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ABSTRACT. We consider a call-by-value language, with higher-order functions, records,
references to values of arbitrary type, and subtyping. We adapt an intrinsically typed deno-
tational model for a similar language based on a possible-world semantics, recently given by
Levy [29], and relate it to an untyped model by a logical relation. Following the method-
ology of Reynolds [45], this relation is used to establish coherence of the typed semantics,
with a coercion interpretation of subtyping. Moreover, we demonstrate that this technique
scales to ML-like polymorphic type schemes. We obtain a typed denotational semantics of
(imperative) object-oriented languages, both class-based and object-based ones.
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1 Introduction

Languages such as Standard ML [32] and Scheme [4] allow to store val-
ues of arbitrary types, including function types. Essentially the same ef-

fect is pervasive in object-based languages (see [1, 44]), where objects
are created on-the-fly and arbitrary method code needs to be kept in the

store. This feature is often referred to as higher-order store or general

references, and complicates the semantics (and logics) of such languages

considerably [42]: Besides introducing recursion to the language [28],
higher order store in fact requires the semantic domain to be defined by a
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mixed-variant recursive equation. So far, only few models of (typed) lan-

guages with general references appeared in the literature [5, 6, 29], and
most of the work done on semantics of storage does not readily apply to

languages with higher-order store [48].
In a recent paper, Paul Levy proposed a typed semantics for a language

with higher-order functions and higher-order store [29]. This is a possible

worlds model, explicating the dynamic allocation of new (typed) storage
locations in the course of a computation. We recall this model below,

and extend it to accommodate subtyping by using coercion maps. In the
terminology of Reynolds [45], we obtain an intrinsic semantics: Meaning

is given to derivations of typing judgements, rather than to terms, with
the consequence that

• ill-typed phrases are meaningless,

• terms satisfying several judgements will be assigned several meanings,
and

• coherence between the meaning of several derivations of the same

judgement must be established.

Due to the addition of subtyping to Levy’s model, derivations are indeed
no longer unique and we must prove coherence. A standard approach for

such proofs is to transform derivations into a normal form while preserv-
ing their semantics. This can be quite involved, even for purely functional

languages (see, e.g., [12, 33]).
In contrast to intrinsic semantics, an extrinsic semantics gives mean-

ing to all terms. Types (and typing judgements) are interpreted as, e.g.,
(admissible) predicates or partial equivalence relations over an untyped

model. Usually, the interpretation of subtyping is straightforward in such
models. In [45], Reynolds uses a logical relation between intrinsic and

extrinsic cpo models of a lambda calculus with subtyping (but no state) to
prove coherence. The proof essentially relies on the fact that (the deno-
tations of) all derivations of a judgement Γ . e : A are related to the de-

notation JeK of e in the untyped model underlying the extrinsic semantics,
via the basic lemma of logical relations (e.g., [33]). A family of retractions

between intrinsic and extrinsic semantics is then used to obtain the mean-
ing of JΓ . e : AK in terms of Γ, JeK and A alone, i.e., independent of any

particular derivation of the judgement.
We apply the same ideas to obtain a coherence proof for the language

considered here. Two modifications have to be made: Firstly, because
of the indexing by worlds we use a Kripke logical relation [34] to relate

intrinsic and extrinsic semantics — this is straightforward. Secondly, due
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to the mixed-variant recursion forced by the higher-order store we can no

longer use induction over the type structure to establish properties of the
relations. In fact even the existence of the Kripke logical relation requires

a non-trivial proof — we use the framework of Pitts [40] to deal with this
complication.

While the combination of higher-order storage and subtyping is in-

teresting in its own right, we see the current work as a step toward our
longer-term goal of investigating logics for languages involving higher-

order store. In particular, we are interested in semantics and reasoning
principles for object-oriented programs, and it should be noted that a

number of object encodings used a target language similar to the one
considered here [2, 26, 10]. Some evidence that the model of this paper

can indeed serve as basis for such logics is provided: We give a semantics
to the object calculus of Abadi and Cardelli [1], and to a simple class-

based language. This is done using a typed variant of Kamin and Reddy’s
“closure model” [26]. To the best of our knowledge this is the first (intrin-

sically typed) domain-theoretic model of the imperative object calculus.
Previously we have given a denotational semantics for a logic of ob-

jects [3], where an untyped cpo model was used [43]. This logic has a

built-in notion of invariance which makes it very similar to a type system.
The semantic structure of function types used in [43] very much resem-

bles that of various possible worlds models for languages with dynamic
allocation [29, 41, 47]. We compare the semantics of loc. cit. with an ex-

trinsic semantics derived from the Kripke logical relation, again following
a construction of Reynolds [45].

Finally, we show that the theory smoothly extends to a model of gen-
eral references and predicative, bounded polymorphic types. After estab-

lishing coherence of this system, we use the model to sketch a semantics
of generic classes, similar to those found in the Java language [11].

In summary, our technical contributions here are

• we present a model of a language that includes general references,
subtyping and bounded “let”-polymorphism,

• we successfully apply the ideas of Reynolds [45] to prove coherence of

the interpretation, and

• we provide the first (intrinsically typed) model of the imperative object
calculus of Abadi and Cardelli [1], based on cpos.

In addition, we shed some light on a construction used to establish the

existence of store specifications in [43].
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TABLE 1. Typing
Γ . e : A A ≺: B

Γ . e : B

x:A ∈ Γ

Γ . x : A

Γ . e1 : B Γ, x:B . e2 : A

Γ . let x=e1 in e2 : A Γ . true : bool

Γ . x : bool Γ . e1 : A Γ . e2 : A

Γ . if x then e1 else e2 : A Γ . false : bool

Γ . xi : Ai ∀i ∈ I

Γ . {mi = xi}i∈I : {mi : Ai}i∈I

Γ . x : {mi : Ai}i∈I
Γ . x.mj : Aj

(j ∈ I)

Γ, x:A . e : B

Γ . λx.e : A⇒ B

Γ . x : A⇒ B Γ . y : A

Γ . x(y) : B

Γ . x : A

Γ . newA x : ref A

Γ . x : ref A

Γ . deref x : A

Γ . x : ref A Γ . y : A

Γ . x:=y : 1

STRUCTURE OF THE REPORT. In the next section, language and type sys-
tem are introduced. Then, in Sects. 3 and 4, typed and untyped models

are presented. The logical relation is defined next, and retractions be-
tween types of the intrinsic semantics and the untyped value space are

used to prove coherence in Section 6. In Section 7 both a derived per se-
mantics and the relation to our earlier work on an interpretation of objects
are discussed. Section 8 presents the applications of the theory, providing

a semantics of classes and objects, as well as an example specification
and verification of a non-trivial program. In Section 9 the type system is

enriched with (predicative) polymorphism and proved useful in obtain-
ing a semantics of generic collection classes. Finally, Section 10 discusses

related work.

2 Language

We consider a single base type of booleans, bool, records {mi : Ai}i∈I

with labels m ∈ L, and function types A ⇒ B. We set 1
def
= {} for the

(singleton) type of empty records. Finally, we have a type ref A of mutable
references to values of type A. Term forms include constructs for creating,
dereferencing and updating of storage locations. The syntax of types and
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terms is given by the grammar:

A,B ∈ Type ::= bool | {mi : Ai}i∈I | A⇒ B | ref A

v ∈ Val ::= x | true | false | {mi = xi}i∈I | λx.e

e ∈ Exp ::= v | let x=e1 in e2 | if x then e1 else e2 | x.m | x(y)

| newA x | deref x | x:=y

Subterms in most of these term forms are restricted to variables in order
to simplify the statement of the semantics in the next section: There, we

can exploit the fact that subterms that exhibit side-effects only appear in
the let-construct. However, in subsequent examples we will use a more

generous syntax. The reduction of such syntax sugar to the expressions
above should always be immediate.

The subtyping relation A ≺: B is the least reflexive and transitive
relation closed under the rules

Ai ≺: A′
i ∀i ∈ I ′ I ′ ⊆ I

{mi : Ai}i∈I ≺: {mi : A′
i}i∈I′

A′ ≺: A B ≺: B′

A⇒B ≺: A′⇒B′

Note that there is no rule for reference types as these need to be invariant,
i.e., ref A ≺: ref B only if A ≡ B. A type inference system is given in

Table 1, where contexts Γ are finite sets of variable-type pairs, with each
variable occurring at most once. As usual, in writing Γ, x:A we assume x
does not occur in Γ. A subsumption rule is used to for subtyping of terms.

3 Intrinsic Semantics

In this section we recall the possible worlds model of [29]. Its extension

with records is straightforward, and we interpret the subsumption rule
using coercion maps.

WORLDS. For each A ∈ Type let LocA be mutually disjoint, countably

infinite sets of locations. We let l range over Loc
def
=

⋃
A∈Type LocA, and may

use the notation lA to emphasize that l ∈ LocA. A world w is a finite set of

locations lA ∈ Loc. A world w′ extends w, written w′ ≥ w, if w′ ⊇ w. We
write W = (W ,≤) for the poset of worlds.

SEMANTIC DOMAIN. Let pCpo be the category of cpos (not necessarily

containing a least element) and partial continuous functions. For a par-
tial continuous function f we write f(a) ↓ if the application is defined,

and f(a) ↑ otherwise. Let Cpo be the subcategory of pCpo where the
morphisms are total continuous functions.

Informally, a world describes the shape of the store, i.e., the number
of locations of each type allocated in the store. In the semantics we want

a cpo Sw of w-stores for each w ∈ W , and a cpo JAKw of values of type A.
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In fact, we require that each JAK denotes a co-variant functor from W to

Cpo, formalising the intuition that values can always be used with larger

stores.1 We write the image of w ≤ w′ under JAK as JAK
w′

w .
The cpo of w-stores is defined as Sw =

∏
lA∈w JAKw. For worlds w ∈

W , JboolKw = BVal denotes the set {true, false} of truth values considered
as flat cpo, and similarly, Jref AKw = {lA | lA ∈ w} is the discretely or-
dered cpo of A-locations allocated in w-stores. Further, J{mi : Ai}i∈IKw =
{|mi : JAiKw |} is the cpo of records {|mi = ai|}i∈I with component mi in

JAiKw, ordered pointwise. On morphisms w ≤ w′, JboolK
w′

w = idBVal is

the identity map, and Jref AK
w′

w is the inclusion Jref AKw ⊆ Jref AKw′ . For

records, J{mi : Ai}K
w′

w = λr.{|mi = JAiK
w′

w (r.mi)|} acts pointwise on the
components. The type of functions A⇒ B is the most interesting, since it
involves the store S:

JA⇒ BKw =
Q

w′≥w(Sw′ × JAKw′ ⇀
P

w′′≥w′(Sw′′ × JBKw′′ )) (1)

This says that a function f ∈ JA⇒ BKw may be applied in any future

(larger) store w′ to a w′-store s and value v ∈ JAKw′ . The computa-
tion fw′(s, v) may allocate new storage, and upon termination it yields

a store and value in a yet larger world w′′ ≥ w′. For a morphism w ≤ w′,

JA⇒ BK
w′

w (f) = λw′′≥w′fw′′ is the restriction to worlds w′′ ≥ w′.

Equation (1) clearly shows the effect of allowing higher order store:
Since functions A ⇒ B can also be stored, S and JA⇒ BK are mutually

recursive. Due to the use of S in both positive and negative positions
in (1) a mixed-variant domain equation for S must be solved. To this end,

in [29] a bilimit-compact category C is considered, i.e.,

• C is Cpo-enriched and each hom-cpo C(A,B) has a least element ⊥A,B

s.t. ⊥ ◦ f = ⊥ = g ◦ ⊥

• C has an initial object

• in the category CE of embedding-projection pairs of C, every ω-chain
∆ = D0 → D1 → . . . has an O-colimit [46], i.e., a cocone 〈ei, pi〉i∈N :
∆ → D in CE s.t.

⊔
i ei ◦ pi = idD in C(D,D)

It follows that every locally continuous functor F : Cop × C −→ C has
a minimal invariant, i.e., an object D in C s.t. F (D,D) = D (omitting
isomorphisms) and idD is the least fixed point of the continuous endo-

function δ : C(D,D) → C(D,D) given by δ(e) = F (e, e) [40].

1In contrast, S is not assumed to be (co- or contra-variant) functorial: In general there is
no obvious way to enlarge or restrict a store [30].

6



Following [29] the semantics of types can now be obtained as minimal
invariant of the locally continuous functor F : Cop × C −→ C (derived
from the domain equations for types by separating positive and negative
occurrences of the store) given in Table 2. Here, C is the bilimit-compact
category

C
def
=

Q

w∈W pCpo ×
Q

A∈Type[W,Cpo] •→ [W,pCpo] (2)

where [W ,Cpo] •→ [W ,pCpo] denotes the category with objects the func-
tors A,B : W → Cpo and morphisms the partial natural transformations
µ : A

.
→ B, i.e., for A,B : W → Cpo the diagram

Aw

Aw′

w ��

µw / Bw

Bw′

w��

Aw′
µw′

/ Bw′

(3)

commutes. The first component of the product in (2) is used to obtain

Sw
def
= DSw from the minimal invariant D = 〈{DSw}w, {DA}A〉, and the

second component yields JAK
def
= DA.

In fact, for every type A ∈ Type the minimal invariant D provides
isomorphisms F (D,D)A = DA in the category [W ,Cpo] of functors W →
Cpo and total natural transformations.

SEMANTICS. Each subtyping derivation A ≺: B determines a coercion,
which is in fact a (total) natural transformation from JAK to JBK, defined

in Table 3: We follow the notation of [45] and write P(J) to distinguish a
derivation of judgement J from the judgement itself.

In the following we write JΓKw for the set of environments, i.e., maps
from variables to

⋃
A JAKw s.t. ρ(x) ∈ JAKw for all x:A ∈ Γ. For w ≤ w′,

JΓK
w′

w (ρ) denotes the environment such that JΓK
w′

w (ρ)(x) = JAK
w′

w (ρ(x))
for x:A in Γ. The semantics of (derivations of) typing judgments can now
be presented,

JΓ . e : AKw : JΓKw → Sw ⇀
P

w′≥w(Sw′ × JAKw′)

As observed in Levy’s paper, each value Γ . v : A determines a natural
transformation from JΓK to JAK in [W ,Cpo]. Here this is a consequence

of the fact that (i) values do not affect the store and (ii) coercion maps
determine (total) natural transformations. We make use of this fact in the

statement of the semantics. For example, in the case of records we do not
have to fix an order for the evaluation of the components.

The semantics of subtyping judgements is used for the interpretation
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TABLE 2. Defining F : Cop × C −→ C

On C-objects D,E
F (D,E)Sw =

Q

lA∈w EAw

F (D,E)boolw = BVal = {true, false}
F (D,E)bool(w≤w′) = idBVal

F (D,E){mi:Ai}w = {|mi : EAiw|}
F (D,E){mi:Ai}(w≤w′) = λr.{|mi = EAi(w≤w′)(r.mi)|}

F (D,E)A⇒Bw =
Q

w′≥w(DSw′ ×DAw′ ⇀
P

w′′≥w′ (ESw′′ ×EBw′′ ))

F (D,E)A⇒B(w≤w′) = λfλw′′ ≥ w′.fw′′

F (D,E)ref Aw = {lA | lA ∈ w}
F (D,E)ref A(w≤w′) = λl.l

On C-morphisms h : D′ −→ D and k : E −→ E′ by

F (h, k)Sw = λs.



lA 7→ kSw(s)lA if kSw(s)lA ↓ for all lA ∈ w
undefined otherwise

F (h, k)boolw = idBVal

F (h, k){mi:Ai}w = λr.



{|mi = kAiw(r.mi)|} if kAiw(r.mi)↓ for all i
undefined otherwise

F (h, k)A⇒Bw = λfλw′ ≥ w λ〈s, a〉.
8

>

>

>

>

<

>

>

>

>

:

〈w′′, 〈kSw′′(s′′), kBw′′ (b)〉〉
if hSw′(s)↓ and hAw′(a)↓ and

fw′(hSw′(s), hAw′ (a)) = 〈w′′, 〈s′′, b〉〉↓
and kSw′′(s′′)↓ and kBw′′ (b)↓

undef. otherwise

F (h, k)ref Aw = λl.l

of the subsumption rule,
s

P(Γ . e : A) P(A ≺: B)

Γ . e : B

{

w

ρs

=



〈w′, 〈s′, JP(A ≺: B)Kw′ a〉〉 if JP(Γ . e : A)Kw ρs = 〈w′, 〈s′, a〉〉↓
undefined otherwise

As explained above, the semantics of functions is parameterised over ex-
tensions of the current world w,

s
P(Γ, x : A . e : B)

Γ . λx.e : A⇒ B

{

w

ρs

= 〈w, 〈s, λw′ ≥ wλ〈s′, a〉. JP(Γ, x:A . e : B)Kw′ (JΓKw
′

w ρ)[x := a] s′〉〉
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TABLE 3. Coercion mapss

A ≺: A

{

w

= idJAKw

s
P(A ≺: A′) P(A′ ≺: B)

A ≺: B

{

w

= JP(A′ ≺: B)Kw ◦ JP(A ≺: A′)Kw
s

I ′ ⊆ I P(Ai ≺: A′
i) ∀i ∈ I ′

{mi : Ai}i∈I ≺: {mi : A′
i}i∈I′

{

w

= λr.{|mi = JP(Ai ≺: A′
i)Kw (r.mi)|}i∈I′

s
P(A′ ≺: A) P(B ≺: B′)

A⇒B ≺: A′⇒B′

{

w

= λfλw′≥w λ〈s, x〉.

8

<

:

〈w′′, 〈s′, JP(B ≺: B′)Kw′′ x
′〉〉

if fw′〈s, JP(A′ ≺: A)Kw′ (x)〉 = 〈w′′, 〈s′, x′〉〉↓
undefined otherwise

Function application is
s

P(Γ . x : A⇒ B) P(Γ . y : A)

Γ . x(y) : B

{

w

ρs = fw(s, a)

where the premiss of the rule yields 〈w, 〈s, f〉〉 = JP(Γ . x : A⇒ B)Kw ρs
and 〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs. Most of the remaining cases are sim-
ilarly straightforward; Tables 4 and 5 contain the complete definition.

4 An Untyped Semantics

We give an untyped semantics of the language in the (bilimit-compact)
category pCpo. Let Val satisfy

Val = BVal + Loc + RecL(Val) + (St × Val ⇀ St × Val) (4)

where St
def
= RecLoc(Val) denotes the cpo of records with labels from Loc,

ordered by r1 v r2 iff dom(r1) = dom(r2) and r1.m v r2.m for all
m ∈ dom(r1). The interpretation of terms, JeK : Env → St ⇀ St × Val,
is essentially straightforward, typical cases are those of abstraction and
application:

Jλx.eK ησ = 〈σ, λ〈σ′, v〉. JeK η[x := v]σ′〉

Jx(y)K ησ =



η(x)〈σ, η(y)〉 if η(x) ∈ [St × Val ⇀ St × Val] and η(y)↓
undefined otherwise

Compared to the intrinsic semantics of the previous section, there are now

many more possibilities of undefinedness if things “go wrong”, e.g., if
evaluation of x in x(y) does not yield a function value.

The semantics of newA may be slightly surprising as there is still some
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TABLE 4. Semantics of typing judgementss
P(Γ . e : A) P(A ≺: B)

Γ . e : B

{

w

ρs

=



〈w′, 〈s′, JP(A ≺: B)Kw′ a〉〉 if JP(Γ . e : A)Kw ρs = 〈w′, 〈s′, a〉〉↓
undefined otherwise

s

Γ . x : A

{

w

ρs = 〈w, 〈s, ρ(x)〉〉

s
P(Γ . e1 : B) P(Γ, x:B . e2 : A)

Γ . let x=e1 in e2 : A

{

w

ρs

=

8

<

:

P(JΓ, x:B . e2 : AK)w′(JΓKw
′

w ρ)[x := b] s′

if JP(Γ . e1 : B)Kw ρs = 〈w′, 〈s′, b〉〉↓
undefined otherwises

Γ . true : bool

{

w

ρs = 〈w, 〈s, true〉〉

s
P(Γ . x : bool) P(Γ . ei : A) i = 1, 2

Γ . if x then e1 else e2 : A

{

w

ρs

=



JP(Γ . e1 : A)Kw ρs if JP(Γ . x : bool)Kw ρs = 〈w, 〈s, true〉〉
JP(Γ . e2 : A)Kw ρs if JP(Γ . x : bool)Kw ρs = 〈w, 〈s, false〉〉

s
P(Γ . xi : Ai) ∀i ∈ I

Γ . {mi = xi}i∈I : {mi : Ai}i∈I

{

w

ρs = 〈w, 〈s, {|mi = ai|}i∈I〉〉

where 〈w, 〈s, ai〉〉 = JP(Γ . xi : Ai)Kw ρs
s

P(Γ . x : {mi : Ai}i∈I)

Γ . x.mi : Ai

{

w

ρs = 〈w, 〈s, a.m〉〉

where 〈w, 〈s, a〉〉 = JP(Γ . x : {mi : Ai})Kw ρs
s

P(Γ, x : A . e : B)

Γ . λx.e : A⇒ B

{

w

ρs

= 〈w, 〈s, λw′ ≥ wλ〈s′, a〉. JP(Γ, x:A . e : B)Kw′ (JΓKw
′

w ρ)[x := a] s′〉〉

s
P(Γ . x : A⇒ B) P(Γ . y : A)

Γ . x(y) : B

{

w

ρs = fw(s, a)

where 〈w, 〈s, f〉〉 = JP(Γ . x : A⇒ B)Kw ρs
and 〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs
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TABLE 5. Semantics of typing judgements (continued)s
P(Γ . x : A)

Γ . newA x : ref A

{

w

ρs = 〈w′, 〈s′, lA〉〉

where 〈w, 〈s, a〉〉 = JP(Γ . x : A)Kw ρs,
w′ = w ∪ {lA} for lA ∈ LocA \ dom(w) and for all l′ ∈ w′ :

s′.l′ =

(

JA′Kw
′

w (s.l′) for l′ ∈ w ∩ LocA′

JAKw
′

w (a) for l′ = lAs
P(Γ . x : ref A)

Γ . deref x : A

{

w

ρs = 〈w, 〈s, s.l〉〉

where 〈w, 〈s, l〉〉 = JP(Γ . x : ref A)Kw ρs
s

P(Γ . x : ref A) P(Γ . y : A)

Γ . x:=y : 1

{

w

ρs = 〈w, 〈ŝ, {||}〉〉

where 〈w, 〈s, l〉〉 = JP(Γ . x : ref A)Kw ρs,
〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs and for l′ ∈ w :

ŝ.l′ =



a if l′ = l
s.l′ if l′ 6= l

type information in the choice of locations:

JnewA xK ησ = 〈σ + {|lA = η(x)|}, lA〉 where lA ∈ LocA \ dom(σ)

if η(x) ↓, and undefined otherwise. Informally, the worlds of the intrinsic
semantics are encoded in the domain of untyped stores. Although σ with

dom(σ) = w need not necessarily correspond to a (typed) w-store in any
sense, this will be the case for stores being derived from well-typed terms.

This is one of the results of Section 5 below; see also the discussion in
Section 7.1.

The remaining cases of the definition are given in Table 6.

5 A Kripke Logical Relation

While in [45] a logical relation between typed and untyped models was
used to establish coherence, here this must be slightly generalised to a

Kripke logical relation because of the possible worlds semantics of types.
Kripke logical relations have appeared in work on Kripke lambda mod-

els [34], and more recently in connection with dynamic name creation
in the nu-calculus [51, 22]. Kripke logical relations are not only indexed

by types but also by possible worlds, subject to a monotonicity condition
(Lemma 5.4 below) stating that related elements remain in relation when

moving to a larger world.
In Table 7 we now define such a family of Type- and W-indexed rela-

tions RA
w ⊆ JAKw × Val. Note that the existence of this family R is not

11



TABLE 6. Interpretation of untyped terms

JxK ησ =



〈σ, η(x)〉 if η(x)↓
undefined otherwise

Jlet x=e1 in e2K ησ =



Je2K η[x := v]σ′ if Je1K ησ = 〈σ′, v〉↓
undefined otherwise

JtrueK ησ = 〈σ, true〉

Jif x then e1 else e2K ησ =

8

<

:

Je1K ησ if η(x) = true ↓
Je2K ησ if η(x) = false ↓
undefined otherwise

J{mi = xi}K ησ =



〈σ, {|mi = η(xi)|}〉 if η(xi)↓ for all i
undefined otherwise

Jx.mK ησ =



〈σ, η(x).m〉 if η(x) ∈ RecM(Val) and η(x).m↓
undefined otherwise

Jλx.aKησ = 〈σ, λ〈σ′, v〉. JaK η[x := v]σ′〉

Jx(y)K ησ =

8

<

:

η(x)〈σ, η(y)〉 if η(x) ∈ [St × Val ⇀ St × Val]
and η(y)↓

undefined otherwise

JnewA xK ησ = 〈σ + {|lA = η(x)|}, lA〉, where lA ∈ LocA \ dom(σ)

Jderef xK ησ =



〈σ, σ.η(x)〉 if η(x) ∈ Loc and σ.η(x)↓
undefined otherwise

Jx:=yK ησ =



〈σ′, {||}〉 if η(x) ∈ Loc, σ.η(x)↓ and η(y)↓
undefined otherwise

where σ′.l =



η(y) if l = η(x)
σ.l otherwise

straightforward: There are both positive and negative occurrences of RSt
w

in the clause for function typesA⇒ B. Consequently,R cannot be defined
by induction on the type structure, nor does it give rise to a monotone op-

eration (on the complete lattice of admissible predicates).
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TABLE 7. Kripke logical relation

〈x, y〉 ∈ Rbool

w
def

⇐⇒ y ∈ BVal ∧ x = y

〈r, s〉 ∈ R
{mi:Ai}
w

def
⇐⇒ s ∈ RecL(Val) ∧ ∀i. (s.mi ↓ ∧ 〈r.mi, s.mi〉 ∈ RAi

w )

〈f, g〉 ∈ RA⇒B
w

def
⇐⇒ g ∈ [St × Val ⇀ St × Val] ∧

∀w′ ≥ w ∀〈s, σ〉 ∈ RSt
w′ ∀〈x, y〉 ∈ RAw′

(fw′(s, x)↑ ∧ g(σ, y)↑)

∨ ∃w′′ ≥ w′ ∃s′ ∈ Sw′ ∃x′ ∈ [[B]]w′ ∃σ′ ∈ St ∃y′ ∈ Val.

(fw′(s, x) = 〈w′′, 〈s′, x′〉〉 ∧ g(σ, y) = 〈σ′, y′〉

∧ 〈s′, σ′〉 ∈ RSt
w′′ ∧ 〈x′, y′〉 ∈ RBw′′)

〈x, y〉 ∈ Rref A
w

def
⇐⇒ y ∈ w ∩ LocA ∧ x = y

with the auxiliary relation RSt
w ⊆ Sw × St,

〈s, σ〉 ∈ RSt
w

def
⇐⇒ dom(s) = w = dom(σ) ∧ ∀lA ∈ w. 〈s.lA, σ.lA〉 ∈ RAw

5.1 Existence of RA
w

To establish the existence of such a relation one uses Pitts’ technique for
the bilimit-compact product category C×pCpo. LetG : pCpoop×pCpo −→
pCpo be the locally continuous functor for which (4) is the minimal in-
variant,

G(D,E) = BVal + Loc + RecL(E) + (RecLoc(D) ×D ⇀ RecLoc(E) ×E)

and let F be the functor defined in Table 2 on page 8. Therefore 〈D,Val〉
is the minimal invariant of F × G. A (normal) relational structure R on
the category C×pCpo, in the sense of [40], is given by the following data.

• For each object 〈X,Y 〉 of C × pCpo, let R(X,Y ) consist of the type-
and world-indexed families R of admissible relations, where RA

w ⊆
XAw × Y and RSt

w ⊆ XSw × RecLoc(Y ).

• For morphisms f = 〈f1, f2〉 : 〈X,Y 〉 → 〈X ′, Y ′〉, and relations R ∈
R(X,Y ) and S ∈ R(X ′, Y ′), we define 〈f1, f2〉 : R ⊂ S iff for all w ∈
W , A ∈ Type, for all x ∈ XAw, y ∈ Y , s ∈ XSw and σ ∈ RecLoc(Y ):

〈x, y〉 ∈ RAw =⇒



f1Aw(x)↑ ∧ f2(y)↑ or

f1Aw(x)↓ ∧ f2(y)↓ ∧ 〈f1Aw(x), f2(y)〉 ∈ SAw

〈s, σ〉 ∈ RSt
w =⇒

8

<

:

f1Sw(x)↑ ∧ RecLoc(f2)(σ)↑ or

f1Sw(x)↓ ∧ RecLoc(f2)(σ)↓

∧ 〈f1Sw(x),RecLoc(f2)(σ)〉 ∈ SSt
w

Firstly, it is easy to see that this relational structure R on C × pCpo

indeed satisfies the axioms of [40]:
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(IDENTITY) 〈idX , idY 〉 : R ⊂ R for all objects 〈X,Y 〉 and all R-relations

R ∈ R(X,Y )

(COMPOSITION) for composable f, g with f : S ⊂ T and g : R ⊂ S we

have f ◦ g : R ⊂ T

(NORMALITY) if id : R ⊂ S and id : S ⊂ R then R = S

Further, for objects 〈X,Y 〉, 〈X ′, Y ′〉 and relations R ∈ R(X,Y ) and S ∈
R(X ′, Y ′), the subset

[R,S]
def
= {〈f, g〉 | 〈f, g〉 : R ⊂ S}

of [X ⇀ X ′] × [Y ⇀ Y ′] has a least element and is chain-closed:

• Clearly, the pair ⊥ = 〈⊥,⊥〉 of maps that are undefined everywhere

satisfies ⊥ : R ⊂ S and is below every other f ∈ [R,S].

• Let 〈f0, g0〉 v 〈f1, g1〉 v . . . in [R,S] and 〈f, g〉 =
⊔

i〈fi, gi〉. Now
suppose 〈x, y〉 ∈ XAw × Y s.t. 〈x, y〉 ∈ RA

w and fAw(x) ↓ (g(y) ↓,

resp.). Then fiAw(x) ↓ (gi(y) ↓, resp.) for all sufficiently large i,
which entails that also gi(y)↓ (fiAw(x)↓, resp.) and 〈fiAw(x), gi(y)〉 v
〈fi+1Aw(x), gi+1(y)〉 v . . . in SA

w . Hence g(y) ↓ (fAw(x) ↓, resp.) and

by admissibility of SA
w also 〈fAw(x), g(y)〉 ∈ SA

w .
A similar line of reasoning shows that 〈f(x)Sw,RecLoc(g)(σ)〉 ∈ SSt

w

whenever 〈xSw, σ〉 ∈ RSt
w and either f(x) ↓ or RecLoc(g)(σ) ↓. Hence,

〈f, g〉 : R ⊂ S which we needed to show.

Next, in Table 8, we define a map Φ(R−, R+) on the relational struc-

ture corresponding to the equations for the Kripke logical relationR above
(separating positive and negative occurrences) such that for R ∈ R(X,Y )
and S ∈ R(X ′, Y ′) we have Φ(R,S) ∈ R((F ×G)(〈X,Y 〉, 〈X ′, Y ′〉)).

It is not hard to show that Φ is indeed well-defined: admissibility of
each SSt

w and SA
w entails admissibility of the corresponding component of

Φ(R,S):

Lemma 5.1. Let R ∈ R(X ′, Y ′) and S ∈ R(X,Y ). Then, for all w ∈ W
and A ∈ Type,

Φ(R,S)Aw ⊆ XAw × Y and Φ(R,S)St
w ⊆ XSw × RecLoc(Y )

are admissible subsets of the cpos XAw × Y and XSw × RecLoc(Y ), resp.

Moreover, Φ is an admissible action of the functor F ×G on R, in the
following sense:

Lemma 5.2. For all e = 〈e1, e2〉, f = 〈f1, f2〉 and R,R′, S, S′, if e : R′ ⊂ R
and f : S ⊂ S′ then (F ×G)(e, f) : Φ(R,S) ⊂ Φ(R′, S′).
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TABLE 8. The functional Φ

At A, w the map Φ is defined according to

〈x, y〉 ∈ Φ(R,S)bool

w
def

⇐⇒ y ∈ BVal and x = y

〈r, s〉 ∈ Φ(R,S)
{mi:Ai}
w

def
⇐⇒ s ∈ RecM(Y ′) and ∀i s.mi ↓ ∧〈r.mi, s.mi〉 ∈ SAi

w

〈f, g〉 ∈ Φ(R,S)A⇒B
w

def
⇐⇒ g ∈ [RecLoc(Y ) × Y ⇀ RecLoc(Y

′) × Y ′] and

∀w′ ≥ w ∀〈s, σ〉 ∈ RSt
w′ ∀〈x, y〉 ∈ RAw′

(fw′(s, x)↑ ∧g(σ, y)↑) or

(fw′(s, x) = 〈w′′, 〈s′, x′〉〉↓ ∧g(σ, y) = 〈σ′, y′〉↓

∧〈s′, σ′〉 ∈ SSt
w′′ ∧ 〈x′, y′〉 ∈ SBw′′)

〈x, y〉 ∈ Φ(R,S)ref A
w

def
⇐⇒ y ∈ w ∩ LocA and x = y

and at Sw it is given by

〈s, σ〉 ∈ Φ(R,S)St
w

def
⇐⇒ dom(s) = w = dom(σ) and ∀lA ∈ w. 〈s.l, σ.l〉 ∈ SAw

According to [40], Lemma 5.2 guarantees that Φ has a unique fixed

point fix(Φ) in R(D,Val), and we obtain the Kripke logical relation R
def
=

fix(Φ) satisfying R = Φ(R,R) as required.

Theorem 5.3 (Existence, [40]). The functional Φ has a unique fixed point.

Proof of Lemma 5.2. Let w ∈ W and A ∈ Type. We consider cases for A.

• A is bool: By definition of the functors F and G, (F × G)(e, f) =
〈F (e1, f1), G(e2, f2)〉 with

F (e1, f1)boolw = idBVal and G(e2, f2) = idBVal

Now if 〈x, y〉 ∈ Φ(R,S)bool
w then y ∈ BVal and x = y, hence,

〈F (e1, f1)boolw(x), G(e2, f2)(y)〉 = 〈x, y〉 ∈ Φ(R′, S′)bool

w

• A is {|mi : Ai|}. Suppose 〈x, y〉 ∈ Φ(R,S)A
w , i.e., 〈x.mi, y.mi〉 ∈ SAi

w for
all i. By assumption, f1Aiw(x.mi)↓ if and only if f2(y.mi), and then

〈f1Aiw
(x.mi), f2(y.mi)〉 ∈ S′Ai

w (5)

By definition of F and G, F (e1, f1)Aw(x)↓ if and only if f1Aiw(x.mi)↓
for all i, which by the above is equivalent to f2(y.mi) ↓ for all i, i.e.,
G(e2, f2)(y)↓, and then

F (e1, f1)Aw(x).mi = f1Aiw
(x.mi) and G(e2, f2)(y).mi = f2(y.mi)

Hence, (5) shows 〈F (e1, f1)Aw(x), G(e2, f2)(y)〉 ∈ Φ(R′, S′)A
w .
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• A is B ⇒ B′. Suppose 〈h, k〉 ∈ Φ(R,S)B⇒B′

w , we have to show that

〈F (e1, f1)B⇒B′ w(h),G(e2, f2)(k)〉 ∈ Φ(R′, S′)B⇒B′

w (6)

So let w′ ≥ w, 〈s, σ〉 ∈ R′St
w′ and 〈x, y〉 ∈ R′B

w′ . By assumption,

e1Sw′(s)↓ iff RecLoc(e2)(σ)↓ and then 〈e1Sw′(s),RecLoc(e2)(σ)〉 ∈ RSt
w′

e1Bw′ (x)↓ iff e2(y)↓ and then 〈e1Bw′ (x), e2(y)〉 ∈ RBw′

From 〈h, k〉 ∈ Φ(R,S)B⇒B′

w we then obtain

hw′(e1Sw′(s), e1Bw′ (x)) = 〈w′′, 〈s′, x′〉〉↓

iff k(RecLoc(e2)(σ), e2(y)) = 〈σ′, y′〉↓

and then both 〈s′, σ′〉 ∈ SSt
w′′ and 〈x′, y′〉 ∈ SB′

w′′ . By assumption

f1Sw′′ (s
′)↓ iff RecLoc(f2)(σ

′)↓ and then 〈f1Sw′′ (s
′),RecLoc(f2)(σ

′)〉 ∈ S′St
w′′

f1B′w′′(x
′)↓ iff f2(y

′)↓ and then 〈f1B′w′′ (x
′), f2(y

′)〉 ∈ S′B
′

w′′

By definition of F,G, we have

F (f1, e1)(h)w′(s, x)↓ =⇒



F (f1, e1)(h)w′ (s, x)
= 〈w′′, 〈f1Sw′′ (s′), f1B′w′′(x′)〉〉

G(e2, f2)(k)(σ, y)↓ =⇒ G(e2, f2)(k)(σ, y) = 〈RecLoc(f2)(σ
′), f2(y

′)〉

so by the above considerations (6) holds.

• A is ref B. By definition of F and G,

F (e1, f1)ref Bw = idw∩LocB
and G(e2, f2) = idLoc

So if 〈x, y〉 ∈ Φ(R,S)ref B
w then necessarily y ∈ w ∩ LocA and x = y,

hence,

〈F (e1, f1)ref B w(x),G(e2, f2)(y)〉 = 〈x, y〉 ∈ Φ(R′, S′)ref B
w

Finally, the case for 〈s, σ〉 ∈ Φ(R,S)St
w proceeds analoguously to the case

for records {|mi : Ai|} above.

5.2 The Basic Lemma

We establish the following monotonicity properties before proving the ba-

sic lemma of logical relations for the Kripke logical relation R:

Lemma 5.4 (Kripke Monotonicity). Suppose 〈a, u〉 ∈ RA
w and w′ ≥ w.

Then 〈JAK
w′

w (a), u〉 ∈ RA
w′ .

Proof. By induction on A (note that this is possible here because, in the

case of function types, JA⇒ BK
w′

w does not depend on the store).

• A is bool. This follows immediately from JboolK
w′

w (x) = id(x) = x.

16



• A is {mi : Ai}i∈I . By definition of RA
w we know y ∈ RecM(Val)

and 〈x.mi, y.mi〉 ∈ RAi
w for all i ∈ I. So by induction hypothesis,

〈JAiK
w′

w (x.mi), y.mi〉 ∈ RAi
w for all i, and 〈JAK

w′

w (x), y〉 ∈ RA
w′ follows

since

JAKw
′

w (x).mi = JAiKw
′

w (x.mi)

• A is B ⇒ B′. By definition, JB ⇒ B′K
w′

w (x) = λw′′≥w′xw′′ , so the re-

sult follows directly from the definition of RB⇒B′

w′ and the assumption

〈x, y〉 ∈ RB⇒B′

w .

• A is ref B. Immediately from Jref BK
w′

w (x) = x.

Lemma 5.5 (Subtype Monotonicity). Let w ∈ W , A ≺: B and 〈a, u〉 ∈
RA

w . Then 〈JA ≺: BKw (a), u〉 ∈ RB
w .

Proof. By a straightforward induction on the derivation of A ≺: B: Sup-
pose 〈x, y〉 ∈ RA

w. If the last step in A ≺: B is

• (Reflexivity). In this case, A ≡ B and JA ≺: BKw (x) = x, so that

〈JA ≺: BKw (x), y〉 ∈ RB
w is immediate.

• (Transitivity). Assume A ≺: B was derived from A ≺: A′ and A′ ≺:
B. Applying the induction hypothesis, 〈JA ≺: A′Kw (x), y〉 ∈ RA′

w and
again by induction hypothesis,

〈JA′ ≺: BKw (JA ≺: A′Kw (x)), y〉 ∈ RB
w

as required.

• (Arrow). Write x′ := JA⇒B ≺: A′ ⇒ B′Kw (x), we must show 〈x′, y〉 ∈

RA′⇒B′

w . Let w′ ≥ w, 〈s, σ〉 ∈ RSt
w′ and 〈u, u′〉 ∈ RA′

w′ .
By induction, 〈JA′ ≺: AKw′ (u), u′〉 ∈ RA

w′ , and therefore we have

xw′(s, JA′ ≺: AKw′ (v))↓ if and only if y(σ, v′)↓, by assumption 〈x, y〉 ∈
RA⇒B

w . Moreover, if both are defined then

xw′(s, JA′ ≺: AKw′ (u)) = 〈w′′, 〈s′, v〉〉 and y(σ, u′) = 〈σ′, v′〉

s.t. 〈s′, σ′〉 ∈ RSt
w′′ and 〈v, v′〉 ∈ RB

w′′ . By induction hypothesis, the lat-

ter entails 〈JB ≺: B′Kw′′ (v), v′〉 ∈ RB′

w′′ and we can conclude 〈x′, y〉 ∈

RA′⇒B′

w .

• (Record). Suppose {mi : Ai}i∈I ≺: {mi : A′
i}i∈I′ has been derived

from I ′ ⊆ I and Ai ≺: A′
i, for all i ∈ I ′. Assume 〈x, y〉 ∈ R

{mi:Ai}i∈I
w . If

we let x′ := J{mi : Ai}i∈I ≺: {mi : A′
i}i∈I′Kw (x) we must show 〈x′, y〉 ∈

R
{mi:A

′

i}i∈I′

w .
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By assumption y ∈ RecM(Val) and 〈x.mi, y.mi〉 ∈ RAi
w , for all

i ∈ I. By induction hypothesis, 〈JAi ≺: A′
iKw (x.mi), y.mi〉 ∈ RAi

w

for all i ∈ I ′ ⊆ I. The result follows, since by definition x′.mi =
JAi ≺: A′

iKw (x.mi).

Lemmas 5.4 and 5.5 show a key property of the relation R, which

lies at the heart of the coherence proof: For 〈a, u〉 ∈ RA
w we can apply

coercions to a and enlarge the world w while remaining in relation with

u ∈ Val.
We extend R to contexts Γ in the natural way by defining 〈ρ, η〉 ∈ RΓ

w

if and only if 〈ρ(x), η(x)〉 ∈ RA
w, for all x:A in Γ. It is tedious, but not

difficult, to prove the fundamental property of logical relations. It states

that the (typed and untyped) denotations of well-typed terms compute
related results.

Lemma 5.6 (Basic Lemma). Suppose Γ . e : A, w ∈ W , 〈ρ, η〉 ∈ RΓ
w and

〈s, σ〉 ∈ RSt
w . Then

• either JΓ . e : AKw ρs↑ and JeK ησ ↑, or

• there are w′ ≥ w, s′, a, σ′, u s.t.JΓ . e : AKw ρs = 〈w′, 〈s′, a〉〉 ↓ and

JeK ησ = 〈σ′, u〉↓ s.t. 〈s′, σ′〉 ∈ RSt
w′ and 〈a, u〉 ∈ RA

w′ .

Proof. The proof is by induction on the derivation of Γ . e : A, using
Lemmas 5.4 and 5.5.

• (Subsumption). In this case, Γ . e : B has been derived from pre-
misses Γ . e : A and A ≺: B. By induction hypothesis, either both

JΓ . e : AKw ρs ↑ and JeK ησ ↑, or JΓ . e : AKw ρs = 〈w′, 〈s′, x〉〉 ↓ and
JeK ησ = 〈σ′, y〉 where 〈s′, σ′〉 ∈ RSt

w′ and 〈x, y〉 ∈ RA
w′ . But then

〈JA ≺: BKw′ (x), y〉 ∈ RB
w′ , by the previous Lemma, which concludes

this case using the semantics of the subsumption rule.

• (Var). By assumption 〈ρ, η〉 ∈ RΓ
w, and by the premiss of the variable

rule x : A ∈ Γ, which entails 〈ρ(x), η(x)〉 ∈ RA
w. The result now

follows immediately from the definitions of JΓ . x : AK and JxK, and
the assumption 〈s, σ〉 ∈ RSt

w .

• (Let). Assume we have derived Γ . let x=e1 in e2 : B by the rule (Let).
By induction hypothesis, either both JΓ . e1 : AKw ρs↑ and Je1K ησ ↑, or
JΓ . e1 : AKw ρs = 〈w′, 〈s′, u〉〉 ↓ and Je1K ησ = 〈σ′, v〉 where 〈s′, σ′〉 ∈
RSt

w′ and 〈u, v〉 ∈ RA
w′ .

In the latter case, observe that 〈JΓK
w′

w (ρ), η〉 ∈ RΓ
w′ by Kripke Mono-

tonicity, and therefore 〈JΓK
w′

w (ρ)[x := u], η[x := v]〉 ∈ RΓ,x:A
w′ . Applying

18



the inductive hypothesis to Γ, x : A . e2 : B we obtain that either both

Je2K η[x := v]σ′ ↑ and JΓ, x:A . e2 : BKw′ (JΓK
w′

w (ρ)[x := u])s′ ↑, or

– JΓ, x:A . e2 : BKw′ (JΓK
w′

w (ρ)[x := u])s′ = 〈w′′, 〈s′′, u′〉〉↓ and

– Je2K η[x := v]σ′ = 〈σ′′, v′〉

where 〈s′′, σ′′〉 ∈ RSt
w′′ and 〈u′, v′〉 ∈ RB

w′′ . Using the definition of

JΓ . let x=e1 in e2 : BK and Jlet x=e1 in e2K, this is all that needed to
be shown.

• (Const) Suppose we have derived Γ.true : bool by the rule for constant
true. The result follows directly from JΓ . true : boolKw ρs = 〈s, true〉
and JtrueK ησ = 〈σ, true〉, the assumption 〈s, σ〉 ∈ RSt

w and the defini-

tion of Rbool
w . The case where Γ . false : bool is analogous.

• (If) By induction hypothesis on the premiss Γ.x : bool, the assumption

〈ρ, η〉 ∈ RΓ
w and the definition of the semantics, JΓ . x : boolKw ρs =

〈w, 〈s, u〉〉 and JxK ησ = 〈σ, v〉 s.t. 〈u, v〉 ∈ Rbool
w , for all 〈s, σ〉 ∈ RSt

w . By

definition this means u, v ∈ BVal and u = v.
We consider the case where u = true = v , the case where both

equal false is analogous. By induction hypothesis on Γ . e1 : A, either
both JΓ . e1 : AKw ρs↑ and Je1K ησ ↑, or JΓ . e1 : AKw ρs = 〈w′, 〈s′, u′〉〉↓
and Je1K ησ = 〈σ′, v′〉 where 〈s′, σ′〉 ∈ RSt

w′ and 〈u′, v′〉 ∈ RA
w′ . The re-

sult follows now by observing that JΓ . if x then e1 else e2 : AKw ρs =
〈w′, 〈s′, u′〉〉 and Jif x then e1 else e2K ησ = 〈σ′, v′〉.

• (Record) For all i ∈ I, by induction hypothesis and from the fact

that JxiK ησ = 〈σ, η(xi)〉 one obtains JΓ . xi : AiKw ρs = 〈w, 〈s, ui〉〉
s.t. 〈ui, η(xi)〉 ∈ RAi

w . By definition, JΓ . {mi = xi} : {mi : Ai}Kw ρs =
〈w, 〈s, {|mi = ui|}〉〉 and J{mi = xi}K ησ = 〈σ, {|mi = η(xi)|}〉, so the

result follows directly from the definition of R
{mi:Ai}
w .

• (Selection) By induction hypothesis we have 〈u, η(x)〉 ∈ R
{mi:Ai}
w pro-

vided 〈w, 〈s, u〉〉 = JΓ . x : {mi : Ai}Kw ρs. Therefore, by the definition

of R
{mi:Ai}
w , this entails 〈u.mj , η(x).mj〉 ∈ R

Aj
w and the result follows

from the semantics of x.mj .

• (Lambda). This case is similar to the case for (Let), using Kripke Mono-
tonicity when constructing an extended context. We know that there
exist f, g s.t. JΓ . λx.e : A⇒ BKw ρs = 〈s, f〉 and Jλx.eK ησ = 〈σ, g〉, so

all that needs to be shown is 〈f, g〉 ∈ RA⇒B
w . Let w′ ≥ w, 〈u, v〉 ∈ RA

w′

and 〈s′, σ′〉 ∈ RSt
w′ . By Lemma 5.4, 〈JΓK

w′

w (ρ)[x := u], η[x := v]〉 ∈

RΓ,x:A
w′ . By induction hypothesis for the premiss Γ, x:A . e : B, either
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both JΓ, x:A . e : BKw′ (JΓK
w′

w (ρ)[x := u])s′ ↑ and JeK η[x := v]σ′ ↑, or

JΓ, x:A . e : BKw′ (JΓKw
′

w (ρ)[x := u])s′ = 〈w′′, 〈s′′, u′〉〉↓

and JeK η[x := v]σ′ = 〈σ′′, v′〉 where 〈s′′, σ′′〉 ∈ RSt
w′′ and 〈u′, v′〉 ∈ RB

w′′ .
But this is just the definition of 〈f, g〉 ∈ RA⇒B

w .

• (Application) Suppose the derivation of Γ . x(y) : B ends with the

application rule. By the premiss of the rule, Γ . x : A ⇒ B and Γ . y :
A, so by induction JΓ . x : A⇒ BKw ρs = 〈w, 〈s, f〉〉 s.t. 〈f, η(x)〉 ∈
RA⇒B

w , and JΓ . y : AKw ρs = 〈w, 〈s, u〉〉 s.t. 〈u, η(y)〉 ∈ RA
w .

By definition of RA⇒B
w , either both JΓ . x(y) : BKw ρs = fw(s, u) ↑

and Jx(y)K ησ = η(x)(σ, η(y))↑, or

JΓ . x(y) : BKw ρs = 〈w′, 〈s′, u′〉〉↓ and Jx(y)K ησ = 〈σ′, v′〉↓

with 〈s′, σ′〉 ∈ RSt
w′ and 〈u′, v′〉 ∈ RB

w′ .

• (New) By definition, we have JΓ . newA x : ref AKw ρs = 〈w,lA, 〈s
′, lA〉〉

and JnewA xK = 〈σ′, lA〉 with lA ∈ LocA and s′, σ′ as in Table 5 in Sec-
tion 3 and the semantic equations given in Table 6 in Section 4, resp.

All that remains to show is 〈s′, σ′〉 ∈ RSt
w′ , where w′ = w,lA.

From the assumption 〈s, σ〉 ∈ RSt
w we immediately find dom(s′) =

w′ = dom(σ′). Moreover, by induction we have JΓ . x : AKw ρs =
〈w, 〈s, u〉〉 with 〈u, η(x)〉 ∈ RA

w. By Kripke Monotonicity this entails

〈JAK
w′

w (u), η(x)〉 ∈ RA
w′ . Also, by assumption 〈s, σ〉 ∈ RSt

w we have

〈s.l, σ.l〉 ∈ RA′

w for all l ∈ w ∩ LocA′ . By Kripke Monotonicity this gives

〈JA′K
w′

w (s.l), σ.l〉 ∈ RA′

w′ , and we have shown 〈s′.l′, σ′.l′〉 ∈ RA′

w′ for all

l′ ∈ w′. Thus 〈s′, σ′〉 ∈ RSt
w′ as required.

• (Deref) By induction hypothesis, JΓ . x : ref AKw ρs = 〈w, 〈s, l〉〉 s.t.
〈l, η(x)〉 ∈ Rref A

w , i.e., η(x) ∈ w ∩ LocA and l = η(x). Then 〈s, σ〉 ∈ RSt
w

shows 〈s.l, σ.l〉 ∈ RA
w . The result follows since JΓ . deref x : AKw ρs =

〈w, 〈s, s.l〉〉 and Jderef xK ησ = 〈σ, σ.η(x)〉.

• (Update) By definition and the assumptions 〈ρ, η〉 ∈ RΓ
w and 〈s, σ〉 ∈

RSt
w we necessarily have Jx:=yK ησ = 〈σ′, {||}〉↓ and JΓ . x:=y : 1Kw ρs =

〈w, 〈s′, {||}〉〉↓, with s′ and σ′ as in Tables 5 and 6, resp.

Clearly 〈{||}, {||}〉 ∈ R1

w, and all that remains to be shown is 〈s′, σ′〉 ∈
R1

w. From 〈s, σ〉 ∈ RSt
w and the definition of s′, σ′ one sees dom(s′) =

w = dom(σ′). So let l ∈ w ∩ LocB . Then, by the induction hypothesis,
JΓ . x : ref AKw ρs = 〈w, 〈s, l0〉〉 s.t. 〈l0, η(x)〉 ∈ Rref A

w , i.e., l0 = η(x) ∈
w ∩ LocA.

Thus, if l 6= l0 then 〈s′.l, σ′.l〉 = 〈s.l, σ.l〉 ∈ RB
w , by assumption

〈s, σ〉 ∈ RSt
w . Finally, for l = l0 we have 〈s′.l, σ′.l〉 = 〈u, η(y)〉 ∈
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TABLE 9. Bracketing maps

φbool

w (b) = b

ψbool
w (v) =



v if v ∈ BVal
undefined otherwise

φ
{mi:Ai}
w (r) = {|mi = φAi

w (r.mi)|}

ψ
{mi:Ai}
w (v) =

8

<

:

{|mi = ψAi
w (v.mi)|}

if v ∈ RecL(Val) and ψAi
w (v.mi)↓ for all i

undefined otherwise

φA⇒B
w (f) = λ〈σ, v〉.

8

>

>

<

>

>

:

〈φSt
w′′(s), φBw′′(b)〉

if dom(σ) = w′ ∈ W, ψSt
w′(σ)↓, ψAw′(v)↓

and fw′(ψSt
w′(σ), ψAw′ (v)) = 〈w′′, 〈s, b〉〉

undefined otherwise

ψA⇒B
w (g) = λw′≥w λ〈s, a〉.

8

>

>

>

>

<

>

>

>

>

:

〈w′′, 〈ψSt
w′′ (σ), ψBw′′ (v)〉〉

if g(φSt
w′(s), φAw′(a)) = 〈σ, v〉↓

dom(σ) = w′′ ∈ W,

ψSt
w′′ (σ)↓ and ψBw′′(v)↓

undefined otherwise

φref A
w (l) = l

ψref A
w (v) =



v if v ∈ LocA
undefined otherwise

φSt
w(s) = {|lA = φAw(s.lA)|}lA∈w

ψSt
w(σ) =



{|lA = ψAw(σ.lA)|}lA∈w if ψAw (σ.lA)↓ for all lA ∈ w
undefined otherwise

RA
w , since by induction hypothesis, JΓ . y : AKw ρs = 〈w, 〈s, u〉〉 with

〈u, η(y)〉 ∈ RA
w.

5.3 Bracketing

Next, in Table 9, we define families of “bracketing” maps φw, ψw,

JAKw
φA

w //
Val

ψA
w

oo and Sw
φSt

w //

ψSt
w

oo St

such that ψA
w ◦ φA

w = idJAKw
, i.e., each JAKw is a retract of the untyped

model Val. As in [45], the retraction property follows from a more general
result which justifies the term “bracketing”,

φAw ⊆ RAw and RAw ⊆ (ψAw)op

relating the (graphs of the) bracketing maps and the Kripke logical rela-

tion of the previous section.
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Theorem 5.7 (Bracketing). For all w ∈ W and A ∈ Type,

1. for all x ∈ JAKw . 〈x, φ
A
w(x)〉 ∈ RA

w,

2. for all s ∈ Sw. 〈s, φ
St
w(s)〉 ∈ RSt

w

3. for all 〈x, y〉 ∈ RA
w . x = ψA

w(y),

4. for all 〈s, σ〉 ∈ RSt
w . s = ψSt

w (σ)

Compared to Reynolds work, the proof of Theorem 5.7 is more in-
volved, again due to the (mixed-variant) type recursion caused by the use
of higher-order store. Therefore we first show a preliminary lemma, which
uses the projection maps that come with the minimal invariant solution D

of the endofunctor F on C: For δ(e) = F (e, e) we set πAw
n

def
= δn(⊥)Aw , and

similarly πSw
n

def
= δn(⊥)Sw. Note that by definition of the minimal invariant

solution,
F

n π
Aw
n = (

F

n δ
n(⊥))Aw = (lfp(δ))Aw = idAw

follows. Similarly,
⊔

n π
Sw
n = idSw holds.

Lemma 5.8. For all n ∈ N, w ∈ W , A ∈ Type,

1. ∀x ∈ JAKw . π
Aw
n (x)↓ =⇒ 〈πAw

n (x), φA
w(πAw

n (x))〉 ∈ RA
w

2. ∀s ∈ Sw. π
Sw
n (s)↓ =⇒ 〈πSw

n (s), φSt
w(πSw

n (s))〉 ∈ RSt
w

3. ∀〈x, y〉 ∈ RA
w . π

Aw
n (x)↓ =⇒ πAw

n (x) = πAw
n (ψA

w(y))

4. ∀〈s, σ〉 ∈ RSt
w . π

Sw
n (s)↓ =⇒ πSw

n (s) = πSw
n (ψSt

w (σ))

Proof. By a simultaneous induction on n, considering cases for A in parts
1 and 3. Clearly the result holds for n = 0 since then πAw

0 and πSw
0 are

undefined everywhere. For the case n > 0:

1. We consider cases for A:

• A is bool: By definition, πboolw
n (x) = x ∈ BVal, and therefore

φbool
w (πboolw

n (x)) = πboolw
n (x) = x ∈ BVal. Hence,

〈πboolw
n (x), φbool

w (πboolw
n (x))〉 = 〈x, x〉 ∈ Rbool

w

by the definition of Rbool
w .

• A is {|mi : Ai|}: We know π
{|mi:Ai|}
n (x) = {|mi = πAiw

n−1(x.mi)|}. By
induction hypothesis,

〈πAiw
n−1 (x.mi), φ

Ai
w (πAiw

n−1(x.mi))〉 ∈ RAi
w
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for all i and, by the definition of π
{|mi:Ai|}w
n and φ

{|mi:Ai|}
w ,

φ{|mi:Ai|}
w (π{|mi:Ai|}

n (x)) = φ{|mi:Ai|}
w ({|mi = πAiw

n−1(x.mi)|})

= {|mi = φAi
w (πAiw

n−1(x.mi))|}

Therefore 〈π
{|mi:Ai|}w
n (x).mi, φ

{|mi:Ai|}
w (π

{|mi:Ai|}w
n (x)).mi〉 ∈ RAi

w for
all i, i.e.,

〈π{|mi:Ai|}w
n (x), φ{|mi:Ai|}

w (π{|mi:Ai|}w
n (x))〉 ∈ R{|mi:Ai|}

w

as required.

• A is B ⇒ B′: By definition of πB⇒B′ w
n and φB⇒B′

w ,

πB⇒B′ w
n (x) = λw′ ≥ w λ〈s, v〉.

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

〈πSw
′′

n−1 (s′), πB
′ w′′

n−1 (v′)〉

if xw′(πSw
′

n−1(s), π
Bw′

n−1(v))
= 〈w′′, 〈s′, v′〉〉↓

and πSw
′′

n−1 (s′)↓

and πB
′ w′′

n−1 (v′)↓
undefined otherwise

and φB⇒B′

w (πB⇒B′ w
n (x)) equals

λ〈σ, v〉.

8

>

>

>

>

<

>

>

>

>

:

〈φSt
w′′ (πSw

′′

n−1 (s′)), φB
′

w′′(πB
′ w′′

n−1 (v′))〉

if dom(σ) = w′ ≥ w,ψSt
w′ (σ)↓, ψBw′(v)↓

and xw′(πSw
′

n−1(ψ
St
w′(s)), πBw

′

n−1(ψBw′ (v))) = 〈w′′, 〈s′, v′〉〉↓
undefined

otherwise

In order to show 〈πB⇒B′ w
n (x), φB⇒B′

w (πB⇒B′ w
n (x))〉 ∈ RB⇒B′

w , let

w′ ≥ w, 〈s, σ〉 ∈ RSt
w′ and 〈u, v〉 ∈ RB

w′ .

If either of πSw′

n−1(s) or πBw′

n−1(u) is undefined then we immediately

have both πB⇒B′ w
n (x)w′ (s, u) ↑ and φB⇒B′

w (πB⇒B′ w
n (x))w′ (σ, v) ↑.

So without loss of generality assume both πSw′

n−1(s)↓ and πBw′

n−1(u)↓
in the following. Then, by part 3 and 4, resp., of the induction

hypothesis, πBw′

n−1(u) = πBw′

n−1(ψ
B
w′(v)) and πSw′

n−1(s) = πSw′

n−1(ψ
St
w′(σ)).

Now if

xw′(πSw
′

n−1(s), π
Bw′

n−1(u)) = 〈w′′, 〈s′, u′〉〉↓

then the induction hypothesis entails 〈πSw′′

n−1 (s′), φSt
w′′ (πSw′′

n−1 (s′))〉 ∈

RSt
w′′ and 〈πB′ w′′

n−1 (v′), φB′

w′′ (πB′ w′′

n−1 (v′))〉 ∈ RB′

w′′ whenever πSw′′

n−1 (s′)↓

and πB′ w′′

n−1 (v′)↓ both hold.

Thus we have established 〈πB⇒B′ w
n (x), φB⇒B′

w (πB⇒B′ w
n (x))〉 ∈

RB⇒B′

w , by definition of RB⇒B′

w .

• A is ref B: By definition, πref Bw
n (x) = x ∈ LocA. Thus we have
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φref B
w (πref Bw

n (x)) = φref B
w (x) = x ∈ Loc, which entails

〈πref Bw
n (x), φref B

w (πref Bw
n (x))〉 = 〈x, x〉 ∈ Rref B

w

This concludes this part of the proof.

2. Suppose πSw
n (s)↓ and let sn = πSw

n (s) = {|lA = πAw
n−1(s.lA)|}lA∈w, and

so

φSt
w(sn) = {|lA = φAw(sn.lA)|}lA∈w

= {|lA = φAw(πAwn−1(s.lA))|}lA∈w

Then dom(sn) = w = dom(φSt
w(sn)). Moreover, the first part of the

induction hypothesis yields 〈sn.lA, φ
St
w(sn).lA〉 ∈ RA

w , for all lA ∈ w,
i.e., 〈sn, φ

St
w(sn)〉 ∈ RSt

w as required.

3. Again, we consider cases for A:

• A is bool: By the definition of Rbool
w , y ∈ BVal and x = y. The

result follows immediately from πboolw
n (x) = x = y = πboolw

n (y) =
πboolw

n (ψbool
w (y)).

• A is {|mi : Ai|}: Suppose π
{|mi:Ai|}w
n (x) ↓. In particular, since by

definition π
{|mi:Ai|}w
n (x) = {|mi = πAiw

n−1(x.mi)|} holds this implies

πAiw
n−1(x.mi) ↓ for all i. The assumption 〈x, y〉 ∈ R

{|mi:Ai|}
w gives

〈x.mi, y.mi〉 ∈ RAi
w for all i, and so by induction hypothesis

πAi
n−1(x.mi) = πAi

n−1(ψ
Ai
w (y.mi))

From this the result follows by calculating

π{|mi:Ai|}w
n (x) = {|mi = πAiw

n−1 (x.mi)|}

= {|mi = πAi
n−1(ψ

Ai
w (y.mi))|}

= π{|mi:Ai|}w
n ({|mi = ψAi

w (y.mi)|})

= π{|mi:Ai|}w
n (ψ{|mi:Ai|}w

w (y))

• A is B ⇒ B′: By definition, for all w′ ≥ w, s ∈ Sw′ and u ∈ JBKw′ ,

πB⇒B′ w
n (x)w′(s, u) =

8

>

>

>

>

>

<

>

>

>

>

>

:

〈w′′, 〈πSw
′′

n−1 (s′), πB
′w′′

n−1 (u′)〉〉

if xw′(πSw
′

n−1(s), π
Bw′

n−1(u)) = 〈w′′, 〈s′, u′〉〉↓

and πSw
′′

n−1 (s′)↓, πB
′w′′

n−1 (u′)↓
undefined

otherwise
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and

πB⇒B′ w
n (ψB⇒B′

w (y))w′(s, u) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

〈w′′, 〈πSw
′′

n−1 (ψSt
w′′(σ)), πB

′w′′

n−1 (ψB
′

w′′ (v))〉〉

if y(φSt
w′ (πSw

′

n−1(s)), φ
B
w′(πBw

′

n−1(u)))
= 〈σ, v〉↓ and dom(σ) = w′′ ≥ w′

and πSw
′′

n−1 (ψSt
w′′ (σ))↓

and πB
′w′′

n−1 (ψB
′

w′′ (v))↓
undefined

otherwise

By the first and second parts of the induction hypothesis we know

that for ŝ = πSw′

n−1(s) and û = πBw′

n−1(u)

〈û, φBw′(û)〉 ∈ RBw′ and 〈ŝ, φSt
w′(ŝ)〉 ∈ RSt

w′

So the assumption 〈x, y〉 ∈ RB⇒B′

w yields

xw′(ŝ, û) = 〈w′′, 〈s′, u′〉〉↓ iff y(φSt
w′(ŝ), φBw′(û)) = 〈σ, v〉↓

where 〈s′, σ〉 ∈ RSt
w′′ and 〈u′, v〉 ∈ RB′

w′′ .

If either πSw′′

n−1 (s′)↑ or πB′w′′

n−1 (u′)↑ then, by definition, clearly both

πB⇒B′ w
n (x)w′ (s, u)↑ and πB⇒B′ w

n (ψB⇒B′

w (y))w′ (s, u)↑. So without

loss of generality πSw′′

n−1 (s′)↓ and πB′w′′

n−1 (u′)↓, and by parts 3 and 4
of the induction hypothesis we obtain

πSw
′′

n−1 (s) = πSw
′′

n−1 (ψSt
w′′ (σ)) and πB

′w′′

n−1 (v) = πB
′w′′

n−1 (ψB
′

w′′ (v))

Since this holds for all w′ ≥ w, s and u we have in fact shown

πB⇒B′ w
n (x) = πB⇒B′ w

n (ψB⇒B′

w (y)) as required.

• A is ref B: By definition 〈x, y〉 ∈ Rref B
w implies y ∈ LocA and x = y.

Similar to the case for bool,

πref Bw
n (x) = x = y = πref Bw

n (ψref B
w (y))

as required.

4. Let 〈s, σ〉 ∈ RSt
w , and assume πSw

n (s)↓, i.e.

πSwn (s) = {|lA = πAwn−1(s.lA)|}lA∈w

In particular πAw
n−1(s.lA) ↓ for all lA ∈ w. By definition of R, dom(s) =

dom(σ) and 〈s.lA, σ.lA〉 ∈ RA
w for all lA ∈ w. Thus, part 3 of the

induction hypothesis entails (since πAw
n−1(s.lA) ↓) that πAw

n−1(s.lA) =

πAw
n−1(ψ

A
w(σ.lA)) for all lA ∈ w and we obtain

πSwn (s) = {|lA = πAwn−1(s.lA)|}lA∈w

= {|lA = πAwn−1(ψ
A
w(σ.lA))|}lA∈w

= πSwn (ψSt
w(σ))
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as required.

Proof of Theorem 5.7. For the first part, let x ∈ JAKw. As observed above

we have x =
⊔

n π
Aw
n (x), and in particular πAw

n (x) ↓ for sufficiently large
n ∈ N. By Lemma 5.8,

〈πAwn (x), φAw(πAwn (x))〉 ∈ RAw

for all sufficiently large n. Since this forms an increasing chain in the cpo
JAKw × Val, completeness of RA

w and continuity of φA
w shows

〈x, φAw(x)〉 = 〈
F

n π
Aw
n (x), φAw(

F

n π
Aw
n (x))〉

=
F

n〈π
Aw
n (x), φAw(πAwn (x))〉 ∈ RAw

as required. The other parts are similar.

6 Coherence of the Intrinsic Semantics

We have now all the parts assembled in order to prove coherence (which
proceeds exactly as in [45]): Suppose P1(Γ . e : A) and P2(Γ . e : A) are
derivations of the judgement Γ . e : A. We show that their semantics
agree. Let w ∈ W , ρ ∈ JΓKw and s ∈ Sw. By Theorem 5.7 parts (1) and

(2), 〈ρ, φΓ
w(ρ)〉 ∈ RΓ

w and 〈s, φSt
w(s)〉 ∈ RSt

w . Hence, by two applications of
the Basic Lemma of logical relations, either

JP1(Γ . e : A)Kw ρs↑ ∧ JeK (φΓ
w(ρ))(φSt

w(s))↑ ∧ JP2(Γ . e : A)Kw ρs↑
or else there exist wi, si, vi and σ, v such that

JP1(Γ . e : A)Kw ρs = 〈w1, 〈s1, v1〉〉

∧ JeK (φΓ
w(ρ))(φSt

w(s)) = 〈σ, v〉

∧ JP2(Γ . e : A)Kw ρs = 〈w2, 〈s2, v2〉〉

where 〈si, σ〉 ∈ RSt
wi

and 〈vi, v〉 ∈ RA
wi

, for i = 1, 2. The definition of the

relation RSt
wi

entails w1 = dom(σ) = w2, and by Theorem 5.7 parts (3) and
(4), s1 = ψSt

w1
(σ) = ψSt

w2
(σ) = s2 and v1 = ψA

w1
(v) = ψA

w2
(v) = v2. We

have therefore shown

Theorem 6.1 (Coherence). All derivations of a judgement Γ . e : A have

the same meaning in the intrinsic semantics.

Note that this result does not hold if the type annotation A in newA

was removed. In particular, there would then be two different derivations
of the judgement

x:{m : bool} . new x; true : bool (7)

one without use of subsumption, and one where x is coerced to type 1

before allocation. The denotations of these two derivations are different
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(clearly not even the resulting extended worlds are equal). It could be

argued that, at least in this particular case, this is a defect of the under-
lying model: The use of a global store does not reflect the fact that the

cell allocated in (7) above remains local and cannot be accessed by any
enclosing program. However, in the general case we do not know if the
lack of locality is the only reason preventing coherence for terms without

type annotations.

7 A PER Model of Higher-Order Storage and Subtyping

We consider two consequences of the preceding technical development
in more detail. Firstly, the results can be used to obtain an (extrinsic)

semantics over the untyped model, based on partial equivalence relations.
Secondly, we discuss how this relates to a model of Abadi and Leino’s logic

for objects that was considered in [43].

7.1 Extrinsic PER Semantics

Apart from proving coherence, Reynolds used (his analogue of) Theo-
rem 5.7 to develop an extrinsic semantics of types for the (purely applica-
tive) language considered in [45]. Besides Theorem 5.7 this only depends
on the Basic Lemma, and we can do exactly the same here. More precisely,
the binary relation ||A||w := (RA

w)op ◦RA
w, i.e.,

||A||w
def
=

n

〈u, v〉 ∈ Val × Val ∃a ∈ [[A]]w. 〈a, u〉 ∈ RAw ∧ 〈a, v〉 ∈ RAw

o

(8)

is a partial equivalence relation (per) on Val × Val. Note that a direct

proof of transitivity is non-trivial, but it follows easily with part (3) of
Theorem 5.7: In case of existence, the existentially quantified a in (8) is
uniquely determined as ψA

w(u) = ψA
w(v).

This definition induces a per ||w|| ⊆ St × St for every w ∈ W by
〈σ, σ′〉 ∈ ||w|| iff dom(σ) = w = dom(σ′) and 〈σ.lA, σ

′.lA〉 ∈ ||A||w for all
lA ∈ w. The Basic Lemma then shows that the semantics is well-defined on
||−||-equivalence classes, in the sense that if Γ . e : A then for all w ∈ W ,
for all 〈η, η′〉 ∈ ||Γ||w and all 〈σ, σ′〉 ∈ ||w||,

JeK ησ↓ ∨ JeK η′σ′ ↓ =⇒



JeK ησ = 〈σ1, u〉 ∧ JeK η′σ′ = 〈σ′
1, u

′〉∧
∃w′ ≥ w. 〈σ1, σ

′
1〉 ∈ ||w′|| ∧ 〈u, u′〉 ∈ ||A||w′

(9)

The resulting per model satisfies some of the expected typed equations:
For instance, {|f = true, g = true|} and {|f = true, g = false|} are equal at

{f : bool}. Unfortunately, no non-trivial equations involving store hold in
this model; in particular, locality and information hiding are not captured.

This is no surprise since we work with a global store, and the failure of
various desirable equations has already been observed for the underlying

typed model [29].
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However, locality is a fundamental assumption underlying many rea-

soning principles about programs, such as object and class invariants in
object-oriented programming. The work of Reddy and Yang [41], and

Benton and Leperchey [7], shows how more useful equivalences can be
built in into typed models of languages with storable references. We plan
to investigate in how far these ideas carry over to full higher-order store.

We remark that, unusually, the per semantics sketched above does not
seem to work over a “completely untyped” partial combinatory algebra:

The construction relies on the partition of the location set Loc =
⋃

A LocA.
In particular, the definition of the pers ||A||w depends on this rather arbi-

trary partition. The amount of type information retained by using typed
locations allows to express the invariance required for references in the

presence of subtyping. We have been unable to find a more “semantic”
condition. In view of this, the “untyped” model could be viewed simply

as a means to an end, facilitating the definition of the logical relation and
bracketing maps in order to prove coherence.

Nevertheless, as pointed out to us by Bernhard Reus, the per model
may be useful for providing a semantics of languages with down-casts, for
example in the form of a construct

Γ . x : A Γ . e1 : B⇒C Γ . e2 : A⇒C

Γ . try (B)x in e1 else e2 : C
(B ≺: A)

The intrinsic semantics of Section 3 is not suitable for this purpose: For

instance, due to the use of coercions, it is impossible to recover “forgotten”
fields of a record.

7.2 On Abadi and Leino’s Logic of Objects

Further, it is interesting to observe the rôle that the typed “witness” of
〈x1, x2〉 ∈ ||A||w play, i.e., the unique element a ∈ JAKw with 〈a, xi〉 ∈ RA

w:
Crucially, a determines the world w′ ≥ w over which the result store and
value are to be interpreted in the case of application. This is closely related
to the soundness proof of a program logic for objects [43]. In [43] an
untyped domain

O = RecF (Val) × RecM(S ⇀ S × Val)

was employed, representing objects consisting of records of fields f ∈ F
and (parameterless) methods m ∈ M, where S = RecLoc(O) are object
stores. Types (and more generally, specifications) are interpreted as pred-
icates over O. Due to the use of the (higher-order) store S, types are lifted
to a notion of store typing w, leading to recursively defined semantics of
types as in the present paper. The semantics of object types involves a
clause for methods m of type A, similar to (9) above: For all w and all
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w-stores σ,

m(σ) = 〈σ′, v〉 =⇒ ∃w′ ≥ w.v ∈ JAKw′ and σ′ is a w-store (10)

where JAKw′ is the appropriate denotation of type A. But the use of an
existential quantification is problematic: It does not preserve admissibility

and therefore precludes the use of the machinery of [40].
In [43] the workaround for this problem was to construct a domain

of “choice functions” φ that track computations in the untyped model on
the level of worlds W to provide a witness w. Then, in (10) above, the
existential quantifier can be replaced by “φ(w, σ) = w′ for some w′ ≥ w
such that. . . ”. Regarding the setting of the present paper, the tracking of
the computation on W is hard-wired into the witnesses coming from the

typed model.

8 A Semantics of Objects and Classes

In this section we show that our simple notion of subtyping is useful in ob-

taining a pleasingly straightforward semantics of the object calculus [1].
We proceed as follows.

• The technical results of previous sections are extended to also cover
fixed point combinators. Some care is necessary in formalising such

combinators in the presence of side-effects.

• A semantics of objects is given, transferring the definitive work of

Kamin and Reddy [26] into a typed world.

• It is demonstrated how to prove (non-trivial) properties of programs

using higher-order store in the model: We consider an object-oriented,
“circular” implementation of the factorial function (a similar example

has been considered in [24]).

• The advantage of using an intrinsically typed model is evidenced by

revisiting the simple call-back protocol considered in [44]: A more
concise specification of such call-backs is provided. We prove an im-

plementation correct with respect to this specification.

• Referring to the results in [26] again (and also Cook and Palsberg’s

work in [17]), a semantics of class-based languages is discussed.

8.1 Recursive Functions

As a first step, we show how to interpret explicit recursion in the model (as

opposed to recursion through the store due to self-application). Recursive
functions will be used in subsequent parts of this section to resolve the

dependence of methods on the “self” parameter.
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Call-by-value languages do not provide a fixed-point operator at all
types. A common restriction is to add a constant

Γ . fixA : (A⇒A)⇒A

for functional types A ≡ B⇒B′ only. The existence of fixed points is
then guaranteed by the pointedness of (the denotations) of such types in
pCpo (but see also Boudol’s recent work on a more generous “safe” value
recursion [10]). However, in the presence of computational effects there
remains the question about the meaning of

Γ . fixA⇒B (λf.e) : A⇒B (11)

It could be taken to be equivalent to the unfolding e[(fixA⇒B λf.e)/f ],
thus duplicating the side-effects of e. An alternative semantics would be
to evaluate e to a value v first, and then define (11) to be equivalent
to v[(fixA⇒B λf.v)/f ]. In the latter case the side-effects are performed
only once. These issues are discussed in [19, 36]. Here we decided to
avoid this problem and follow the simpler approach of the Standard ML
language: Essentially, (11) is well-formed only if e ∈ Val (i.e., e must be
an abstraction). We capture this restriction by extending the syntax of
values by a case for recursive functions,

v ∈ Val::= . . . | µf(x).e

which can be thought of as fixA⇒B (λfλx.e). We add the new type infer-
ence rule

Γ, f :A⇒B,x:A . e : B

Γ . µf(x).e : A⇒ B

As for the semantics, note that each derivation P(Γ, f :A⇒B, x:A . e : B)
determines a total natural transformation F : JΓK×JA⇒ BK −→ JA⇒ BK
in [W ,Cpo], given by

Fw(ρ, h) = λw′≥wλ〈a, s〉.

JP(Γ, f :A⇒B,x:A . e : B)Kw′ ((JΓ, f :A⇒BKw
′

w ρ[f :=h])[x:=a])s

Moreover, every cpo JA⇒ BKw is pointed, with least element ⊥w given
by the function that is everywhere undefined, ⊥w = λw′≥wλ〈a, s〉 ↑. By
monotonicity of each Fw,

⊥w v Gwρ(⊥w) v G2
wρ(⊥w) v . . .

for all w ∈ W and ρ ∈ JΓKw, where Gwρ = λh.Fw(ρ, h). Hence by conti-
nuity of Fw the least fixed point exists in JA⇒ BKw,

lfp(Gwρ) =
F

nG
n
wρ(⊥w) = Gwρ(lfp(Gwρ)) = Fw(ρ, lfp(Gwρ))

Further, by induction it follows that

JA⇒BKw
′

w ◦Gnwρ(⊥w) = Gn
w′JΓKw′

w (ρ)
(⊥w′ )
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for all n ∈ N. Thus JA⇒BK
w′

w ◦ lfp(Gwρ) = lfp(G
w′JΓKw′

w (ρ)
) and ρ 7→

lfp(Gwρ) is a natural transformation JΓK −→ JA⇒ BK. Given the notation
as above, we now set
s

Γ, f :A⇒B,x:A . e : B

Γ . µf(x).e : A⇒ B

{

w

ρs = 〈w, 〈s, lfp(Gwρ)〉〉 ∈
P

w′≥w Sw′ × JA⇒BKw′

to obtain a semantics for recursive functions in the typed model. In the
untyped model, we simply set

Jµf(x).eK ησ = 〈σ, lfp(λh. Jλx.eK η[f := h])〉

Finally, we turn to the proof of the Basic Lemma, which extends to the
case of recursive functions, too.

Proof of Lemma 5.6, continued. Let 〈s, σ〉 ∈ RSt
w and 〈ρ, η〉 ∈ RΓ

w. We know
that by definition,

s
Γ, f :A⇒B,x:A . e : B

Γ . µf(x).e : A⇒ B

{

w

ρs = 〈w, 〈s, lfp(Gwρ)〉〉

and

Jµf(x).eK ησ = 〈σ, lfp(λh. Jλx.eK η[f := h])〉

By assumption, 〈s, σ〉 ∈ RSt
w , and it remains to show that the two fixed

points are related by RA⇒B
w .

To see this, first observe that 〈ρ[f := h], η[f := h′]〉 ∈ RΓ,f :A⇒B
w for

all 〈h, h′〉 ∈ RA⇒B
w . Therefore as in the case (Lambda) of non-recursive

functions, from the induction hypothesis Γ, f :A⇒B, x:A . e : B it follows
that

〈Gwρ(h), Jλx.eK η[f := h]〉 ∈ RA⇒B
w (12)

for all 〈h, h′〉 ∈ RA⇒B
w . From the definition of RA⇒B

w it is immediate
that 〈⊥w,⊥〉 ∈ RA⇒B

w where ⊥ = λ〈σ, u〉↑ is the everywhere-undefined
function in Val. Therefore induction on n and (12) shows

〈Gnwρ(⊥w), (λh. Jλx.eK η[f := h])n(⊥)〉 ∈ RA⇒B
w

for all n ∈ N. Thus, 〈lfp(Gwρ), lfp(λh. Jλx.eK η[f := h])〉 ∈ RA⇒B
w by

admissibility of RA⇒B
w .

8.2 Objects

Next, we sketch how to give a semantics to Abadi and Cardelli’s imper-
ative object calculus with first-order types [1, 3], where we distinguish
between fields and methods (with parameters). Fields are mutable, but
methods cannot be updated. The type of objects with fields fi of type Ai

and methods mj of type Cj (with self parameter yj) and parameter zj of
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type Bj , is written [fi:Ai,mj :Bj⇒Cj ]i,j . The introduction rule is

A ≡ [fi:Ai,mj :Bj⇒Cj]i,j
Γ . xi : Ai ∀i Γ, yj :A, zj :Bj . bj : Cj ∀j

Γ . [fi = xi,mj = ς(yj)λzj. bj ]i,j : A
(13)

Subtyping on objects is by width, and for methods also by depth:

Bj⇒Cj ≺: B′
j⇒C ′

j ∀j ∈ J ′ I ′ ⊆ I J ′ ⊆ J

[fi : Ai,mj : Bj ⇒ Cj ]i∈I,j∈J ≺: [fi : Ai,mj : B′
j ⇒ C ′

j ]i∈I′,j∈J′

(14)

The following is essentially a (syntactic) presentation of the fixed-point

(or closure) model of objects [26], albeit in a typed setting: Objects of
type A ≡ [fi:Ai,mj :Bj⇒Cj ]i,j are simply interpreted as records of the

corresponding record type A∗ ≡ {fi:ref A
∗
i ,mj :B

∗
j⇒C∗

j }i,j . Note that the
self parameter does not play any part in this type (in contrast to functional

interpretations of objects, see [14] for instance), and soundness of the
subtyping rule (14) follows directly from the rules of Section 2.

A new object [fi=xi,mj=ς(yj)λzj . bj ]i,j of type A is created by allocat-
ing a state record s and defining the methods by mutual recursion (using
obvious syntax sugar),

let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = λyjλzj. bj}j∈J)

where MethA : {fi:ref Ai}i∈I ⇒ {mj :A
∗⇒Bj⇒Cj}j∈J ⇒ A∗ is given by

MethA ≡ µf(s).λm. {fi = s.fi,mj = λzj . (m.mj(f(s)(m)))(zj)}i∈I,j∈J

Soundness of the introduction rule (13) follows immediately from this
interpretation of objects and object types.

The semantics of field selection and field update are simply derefer-
encing and update, resp., of the corresponding field of the record. The

reduction (−)∗ of objects to the procedural language of Section 2 is sum-
marized in Table 10.

8.3 Reasoning about Higher-order Store and Objects

One of the main motivations for devising a denotational semantics is to
provide proof principles. It should enable us to specify, and reason about,

concrete programs.
We look at two small case studies in this section: Firstly, recursion

through the store, exemplified by an object-based implementation of the
factorial function, where the recursion is resolved by calling the method

through an object stored in a member field. This calls for recursively de-
fined predicates whose well-definedness has to be established first (similar

to the existence proof for the Kripke logical relation of Section 5). Sec-
ondly, we consider a simple call-back mechanism [21]: the method cb we

wish to specify simply sends requests on to a method m of an object ac-
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TABLE 10. Translation of object calculus

Types [fi:Ai,mj:Bj⇒Cj ]
∗
i∈I,j∈J ≡ {fi:ref A

∗
i ,mj :B

∗
j⇒C∗

j }i,j

Terms (a.m(b))∗ ≡ a∗.m(b∗)

(a.f)∗ ≡ deref(a∗.f)

(a.f := b)∗ ≡ (a∗.f):=b∗

[fi=xi,mj=ς(yj)λzj. bj ]
∗
i∈I,j∈J

≡ let s = {fi = newAi(xi)}i∈I in MethA(s)({mj = λyjλzj. b
∗
j}j∈J)

where A ≡ [fi:Ai,mj :Bj⇒Cj]i∈I,j∈J

MethA ≡ µf(s).λm. {fi = s.fi,mj = λzj. (m.mj(f(s)(m)))(zj)}i∈I,j∈J

cessible via one of its fields f. As such, this method may be changed at
run-time. To reflect this, a sensible specification of the call-back would be

of the form if method m satisfies a specification S, then S holds of cb too,
where S ranges over a suitable class of specifications.

RECURSION THROUGH THE STORE: THE FACTORIAL. In the following pro-
gram let A ≡ [fac : int ⇒ int], and B ≡ [f : A, fac : int ⇒ int] (so B ≺: A).

The program computes the factorial, making the recursive calls through
the store. Suppose x is declared as integer variable, and consider the

program

let a : A = [fac = ς(x)λn.n]

let b : B = [f = a, fac = ς(x)λn. if n < 1 then 1 else n× (x.f.fac(n− 1))]

in b.f := b; b.fac(x)

While we certainly do not claim that this is a particularly realistic example,
it does show how higher-order store complicates reasoning. We illustrate
a pattern for dealing with the self-application, arising from the use of
higher-order store, following the general ideas of [44]: To prove that the
call in the last line indeed computes the factorial of x, consider the family
of predicates P = (Pw)w, where w ranges over worlds ≥ {l:A} and Pw ⊆
Jint ⇒ intKw,

h ∈ Pw
def

⇐⇒ ∀w′ ≥ w ∀s ∈ Sw′ ∀n ∈ JintKw′ . (s.l.fac ∈ Pw′ ∧ n ≥ 0 ∧ hw′ (s, n)↓)

=⇒ ∃w′′ ≥ w′ ∃s′ ∈ Sw′′ . hw′(s, n) = 〈w′′, 〈s′, n!〉〉

Note that Pw corresponds to a partial correctness assertion, i.e., if the re-

sult is defined, then it is indeed n!. This example has also been considered
in the context of total correctness, in recent work of Honda et al. [24]

(where, rather different to here, the proof relies on well-founded induc-
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tion using a termination order).
Due to the (negative) occurrence of Pw′ in the definition of Pw exis-

tence of such a family P has to be established. This can be done along the
lines of Theorem 5.3: A relational structure R on the category C is given
by defining R(X) to be the type- and world-indexed admissible relations
on X, and defining

f : R ⊂ T iff



∀w ∈ W ∀A ∈ Type∀x ∈ RAw. fAw(x)↓ =⇒ fAw(x) ∈ TAw
∀w ∈ W ∀s ∈ RSt

w. fSw(s)↓ =⇒ fSw(s) ∈ T St
w

for all R ∈ R(X), T ∈ R(Y ) and C-morphisms f : X → Y . A functional
Φ is defined corresponding to the predicate P above,

f ∈ Φ(R)int⇒int

w ⇐⇒ ∀w′′ ≥ w′ ≥ w ∀n ≥ 0 ∀s ∈ Sw′ ∀m ∈ [[int]]w′′ ∀s′ ∈ Sw′′ .

(s.l ∈ Rint⇒int

w′ ∧ fw′(s, n) = 〈w′′, 〈s′,m〉〉 =⇒ m = n!)

at worlds w ≥ {l:int ⇒ int} (the value of Φ at other types, as well as
on worlds not extending {l:int ⇒ int}, does not really matter and could
be chosen as the empty relation, for instance). This definition forms an
admissible action of the functor F : C → C used to construct the model:

e− : R′ ⊂ R ∧ e+ : T ⊂ T ′ =⇒ F (e−, e+) : Φ(R) ⊂ Φ(R′) (15)

As in Section 5, property (15) suffices to establish well-definedness of the

predicates P (see [40]).
Assuming that l is the location allocated for field f, a simple fixed-point

induction shows

Jx:int, a:A . [f = a, fac = ς(x)λn. if . . . ] : BKw ρs = 〈w′, 〈s′, o〉〉

such that w′ is w ∪ {l:A}, and o.fac ∈ Pw′ .
Now let ŝ = s′[l := JB ≺: AKw′ (o)]. Thus, ŝ.l.fac = o.fac ∈ Pw′ ; and if

ρ(x) ≥ 0 we conclude

Jx:int, a:A, b:[f:A, fac:int⇒int] . b.f := b; b.fac(x) : intKw′ ρ[b := o]ŝ

= ŝ.l.facw′(ŝ, ρ(x))

= 〈w′′, 〈s′′, ρ(x)!〉〉

for some w′′ and s′′.

CALL-BACKS. As a second example, we treat the call-back example con-

sidered in [44]. Call-backs are used in object-oriented programming to
decouple the dependency between caller and callee objects. A typical ex-

ample is that of generic buttons in user interface libraries, described in
[21] by the command pattern: As the implementor of the button class can-

not have any knowledge about the functionality associated with a particu-
lar window button instance, it is assumed that there will be an object sup-

plied (at run-time) that encapsulates the desired behaviour for the button
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pressed event, by providing a method execute. Apart from implementing

this interface, there are no further requirements on the supplied object.
In particular, no assumptions about its execute method are made. The

buttonPressed method of the button class will then react to events by for-
warding to the execute method. In terms of specifications, buttonPressed

would thus satisfy any specification that execute satisfies.

The techniques developed in [44] to express such parametric specifi-
cations carry over to the present semantics. However, in contrast to loc.

cit., and highlighting the fact that our model is typed, we are able to give
a more concise specification of such call-back methods (see (16) below):

The existence of all the required methods in the participating objects is
already ensured by the intrinsic typing. In the untyped semantics of [44],

existence of a method named execute has to be required explicitly in the
specification of the method buttonPressed.

We proceed analogous to [44]. Before considering the button example
in detail, a notation for (semantic) Hoare triples is defined: Firstly, forX ∈
[W ,pCpo] let Adm(X) denote the complete lattice of families P = (Pw)w

of admissible predicates Pw ⊆ Sw × Xw, ordered pointwise by inclusion.
Next, suppose P ∈ Adm(JAK) and Q ∈ Adm(JBK) are such families of
predicates. For w ∈ W and h ∈ JA⇒ BKw we define

{P}h{Q} ⇐⇒ ∀w′ ≥ w ∀〈s, a〉 ∈ Sw′ × JAKw′ .

(〈s, a〉 ∈ Pw′ ∧ hw′(s, a) = 〈w′′, 〈s′, b〉〉 =⇒ 〈s′, b〉 ∈ Qw′′ )

expressing a partial correctness assertion of the function h. It can be veri-

fied that if each Qw is an admissible subset of Sw × JBKw then {P}− {Q}
denotes an admissible subset of the function space JA⇒ BKw.

Next we consider an implementation of the generic buttons described
above. Let B describe the interface B ≡ [execute : 1⇒1] and

A ≡ [evHdl : B, buttonPressed : 1⇒1]

be the type of such button objects. Let a be the object

x:B .

»

evHdl = x,
buttonPressed = ς(y)λz. y.evHdl.execute({})

–

: A

Let l ∈ LocB , let w′ ≥ w ≥ {l:B} and set T l
w,w′ ⊆ Sw × Sw′ to

〈s, s′〉 ∈ T lw,w′ ⇐⇒ ∀P,Q ∈ Adm(J1K).
{P}s.l.execute{Q} ∧ 〈s, {||}〉 ∈ Pw =⇒ 〈s′, {||}〉 ∈ Qw′

Since each Qw′ is admissible and admissible predicates are closed under
universal quantification, T l

w,w′(s,−) determines an admissible predicate
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over Sw′ for fixed s ∈ Sw. Thus, the set
n

h ∈ J1 ⇒ 1Kw ∀s, s′. hw(s, {}) = 〈w′, 〈s′, {}〉〉 =⇒ 〈s, s′〉 ∈ T lw,w′

o

(16)

is admissible in J1 ⇒ 1Kw. Now assume that l is the location allocated
for the field evHdl of a. A fixed-point induction shows that for any w and
w′ = w ∪ {l:B}, there is an o ∈ JAKw′ such that

〈w′, 〈s′, o〉〉 = Jx:B . a : AKw ρs
and o.buttonPressed ∈ J1 ⇒ 1Kw′ satisfies the specification (16).

8.4 Classes

We take the view, by now often reiterated, of classes as generators and
objects as recursive records. More precisely, we will interpret

• a class as a record of pre-methods [18, 17, 26, 13, 1, 9, 10], i.e., func-
tions abstracted on the self-parameter;

• inheritance as extension of this record, possibly replacing some of the

pre-methods in the modelling of method redefinition (“override”);

• object creation (“new”) as the creation of a recursively defined record,

obtained from the record of pre-methods by binding the self-parameter
(using the function MethA defined in Section 8.2 above).

The syntax of class expressions is defined by the grammar

c ::= Root | class (x y){A f = y,B′
j mj = λ(yj :Bj).ei}j extends c(x)

The class Root is the root in the class hierarchy, and we do not consider
multiple inheritance here. The intended meaning of a class expression

class (x y){A f = y,B′
j mj = λ(yj :Bj).ej}j extends c(x)

is to declare a subclass of another class, the superclass c. Instances (objects)

of this class have instance variables (fields) f and methods mj , as well as
the instance variables and (a subset of) the methods of the superclass. For
simplicity we disallow the shadowing of instance variables, i.e. none of the

field names f ∈ f is assumed to appear in c. However, method redefinition
is allowed: only those methods m of the superclass with m 6= mj for

all j appear in instance objects. The self parameter this is taken to be a
distinguished variable which is visible in all the method bodies ej .

In order to create instances, all the fields of the class must be ini-
tialised: At object creation time, values y have to be supplied for the fields

f, and similarly values x for the fields of the superclass c. Our notation
class (x y){. . . }j is supposed to provide a (simplistic) approximation of

the constructor methods of class-based programming languages.
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TABLE 11. Typing of classes

B ≡ [ff′:AA′, mk:Bk⇒B′
k, mj:Cj⇒C ′

j ]k∈K−J,j∈J

. c : class(f:A, mk:Bk⇒B′
k)k∈K Bj ≺: Cj ∀j ∈ J ∩K

this:B∗, yj :Cj . ej : C ′
j ∀j ∈ J C ′

j ≺: B′
j ∀j ∈ J ∩K

. class (x y){A′ f′ = y,C ′
j mj = λ(yj:Cj).ej}j∈J extends c(x) :

class(ff′:AA′, mk:Bk⇒B′
k, mj :Cj⇒C ′

j)k∈K−J,j∈J

We introduce class types in order to express the well-formedness of
class tables constructed from the these class expressions,

class(fi:Ai,mj :Bj⇒B′
j)i,j

The intended meaning is that instances of a class of this type are objects
with type [fi:Ai,mj :Bj⇒B′

j ]i,j . For the root class there is the obvious

introduction rule,

. Root : class()

and we have a type inference rule for subclassing as given in Table 11.
Here the object type B is the type of instances of this class; it is used as

type of the self parameter this when typing the method bodies ej . More
precisely, the record type B∗ is used for this purpose (recall that object

types are interpreted as record types, replacing each field declaration f:A
by f:ref A). Finally, note that refinement of argument and result type of

methods during method redefinition is allowed (“specialisation”).
Arising from the informal interpretation of classes and objects outlined

at the beginning of this subsection, the semantics of these class types is
already forced upon us:

class(f:A, mj :Bj⇒B′
j)

∗
j

≡ (A⇒{mj : B ⇒ Bj ⇒ B′
j}j⇒B) × {mj : B ⇒ Bj ⇒ B′

j}j

where B ≡ [f:A,mj :Bj⇒B′
j ]j stands for the type of instances. The first

component of this pair will contain the function instantiating objects from
the record of pre-methods, i.e., the second component. We reuse the re-
cursive functions MethB of Section 8.2 for this purpose. Formally, the
semantics of class expressions is obtained by providing a translation of
derivations into the procedural language of Section 2. For simplicity, we
omit the types here, since the class type of a class expression is in fact
uniquely determined. Thus,

Root∗ ≡ 〈λ .Meth[]{}, {}〉
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for the root class, and

(class(x y){A′ f′ = y, B′
jmj = λ(yj:B

′
j).ej} extends c)∗ ≡

let 〈m, r〉 = c in
〈λxy.let s = {f = newA(x), f′ = newA′(y)} in MethB(s),
{mk = r.mk, mj = λthisλyj .ej}j,k〉

where k ranges over the method names inherited from the superclass c. If
c is a class expression, then instantiation of a class is

new c(v)∗ ≡ let 〈m, r〉 = c in m(v)(r)

This semantics validates the expected typings: Instances of subclasses
have types which are subtypes of those of instances of superclasses.

8.5 Remarks

Our account of classes and inheritance closely follows the one considered
in Kamin and Reddy’s article [26], termed closure semantics, or fixed point

semantics. However, in loc. cit. this was done in an untyped setting, thus
side-stepping two of the central issues we have had to deal with in our
semantics: modelling types in the presence of dynamic allocation of heap

storage and subtyping.
The interpretation of objects and classes sketched above also highlights

another point which we believe deserves some discussion. The following
brief remark at the end of [26] compared the closure semantics to their

alternative self-application model of objects, correctly foreseeing the ad-
vantage of the former with respect to typed languages:

“Because self-application uses universal reflexive domains, the

fixed point approach is better suited for typed languages.”

Self-application here refers to the self-parameter of methods, which is

then bound to the host object at method invocation time. It is well-known
that, in a typed language, this contra-variant occurrence of the self-type

in the type signature of methods blocks desirable subtypings. Finding so-
lutions to this problem triggered a long line of work in applying advanced
type-theoretic concepts to modelling objects (see [15, 16, 20, 39, 23, 14,

8] amongst others). A similar problem had been encountered in the work
on Abadi and Leino’s logic of objects, where a self-application semantics

was used [3, 44, 43]. For instance, in [43] the problem was avoided by
not admitting subtyping on values residing in the store.

We want to conclude this section by pointing out that the above quo-
tation of [26] may be misleading: Of course there is self-application also

in the imperative fixed-point model of objects and classes. This is in fact
due to the higher-order store; as explained in Section 3 the domains used

to interpret the language of Section 2 are reflexive domains, too. That
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this use of reflexive domains seems unavoidable is witnessed by programs

using recursion through the store, such as the factorial example of Sec-
tion 8.3. However, the store parameter remains implicit in the semantics;

in particular, it does not appear in the source-level type of the methods of
an object and thus does not interfere with subtyping.

9 Polymorphism

We extend the language and the type system with (explicit) predicative,

prenex- (or “let”-) polymorphism, similar to the (implicit) polymorphism
found in Standard ML [32] and Haskell [38]. Essentially, the type system

is stratified into simple types and type schemes, with universally quantified
type variables ranging over simple (non-polymorphic) types only; more-
over, the quantification occurs only on top-level. In particular, function

arguments must have simple types. In contrast to ML, and in line with
subtyping on simple types considered in previous sections, we actually

consider bounded universal quantification. The universal quantification of
ML can be recovered by using a trivial upper bound, >, of which every

type is a subtype.
While this form of polymorphic typing may seem fairly restricted, it

has proved very popular and useful in practice: It provides a good com-
promise between expressiveness and type inference that is tractable in

many relevant cases, witnessed by the ML and Haskell languages.
Our theory goes through without any unexpected complications: After

presenting the syntax and type inference rules, the semantics of bounded
quantification is given using coercion maps (following [12]). Coherence
of the extended system is proved by a logical relations theorem and in-

troducing bracketing maps, as in Sects. 5 and 6. In the last part of this
Section we introduce a polymorphic allocation operator. It is used in an-

other short case study where generic classes are considered.

9.1 Syntax and Typing

We assume a countably infinite set of type variables, ranged over by iden-
tifiers α, β, . . . , and a type > in order to denote trivial upper bounds on
type variables.

A,B ∈ Type ::= . . . | α | >

Following Milner’s terminology [31], a monotype is a type A without oc-
currences of type variables. Type schemes σ are

σ, τ ::= A | ∀α≺:A. σ

where α is bound in σ by the universal quantifier. Semantically, the type

variable α in ∀α≺:A. σ ranges over monotypes B ≺: A only. A mono-
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type substitution is an assignment θ of monotypes for type variables. By a

monotype instance of a type scheme σ we mean a substitution instance σθ
without free type variables.

Contexts Γ may now contain subtype constraints of the form α ≺: A,
with at most one of these occurring for every α. Hence the derivations
of subtypings may depend on the context, and there is the obvious rule
to derive the subtyping Γ . α ≺: A from an assumption α ≺: A in Γ.
The syntax of terms is extended with cases for type abstraction and type
application,

v ∈ Val ::= . . . | Λα≺:A. e

e ∈ Exp ::= . . . | xA

where Λ binds α in e. In the type system we now derive typings Γ . e : σ.
There are two new rules corresponding to these cases for type abstraction
and application,

Γ, α≺:A . e : σ

Γ . Λα≺:A. e : ∀α≺:A. σ

Γ . B ≺: A
Γ . x : ∀α≺:A. σ

Γ . xB : σ[B/α]

with the assumption that α does not occur in Γ or A in the former rule.

9.2 Semantics

The idea of the semantic interpretation follows those of [12] for an ap-
plicative language: Recall that subtyping A ≺: B is interpreted by coer-

cion maps JAK
.
→ JBK. Informally, a polymorphic value of type ∀α≺:A.σ

denotes a function that takes a coercion from JBK to JAK as argument, for

any B ≺: A.
Therefore, we introduce a type constructor A ( B for the space of

coercions; in particular, for monotypes A,B, we let JA ( BK be the cpo
of coercions. To make this precise, consider the property of coercions γ
from A to B, stated in Lemma 5.5, i.e.,

∀w. 〈a, u〉 ∈ RAw =⇒ 〈γw(a), u〉 ∈ RBw (17)

We make this the defining property of our semantic notion of coercion. To
this end we define a relation RA(B

w ⊆ (JAKw → JBKw)) × (Val → Val) by

〈φ,ψ〉 ∈ RA(B
w

def
⇐⇒ ∀〈a, u〉 ∈ JAKw × Val.

(〈a, u〉 ∈ RAw =⇒ 〈φ(a), ψ(u)〉 ∈ RBw)

Clearly requirement (17) can be restated as 〈γw, id〉 ∈ RA(B
w . With this

definition we let JA ( BK denote the functor W → pCpo where for w ∈
W

JA ( BKw = {〈γw′〉w′≥w | ∀w′ ≥ w. 〈γw′ , id〉 ∈ RA(B
w }
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ordered pointwise, and with the action on morphisms given by restriction.
The type > is interpreted as the one-element cpo, J>Kw = {∗}. Further

let R>
w = J>Kw ×Val be the universal relation, and define bracketing maps

in the obvious way: For all a ∈ J>Kw and u ∈ Val let

φ>
w : J>Kw ⇀ Val ψ>

w : Val ⇀ J>Kw
φ>
w(a) = {||} ψ>

w (u) = ∗

The coercion maps interpreting the subtyping A ≺: > are given by the
unique total maps into {∗}. It is easily verified that the basic lemma as well
as the bracketing theorem of Section 5 continue to hold. The semantics of
closed type schemes ∀α≺:A. σ is given at w ∈ W by

Q

w′≥w

Q



Sw′ × JB(AKw′ ⇀
P

w′′≥w′(Sw′′ × Jσ[B/α]Kw′′)
B≺: A
B monotype

ff

We assume there are unused term variables cα for every type variable
α, and write Γc for the environment obtained from Γ by replacing every
type constraint α ≺: A by the assumption cα : α ( A. The semantics of
environments is defined via the semantics of monotype instances:

JΓK = 〈JΓc θK θ a monotype substitution〉

As mentioned above, because of the subtype constraints subtyping gives
rise to coercions that may depend on the context. In particular, Γ.B ≺: A
denotes a total natural transformation W → pCpo, for every monotype
instance of the judgement:

JΓ . A ≺: BK =
˙

JΓKθ
.
→ JAθ ( BθK θ a monotype substitution

¸

The coercion corresponding to a subtyping derivation from an assumption
is determined from the context,

q
Γ, α≺:A,Γ′ . α ≺: A

y
θ w

ρ = ρ(cα)

and the remaining cases are as in Table 3 on page 9, passing the environ-
ment around appropriately. The semantics JΓ . e : σK of judgements is of
type

Q

n

Q

w JΓc θK → Sw ⇀
P

w′≥w Sw′ × JσθKw′ θ a monotype substitution
o

In particular, for the derivations ending with an application of the new
inference rules the semantics is given in Table 12.

Because of the type of coercions JA ( BK, the semantics of the sub-
sumption rule also changes slightly, by using the environment ρ to con-
struct the coercion and then projecting at the result world w′ (see Ta-

ble 13).
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TABLE 12. Semantics of type abstraction and application

s
P(Γ, α≺:A . e : σ)

Γ . Λα≺:A. e : ∀α≺:A. σ

{

θ,w

ρs

= 〈w, 〈s, λw′≥w. λB≺:Aθ. λ〈s, φ〉. JP(Γ, α≺:A . e : σ)K(θ[α:=B]), w′

((JΓKθ[α:=B])
w′

w (ρ)[cα := φ])s〉〉

u
wv

P(Γ . B ≺: A)
P(Γ . x : ∀α≺:A. σ)

Γ . xB : σ[B/α]

}
�~
θ,w

ρs = fw,Bθ(s, JP(Γ . B ≺: A)Kθ,w ρ)

where 〈w, 〈s, f〉〉 = JP(Γ . x : ∀α≺:A. σ)Kθ,w ρs

TABLE 13. Semantics of subsumption

s
P(Γ . e : A) P(Γ . A ≺: B)

Γ . e : B

{

θw

ρs

=

8

<

:

〈w′, 〈s′, (JP(Γ . A ≺: B)Kθw ρ)w′(a)〉〉
if JP(Γ . e : A)Kθw ρs = 〈w′, 〈s′, a〉〉↓

undefined otherwise
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TABLE 14. Semantics of terms

JΛα≺:A. eKθ ησ = 〈σ, λB .λ〈σ
′, v〉. JeKθ[α:=B] ησ

′〉

JxBKθ ησ =

8

<

:

p(Bθ)(σ
′, {||}) if JxKθ ησ = 〈σ′, p〉

∈ St ×
Q

B(St × Val ⇀ St × Val)
undefined otherwise

9.3 Coherence of the Polymorphic System

We extend the coherence proof to the enriched language. For the untyped2

semantics we introduce a new summand in order to interpret polymorphic
values,

Val = · · · +
Q

{Val B a monotype}

As in the typed case, the semantics of terms is relative to a monotype
substitution θ. Type abstraction (and application, resp.) are interpreted as

construction of a dummy abstraction λ .e in this product (and projection
and application of the corresponding component, resp.). This is detailed

in Table 14.
Next, we consider the logical relation.
Suppose ∀α≺:A. τ is closed, i.e., only α occurs free in τ . We define the

logical relation

R∀α≺:A. τ
w ⊆ J∀α≺:A. τKw × Val

by 〈a, u〉 ∈ R∀α≺:A. τ
w iff

uB ∈
Q

B(St × Val ⇀ St × Val) and

∀w′ ≥ w ∀B≺:A ∀γ ∈ JB ( AKw′ ∀〈s, σ〉 ∈ RSt
w′ .

(aw′ B(s, γ)↑ ∧uB(σ, {||})↑) or

∃w′′ ≥ w′. (aw′ B(s, γ) = 〈w′′, 〈s′, b〉〉

∧ uB(σ, {||}) = 〈σ′, v〉 ∧ 〈s′, σ′〉 ∈ RSt
w′′ ∧ 〈b, v〉 ∈ R

τ [B/α]

w′′ )

Note that the existence this time is immediate from the existence proof in
Section 5.1. This is due to the stratification of types into simple types and

type schemes: The store only contains values of monotypes but no poly-
morphic values. It is not hard to see that Kripke monotonicity, Lemma 5.4,

still holds.

2“untyped” seems even more inappropriate than in Section 4 since the semantics does no
longer work uniformly on all types
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We prove the analogue of Lemma 5.5 with respect to environments.

Lemma 9.1 (Subtype Monotonicity). Let θ be a monotype substitution.

Suppose that ρ ∈ JΓKθw and w′ ≥ w. If 〈a, u〉 ∈ RAθ
w′ and P(Γ . A ≺: B)

then 〈(JP(Γ . A ≺: B)Kθw ρ)w′(a), u〉 ∈ RBθ
w′ .

Proof. We consider the new case, where the derivation P(Γ.A ≺: B) ends
with an application of the rule for type variables. Thus, A ≡ α is a type
variable and s

Γ, α≺:B,Γ′ . α ≺: B

{

θ,w

ρ = ρ(cα)

The assumption ρ ∈ JΓKθw implies 〈ρ(cα)w′ , id〉 ∈ R
θ(α)(Bθ
w′ . Therefore

〈ρ(cα)w′(a), u〉 = 〈ρ(cα)w′(a), id(u)〉 ∈ RBθ
w′ follows immediately from the

hypothesis 〈a, u〉 ∈ R
θ(α)
w′ of the Lemma.

The remaining cases are proved as in Lemma 5.5.

We obtain an alternative, useful characterisation of the derivable coer-
cion maps as the unique maps in relation with the identity. This justifies

our definition of JA ( BK.

Corollary 9.2 (Uniqueness). Let the notation be as in Lemma 9.1.

• 〈(JP(Γ . A ≺: B)Kθw ρ)w′ , id〉 ∈ RAθ(Bθ
w′

• 〈γ, id〉 ∈ RAθ(Bθ
w′ =⇒ γ = (JP(Γ . A ≺: B)Kθw ρ)w′

In particular, JP(Γ . A ≺: B)Kθw ρ = λw′ ≥ w.ψBθ
w′ ◦ φAθ

w′ ∈ JAθ ( BθKw is

uniquely determined.

Proof. The first part follows immediately from Lemma 9.1 and the defini-
tion of RAθ(Bθ

w . For the second part, let γ ∈ JAθKw′ → JBθKw′ be any

map such that 〈γ, id〉 ∈ RAθ(Bθ
w′ . We show that necessarily

γ = ψBθw′ ◦ φAθw′

Let a ∈ JAθKw′ be arbitrary. By Theorem 5.7, 〈a, φAθ
w′ (a)〉 ∈ RAθ

w′ . Thus,
〈γ(a), φAθ

w′ (a)〉 ∈ RAθ
w′ by definition of RAθ(Bθ

w′ . By another application of

Theorem 5.7, γ(a) = (ψBθ
w′ ◦ φAθ

w′ )(a).

We extend the logical relation to environments as before, with the
requirement that condition (17) holds as outlined above:

〈ρ, η〉 ∈ RΓ θ
w ⇐⇒



〈ρ(x), η(x)〉 ∈ Rσθw for all x:σ ∈ Γ
ρ(cα) ∈ Jθ(α) ( BθKw for all α ≺: B ∈ Γ

The basic lemma now takes the form

Lemma 9.3 (Basic Lemma). Suppose Γ . e : τ and let θ be a monotype

substitution. Let w ∈ W , 〈ρ, η〉 ∈ RΓ θ
w and 〈s, σ〉 ∈ RSt

w . Then
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• either JΓ . e : AKθ w ρs↑ and JeKθ ησ ↑, or

• there are w′ ≥ w, s′, a, σ′, u s.t.JΓ . e : AKθ w ρs = 〈w′, 〈s′, a〉〉 ↓ and

JeKθ ησ = 〈σ′, u〉↓ s.t. 〈s′, σ′〉 ∈ RSt
w′ and 〈a, u〉 ∈ Rτθ

w′ .

Proof. We consider the new cases, for type abstraction and type applica-

tion.

• (Type Abstraction) From the semantics it is immediate that both

JΓ . e : AKθ,w ρs↓ and JeKθ ησ↓

and we must show 〈a, u〉 ∈ R
(∀α≺:A.τ)θ
w′ , where

a = λw′≥w. λB≺:Aθ. λ〈s, γ〉. JP(Γ, α≺:A . e : σ)K(θ[α:=B]),w′

((JΓKθ[α:=B])
w′

w (ρ)[cα := γ])s

u = λB.λ〈σ
′, v〉. JeKθ[α:=B] ησ

′

Let w′ ≥ w, let B ≺: Aθ and 〈s′, σ′〉 ∈ RSt
w . Suppose γ ∈ JB ( AθKw′ ,

and observe that in this case,

〈(JΓKθ[α:=B])
w′

w (ρ), η〉 ∈ R
Γ (θ[α:=B])

w′

by Kripke monotonicity. For ρ′ = ((JΓKθ[α:=B])
w′

w (ρ))[cα := γ] this en-

tails

〈ρ′, η〉 ∈ R
(Γ,α≺:A)(θ[α:=B])

w′

By induction hypothesis, either both

aw′ B(s′, γ) = JΓ, α≺:A . e : τK(θ[α:=B])w′ ρ
′s′ ↑

and

uB(σ′, {||}) = JeKθ[α:=B] ησ
′ ↑

or else there exist w′′ ≥ w′, s′′, b, σ′′, v such that

aw′ B(s′, γ) = 〈w′′, 〈s′′, b〉〉 and uB(σ′, {||}) = 〈σ′′, v〉

where 〈s′′, σ′′〉 ∈ RSt
w′′ and 〈b, v〉 ∈ R

τ(θ[α:=B])
w′′ = R

(τ(θ−α))[B/α]
w′′ . Thus

we have shown 〈a, u〉 ∈ R
(∀α≺:A.τ)θ
w′ .

• (Type Application) By induction hypothesis,

〈f, η(x)〉 ∈ R(∀α≺:A.τ)θ
w

where 〈w, 〈s, f〉〉 = JP(Γ . x : ∀α≺:A.τ )Kθ w ρs.
Let γ = JP(Γ . B≺:A)Kθ w ρ. Then, by Corollary 9.2,

γ ∈ JBθ ( AθKw
From the definition of the logical relation R

(∀α≺:A.τ)θ
w it now follows
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TABLE 15. Bracketing maps

φ∀α≺:A.τ
w (a) = λBλ〈σ, v〉.

8

>

>

<

>

>

:

〈φSt
w′′ (s), φ

τ [B/α]

w′′ (b)〉

if B ≺: A, dom(σ) = w′, ψSt
w′ (σ)↓ and

aw′B(ψSt
w′(σ), γw′) = 〈w′′, 〈s, b〉〉

undefined otherwise

where γw = λw′≥w.ψ
B
w′ ◦ φAw′ is the unique coercion map in JA ( BKw (see

Corollary 9.2)

ψ∀α≺:A.σ
w (u) = λw′≥w λB≺:A λ〈s, γ〉.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

〈ψSt
w′(σ′), ψ

τ [B/α]

w′ (v)〉

if φSt
w(s) = σ,

uB(σ, {||}) = 〈σ′, v〉
dom(σ)′ = w′, and

ψSt
w′(σ′)↓, ψ

τ [B/α]

w′ (v)↓
undefined otherwise

that either fwBθ(s, γ) ↑ and η(x)Bθ(σ, {||}) ↑ are both undefined, or
there are w′ ≥ w, s′, b, σ′, v such that

fwBθ(s, γ) = 〈w′, 〈s′, b〉〉 and η(x)Bθ(σ, {||}) = 〈σ′, v〉

with 〈s′, σ′〉 ∈ RSt
w′ and 〈b, v〉 ∈ Rτθ

w′ , which was to show.

The case for subsumption follows easily with Lemma 9.1. The remain-
ing cases are proved as in Lemma 5.6, passing the substitution θ around

appropriately. This concludes the proof.

Finally, in Table 15 we consider the bracketing maps

JσKw
φσ

w //
Val

ψσ
w

oo

between the semantics of closed type schemes σ and the untyped model.

The cases for quantified type schemes follow a similar pattern to the brack-
eting maps given earlier for simple types. In order to recover a coercion

for derivable subtypings A ≺: B we appeal to Corollary 9.2 which ensures
that the semantics of an arbitrary derivation P(.A ≺: B) will do. It re-

mains to prove the bracketing theorem, i.e., the analogue of Theorem 5.7.

Theorem 9.4 (Bracketing). For all type schemes τ without free type vari-

ables and for all w ∈ W ,
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1. for all x ∈ JτKw . 〈x, φ
τ
w(x)〉 ∈ Rτ

w

2. for all 〈x, y〉 ∈ Rτ
w. x = ψτ

w(y)

Proof. The proof is by induction on the number of universal quantifiers in

the type scheme τ . For simple types the claims are proved in Theorem 5.7.
Now consider the case where τ is of the form ∀α≺:A.τ ′.

1. Recall that

φτw(x) = λBλ〈σ, v〉.

8

>

>

<

>

>

:

〈φSt
w′′(s), φ

τ [B/α]

w′′ (b)〉
if B ≺: A, dom(σ) = w′, ψSt

w′ (σ)↓ and

xw′B(ψSt
w′ (σ), γw′) = 〈w′′, 〈s, b〉〉

undefined otherwise

where γw′ = λw′′≥w′ .ψB
w′′ ◦ φA

w′′ ∈ JA ( BKw. Let w′ ≥ w, B ≺: A, let

δ ∈ JB ( AKw′ and 〈s, σ〉 ∈ RSt
w′ . We note

s = ψSt
w′(σ) (by Theorem 5.7)

δ = γw′ (by Corollary 9.2)

Moreover, since φSt
w′′ and φ

τ ′[B/α]
w′′ are total maps,

(φτw(x))B(σ, {||})↑ ⇐⇒ aw′B(s, δ)↑

It remains to consider the case where both terms are defined. Suppose
there are w′′ ≥ w, s ∈ Sw′′ and b ∈ Jτ ′[B/α]Kw′′ ,

aw′B(s, δ) = 〈w′′, 〈s′, b〉〉

(φτw(x))B(σ, {||}) = 〈φSt
w′′ (s′), φ

τ ′[B/α]

w′′ (b)〉

By Theorem 5.7, 〈s′, φSt
w′′(s′)〉 ∈ RSt

w′′ , and by induction hypothesis,

〈b, φ
τ ′[B/α]
w′′ (b)〉 ∈ R

τ ′[B/α]
w′′ (b). Thus we have proved 〈x, φτ

w(x)〉 ∈ Rτ
w.

2. Suppose 〈x, y〉 ∈ Rτ
w. By definition,

ψτw(y) = λw′≥w λB≺:A λ〈s, δ〉.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

〈ψSt
w′(σ′), ψ

τ [B/α]

w′ (v)〉
if φSt

w(s) = σ,
yB(σ, {||}) = 〈σ′, v〉
dom(σ)′ = w′, and

ψSt
w′ (σ′)↓, ψ

τ [B/α]
w′ (v)↓

undefined otherwise

We have to show x = ψτ
w(y), so let w′ ≥ w, let s ∈ Sw′ and let δ ∈

JB ( AKw′ be arbitrary. Note that φSt
w′ is total, and 〈s, φSt

w′(s)〉 ∈ RSt
w′ by

Theorem 5.7. By definition of the logical relation, either xw′B(s, δ) and
(ψτ

w(y))w′B(s, δ) = yB(φSt
w′(s), {||}) are both undefined, or else there
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are w′′ ≥ w, s′, b, σ′ and v such that

xw′B(s, δ) = 〈w′′, 〈s′, b〉〉

(ψτw(y))w′B(s, δ) = 〈σ′, v〉

where 〈s′, σ′〉 ∈ RSt
w′′ and 〈b, v〉 ∈ R

τ [B/α]
w′′ . This yields

s′ = ψSt
w′′ (σ) (by Theorem 5.7)

b = ψ
τ [B/α]

w′′ (v) (by induction hypothesis)

i.e., xw′B = (ψτ
w(y))w′B for all w′ ≥ w and B ≺: A. This concludes the

proof.

Coherence follows, as in Section 6, from these preliminary considera-
tions.

Theorem 9.5 (Coherence). All derivations of a judgement Γ . e : τ have

the same meaning in the intrinsic semantics.

9.4 A Polymorphic Allocation Operator and Generic Classes

Finally we can add a polymorphic allocation operator, new, with typing

Γ . new : ∀α ≺: >. α⇒ ref α

The semantics is defined using the monotype instances,
s

Γ . new : ∀α ≺: >. α⇒ ref α

{

θw

ρs

= 〈w, 〈s, λw′ ≥ w λAλ〈s′, δ〉. J .λx.newA x : A⇒ ref AKθw′ s
′〉〉 (18)

Recall that because of the coherence theorem of Section 9.3 above, any

derivation of the judgement .λx.newA x : A⇒ ref A will lead to the same
semantics in this case.

In order to show coherence of the interpretation of the language ex-
tended with the polymorphic new operation it remains to show that its
semantics is in relation with the corresponding element of the untyped
model, JnewK,

JnewKθ ησ = 〈σ, λAλ〈σ′, v〉. Jλx.newA xKθ σ
′〉 (19)

Proof of Lemma 9.3, cont. Let θ be a monotype substitution, let w ∈ W ,
〈ρ, η〉 ∈ RΓ θ

w and 〈s, σ〉 ∈ RSt
w . Immediately from the defining equations

(18) and (19) above, we only have to show

〈f, g〉 ∈ R∀α≺:>.α⇒ref α
w
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where

f = λw′ ≥ w λAλ〈s′, δ〉. J .λx.newA x : A⇒ ref AKθw′ s
′

g = λAλ〈σ′, v〉. Jλx.newA xKθ σ
′ (20)

To this end, suppose w′ ≥ w, A is any monotype, δ ∈ JA ( >Kw′ is

the unique coercion from A to >, and let 〈s′, σ′〉 ∈ RSt
w′ . By induction

hypothesis and the fact that the term λx.newA x is a value it follows that

J .λx.newA x : A⇒ ref AKθ s
′ = 〈w′′, 〈s′′, a〉〉

Jλx.newA xKθ σ
′ = 〈σ′′, u〉

with 〈s′′, σ′′〉 ∈ RSt
w′′ and 〈a, u〉 ∈ RA⇒ref A

w′′ . Thus from the definition in
(20), f and g are in relation as required.

AN APPLICATION: GENERIC CLASSES. The concept of polymorphism is
not only used in functional languages, but more recently also in main-

stream, object-oriented languages such as Java [11, 37], leading to para-

metric or generic classes. Indeed, the semantics of this section is sufficient

to interpret parametric container classes: We will consider the case of
objects implementing memory cells [1]; such objects can be instantiated

from a class that is parametric in the type of the stored elements.
The type of memory cells storing values of type α is

A(α) ≡ [cont : α, get : 1⇒α, set : α⇒1]

providing just a field cont to store the data, and methods get and set to
access and update the contents. A simple class implementing objects of
this type is

c ≡ class〈α ≺: >〉(x)

8

<

:

α : cont = x,
α get = λ(z:1) this.cont,
1 set = λ(z:α) this.cont:=z

9

=

;

extends Root

The semantics of c is obtained from the translation to the pair consisting
of instance generator and record of pre-methods as in Section 8.4,

Λα ≺: >.〈λx.let s = {cont = new(x)} in MethA(α)(s),

{set = λthisλz. deref(this.cont), get = λthisλz. this.cont:=z}〉

Instantiating this class c, with argument v of (mono-) type B

new c〈B〉(v) ≡ let 〈m, r〉 = cB in m(v)

generates a memory cell storing values of type B with initial contents v.
More realistic examples are provided by the collection classes of the

Java libraries, implementing for instance generic linked lists, queues and
vectors. However these examples additionally require type recursion,

which we do not consider in this report.
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10 Related Work

Apart from Levy’s work [29, 30] which we built upon here, we are aware

of only few other semantic models of higher-order store in the litera-
ture. The models [5, 27] use games semantics and are not location-based,
i.e., the store is modelled only indirectly via possible program behaviours.

They do not appear to give rise to reasoning principles such as those nec-
essary to establish the existence of the logical relation, or the predicate

used in Section 8.3. Ahmed, Appel and Virga [6] construct a model with
a rather operational flavour: The semantics of types is obtained by ap-

proximating absence of type errors in a reduction semantics; soundness
of this construction follows from an encoding into type theory. Again we

do not see how strong reasoning principles can be obtained. Jeffrey and
Rathke [25] provide a model of the object calculus in terms of interaction

traces, very much in the spirit of games semantics. Apart from Jeffrey and
Rathke’s semantics, none of these models deals with subtyping.

There is a vast body of work on interpreting objects in procedural lan-
guages. Bruce, Cardelli and Pierce [14] provide a fairly comprehensive
overview and comparison of the more successful encodings of typed ob-

jects. Most of the encodings in the literature consider functional objects
only. Exceptions are the denotational analyses of objects and inheritance

by Kamin and Reddy [26], and Cook and Palsberg [17]. However, they
use untyped models, side-stepping the issues of modelling types and sub-

typing in the presence of updates and dynamic allocation. Many others
apply similar ideas in a purely syntactic setting [9, 49, 2, 10]. This suf-

fices for proofs of type soundness, but more powerful specifications are
not usually discussed, and indeed logics of languages with higher-order

store are hard to justify in such a setting (see [3] for an attempt).
The proof principles applied in Section 8.3 are direct adaptations of

those presented in [44] in the context of an untyped model of the object
calculus. Similar techniques have been used in [43] to prove soundness
of a logic for the object calculus, due to Abadi and Leino [3]. Honda,

Berger and Yoshida [24] present a program logic for higher-order proce-
dures and general references. Soundness is proved with respect to a term

model. They do not consider subtyping, and the type system is stratified
to prevent aliasing. It is not clear to us to which extent their proof sys-

tem can deal with properties of higher-order store: They deal with total

correctness assertions and thus can use well-founded induction on a ter-

mination order in cases of recursion-through-the-store. In particular this
entails that even very simple non-terminating programs cannot be proved

as such.
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11 Conclusions and Future Work

We have extended a model of general references with subtyping, to ob-

tain a semantics of imperative objects. While the individual facts are
much more intricate to prove than for the functional language considered

in [45], the overall structure of the coherence proof is almost identical to
loc. cit. This suggests it could be interesting to work out the general condi-

tions needed for the construction (for example, using the setting of [35]).
In a different direction, we can extend the language with a more ex-

pressive type system: Recursive types and polymorphism feature promi-

nently in the work on semantics of functional objects (see [14]). Here we
have shown that the techniques to establish coherence scale well to the ex-

tension of the type system with ML-like (prenex) polymorphism [31, 50]
– essentially because there is no interaction with the store. We are less

optimistic about polymorphism in general; the combination of second-
order lambda calculus and higher-order storage certainly appears to be

challenging. In [30] it is suggested that the construction of the intrinsic
model also works for a variant of recursive types. We haven’t considered

the combination with subtyping yet, but do not expect any difficulties.
Finally, we plan to develop (Hoare-style) logics, with pre- and post-

conditions, for languages involving higher-order store. As a starting point,
we are currently trying to adapt the program logic of [3] to the language
considered here.
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