �

1A

j

B

�

2

. The proof proceeds by simultaneous induction on the structure of �

1

and �

2

. As an example we consider the case when �

1

is hn?i�! and �

2

is hm!i�

0

!

0

where n 2 A; m 2 B and m = n. Here there are �ve non-trivial possibilities for �.

� hn?i� ! � where � 2

A

j

B

�

Since P

1

j=

O

�

1

it follows that P

1

n?

=) (X)T for some (X)T such that (X)T j=

O

�! . By the operational semantics of

A

j

B

it follows that P

1 A

j

B

P

2

n?

=) (X)(T

A

j

B

P

2

) and we show that (X)(T

A

j

B

P

2

) j=

O

� ! �. Suppose that Q j=

O

�; it is

neccessary to show ((X)(T

A

j

B

P

2

))Q j=

O

�, i.e. TfQ=Xg

A

j

B

P

2

j=

O

�. But since

(X)T j=

O

� ! and Q j=

O

� it follows that TfQ=Xg j=

O

 . We may now use

induction to conclude that TfQ=Xg

A

j

B

P

2

j=

O

� since � 2

A

j

B

�.

� hn?i! ! � where � 2 !

A

j

B

�

Again we know that P

1A

j

B

P

2

n?

=) (X)(T

A

j

B

P

2

) for some (X)T such that (X)T j=

O

� ! . We must show ((X)(T

A

j

B

P

2

))Q j=

O

� for every Q since Q j=

O

! for any

Q. But ((X)T)Q j=

O

! and so by induction ((X)T)Q

A

j

B

P

2

j=

O

�. The result now

follows by property 1 above.

� hm!i[�

0

]� where � 2 �

A

j

B

0

Similar to the �rst case.

� � 2 !

A

j

B

0

We know P

1

n?

=) F such that F j=

O

�! and P

2

n!

=) [Q

1

]Q

2

such that Q

1

j=

O

�

0

and Q

2

j=

O

0

. Since we are assuming m = n P

1 A

j

B

P

2

�

=) FQ

1 A

j

B

Q

2

and so it

is su�cient to prove that FQ

1 A

j

B

Q

2

j=

O

�. But since FQ

1

j=

O

! this follows by

induction.

25

� � 2

A

j

B

0

and L ` �

0

� �

As in the previous case we know P

1 A

j

B

P

2

�

=) FQ

1 A

j

B

Q

2

for some F;Q

1

and Q

2

such that F j=

O

� ! , Q

1

j=

O

�

0

and Q

2

j=

O

0

. We are assuming L ` �

0

� �

and therefore, again by Proposition 4.6, Q

1

j=

O

� which implies in turn that

FQ

1

j=

O

 . As in the previous case the result now follows by induction.

2

We end this section with a de�nability theorem: every prime, and therefore compact

element, in P is de�nable by a term on our language. For each formula � we construct

a set of processes P

n;i

, parameterised on pairs of distinct names n; i, and a set of closed

abstraction terms F

n;i

, parameterised in the same manner, such that if n; i does not

appear in � then

� [[P

n;i

�

]] = [[�]]

� for all d 2 P; [[n!]] = [[F

n;i

�

]]d if and only if [[�]]� d.

Moreover the abstractions F

n;i

have the form (X)(T

n;i

�

fng

j

;

X) for some process T

n;i

�

so

that its application to a process is in fact the application of the test T

n;i

�

. In order to

de�ne these terms we need some notation. For any pair of process terms T; U and name

n let T �

n

U denote the term T

;

j

N�fng

n?(Y)U where U does not occur free in U . If

Y

1

; : : : ; Y

k

is a sequence of distinct variables let con

n;i

[Y

1

; : : : ; Y

k

] denote the term

Y

1

[n! i](�

i

Y

2

[n! i](�

i

: : : (�

i

Y

k

) : : :))

where [n ! i] is the renaming which sends n to i and is the identity elsewhere. Note

that if k = 1 then C[Y

1

] is simply Y

1

. We also use Tnn to denote the term NIL

;

j

N�fng

T

and �nally let W

n

be the set consisting of two semantic elements, f?; [[n!]]g. We leave

the reader to check the following:

Lemma 5.4 1. If [[P

i

]] 2 W

n

then [[con

n;i

[P

1

; : : : ; P

k

]]] 2 W

n

2. If n does not occur in � then [[�]]nn = [[�]]: 2

The de�nition of the required terms is by induction on the structure of formulae:

� !

P

n;i

�

= ? and F

n;i

�

= (X)(n!

fng

j

;

X)

� hm?i�!

F

n;i

�

= (X)(m![P

n;i

�

]T

n;i

fng

j

;

X) and P

n;i

�

= m?(X)(F

n;i

�

X �

n

P

n;i

)

� hm!i[�]

F

n;i

�

= (X)(m?(X)(F

n;i

�

X[n! i] �

i

T

n;i

)

fng

j

;

X) and P

n;i

�

= m![P

n;i

�

]P

n;i

:

where P

n;i

�

denotes P

n;i

�

1

+ : : :+ P

n;i

�

k

and F

n;i

�

the term (X) con

n;i

[F

n;i

�

1

X; : : : ; F

n;i

�

1

X].

26

Theorem 5.5 (De�nability) For any n; i not occurring in �

1. for all d 2 P; [[n!]] = [[F

n;i

�

]]d if and only if [[�]] � d

2. [[P

n;i

�

]] = [[�]]

3. for all d 2 P; [[F

n;i

�

]]d 2 W

n

4. [[T

n;i

�

]]ni = T

n;i

�

.

Proof: By structural induction on formulae. As an example we consider the case when

� is the formula hm!i[�] . There are four statements to prove.

1. Suppose [[n!]] = [[F

n;i

�

]]d, i.e. [[n!]] = m

in

([[(X)F

n;i

�

X]][n ! i] �

i

[[T

n;i

]])

fng

j

;

d. We

must show that m

out

([[�]]

r

[[]]) � d. First notice that d(m!) 6= ? for otherwise

[[F

n;i

�

]]dwould evaluate to ?, contradicting the fact that [[n!]]� [[F

n;i

�

]]d. Let d(m!) =

r

?

where r =

W

J

(p

j

r

q

j

) for some non-empty set J where each p

j

r

q

j

is a prime.

Then calculating m

in

([[(X)F

n;i

�

X]][n! i] �

i

[[T

n;i

]])

fng

j

;

d we obtain (�

r

(d

1

; d

2

) 2

P �P:([[F

n;i

�

]]d

1

[n ! i] �

i

[[T

n;i

]]

fng

j

;

d

2

))d(m!) which reduces to

W

J

([[F

n;i

�

]]p

j

[n !

i] �

i

[[T

n;i

]])

n

j q

j

and since [[n!]] is prime it follows that [[n!]] � ([[F

n;i

�

]]p

j

[n ! i] �

i

[[T

n;i

]])

n

j q

j

for some j.

We show that [[�]] � [[p

j

]] and [[]] � [[q

j

]] from which it immediately follows that

[[�]]

r

[[]]� r and therefore that [[hm!i[�]]] � d.

We must have that [[F

n;i

�

]]p

j

[n ! i] �

i

[[T

n;i

]] 6= ? which in turn dictates that

[[F

n;i

�

]]p

j

6= ?. We know, by induction, that for each k [[F

n;i

�

k

]]p

j

2 W

n

. For no k can

this evaluate to ? and therefore, since it evaluates to [[n!]], by induction we can

conclude that [[�

k

]] � [[p

j

]] for each k and so that [[�]] � [[p]].

Notice that it follows from the previous Lemma that [[F

n;i

�

]]p

j

is also in W

n

and

therefore it must evaluate to [[n!]]. So we can calculate:

[[F

n;i

�

]]p

j

[n! i] �

i

[[T

n;i

]] = [[n!]][n! i] �

i

[[T

n;i

]])

= [[T

n;i

]]ni

= [[T

n;i

]]; by induction, part 4.

This means that [[n!]] � ([[T

n;i

]])

fng

j

;

q

j

and by induction we therefore have that

[[]]� q

j

.

Conversely suppose m

out

([[�]]

r

[[]]) � d, i.e. [[�]]

r

[[]] � r where d(m!) = r

?

.

We must show that m

out

([[(X)F

n;i

�

X]] �

n

[[T

n;i

]])

fng

j

;

d dominates [[n!]] for any n; i

not occurring in �. Again calculating m

out

([[(X)F

n;i

�

X]][n ! i] �

i

[[T

n;i

]])

n

j d we

obtain

W

J

([[F

n;i

�

]]p

j

[n! i] �

i

[[T

n;i

]])

n

j q

j

where, as before, r =

W

J

(p

j

r

q

j

). Since

[[�]]

r

[[]] is prime there exists some j such that [[�]] � p

j

and [[]] � q

j

. So

m

out

([[(X)F

n;i

�

X]][n! i] �

i

[[T

n;i

]])

n

j d dominates ([[F

n;i

�

]]p

j

�

n

[[T

n;i

]])

n

j q

j

for this

27

particular j. By induction we have that [[n!]] = [[F

n;i

�

l

]]p

j

for each l and therefore,

by calculation, [[n!]] = [[F

n;i

�

]]p

j

. So

[[F

�

]]d � [[i!]]�

i

[[T

n;i

]]

fng

j

;

q

j

= ([[T

n;i

]]ni)

fng

j

;

q

j

= [[T

n;i

]]

fng

j

;

q

j

; by induction, part 4

= [[n!]]; by induction

2. obvious by induction

3. By induction we know that [[F

n;i

�

j

]]d 2 W

n

for each j and it follows by the previous

Lemma that [[F

n;i

�

]]d 2 W

n

. So [[F

n;i

�

]]d has the form g �

i

[[T

n;i

]]

fng

j

;

d where g 2 W

i

.

If g is ? then obviously this also reduces to ? which is in W

n

. Otherwise g must

be [[i!]] in which case it reduces to ([[T

n;i

]]ni)

fng

j

;

d which by induction, part 4, is

the same as [[T

n;i

]]

fng

j

;

d, i.e [[F

n;i

]]d. We can now apply induction to conclude that

this is in W

n

.

4.

[[T

n;i

�

]]ni = (m

in

�d:[[F

n;i

�

]]d[n! i] �

i

T

n;i

)ni

= m

in

�d:([[F

n;i

�

]]d[n! i] �

i

T

n;i

)ni;

by the de�nition of restriction.

So it is su�cient to show that for any d

([[F

n;i

�

]]d[n! i] �

i

T

n;i

)ni = [[F

n;i

�

]]d[n! i] �

i

T

n;i

: (�)

By induction and the previous Lemma we know that [[F

n;i

�

]]d 2 W

n

and therefore

that [[F

n;i

�

]]d[n ! i] 2 W

i

. If this is in fact ? then obviously (�) above is correct.

Otherwise it must be [[i!]] in which case calculation gives

[[F

n;i

�

]]d[n! i] �

i

T

n;i

= T

n;i

in which case (�) follows by induction.

2

6 A Logical Characterisation of the Interpretation

In this section we show that the interpretation of the process language in the denota-

tional model can also be captured in a logical form. We design a program logic whose

judgements are of the form

� `

a

A : �

28

where � 2 L

A

for each A = P;F;C and � is an assumption. A assumption is a �nite map

from X to non-empty �nite subsets of L

P

. We will actually represent these �nite subsets

as vectors of the form �. Let �(X) denote ! whenever X is not in the domain of � and

�[X 7! �] represent the assumption obtained from � in the obvious way { it coincides

with � for every name except X which it maps to �. We will also use � `

a

A : � as

an abbreviation for the k judgements � `

a

A : �

i

; 1 � i � k and by and large we omit

the superscripts from consequence relations, rendering `

a

as `. The rules for deriving

judgements are given in Figure 4.

The logic can be interpreted over the denotational model in the following manner.

For � 2 ENV let � j= � if [[�(X)]] � �(X) for all X. Then we write � j=

a

A : � if

� j= � implies [[�]] � [[A]]�.

Proposition 6.1 (Soundness) � `

a

A : � implies � j=

a

A : �

Proof: We prove that the relation � j=

a

A : � satis�es the de�ning rules of � `

a

A : �.

We give two cases.

1. The Rule FunR

Suppose �[X 7! �] j=

p

T : and � j= �. Then �[X 7! [[�]]] j= �[X 7! �] and

therefore [[]]� [[T]]�[X 7! [[�]]]. This means

[[]]� (�d 2 P:[[T]]�[X 7! d])[[�]];

i.e.

[[]]� ([[(X)T]]�)[[�]]

i.e.

([[�]]) [[]])� [[(X)T]]�

2. The rule AuxR

Suppose � `

p

T

i

: �

i

; � j= � and L ` G(�) � . By induction we may assume

that [[�

i

]] � [[T

i

]]�. So

[[]] � [[G(�)]] by part two of Theorem 4.4

= G([[�

1

]]; : : : ; [[�

k

]]) by Theorem 5.2

� G([[T]]�) since G is monotonic

= [[G(T)]]�:

2

This result also has a converse which is best expressed as a technical lemma. For any

assumption � let �

�

be the environment de�ned by �

�

(X) = [[�(X)]].

Lemma 6.2 [[�]]� [[A]]�

�

implies � `

a

A : �.

Proof: This time we use induction over A. We give three illustrative cases.

29

General :

LR

� `

a

A : �; L ` � �

� `

a

A :

Processes :

NR �[X 7! �] `

p

X : �

i

!R � `

p

T : !

PreR

� `

f

F : �

� `

p

n?F : hn?i�

� `

c

C : �

� `

p

n!C : hn!i�

JoinR

� `

p

T : �

� `

p

T + U : �

� `

p

T : �

� `

p

U + T : �

ApR

� `

f

F : �! ; � `

p

T : �

� `

p

FT :

AuxR

� `

p

T

i

: �

i

; L ` G(�) �

� `

p

G(T) :

Abstractions :

FunR

�[X 7! �] `

p

T :

� `

f

(X)T : �!

Concretions :

ConR

� `

p

T : �; � `

p

U :

� `

c

[T]U : [�]

Figure 4: The program logic

1. FT

Suppose [[]]� [[FT]]�

�

= [[F]]�

�

([[T]]�

�

) where F has the form (X)U . Then

[[]] � (�d 2 P:[[U]](�

�

[X 7! d]))([[T]]�

�

)

= [[U]]�

�

[X 7! [[T]]�

�

]

=

_

f [[U]]�

�

[X 7! c] j c � [[T]]�

�

g

30

Since [[]] is compact there exists some c � [[T]]�

�

such that [[]] � [[U]]�

�

[X 7! c].

Moreover there is a �nite set � such that c = [[�]] in which case �

�

[X 7! c] =

�

�[X 7!�]

. So [[]] � [[U]]�

�[X 7!�]

and by induction �[X 7! �] ` U : . Applying the

rule FunR we obtain � ` (X)U : (� !). Also [[�

i

]] � [[T]]�

�

for each �

i

and so

by induction � ` T : �

i

. An instance of the application rule now gives � ` FT : .

2. G(T)

Suppose [[]] � [[G(T)]]�

�

= G([[T]]�

�

). Since [[]] is prime and G is multilinear

there exists a vector of primes p such that p

i

� [[T

i

]]�

�

and [[]] � G(p). Let p

i

be denoted by �

i

. Then [[]] � G([[�

1

]]; : : : ; [[�

k

]]) = [[G(�)]]. By the completeness

of L we have L ` G(�) � and since [[�

i

]] � [[T

i

]]�

�

we may apply induction to

obtain � ` T

i

: �

i

. We now have the required premises of the rule AuxR which

when applied gives � ` G(T) : .

3. (X)T

Suppose [[� !]] � [[(X)T]]�

�

, i.e. [[�]]) [[]] � �d 2 P:[[T]]�

�

[X 7! d]. This

means

[[]] � [[T]]�

�

[X 7! [[�]]]

= [[T]]�

�[X 7!�]

We may now apply induction to obtain �[X 7! �] ` T : and an application of

the rule FunR gives � ` (X)T : �! .

2

As an immediate corollary we have

Theorem 6.3 (Completeness of Program Logic) � j=

a

A : � implies � `

a

A : �

Proof: Follows because �

�

j= � 2

Thus this program logic captures the denotational semantics precisely. For let

L

�

(A) = f� j � ` A : � g:

Then

Theorem 6.4 [[A]]� [[A

0

]] if and only if L

�

(A) � L

�

(A

0

)

Proof: Suppose [[A]]� [[A

0

]] and � ` A : �. Then by soundness, since �

�

j= �, it follows

that [[�]]� [[A]]�

�

. So [[�]]� [[A

0

]]�

�

and by completeness � ` A

0

: �.

The converse is equally straightforward. 2

We can also interpret the program logic using the realizability or observational inter-

pretation of section two. Soundness is straightforward but the more di�cult completeness

will be given in the next section.

31

If � is a closed substitution we write � j=

O

� if for every X 2 X �(X) j=

O

�(X) and

� j=

O

A : � if � j=

O

� implies A j= �. Note that � j=

O

A : � refers to the operational

behaviour of A while � j= A : � refers to its denotational interpretation.

Proposition 6.5 � ` A : � implies � j=

O

A : �.

Proof: Again it is su�cient to prove that the relation � j=

O

A : � satis�es all the

de�ning rules of � ` A : �. This is relatively straightforward; the rule LR follows from

Proposition 4.6 while rule AuxR also requires Proposition 5.3. 2

7 Full Abstraction

In this section we prove the main results of the paper, connecting the denotational

interpretation with the various behavioural preorders.

First a lemma which shows that the denotational interpretation is consistent with

the operational semantics.

Lemma 7.1 1. For c of the form m? or m!; P

c

�! A implies [[A]]

?

� [[P]](c)

2. P

�

�! Q implies [[Q]]� [[P]]:

Proof: Both statements are proved simultaneously by induction on the length of the

derivation of the operational judgements. 2

As an immediate corollary we have the following adequacy result:

Theorem 7.2 (Adequacy) For c of the form m? or m! P

c

=) if and only if [[P]](c) 6= ?.

Proof: First suppose that P

c

=); i.e. P

"

=) P

0

c

�! A. The �rst part of the previous

lemma implies [[P

0

]](c) 6= ? while the second part implies [[P

0

]] � [[P]], i.e. [[P]](c) 6= ?.

Conversely suppose [[P]](c) 6= ?. Then by the completeness theorem for the program

logic, Theorem 6.3, ` P : hci!. By the soundness of the program logic with respect to

the realizability interpretation, Proposition 6.5, j=

O

P : hci!, i.e. P

c

=). 2

Note the crucial role played by the completeness of the program logic in establishing

this result. Without such a characterisation of the denotational interpretation of the

language this adequacy result would be very di�cult to establish. Note also that, using

the de�nition of =) from section two, this result could also be stated as

P =) if and only if [[P]] 6= ?:

As an immediate corollary we have one direction of the full abstraction result:

Corollary 7.3 For closed terms [[P]]� [[Q]] implies P

<

�

O

Q.

32

Proof: Let C[] be any closed context such that C[P]

c

=). We must show that

C[Q]

c

=) which, by the adequacy result is equivalent to showing [[C[Q]]](c) 6= ?. But

[[P]] � [[Q]] implies [[C[P]]]� [[C[Q]]] and another application of the adequacy result gives

[[C[P]]](c) 6= ?. It therefore follows that [[C[Q]]](c) 6= ?. 2

The de�nability result, Theorem 5.5, together with adequacy gives a converse

Proposition 7.4 For closed terms P

<

�

T

Q implies [[P]]� [[Q]]:

Proof: To prove [[P]] � [[Q]] it is su�cient to prove [[�]] � [[Q]] for any � such that

[[�]] � [[P]]. For such a � the de�nability theorem implies that [[n!]] � [[F

n;i

�

]][[P]], for all

n; i not appearing in �, which can be rewritten as [[F

n;i

�

]][[P]](n!) 6= ?. By the adequacy

theorem this implies F

n;i

�

P

n!

=). In general F

n;i

�

R

n!

=) if and only if T

n

�

fng

j

;

R

n!

=) and

since P

<

�

T

Q it follows that F

n;i

�

Q

n!

=) which, again by the adequacy theorem, implies

[[n!]] � [[F

n;i

�

]][[Q]]. Employing the de�nability result once more we obtain [[�]] � [[Q]]. 2

As an immediate corollary we have

Corollary 7.5 (Full Abstraction) For closed terms P

<

�

O

Q if and only if P

<

�

T

Q if

and only if P

<

�

L

Q if and only if [[P]] � [[Q]]:

Proof: One can easily establish that

<

�

O

is contained in

<

�

T

and therefore Corol-

lary 7.3 and Proposition 7.4 establish that the both of these coincide with the preorder

generated by the model. Because of Proposition 6.5 it is therefore su�cient to show

P j=

O

� implies ` P : �. By the completeness result Theorem 6.3 this is equivalent to

showing P j=

O

� implies [[�]] � [[P]]. The more general result A j=

O

� implies [[�]] � [[A]]

for A any closed process, abstraction or concretion term, can be established by induction

on �. We give two cases:

� � has the form hci .

In this case there exists some A such that P

c

=) A and A j=

O

 . By induction

[[]]� [[A]] and by Lemma 7.1 [[A]]

?

� [[P]](c). It follows that [[hci]] � [[P]].

� � has the form �! .

Here we use the fact that [[P

n;i

�

]] = [[�]] for any n; i not occurring in � and therefore,

by Proposition 6.5, that P

n;i

�

j=

O

�.

Now suppose F j=

O

� ! . It follows by the de�nition of j=

O

that FP

n;i

�

j=

O

and therefore by induction that [[]] � [[FP

n;i

�

]]. This means [[]] � [[F]]([[�]]) and

therefore that [[�!]] � [[F]].

2

33

8 Conclusions

We have presented a semantic model of higher{order processes and shown it to be fully

abstract with respect to a number of observational preorders. But these results raise

many questions, some quite speci�c about our technical development and others more

general.

It has been shown in [San92] that higher{order process languages can be simulated

in the �-calculus but this is not to say that such languages are superuous. They

may provide convenient speci�cation formalisms at an appropriate level of abstraction

for describing the behaviour of sophisticated systems such as distributed operating or

control systems, [LB92]. If this is the case then what kind of combinators should such

a language have and can we model them using this semantic domain? Another question

concerns the channel scoping mechanism used in the language. As we have seen P is

adequate for modelling dynamic scoping but it has been argued in [Tho90] that static

scoping of channels leads to a more natural language. At the moment it is not clear how

to amend the de�nition of P so as to correctly model static scoping.

The program logic presented in section 6 provides the theoretical basis for a proof

system for deriving properties of higher{order processes. As already pointed out this

logic is not very realistic as to prove a parallel process p

A

j

B

q has a property it is

necessary to �nd two formulae �

1

; �

2

such that we can prove that p has the property �

1

and q �

2

and then prove that the characteristic formula �

1 A

j

B

�

2

logically implies .

However this rule AuxR could, at least in the case of the parallel operator, be replaced

by more useful or easily applicable rules. The exact form these replacement rules should

take remains to be seen.

Another line of possible future research concerns the behavioural preorders being

modelled. That studied in the present paper is very weak, at least compared to many

preorders de�ned for �rst{order process calculi. For such calculi it essentially corre-

sponds to trace inclusion: P � Q if every sequence of actions which P can perform

can also be performed by Q. This is very weak as it does not take into consideration

the possible deadlocks or divergences of processes. For example it does not distinguish

between the process a:P and a:P + a:NIL or a:P + a:
 where
 represents some process

which can only perform an in�nite internal computation. There are a large number of

more discriminating behavioural preorders and equivalences in the extensive literature

on process algebras, for example bisimulation equivalence [Mil89], failures equivalence

[Hoa85] and the testing preorders of [Hen88]. These may easily be extended to higher{

order processes and the approach to behavioural preorders in the de�nition of

<

�

O

can

also be strengthened so as to include information on deadlock. The simplest modi�ca-

tion is to base the basic comparison � between processes not on their ability to perform

actions but on their ability to converge: P + if there is no in�nite internal computation

from P; P

�

�! P

i

�

�! : : :

�

�! and P may + if there exists some Q such that P

"

=) Q

and Q +. The basic comparison could now be de�ned by

P � Q if P may + implies P may +.

The resulting behavioural preorder is di�erent than that which we have studied as it

di�erentiates NIL from
 whereas they are identi�ed in our theory. An even stronger

comparison could be de�ned by

P � Q if P + implies Q +.

34

This leads to a behavioural theory which in general di�erentiates between processes

of the form a:P; a:P + a:NIL and a:P + a:
. It remains to be seen if fully abstract

denotational models can be constructed for these theories.

Higher{order process calculi have been studied in a number of papers. In [Tho89,

Tho90] the language CHOCS, on which our language is based, and a statically scoped

version called Plain CHOCS are studied in detail. The theory of strong bisimulation

equivalence is developed for these languages along the lines outlined in [AAR88] and

a denotational model for CHOCS is presented which is fully abstract with respect to

a modi�ed version of strong bisimulation equivalence. Higher{order process calculi are

also studied in [San92] where the main concern is their relationship with the �-calculus.

In [Bou89] a generalisation of the �-calculus, called the -calculus, is de�ned in which

a form of parallelism is allowed. A very restricted subset of this language is modelled

in [JP90] using a new form of powerdomain construction. This model is shown to be

adequate with respect to an operational semantics but it is not known if it is fully

abstract. The addition of parallelism to the �-calculus is studied extensively in [Bou90b,

Bou91]; in particular fully-abstract models, �lter models of logics, are constructed for

the observational preorder over parallel-�-terms. More recently Boudol has developed a

language of communicating objects, [Bou92], for which he has obtained similar results.

This language bears some similarity with our higher{order process language and the

exact relationship warrants further investigation.

Other approaches to higher{order processes may be found in [AR87, GMP90, Nie89].

The overall aim of this work is the development of more realistic higher{order program-

ming languages which contains among other things a sophisticated type structures for

the values transmitted between processes.

Acknowledgements: Thanks to Gerard Boudol for his detailed comments on a �rst

draft of this paper.

References

[AAR88] E. Astesiano, A.Giovini, and G. Reggio. Generalised bisimulation in rela-

tional speci�cations. In Proceedings of STACS 88, volume 294 of Lecture

Notes in Computer Science, pages 207{226, 1988.

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research

Topics in Functional Programming, pages 65{117. Addison-Wesley, 1990.

[Abr91] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic,

51:1{77, 1991.

[AO89] S. Abramsky and C. Ong. Full abstraction in the lazy lambda calculus.

Information and Computation, 1989. to appear.

[AR87] E. Astesiano and G. Reggio. SMoLS-driven concurrent calculi. In TAPSOFT

1987, Lecture Notes in Computer Science 351, Lecture Notes in Computer

Science, pages 169{201, 1987.

[Bar84] Henk Barendregt. The Lambda Calculus. North-Holland, 1984. Studies in

logic 103.

35

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A �lter model and

the completeness of type assignment. J. of Symbolic Logic, 48:931{940, 1983.

[Bou89] G. Boudol. Towards a lambda{calculus for concurrent and communicating

systems. In J. Diaz, editor, Proc. TAPSOFT 89, pages 149{161. Springer-

Verlag, 1989. LNCS 351.

[Bou90a] G. Boudol. Flow event structures and ow nets. In I. Guessarian, editor,

Semantics of Systems of Concurrent Processes, Proceedings LITP Spring

School on Theoretical Computer Science, La Roche Posay, France, volume

469 of Lecture Notes in Computer Science, pages 62{95, 1990.

[Bou90b] G. Boudol. A lambda-calculus for parallel functions. Technical Report 1231,

INRIA-Sophia Antipolis, 1990.

[Bou91] G. Boudol. Lambda-calculi for (strict) parallel functions. Technical Report

1387, INRIA-Sophia Antipolis, 1991. To appear in Information and Com-

putation.

[Bou92] G. Boudol. A calculus of communicating objects, 1992. To appear as INRIA

Research Report.

[BW90] J. Baeton and W. Weijland. Process Algebra, volume 18 of Cambridge Tracts

in Computer Science. Cambridge University Press, 1990.

[CC90] F. Cardone and M. Coppo. Two extensions of curry's type inference system.

In P. Odifreddi, editor, Logic in Computer Science, pages 19{25. Academic

Press, 1990.

[DH84] R. DeNicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 24:83{113, 1984.

[GMP90] A. Giacalone, P. Mistra, and S. Prasad. Operational and algebraic semantics

for facile: A symmetric integration of concurrent and functional program-

ming. In Proceedings of ICALP 90, volume 443 of Lecture Notes in Computer

Science, pages 765{780, 1990.

[Gue81] I. Guessarian. Algebraic Semantics. Lecture Notes in Computer Science vol

99, 1981.

[Hen88] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[HI91] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes

with value-passing. Information and Computation, to appear, 1991.

[Hin83] R. Hindley. The completeness theorem for typing �-terms. Theoretical Com-

puter Science, 22:1{7 and 127{133, 1983.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the Association for Computing Machinery, 32(1):137{161,

1985.

36

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[JP90] R. Jagadeesan and P. Panangaden. A domain{theoretic model for a higher{

order process calculus. In M.S.Paterson, editor, Proc. ICALP 90, pages

181{194. Springer-Verlag, 1990. LNCS 443.

[LB92] L. Leth and B.Thomsen. Some facile chemistry. Technical Report ERCC-

92-14, ERCC, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil91] Robin Milner. The polyadic �-calculus: a tutorial. In Proc. International

Summer School on Logic and Algebra of Speci�cation, Marktoberdorf, 1991.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part i.

Information and Computation, 100(1):1{40, 1992.

[MPW92b] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part ii.

Information and Computation, 100(1):41{77, 1992.

[Nie89] F. Nielson. The typed �-calculus with �rst{class processes. In Proceedings

of Parle 89, volume 366 of Lecture Notes in Computer Science, 1989.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report

DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[San92] D. Sangiorgo. Expressing Mobility in Process Algebras: First-Order and

Higher-Order Paradigms. Phd thesis, Edinburgh University, Scotland, 1992.

[Sco82] D. S. Scott. Domains for denotational semantics. In M. Neilsen and E. M.

Schmidt, editors, Proc. ICALP 82, pages 577{613. Springer-Verlag, 1982.

LNCS 140.

[Tho89] B. Thomsen. A calculus of higher order communicating systems. In Con-

ference Record of the Sixteenth Annual ACM Symposium on Principles of

Programming Languages, pages 143{154, 1989.

[Tho90] B. Thomsen. Calculi for Higher-Order Communicating Systems. Phd thesis,

Imperial College, 1990.

37

