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Abstract. We study a variant of Levi and Sangiorgi's Safe Ambients (SA) enriched

with passwords (SAP). In SAP by managing passwords, for example generating new

ones and distributing them selectively, an ambient may now program who may migrate

into its computation space, and when. Moreover in SAP an ambient may provide

di�erent services depending on the passwords exhibited by its incoming clients.

We give an lts based operational semantics for SAP and a labelled bisimulation

based equivalence which is proved to coincide with barbed congruence.

We use our notion of bisimulation to prove a set of algebraic laws which are subse-

quently exploited to prove more signi�cant examples.

1 Introduction

The calculus of Mobile Ambients, abbreviated MA, has been introduced

in [6] as a novel process calculus for describing mobile agents. The term

n[P ]

represents an agent, or ambient, named n, executing the code P . Intu-

itively n[P ] represents a bounded and protected space in which the com-

putation P can take place. In turn P may contain other ambients, may

e�ect communications, or may exercise capabilities, which allow entry to

or exit from named ambients. Thus ambient names, such as n, are used

to control access to the ambient's computation space and may be dynam-

ically created as in the Picalculus, [12], using the construct �nP ; here

knowledge of n is restricted to P . For example the system

k[ inhni:R

1

j R

2

] j n[ openhki:P j m[ outhni:Q

1

j Q

2

] ]

contains two ambients, k and n, running concurrently. The �rst, k, has,

at least, the capability to migrate into n, by virtue of its capability inhni.

The second, n, contains a sub-ambient m[ : : : ], in addition to the the ca-

pability openhki, which allows the opening of any ambient named k which

migrates into the computation space of n. If k exercises its capability to

enter n then the system will have the structure

n[ k[ : : : ] j openhki:P j m[ : : : ] ]
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in which, now, n may exercise its capability to dissolve the boundary

k[ : : : ], giving rise to

n[ R

1

j R

2

j P j m[ : : : ] ]

Alternatively the sub-ambient m may exercise its capability to move out-

side n, outhni, in which case the system will have three concurrent ambi-

ents:

k[ : : : ] j n[ openhki:P ] j m[Q

1

j Q

2

]

Papers such as [6, 4] demonstrate that this calculus is very e�ective in

formally describing the run-time behaviour of mobile agents. However we

believe that the development of semantic theories for ambients has had

more limited success. For example in [6] it is argued that the process

�n n[P ];

where n does not occur in P , can not be distinguished from the trivial

process 0; intuitively the name n is unknown both inside and outside the

ambient and consequently no other ambient can exercise a capability over

it. This leads to the so-called perfect �rewall equation

�n n[P ] � 0; for n not in P :

This raises two questions:

� What is the appropriate notion of semantic equivalence� for ambients?

� What proof methods exist for establishing such equivalences?

Bisimulation relations, in their various forms, have proved to be very

popular as a basis for semantic equivalences for a variety of process cal-

culi, such as CCS, [10], and the Picalculus, [12]. Essentially the behaviour

of processes is characterised using co-inductive relations de�ned over a

labelled transition system, or lts, a collection of relations of the form

P

�

��! Q

Intuitively this means that the system P may perform the action �, typi-

cally by interacting with its environment or context, and be thereby trans-

formed into the system Q. The co-inductive nature of these equivalences

ensures that there are powerful proof techniques available for establishing

identities, [14, 18, 15], addressing the second question above. Arguing for

their appropriateness, the �rst question, is usually carried out by contex-

tual reasoning. Intuitively the actions � in the judgement P

�

��! Q rep-

resent some small context with which P can interact; more importantly it

is shown that this collection of small contexts, codi�ed as actions, are suf-

�cient to capture all possible interactions which processes can have with
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arbitrary contexts. In short the bisimulation relation over the lts char-

acterises some naturally de�ned contextually de�ned behavioural equiva-

lence, [14, 1]. This is the topic of the current paper:

Can we de�ne an lts based operational semantics for ambients,

and an associated bisimulation equivalence, which can be justi�ed

contextually ?

In [9] it has been argued that the calculus MA, as given in, for example

[6], is qualitatively di�erent from more standard process calculi such as the

Picalculus[12]. It is di�cult for ambients to control potential interference

from other ambients in their environment. For example ambients are

always under the threat of being entered by an arbitrary ambient in its

environment, and they have no means to forbid such actions if they so wish.

To armour ambients with the means to protect themselves, if necessary,

from the in
uence of their environment the authors add co-capabilities, for

each of the standard ambient capabilities; this idea of every action having

a co-action is borrowed from process calculi such as CCS or the Picalculus.

Thus, for example, an ambient may now only exercise the capability inhni,

if the ambient n is also willing to exercise the corresponding co-capability

inhni. In

m[ inhni:Q

1

j Q

2

] j n[P ]

the ambient m can migrate inside n if P has the form inhni:P

1

j P

2

, in

which case the system evolves to

n[m[Q

1

j Q

2

] j P

1

j P

2

]

That is m may only enter n if n allows it. The resulting calculus, called

Safe Ambients, abbreviated SA, is shown to have a much more satisfactory

equational theory, and numerous equations, often type dependent, may

be found in [9]. Nevertheless these equations are expressed relative to a

contextually de�ned equivalence. Establishing them requires, for the most

part, reasoning about the e�ect arbitrary contexts may have on ambients.

We extend the syntax of ambients even further, by allowing capabilities

to be de�ned relative to passwords. Co-capabilities give a certain amount

of control to ambients over the ability of others to exercise capabilities on

them; inhni can only be exercised if n is also willing to perform inhni.

However n has no control over who obtains the capability inhni. But if we

generalise capabilities (and co-capabilities) to contain an extra component

then this extra component may be used by n to exercise control over,

and di�erentiate between, di�erent ambients who may wish to exercise a

capability. Now an ambient wishing to migrate inside n must exercise a

capability of the form inhn; hi, for some password h; but the capability will
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only have an e�ect if n exercises the corresponding co-capability, with the

same password, inhn; hi. By managing passwords, for example generating

new ones and distributing them selectively, n may now program who may

migrate into its computation space, and when. Moreover an ambient may

provide di�erent services depending on the passwords exhibited by its

clients. We call this extended language Safe Ambients with Passwords,

abbreviated SAP. It is formally de�ned, with a reduction semantics in

Section 2.

Following the ideas of [8, 13] it is straightforward to de�ne a contex-

tual equivalence between terms in SAP, or indeed any of the many other

variants of ambients. We let

�

=

be the largest equivalence relation between

terms which

� is a congruence for the language, that is is preserved by all constructs

of the language

� preserves, in some sense, the reduction semantics of the language

� preserves barbs, that is preserves some simple observational property

of terms.

A formal de�nition is given in De�nition2.2; the only real parameter here is

in the precise de�nition of the allowed barbs. As we shall see, in our setting

the resulting equivalence is invariant with respect to a wide variety of

possible barbs. This emphasises our opinion that the resulting equivalence

�

=

is a reasonable semantic equivalence for SAP; by de�nition it has all of

the extensional properties we require of such a relation.

The main result of the paper is

� an lts based operational semantics for SAP

� a bisimulation based equivalence over this lts, denoted �, which coin-

cides with

�

=

.

In principle this opens up the theory of ambients, or at least those de�nable

in SAP, to the co-inductive proof techniques associated with bisimulations.

However there is a catch. The lts on which the operational semantics is

based is far from trivial. As expected, it contains actions for all of the

capabilities and co-capabilities in the language (here, as in much of the

paper, we will ignore passwords unless they play a central role in the

discussion). These take the form P

`

�

��! Q, a typical example being

inhni:P

`

inhni

�����! P

These actions do not prescribe any direct behaviour to individual ambients

although they indirectly induce behaviour for particular ambients. For
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example, the ambient

m[ inhni:P ]

now has the ability to enter an ambient named n, because its body has

the capability to perform the action inhni. So our lts will also require

actions of the form enterhni, whose e�ects are in general higher-order.

When such an action is performed we must prescribe

� which ambient enters n

� what residual code remains behind.

For example in the system

m[ inhni:P ] j Q

if the action enterhni is performed the migrating ambient is m[P ], while

the residual code is Q. In general the migrating ambient and the residual

code may share private names and therefore to formalise actions such as

enterhni we use a kind of concretion, [11, 16, 9]. Such actions will have

the form

P

`

enterhni

�������! � ~mhAi

n

P

0

Here A is the migrating ambient, n the target, P

0

is the residual code and

~m the shared names.

The details, including a formal de�nition of the higher-order lts, are given

in Section 3. It includes a de�nition of internal actions,

`

�

��!, which consists

of one component of the system allowing the migration of an ambient, and

another its reception; ambients are communicated between components in

a system. One such de�nition, �

d

called delay bisimulation equivalence,

is given in Section 4.2, where as in [16, 22], agents are immediately tested

after a visible action. In addition to being higher-order �

d

is in early

form, as instantiation takes place before residuals are compared. It is also

in weak form, in that single actions

`

�

��! are allowed to be matched by

weak actions, j=

�

==). However because of the presence of concretions it is

natural to de�ne these actions so that internal transitions are only allowed

before the action in question, �:

P j=

enterhni

=======) � ~mhAi

n

P

0

if P

`

�

��!

�

`

enterhni

�������! � ~mhAi

n

P

0

In Section 4.2 we show that delay bisimulation equivalence is contained

in the contextual congruence

�

=

but in general does not coincide with it.

Intuitively, in the de�nition of weak actions we need to allow internal

actions to continue after the action has taken place; we need to allow

communications between the components of a concretion. To incorporate
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Table 1 The Calculus SAP

Names: n; h; : : : 2N

Processes:

P ::= 0 nil process

�

�

P

1

j P

2

parallel composition

�

�

�nP restriction

�

�

C:P pre�xing

�

�

n[P ] ambient

�

�

!C:P replication

Capabilities:

C ::= inhn; hi may enter into n

�

�

outhn; hi may exit out of n

�

�

openhn; hi may open n

�

�

inhn; hi allow enter

�

�

outhn; hi allow exit

�

�

openhn; hi allow open

this idea we de�ne a new lts where now all actions take the form P

�

��! Q,

that is all the residuals are processes; essentially concretions are eliminated

by applying them to the processes which previously formed part of our

de�nition of higher-order bisimulation. The main result of the paper is

that, in SAP, the resulting (weak) bisimulation equivalence � coincides

with

�

=

.

Most of the paper uses a pure form of ambients, without any com-

munication. In Section 5 we show that our results extend to a calculus

in which messages can be sent and received within ambients, similarly to

[6, 9]. In the following section we give some examples which indicate that

our form of bisimulation may play a useful role in reasoning about ambient

behaviour.

The paper ends with Section 7, containing a discussion of our results

and a comparison with related work.

2 The Calculus SAP

The syntax of processes is given in Table 1 and is basically the same as

that in [6], except that each of the original capabilities has a co-capability,

as in [9], and that now each capability has an extra argument h, which



Bisimulation Congruences in Safe Ambients 7

Table 2 Structural Congruence

P j Q � Q j P (Struct Par Comm)

(P j Q) j R � P j (Q j R) (Struct Par Assoc)

P j 0 � P (Struct Zero Par)

�n0 � 0 (Struct Zero Res)

�n�mP � �m�nP (Struct Res Res)

n 62 fn(P ) implies �n(P j Q) � P j �nQ (Struct Res Par)

n 6= m implies �n(m[P ]) � m[�nP ] (Struct Res Amb)

may be looked upon as a password. Note also that we have replicated

pre�xing, rather than full replication, or recursion. Finally for simplicity

we have omitted communication; this will be added in Section 5.

When writing examples we will use the standard conventions for am-

bients; trailing occurrences of 0 are omitted, n[0] will be shortened to

n[] and as usual parallel composition has the lowest precedence among all

operators. We will also frequently write inhni to denote inhn; ni and sim-

ilarly for the other capabilities; in other words we will often use the name

of an ambient as a password. The operator �n is a binder for names,

leading to the usual notions of free and bound occurrences of names, fn(�)

and bn(�), and �-conversion, �

�

. We will identify processes up to �-

conversion. More formally we will view process terms as representatives

of their equivalence class with respect to �

�

, and these representatives

will always be chosen so that bound names are distinct from free names.

An equivalence relation R over processes is said to be a congruence, or

contextual, if it is preserved by all the operators in the language. Formally

this means it must satisfy the rules:

P RQ implies �nP R �nQ (Res)

P RQ implies P j R R Q j R (Par)

P RQ implies n[P ] R n[Q] (Amb)

P RQ implies C:P R C:Q (Pre�x)

P RQ implies !P R !Q (Repl)

We will say it is p-contextual, or partially contextual, if it is preserved by

the structural operators, that is it satis�es all but the last two of these

rules. Structural congruence, �, is a p-contextual equivalence between

processes, relating terms which we believe no reasonable semantics should

distinguish. We de�ne it to be the least congruence which satis�es the

axioms and rules in Table 2. This will form a central role in the reduction

semantics of our language, which we now explain.

This is given in terms of a binary relation over processes, P ! Q,
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Table 3 Reduction Rules

n[inhm;hi:P j Q] j m[
in
hm;hi:R j S] ! m[n[P j Q] j R j S ]

(Red In)

m[n[outhm;hi:P j Q] j R ] j outhm;hi:S ! n[P j Q] j m[R] j S
(Red Out)

openhn; hi:P j n[ openhn; hi:Q j R ] ! P j Q j R
(Red Open)

P � Q Q! R R � S implies P ! S
(Red Str)

which intuitively means that P can evolve to Q in one computation step.

It is de�ned to be the least p-contextual relation which satis�es the axioms

and rule in Figure 3. The axiom (Red In) describes how an ambient n

may migrate into an ambient m. It must exercise the capability inhm;hi

for some password h, and at the same time m, the target computation

space, must be willing to allow immigration, exercising the co-capability,

inhm;hi; note that the password is the same. Emigration from an am-

bient is described in the rule (Red Out), and is similar. The ambient

n may attempt to emigrate from ambient m by exercising the capability

outhm;hi; but the target computation space must allow entry, by exercis-

ing the corresponding co-capability with the same password, outhm;hi.

Note that in [9] this co-capability is exercised by m rather than the tar-

get computation space; we feel that with our de�nition there is a clearer

distinction between the role of an ambient in a reduction and the corre-

sponding role of its environment. Finally the axiom (Red Open) describes

the circumstances under which the ambient n can be opened. Again it

requires the co-operation of n, exercising the co-capability openhn; hi, for

some password h, before the capability openhn; hi has an e�ect. The single

rule (Red Str) merely states that reductions are made modulo structural

congruence. In the sequel we will use ) to denote the re
exive, transitive

closure of !.

We end this section with a de�nition of what we believe to be a rea-

sonable notion of behavioural equivalence. Following [13, 8] we simply say

that

�

=

is the largest equivalence between processes which satis�es some

reasonable criteria. We require that

� it is a congruence, to aid in compositional veri�cation,

� it is invariant, in some sense, with respect to the reduction relation!.

Formally we say a relation R is reduction closed if P RQ and P ! P

0

implies the existence of some Q

0

such that Q) Q

0

and P

0

RQ

0

.

� it preserves some intuitive observation predicate, P#

n

.

With ambients there are many ways of formulating observation predi-
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cates. In [6] the predicate P #

n

is used to denote the possibility of pro-

cess P of interacting with the environment via the ambient n; it is true

whenever P � � ~m(n[P

1

] j P

2

) where n 62 f ~mg. For MA, [6], this is

a reasonable de�nition of observation as no authorisation is required to

cross a boundary. As a consequence, the presence of an ambient n at top

level denotes a potential interaction between the process and the envi-

ronment via n. However in SA, [9], and our language SAP, the process

� ~m(n[P

1

] j P

2

) only represents a potential interaction if P

1

can exercise

an appropriate co-capability. For example in [9] P#

n

is de�ned to be true

whenever P � � ~m(n[C:P

1

j P

2

] j P

3

) where and C 2 finhni; openhnig

and n 62 f ~mg. We use a slight simpli�cation of this de�nition.

Definition 2.1 (Barbs). We write P#

n

if and only if there exist h, ~m,

P

1

, P

2

, and P

3

such that

P � � ~m(n[openhn; hi:P

1

j P

2

] j P

3

)

where n; h 62 ~m. We write P+

n

if P ) P

0

and P

0

#

n

.

Note that the barb only mentions the ambient n and not the password

used to open it; we could of course de�ne a more detailed barb P#

n;h

but

as we shall see this is unnecessary (see Theorem 4.4).

Definition 2.2 (Barbed Congruence). Barbed congruence, written

�

=

, is the largest congruence relation over processes which

� is reduction closed

� barb preserving; that is P

�

=

Q and P#

n

implies Q+

n

Our choice of observation here may feel arbitrary. But in Section 4 we will

show that

�

=

remains invariant under a large choice of possible observation

predicates.

Our aim is to give a co-inductive characterisation of

�

=

using an lts

based operational semantics for SAP.

3 A Labelled Transition Semantics

The capabilities or pre�xes C in our language give rise, in the standard

manner, [10], to actions of the form P

`

C

��! Q; for example we would have

inhn; hi:P

1

j P

2

`

inhn;hi

������! P

1

j P

2

These actions could be used to de�ne a versions of weak bisimulation

equivalence over processes, �

bad

, again in the standard manner, [10]. How-

ever it should be obvious that �

bad

is unsatisfactory as a notion of equiva-

lence for SAP. For example these actions cannot be performed by ambients
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Table 4 Labels, Concretions, and Outcomes

Actions: � ::= inhn; hi

�

�

outhn; hi

�

�

openhn; hi

�

�

inhn; hi

�

�

outhn; hi

�

�

openhn; hi

Labels: � ::= �

�

�

�

�

�

enterhn; hi

�

�

enterhn; hi

�

�

exithn; hi

�

�

pophn; hi

�

�

freehn; hi

Concretions: K ::= � ~mhP i

n

Q

Outcomes: O ::= P

�

�

K

and therefore we would have the identity

n[P ] �

bad

0

regardless of P .

However the actions above can be considered the basis of further capa-

bilities. For example in the system n[inhmiP:] j Q there is the capability

to enter ambient m. Exercising this capability has a dual e�ect; on the

one hand the ambient n[P ] will actually move into the ambient m, on

the other the process Q will remain executing at the point at which the

capability is exercised. In general each of the simple pre�x actions C

will induce di�erent, more complicated capabilities in ambients, and more

generally processes. These will be formulated as actions of the form

P

`

�

��! O

where the range of � and of O, the outcomes, are given in Table 4. These

outcomes may be a simple process Q, if for example � is a pre�x from the

language, or a concretion, of the form

� ~mhP i

n

Q

Here, intuitively, process P represents what must stay inside an ambient n

whereas process Q must stay outside n, and ~m is the set of private names

shared by P and Q.

The rules de�ning our labelled transition semantics, inspired by [9, 3],

are given in Table 5 and Table 6 and are in late style [12]. Let us �rst

examine those induced by the pre�x in, the immigration of ambients. Here

we will ignore the use of passwords as they play no role in our explanations.

A typical example of an ambient m migrating into an ambient n is as
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Table 5 Labelled Transition System - Enter and Exit

(Enter)

P

`

inhn;hi

������! P

0

m[P ]

`

enterhn;hi

��������! hm[P

0

]i

n

0

(Co-Enter)

P

`

inhn;hi

������! P

0

n[P ]

`

enterhn;hi

��������! hP

0

i

n

0

(� In)

P

`

enterhn;hi

��������! �~phP

1

i

n

P

2

Q

`

enterhn;hi

��������! �~qhQ

1

i

n

Q

2

P j Q

`

�

��! �~p�~q(n[P

1

j Q

1

] j P

2

j Q

2

)

if ((fn(P

1

) [ fn(P

2

)) \ f~qg) = ((fn(Q

1

) [ fn(Q

2

)) \ f~pg) = ;

(Exit)

P

`

outhn;hi

�������! P

0

m[P ]

`

exithn;hi

��������! h0i

n

m[P

0

]

(Pop)

P

`

exithn;hi

��������! � ~mhP

1

i

n

P

2

n[P ]

`

pophn;hi

�������! � ~m(n[P

1

] j P

2

)

(� Out)

P

`

pophn;hi

�������! P

0

Q

`

outhn;hi

�������! Q

0

P j Q

`

�

��! P

0

j Q

0

follows:

m[inhni:P

1

] j P

2

j n[inhni:Q

1

] j Q

2

�! n[m[P

1

] j Q

1

] j P

2

j Q

2

The driving force behind the migration is the activation of the pre�x inhni,

within the ambientm. It induces a capability in the ambientm to migrate

into n, which we formalise as a new action enterhni. Thus an application

of the rule (Enter) gives

m[inhni:P ]

`

enterhni

�������! hm[P ]i

n

0

and more generally, using the structural rules

m[inhni:P

1

] j P

2

`

enterhni

�������! hm[P

1

]i

n

P

2

This means that the system m[inhni:P

1

] j P

2

has the capability to enter

an ambient n; if the capability is exercised the ambient m[P

1

] will enter

n while P

2

will be the residual at the point of execution. Of course the

action can only be executed if there is a corresponding co-action enterhni

performed by n. The rule (Co-Enter) allows these to be derived. So for

example we have

n[inhni:Q

1

] j Q

2

`

enterhni

�������! hQ

1

i

n

Q

2

Here, after the action, Q

1

remains inside n, while Q

2

is outside. The
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communication (� In) now allows these two complementary actions to

occur simultaneously, e�ecting the migration of the ambient m[P

1

] from

its current computation space into the ambient n, giving rise to the original

move above:

m[inhni:P

1

] j P

2

j n[inhni:Q

1

] j Q

2

`

�

��! n[m[P

1

] j Q

1

] j P

2

j Q

2

Note that this is a higher-order interaction, as the ambient m[P

1

] is trans-

ferred between two computation spaces.

The structural rule (Res) in Table 6 allows the migrating ambient to

share private names with its point of origin, in the same manner as in the

Picalculus. This rule employs the convention that if O is the concretion

� ~mhP i

n

Q, then �rO is a shorthand for � ~mhP i

n

�rQ, if r 62 fn(P ), and the

concretion �(r ~m)hP i

n

Q otherwise. We have a similar convention for the

rule (Par): O j R is de�ned to be the concretion � ~mhP i

n

(Q j R), where

~m are chosen, using �-conversion if necessary, so that fn(R) \ f ~mg = ;.

So, for example if k occurs free in both P

1

and P

2

we have the action

�k(m[inhni:P

1

] j P

2

)

`

enterhni

�������! �k(hm[P

1

]i

n

P

2

)

and the rule (� In) now gives

�k(m[inhni:P

1

] j P

2

) j n[inhni:Q

1

] j Q

2

`

�

��! �k(n[m[P

1

] j Q

1

] j P

2

j Q

2

)

where it is assumed that k is chosen to be fresh to m;Q

1

and Q

2

. So the

resulting process is structurally equivalent to

�k(n[ m[P

1

] j Q

1

] j P

2

) j Q

2

Note that the scope of k has now extended to include the ambient n.

The rules of emigration are organised in a similar manner, although

they are slightly more complicated. A typical example of ambient m

emigrating from ambient n is as follows:

n[ m[outhni:P

1

] j P

2

] j outhni:Q �! n[P

2

] j m[P

1

] j Q

The driving force behind the emigration is the activation of the pre�x

outhni within the ambient m; however its e�ect is even more indirect

than that of the pre�x inhni. It induces a capability in the ambient m to

emigrate from n, which we formalise as a new action exithni. Thus an

application of the rule (Exit), followed by (Par Exit) gives

m[ outhni:P

1

] j P

2

`

exithni

������! hP

2

i

n

m[P

1

]

Here when this capability is exercised the code P

2

will remain inside the

ambient n while the ambient m[P

1

] will be outside. However to actually

e�ect the emigration of m we need a further context, namely the ambient
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Table 6 Labelled Transition System - Part 2

(Act)

�

�:P

`

�

��! P

(Repl Act)

�

!�:P

`

�

��! P j !�:P

(Free)

P

`

openhn;hi

��������! P

0

n[P ]

`

freehn;hi

��������! P

0

(� Open)

P

`

openhn;hi

��������! P

0

Q

`

freehn;hi

��������! Q

0

P j Q

`

�

��! P

0

j Q

0

Structural Rules :

(Par)

P

`

�

��! O � 6= exithn; hi

P j Q

`

�

��! O j Q

(Par Exit)

P

`

exithn;hi

��������! � ~mhP

1

i

n

P

2

P j Q

`

exithn;hi

��������! � ~mhP

1

j Qi

n

P

2

(Res)

P

`

�

��! O n 62 fn(�)

�nP

`

�

��! �nO

(� Amb)

P

`

�

��! Q

n[P ]

`

�

��! n[Q]

n from which to emigrate. This leads to another action, called pophni,

with the associated rule (Pop); an application of which gives:

n[m[outhni:P

1

] j P

2

]

`

pophni

������! n[P

2

] j m[P

1

]

However this action, pophni, is only possible if the environment allows the

emigration of ambient n, controlled by the co-action outhni, and codi�ed

in the rule (� Out); an application of which gives the original move above:

n[ m[outhni:P

1

] j P

2

] j outhni:Q

`

�

��! n[P

2

] j m[P

1

] j Q

Finally let us consider the rules which control the opening of ambients,

which are considerably more straightforward. The opening of an ambient

n is activated by the pre�x openhni but it is controlled by ambient n via

the pre�x openhni. Thus an application of the rule (Free) gives

n[ openhni:P ]

`

freehni

������! P

and an application of the rule (� Open)

n[ openhni:P ] j openhni:Q

`

�

��! P j Q

It is worth noting that, according to our semantics only ambients,

rather then general code, can migrate:

Lemma 3.1.
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� If P

`

enterhn;hi

���������! � ~mhP

1

i

n

P

2

then P

1

is an ambient

� If P

`

exithn;hi

��������! � ~mhP

1

i

n

P

2

then P

2

is an ambient.

Proof: By rule induction. �

We end this section with a theorem which asserts that the lts based

semantics coincides with the reduction semantics of Section 2.

Theorem 3.2.

1. If P

`

�

��! P

0

then P ! P

0

.

2. If P ! P

0

then P

`

�

��!� P

0

.

Proof: By transition induction. Part 1 is the most di�cult. It requires

a result describing the structure of a process P and the outcome O for

any action � such that P

`

�

��! O. For instance,

� If P

`

enterhn;hi

���������! O then there exist ~p;m; P

1

; P

2

; P

3

, with n; h 62 ~p, such

that P � �~p(m[inhn; hi:P

1

j P

2

] j P

3

) and O � �~phm[P

1

j P

2

]i

n

P

3

� If P

`

exithn;hi

��������! O then there exist ~p;m; P

1

; P

2

; P

3

, with n; h 62 ~p, such

that P � �~p(m[outhn; hi:P

1

j P

2

] j P

3

). and O � � ~phP

3

i

n

m[P

1

j P

2

].

Similar sub-results are necessary for the remaining actions. The proof of

these results is standard. �

Note that the proof above requires extending the de�nition of � to con-

cretions.

4 The Characterisation

In the �rst subsection we re-examine our de�nition of barbed congruence,

�

=

, showing that it is very robust under changes to the precise de�nition of

barbs. This is followed by our �rst attempt at a bisimulation equivalence,

called delay bisimilarity ; we show this is contained in

�

=

but does not in

general coincide with it. In the �nal section we modify delay bisimilarity,

to give our co-inductive characterisation of

�

=

.

4.1 Barbs

As already mentioned in Section 2 according to [6, 9], the predicate P#

n

detects the ability of a process P to interact with its environment via the

ambient n. However, in other process calculi, like the Picalculus, barbs

are de�ned using (visible) actions. So, one may wonder how our de�nition

of barbed congruence would be a�ected by inheriting the notion of barb

from the lts. In fact we can show that our de�nition of barb coincides

with the choice of a particular action:
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Lemma 4.1. P#

n

i� P

`

freehn;hi

��������! P

0

for some h and P

0

.

Proof: Straightforward. �

In this subsection, we prove that for all possible labels generated in our lts

the resulting de�nitions of barbed congruence collapse and coincide with

�

=

. We recall that � ranges over the labels de�ned in Table 4.

Definition 4.2. We write P#

�

if P

`

�

��!. We write P+

�

if P =)

`

�

��!.

Definition 4.3. Let L denote the labels in, out, open, in, out, open,

enter, enter, exit, pop and free. For each � 2 L let

�

=

�

be the largest

congruence over processes which

� is reduction closed

� preserves � barbs; that is P

�

=

�

Q and P #

�hn;hi

implies Q +

�hn;hi

.

It is very easy to establish that if P

�

=

�

Q then

� P+

n

i� Q+

n

� P =) P

0

implies Q =) Q

0

for some Q

0

such that P

0

�

=

�

Q

0

.

In the sequel we will use these properties without comment.

Theorem 4.4. Let P and Q be two processes, then

8 � 2 L P

�

=

Q i� P

�

=

�

Q.

Proof: Since the de�nitions of

�

=

and

�

=

�

di�er only in the notion of

barb it su�ces to show that the two forms of barbs imply each other. We

examine two examples of �; the other cases are similar.

� � = pop.

Let us consider �rst the implication from left to right. Let P

�

=

Q and

P#

pophn;hi

; we want to conclude that Q+

pophn;hi

.

Consider the context

S

1

[�]

def

= [�] j outhn; hi:f [openhfi]

It is easy to prove that whenever f is fresh to R,

R+

pophn;hi

i� S

1

[R]+

f

This is su�cient to establish the result. For P

�

=

Q implies S

1

[P ]

�

=

S

1

[Q] which in turn implies S

1

[Q]+

f

, from which we have the required

Q+

pophn;hi

.

As to the implication from right to left, let P

�

=

pop

Q and P#

n

, then

we want to conclude that Q+

n

. Again this involves using a context.
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We recall, that by Lemma 4.1, if P#

n

then there exists h such that

P

`

freehn;hi

��������!. Thus, we de�ne a context:

S

h

2

[�]

def

= [�] j openhn; hi:k[r[outhki]]

This is constructed so that whenever r and k are fresh to R then:

{ S

h

2

[R]+

pophki

implies R+

n

{ R+

n

implies 9h: S

h

2

[R]+

pophki

:

This is su�cient to establish Q+

n

.

� � = enter.

Again this is a question of de�ning two appropriate contexts. Let

S

1

[�]

def

= [�] j f [inhn; hi:outhn; ki] j outhn; ki:g[openhgi]

This context has the property that

R+

enterhn;hi

i� S

1

[R]+

g

whenever f; g and k are fresh to R. For the reverse direction we let

S

h

2

[�]

def

= [�] j openhn; hi:g[inhgi]

This has the required property that:

{ S

h

2

[R]+

enterhgi

implies R+

n

{ R+

n

implies 9h: S

h

2

[R]+

enterhgi

:

provided that g is fresh to R.

�

As expected, the use of passwords is fundamental to the above result.

In particular in the the case � = enter the use of the fresh password

k in the de�nition of S

1

[�] is essential. Note also that this case, � =

enter, shows that the Levi and Sangiorgi's de�nition of barb, [9], can be

simpli�ed, to coincide with our original de�nition.

4.2 Delay Bisimilarity

Since we are interested in weak bisimilarities we have to de�ne the notion

of a weak action. Inspired by Sangiorgi's bisimilarities for HO� [16] we

�rst focus on a form of delay bisimilarity where agents are immediately

tested after a visible action.

Definition 4.5.

� j=

�

==) denotes

`

�

��!

�

`

�

��!
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� j=

�̂

==) denotes

`

�

��!

�

if � = � and j=

�

==) otherwise.

Since some actions result in concretions rather than processes we need

to have a method of comparing concretions. This will be carried out

implicitly by applying them to processes.

Definition 4.6. � ~mhP i

n

Q � R

def

= � ~m(n[P j R] j Q) where f ~mg is

chosen so that f ~mg \ fn(R) = ;.

Definition 4.7 (Delay bisimilarity). A symmetric relation S over

processes is a delay bisimulation if P S Q implies:

� If P

`

�

��! P

0

then there exists Q

0

such that Q j=

�̂

==) Q

0

and P

0

S Q

0

.

� If P

`

�

��! K

1

, � 6= enterhn; hi, then for all R there exists K

2

such that

Q j=

�

==) K

2

and K

1

�R S K

2

�R.

� If P

`

enterhn;hi

���������! K

1

then for all m and R there exists K

2

such that

Q j=

enterhn;hi

=========) K

2

and K

1

�m[R] S K

2

�m[R].

P and Q are delay bisimilar, written P �

d

Q, if P S Q for some delay

bisimulation S.

Note that the

`

enterhn;hi

���������! clause is treated separately because, as stated

in Lemma 3.1, only ambients (rather than arbitrary code R) can enter

ambient n.

Theorem 4.8. Delay bisimilarity is a congruence.

Proof: It is straightforward to prove that �

d

is preserved by pre�xing

and iteration. We treat the other three constructs simultaneously.

Let S be the least equivalence relation such that:

� �

d

� S

� P S Q implies P j R S Q j R for all processes R

� P S Q implies n[P ] S n[Q]

� P S Q implies �nP S �nQ

We prove that S is a delay bisimilarity up to �, by induction on why two

processes P and Q are in S. The case when P �

d

Q follows by de�nition.

� P j R S Q j R because P S Q. We now do induction on why

P j R

`

�

��! O. Most cases are straightforward. We focus on the most

interesting ones.
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{ P j R

`

�

��! O because P

`

enterhn;hi

���������! K

1

and R

`

enterhn;hi

���������!

�~rhR

1

i

n

R

2

, where O is structurally equivalent to �~r((K

1

� R

1

) j

R

2

). We must �nd a matching move Q j R

`

�

��! O

0

such that

O S O

0

.

As P S Q, we may use induction to �nd an action Q j=

enterhn;hi

=========)

K

2

such that K

1

� R

1

S K

2

� R

1

. Using the rule (� In)we then

have Q j R =) �~r((K

2

� R

1

) j R

2

) and since S is preserved by

parallel composition and restriction, it follows that the required O

0

is �~r((K

2

�R

1

) j R

2

).

{ P j R

`

�

��! O because P

`

enterhn;hi

���������! K

1

andR

`

enterhn;hi

���������! �~rhR

1

i

n

R

2

,

where again we can take O to be structurally equivalent to �~r((K

1

�

R

1

) j R

2

). Note however that from Lemma 3.1 we can assume R

1

is

an ambient. So here we can still use the induction hypothesis, P S

Q, to �nd a move Q j=

enterhn;hi

=========) K

2

such that K

1

�R

1

S K

2

�R

1

.

So again the rule (� In) can be used to deduce the required corre-

sponding move from Q j R, namely Q j R j==) �~r((K

1

�R

1

) j R

2

).

{ P j R

`

exithn;hi

��������! O because P

`

exithn;hi

��������! K

1

= �~phP

1

i

n

P

2

, and O

is structurally equivalent to �~phP

1

j Ri

n

P

2

, This case deserves to be

treated separately due to the unusual rule (Par Exit) in Table 6.

We must show that for an arbitrary process S there is a move

Q j R =) K

2

such that �~phP

1

j R j Si

n

P

2

S K

2

� S. Note that

�~phP

1

j R j Si

n

P

2

is structurally equivalent to K

1

� (R j S).

As P S Q, by induction we know that for any process W there

exists a concretion K

3

= �~qhQ

1

i

n

Q

2

such that Q j=

exithn;hi

========) K

3

and K

1

�W S K

3

�W . In particular let us choose the concretion

obtained when W is the process R j S. In this case we know

K

1

� (R j S) S K

3

� (R j S).

The required concretionK

2

is then �~qhQ

1

j Ri

n

Q

2

sinceK

3

�(R j S)

is structurally equivalent to K

2

�S and an application of (Par Exit)

gives Q j R =) K

2

.

{ The other cases are straightforward and are left to the reader.

� n[P ] S n[Q] because P S Q. We do induction on why n[P ]

`

�

��! O.

We give details only in the cases when � is enterhm;hi; or pophn; hig .

The remaining cases, when � is �; enterhn; hi; exithm;hi; or freehn; hig,

are similar.

{ Let n[P ]

`

enterhm;hi

���������! K

1

= hP

0

i

n

0 because P

`

inhm;hi

�������! P

0

. For an
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arbitrary processW we are required to �nd a move n[Q]

`

enterhm;hi

���������!

K

2

such that K

1

�W S K

2

�W .

As P S Q, we may use induction to �nd aQ

0

such thatQ

`

inhm;hi

�������!

Q

0

and P

0

S Q

0

. We may now letK

2

= hQ

0

i

n

0 as n[Q] j=

enterhm;hi

=========)

K

2

and since S is preserved by parallel composition and ambient

constructor, we get K

1

�W = n[P

0

j W ] S n[Q

0

j W ] = K

2

�W ,

as desired.

{ Let n[P ]

`

pophn;hi

�������! �~p(n[P

1

] j P

2

) because P

`

exithn;hi

��������! � ~phP

1

i

n

P

2

=

K

1

. As P S Q, by induction it holds that for all processes W

there exists K

2

= �~qhQ

1

i

n

Q

2

such that Q j=

exithn;hi

========) K

2

and

K

1

� W S K

2

� W . So, choosing the particular case when W

is 0 we have n[Q]

`

pophn;hi

�������! �~q(n[Q

1

] j Q

2

) and � ~p(n[P

1

] j P

2

) �

K

1

� 0 S K

2

� 0 � �~q(n[Q

1

] j Q

2

), as desired.

{ The inductive cases, for both kinds of actions, are straightforward.

� The remaining case, when �nP S �nQ because P S Q, is straight-

forward and left to the reader.

�

In the sequel of the paper it will be useful to have a form of internal

choice.

Definition 4.9. Given any processes P and Q we have

P �Q

def

= �r(openhri:P j openhri:Q j r[openhri])

with r 62 fn(P;Q).

Note that up to structural congruence P � Q

�

��! P j �r(openhri:Q)

and P �Q

�

��! Q j �r(openhri:P ). However for virtually any behavioural

equivalence we will have �r(openhri:R) = 0 and so for the sake of simplic-

ity we will simply write P �Q

�

��! P and P �Q

�

��! P , when analysing

computations involving �.

Proposition 4.10. Delay bisimilarity is strictly contained in barbed

congruence.

Proof: By Theorem 4.8 and Lemma 4.1 delay bisimilarity is contained in

barbed congruence. To prove that delay bisimilarity is strictly contained

in barbed congruence considers the following law:

!inhai:(inhbi � inhci) = !inhai:(inhbi � inhci) j inhai:inhci:
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The law above is true for barbed congruence, as we can prove using results

of Section 4.3, but it is not for delay bisimilarity. Indeed, the action inhai,

leading the right hand side to !inhai:(inhbi � inhci) j inhci, cannot be

matched by the left hand side without performing a � action after inhai.

�

4.3 Ambient bisimilarity

As pointed out in the proof of Proposition 4.10 the problem of delay

bisimilarity is that, by de�nition, weak actions j=

�

==) do not allow � moves

after the visible action �. In this section, we give a slightly di�erent lts

�! de�ned in terms of

`

�!, which allows us to de�ne weak actions

�

==)

where � moves can follow visible actions. Actions, between processes, of

the form P

`

�

��! P

0

, remain una�ected. The only modi�cation involves

higher-order actions, that is, actions of the form P

`

�

��! K which will also

be transformed into actions between processes; the resulting lts is in early

style.

Definition 4.11 (Ambient Transitions). Letm be an arbitrary name

and R an arbitrary process. Then:

� P

enterhn;hiR

����������! K �R if P

`

enterhn;hi

���������! K

� P

enterhn;him[R]

������������! K �m[R] if P

`

enterhn;hi

���������! K

� P

exithn;hiR

���������! K �R if P

`

exithn;hi

��������! K

� P

�

��! P

0

if P

`

�

��! P

0

These transitions give rise to weak transitions in the standard manner:

�

�

==) denotes

�

��!

�

�

��!

�

��!

�

�

�̂

==) denotes

�

��!

�

if � = � and

�

==) otherwise.

Definition 4.12 (Ambient Bisimilarity). A symmetric relation S

is an ambient bisimulation if P S Q and P

�

��! P

0

implies that there

exists Q

0

such that Q

�̂

==) Q

0

and P

0

S Q

0

. P and Q are ambient

bisimilar, written P � Q, if P S Q for some ambient bisimulation S .

Theorem 4.13. Ambient bisimilarity is a congruence.

Proof: As in the proof of Theorem 4.8 we de�ne an equivalence relation

S which, by construction, (i) contains the relation �, and (ii) is pre-

served by restriction, parallel composition, and ambient operators. Then

we prove that S is an ambient bisimilarity up to �, by induction on the

de�nition of S .
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In order to emphasize the di�erences with the proof for delay bisimilarity

we focus on one case, when P j R S Q j R because P S Q. Here

we now carry out an inductive analysis on the transition P j R

�

��! O.

The most interesting case is when � = � . We recall that P j R

�

��! O if

P j R

`

�

��! O.

Let us consider the case when P j R

`

�

��! O because P

`

enterhn;hi

���������! K

1

and

R

`

enterhn;hi

���������! �~rhm[R

1

]i

n

R

2

, with O � �~r

�

(K

1

�m[R

1

]) j R

2

�

(we recall

that by Lemma 3.1 only ambients can migrate). By de�nition, we have

P

enterhn;him[R

1

]

�������������! K

1

�m[R

1

] = P

0

. So here we can still use the induction

hypothesis, P S Q, to �nd a move Q =) Q

0

such that P

0

S Q

0

where

Q =)

`

enterhn;hi

���������! K

2

and K

2

�m[R

1

] =) Q

0

. Thus:

� P j R

�

��! �~r

�

(K

1

�m[R

1

]) j R

2

�

� O

� Q j R =)

�

��! �~r

�

(K

2

�m[R

1

]) j R

2

�

=) �~r

�

Q

0

j R

2

�

� O

0

.

As P

0

S Q

0

and S is preserved by parallel composition and restriction,

we get O S O

0

, as desired. The other cases are similar. �

With this result we can show, as for delay bisimilarity, that ambient

bisimilarity � is contained in barbed congruence

�

=

. The next step is to

prove that ambient bisimilarity completely characterises barbed congru-

ence. To this end we use two contexts SPY

a

hn; h

1

; h

2

; �i and SPY

b

hn; h

1

; h

2

; �i

which allows us to spy on any process R plugged into the hole. These two

contexts will be de�ned so that for any process R

SPY

a

hn; h

1

; h

2

; Ri +

pophn;h

i

i

and similarly, for any name m,

m[SPY

b

hn; h

1

; h

2

; Ri] +

pophn;h

i

i

for i 2 f1; 2g. The ability to spy on R derives from the fact that one of

the two barbs is lost when process R performs any action.

Definition 4.14. We use SPY

a

hn; h

1

; h

2

; �i and SPY

b

hn; h

1

; h

2

; �i as short-

hands for the two following contexts, respectively:

� �(zr)

�

r[openhri:[�]] j (openhri j z[outhn; h

1

i])�(openhri j z[outhn; h

2

i])

�

� �r

�

r[openhri:[�]] j (openhri j outhn; h

1

i)� (openhri j outhn; h

2

i)

�

The following result formally states the mentioned above property of the

spy cages SPY

a

hn; h

1

; h

2

; Ri and SPY

b

hn; h

1

; h

2

; Ri. To this end, we say

that a context C[�] is static if the hole [�] appears only underneath the

operators of restriction, parallel composition and ambient.
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Lemma 4.15. Let C[�] be a static context, R a process, n a name, and

h

1

; h

2

fresh names. Then:

1. If C[SPY

a

hn; h

1

; h

2

; Ri]

�

��! P and P +

pophn;h

i

i

, i 2 f1; 2g, then there

is a static context C

0

[�] such that

� P = C

0

[SPY

a

hn; h

1

; h

2

; Ri] and

� C[R]

�

��! C

0

[R].

2. If C[m[SPY

b

hn; h

1

; h

2

; Ri]]

�

��! P and P +

pophn;h

i

i

, i 2 f1; 2g, then

there is a static context C

0

[�] such that

� P = C

0

[m[SPY

b

hn; h

1

; h

2

; Ri]] and

� C[m[R]]

�

��! C

0

[m[R]].

Proof: By transition induction. �

By virtue of Theorem 4.4, when proving that � and

�

=

coincide it

su�ces to show that � and

�

=

pop

coincide. To this end we need a last

lemma which allows us to remove the spy cages SPY

a

hn; h

1

; h

2

; �i and

SPY

b

hn; h

1

; h

2

; �i.

Lemma 4.16 (cutting lemma). Let C

1

[�] and C

2

[�] be static contexts,

P;Q and R processes, and h

1

and h

2

fresh names.

1. If C

1

[SPY

a

hn; h

1

; h

2

; Ri]

�

=

pop

C

2

[SPY

a

hn; h

1

; h

2

; Ri] then C

1

[R]

�

=

pop

C

2

[R].

2. If C

1

[m[SPY

b

hn; h

1

; h

2

; Ri]]

�

=

pop

C

2

[m[SPY

b

hn; h

1

; h

2

; Ri]] then

C

1

[m[R]]

�

=

pop

C

2

[m[R]].

3. If P j R

�

=

pop

Q j R, with fn(R) \ fn(P;Q) = ;, then P

�

=

pop

Q.

Proof: To prove Part 1 note that since

�

=

pop

is closed under restriction,

we have that:

�(h

1

h

2

)(C

1

[SPY

a

hn; h

1

; h

2

; Ri])

�

=

pop

�(h

1

h

2

)(C

2

[SPY

a

hn; h

1

; h

2

; Ri]):

As h

1

and h

2

are fresh,

�(h

1

h

2

)C

i

[SPY

a

hn; h

1

; h

2

; Ri] � C

i

[�(h

1

h

2

)SPY

a

hn; h

1

; h

2

; Ri]

for i 2 f1; 2g. By exhibiting an appropriate bisimulation it is easy to

prove that �(h

1

h

2

)SPY

a

hn; h

1

; h

2

; Ri � R. As � implies

�

=

, and, by The-

orem 4.4, relations

�

=

and

�

=

pop

coincide, we get C

1

[R]

�

=

pop

C

2

[R], as

desired.

The proof of Part 2 is similar.

To prove Part 3 we set ~r = fn(R) so that �~rR

�

=

pop

0. An easy way to

prove this, is by showing that �~rR � 0. Finally, since fn(R)\fn(P;Q) = ;
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and

�

=

pop

is preserved by restriction we get:

P

�

=

pop

P j �~rR

�

=

pop

�~r(P j R)

�

=

pop

�~r(Q j R)

�

=

pop

Q j �~rR

�

=

pop

Q

as desired. �

Theorem 4.17. Ambient bisimilarity and barbed congruence coincide.

Proof: By Theorem 4.13 and Lemma 4.1 ambient bisimilarity is con-

tained in barbed congruence. As to the completeness part, by Theo-

rem 4.4, it su�ces to prove that the relation

S = f(P;Q) : P

�

=

pop

Qg

is an ambient bisimilarity up to �.

Let us �rst consider the three possible higher-order actions P

�

��! O:

1. Let P

enterhn;hiR

����������! P

0

because P

`

enterhn;hi

���������! K

1

= � ~phP

1

i

n

P

2

where

P

0

= C

1

[R] and C

1

[�] = �~p(n[[�] j P

1

] j P

2

). We want to conclude

that there is a matching move Q

enterhn;hiR

==========) Q

0

with P

0

S Q

0

. We

de�ne:

C

�R

[�]

def

= [�] j n[inhn; hi:(SPY

a

hn; h

1

; h

2

; Ri � a[outhn; h

3

i])]

with a; h

i

fresh. As P

�

=

pop

Q it follows that C

�R

[P ]

�

=

pop

C

�R

[Q].

So, if

C

�R

[P ]

�

��!

�

��! C

1

[SPY

a

hn; h

1

; h

2

; Ri]

then there is a process Z such that

C

�R

[Q] =) Z and C

1

[SPY

a

hn; h

1

; h

2

; Ri]

�

=

pop

Z.

As a consequence, Z+

pophn;h

1

i

, Z+

pophn;h

2

i

, and Z 6+

pophn;h

3

i

. This im-

plies that in the reductions sequence C

�R

[Q] =) Z the pre�x inhn; hi

is consumed. More precisely, by Lemma 4.15(1) there exist static con-

texts C

0

[�]; C

00

[�] and C

2

[�] such that:

C

�R

[Q] = Q j n[inhn; hi:(SPY

a

hn; h

1

; h

2

; Ri � a[outhn; h

3

i])]

=)

�

��! C

0

[SPY

a

hn; h

1

; h

2

; Ri � a[outhn; h

3

i]]

=)

�

��! C

00

[SPY

a

hn; h

1

; h

2

; Ri]

=) C

2

[SPY

a

hn; h

1

; h

2

; Ri]

= Z

By Lemma 4.16(1), we have C

1

[R]

�

=

pop

C

2

[R], that is P

0

�

=

pop

C

2

[R].

It remains to show that Q

enterhn;hiR

==========) C

2

[R], that is the required Q

0

is C

2

[R].
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Examining the above reductions sequence from C

�R

[Q] we know that

Q =)

enterhn;hiR

����������! C

0

[R]. We also know that C

0

[(SPY

a

hn; h

1

; h

2

; Ri)]

�

==)

C

2

[(SPY

a

hn; h

1

; h

2

; Ri)]. Repeated application of Lemma 4.15(1) gives

C

0

[R] =) C

2

[R], and therefore we have the required corresponding ac-

tion Q

enterhn;hiR

==========) C

2

[R].

2. Let P

exithn;hiR

���������! P

0

because P

`

exithn;hi

��������! K

1

= �~phP

1

i

n

P

2

where

P

0

= C

1

[R] and C

1

[�] = � ~p(n[[�] j P

1

] j P

2

). Again we want to conclude

that there is a a matching move such that Q

exithn;hiR

=========) Q

0

with

P

0

S Q

0

. The proof strategy is the same as in the �rst case except

that here we use the context

C

�R

[�]

def

= n[[�] j SPY

a

hn; h

1

; h

2

; Ri] j

outhn; hi:(a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

with a; b; h

i

fresh. Again we have C

�R

[P ]

�

=

pop

C

�R

[Q]. So, if

C

�R

[P ]

�

��!

�

��! C

1

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

then there is a process Z such that

C

�R

[Q] =) Z and C

1

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

�

=

pop

Z.

As a consequence, Z+

pophn;h

1

i

, Z+

pophn;h

2

i

, Z+

popha;h

3

i

, and Z 6+

popha;h

4

i

.

This implies that in the reductions sequence C

�R

[Q] =) Z the pre�x

outhn; hi is consumed. More precisely, by Lemma 4.15(1) there exist

static contexts C

0

[�]; C

00

[�] and C

2

[�] such that:

C

�R

[Q] = n[Q j SPY

a

hn; h

1

; h

2

; Ri] j

outhn; hi:(a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

=)

�

��! C

0

[SPY

a

hn; h

1

; h

2

; Ri] j (a[b[outha; h

3

i]]� a[b[outha; h

4

i]])

=)

�

��! C

00

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

=) C

2

[SPY

a

hn; h

1

; h

2

; Ri] j a[b[outha; h

3

i]]

= Z

By Lemmas 4.16(1) and 4.16(3), we have C

1

[R]

�

=

pop

C

2

[R].

As in the �rst case we can now show that the required Q

0

is C

2

[R];

analysing the above reduction and applying Lemma 4.15(1) we obtain

Q

exithn;hiR

=========) Q

0

, as required.

3. Let P

enterhn;him[R]

������������! P

0

, that is P

`

enterhn;hi

���������! K

1

= �~phP

1

i

n

P

2

where P

0

= C

1

[m[R]] and C

1

[�] = �~p(n[[�] j P

1

] j P

2

). Here we need

to �nd some Q

0

such that Q

enterhn;him[R]

============) Q

0

and P

0

S Q

0

. This
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time we use the context

C

�m[R]

[�]

def

= [�] j m[inhn; hi:(SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i)]

with h

i

fresh. Arguing as usual from C

�m[R]

[P ]

�

=

pop

C

�m[R]

[Q], we

know that since

C

�m[R]

[P ]

�

��!

�

��! C

1

[m[SPY

b

hn; h

1

; h

2

; Ri]];

there is a process Z such that

C

�m[R]

[Q] =) Z and C

1

[m[SPY

b

hn; h

1

; h

2

; Ri]]

�

=

pop

Z.

As a consequence, Z+

pophn;h

1

i

, Z+

pophn;h

2

i

, and Z 6+

pophn;h

3

i

. This im-

plies that in the reductions sequence C

�m[R]

[Q] =) Z the pre�x inhn; hi

is consumed. More precisely, this time by Lemma 4.15(2), there exist

static contexts C

0

[�]; C

00

[�] and C

2

[�] such that:

C

�m[R]

[Q] = Q j m[inhn; hi:(SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i)]

=)

�

��! C

0

[m[SPY

b

hn; h

1

; h

2

; Ri � outhn; h

3

i]]

=)

�

��! C

00

[m[SPY

b

hn; h

1

; h

2

; Ri]]

=) C

2

[m[SPY

b

hn; h

1

; h

2

; Ri]]

= Z

By Lemma 4.16(2) we have C

1

[m[R]]

�

=

pop

C

2

[m[R]].

We now have the required Q

0

, namely C

2

[m[R]]. An analysis of

the above reductions gives Q =)

enterhn;him[R]

������������! C

0

[m[R]], and from

Lemma 4.15(2) we know that C

0

[m[R]] =) Q

0

. We therefore have the

required move Q

enterhn;him[R]

============) Q

0

.

The remaining cases concern the simpler actions of the form P

�

��! P

0

where P

0

is a process; there are eight cases in all. Here it will be useful to

write h�h

0

as an abbreviation for f [�z(z[outhf; hi])]�f [�z(z[outhf; h

0

i])]

where f is always assumed to be fresh.

� Let P

inhn;hi

������! P

0

. We want to conclude that there is Q

0

such that

Q

inhn;hi

======) Q

0

and P

0

S Q

0

. We de�ne:

C

�

[�]

def

= a[[�] j outhn; h

1

i:openhai] j n[inhn; hi] j

outhn; h

1

i:openhai:(h

2

� h

3

)

with a; h

i

fresh. From P

�

=

pop

Q we know that C

�

[P ]

�

=

pop

C

�

[Q]. So,

if

C

�

[P ]

�

��!

�

��!

�

��!

�

��! P

0

j n[ ] j h

2

�

=

pop

P

0

j h

2

then there is a process Z such that P

0

j h

2

�

=

pop

Z. As a consequence,
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Z +

pophf;h

2

i

and Z 6+

pophf;h

3

i

. This implies that in the reductions se-

quence C

�

[Q] =) Z the whole context C

�

[�] is consumed (up to

�

=

pop

)

except for h

2

. More precisely, noticing that n[ ]

�

=

pop

0 (see Section 6),

there exist Q

1

, Q

2

, Q

3

; Q

0

such that:

C

�

[Q] = a[Q j outhn; h

1

i:openhai] j n[inhn; hi] j

outhn; h

1

i:openhai:(h

2

� h

3

)

=)

�

��! n[a[Q

1

j outhn; h

1

i:openhai]] j

outhn; h

1

i:openhai:(h

2

� h

3

)

=)

�

��! a[Q

2

j openhai] j n[ ] j openhai:(h

2

� h

3

)

=)

�

��! Q

3

j n[ ] j (h

2

� h

3

)

=) Q

0

j n[ ] j h

2

= Z

�

=

pop

Q

0

j h

2

where Q =)

inhn;hi

������! Q

1

=) Q

2

=) Q

3

=) Q

0

. By Lemma 4.16(3) we

can conclude that P

0

�

=

pop

Q

0

, as desired.

� Let P

inhn;hi

������! P

0

. Again we need to �nd someQ

0

such thatQ

inhn;hi

======)

Q

0

and P

0

S Q

0

. The argument is the same as in the previous case,

this time using the context

C

�

[�]

def

= n[[�] j openhn; h

1

i:(h

2

� h

3

)] j

a[inhn; hi:outhn; h

4

i] j outhn; h

4

i:openhn; h

1

i

with a; h

i

fresh. From the move C

�

[P ]

�

=

pop

C

�

[Q]. So, if

C

�

[P ]

�

��!

�

��!

�

��!

�

��! P

0

j a[ ] j h

2

�

=

pop

P

0

j h

2

we know that there is a process Z such that P

0

j h

2

�

=

pop

Z. As a

consequence, Z +

pophf;h

2

i

whereas Z 6+

pophf;h

3

i

. This implies that in the

reduction sequence C

�

[Q] =) Z the whole context C

�

[�] is consumed

(up to

�

=

pop

) except for h

2

. More precisely, noticing that a[ ]

�

=

pop

0,
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there exist Q

1

, Q

2

, and Q

3

such that:

C

�

[Q] = n[Q j openhn; h

1

i:(h

2

� h

3

)] j a[inhn; hi:outhn; h

4

i] j

outhn; h

4

i:openhn; h

1

i

=)

�

��! n[Q

1

j openhn; h

1

i:(h

2

� h

3

) j a[outhn; h

4

i]] j

outhn; h

4

i:openhn; h

1

i

=)

�

��! n[Q

2

j openhn; h

1

i:(h

2

� h

3

)] j a[ ] j openhn; h

1

i

=)

�

��! Q

3

j (h

2

� h

3

) j a[ ]

=)

�

��! Q

0

j h

2

j a[ ]

= Z

�

=

pop

Q

0

j h

2

where Q =)

inhn;hi

������! Q

1

=) Q

2

=) Q

3

=) Q

0

. By Lemma 4.16(3) we

can conclude that P

0

�

=

pop

Q

0

, as desired.

� The six remaining cases are similar, except that we need an appropriate

context. These are detailed as follows:

{ for � = pophn; hi use

C

�

[�]

def

= [�] j outhn; hi:(h

1

� h

2

)

with h

1

and h

2

fresh.

{ for � = outhn; hi use

C

�

[�]

def

= [�] j n[a[outhn; hi:openhai]] j openhai:(h

1

� h

2

)

with a; h

1

and h

2

fresh.

{ for � = outhn; hi use

C

�

[�]

def

= n[a[[�] j openhai]] j outhn; hi:openhai:(h

1

� h

2

)

with a; h

1

and h

2

fresh.

{ for � = openhn; hi use

C

�

[�]

def

= [�] j n[openhn; hi:(h

1

� h

2

)]

with h

1

and h

2

fresh.

{ for � = openhn; hi use

C

�

[�]

def

= n[[�]] j openhn; hi:(h

1

� h

2

)

with h

1

and h

2

fresh.

{ for � = freehn; hi use

C

�

[�]

def

= [�] j openhn; hi:(h

1

� h

2

)
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with h

1

and h

2

fresh.

�

We believe that the distinguishing contexts in the proof above can be

de�ned without the use of passwords, except when � is a enter action. In

this case however the use of fresh passwords is essential. In order to test

that a process can allow entry to an ambient we can send it an ambient

which contains a fresh password. Probing for this fresh password ensures

that the ambient we have sent has indeed been accepted. Without fresh

passwords there would be no distinguishing feature of the ambient sent

which could be used in the probe.

Note also that our rules for out, di�erent from those in [9], have played

a crucial role in the distinguishing contexts for both enter and in. The

alternative semantics for outhni given in [9] uses an auxiliary action ?n

but it is di�cult to conceive of a distinguishing context for this action.

5 Adding Communication

Both Mobile Ambients, [6], and Safe Ambients, [9], allow local communi-

cation inside ambients. The basic idea is to have an output process such

as hEi, which outputs the message E, and an input process such as (x):Q

which on receiving a message binds it to x in Q which then executes. The

basic reduction rule therefore takes the form

(x):Q j hEi �! Qf

E

=xg j P

In this section we show that our results can be extended to such a message-

passing language.

The syntax of our extended language is given in Table 7. The pre�xing

operator C:P of Section 2 is generalised to G:P , where G is a syntactic

category of guards. This may take the form

� E:P , a direct generalisation of C:P . Here E is any path, or sequence, of

capabilities. These paths will be the messages allowed in our systems.

� hEi:P , representing the synchronous output of the message E; the

process P can not be executed until the message E has been consumed.

As discussed in [21, 2] this is not unrealistic because communication is

always local.

� (x):Q, representing input of a message to be bound to x in Q.

We now have variables in our language, with the construct (x):Q a

binding construct for x. This gives rise in the standard manner to the

notions of free and bound variables, fv(�) and bv(�), �-equivalence and
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Table 7 The Message-passing Calculus SAP

Names: n; h; : : : 2 N

Variables: x; y; : : : 2 X

Capabilities:

C ::= inhn; hi may enter into n

�

�

outhn; hi may exit out of n

�

�

openhn; hi may open n

�

�

inhn; hi allow enter

�

�

outhn; hi allow exit

�

�

openhn; hi allow open

Expressions:

E;F ::= x variable

�

�

C capability

�

�

E:F path

�

�

� empty path

Guards:

G ::= E expression

�

�

(x) input

�

�

hEi output

Processes:

P ::= 0 nil process

�

�

P

1

j P

2

parallel composition

�

�

�nP restriction

�

�

G:P pre�xing

�

�

n[P ] ambient

�

�

!G:P replication

Concretions:

P ::= � ~mhP i

n

Q movement concretion

�

�

� ~phEiP bu�er concretion

substitutions in which free occurrences of variables are not captured; we

avoid spelling out the details. A process is now any closed term, that is

any P in which fv(P ) = ;.



30 Massimo Merro and Matthew Hennessy

The operational semantics is de�ned by introducing two new labels for

input and output transitions and a new form of concretion:

� P

`

(E)

����! Q means that the process P can receive the message E and

continue as Q

� P

`

h�i

����! �~phEiQmeans that P can output the message E which shares

the bound names ~p with the residual Q.

Other possibilities for formalising message transmission are discussed at

the end of this section.

In Table 8 we give the de�ning rules for the operational semantics

of these constructs, which should be added to those of Tables 5 and 6

to obtain the lts P

`

�

��! O for the processes, that is closed terms, of our

extended language. The rules are straightforward and require no comment.

However note that in the structural rules of Table 6 we are now assuming

that parallel composition and restriction distribute over the new forms of

concretions � ~phEiP in the same manner as �~phP i

n

Q.

In order to obtain a reasonable semantic equivalence we must now

transform these transitions into ones which do not involve concretions.

The only problem is the output rule, which delivers a new form of con-

cretion. First we de�ne the application of these concretions to terms; this

is then used, as in Section 4, to transform a transition P

`

h�i

����! �~phEiQ

into a transition P

L

��! P

0

for some process P

0

and some label L.

Let R be any term such that fv(R) = fxg; intuitively here x represents

the placeholder for the message E which will be received via an output

action P

`

h�i

����! �~phEiQ. Then, we de�ne

�~phEiP �R

def

= � ~p(P j Rf

E

=xg)

where the bound variables ~p are chosen so that fn(R) \ ~p = ;.

We can now de�ne the extra ambient transition,

h�iR

�����!, for any such

R to add to those in De�nition 4.11. Let

P

h�iR

�����! K �R if P

`

h�i

����! K:

Using De�nition 4.12 with this extended set of ambient transitions we ob-

tain ambient bisimilarity, �, between processes in our extended message-

passing language.

We now outline how to extend Theorem 4.17 to this setting, relating

bisimilarity to a contextual equivalence. First let us be quite precise as to

how De�nition 2.2 extends to our language with open and closed terms.
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Table 8 Labelled Transition System - Communication

(Output)

�

hEi:P

`

h�i

����! hEiP

(Input)

�

(x):P

`

(E)

����! Pf

E

=

x

g

(Path)

E:(F:P )

`

�

��! Q

(E:F ):P

`

�

��! Q

(� Eps)

�

�:P

`

�

��! P

(� Comm)

P

`

h�i

����! �~phEiP

0

Q

`

(E)

����! Q

0

fn(Q

0

) \ f~pg = ;

P j Q

`

�

��! �~p(P

0

j Q

0

)

Definition 5.1 (Barbed Congruence). Barbed congruence,

�

=

is the

largest equivalence relation over arbitrary terms which

� is preserved by contexts

� when restricted to processes is reduction closed

� when restricted to processes is barb preserving.

De�ned in this manner there is an immediate mismatch between

�

=

and the bisimulation equivalence �; the former is de�ned for arbitrary

terms while the latter only applies to processes. However we can rectify

this by generalising � to arbitrary terms in the standard manner. For any

two terms P; Q we write P � Q if for all substitutions �, mappings from

variables to names, we have P� � Q�.

Theorem 5.2. The relation � is a congruence for the message passing

language.

Proof: A straightforward extension of Theorem 4.13 considering each

operator in turn. For example to show that it is preserved by input pre-

�xing it is su�cient to show that

P � Q implies (x):P � (x):Q

for all terms such that fv(P ) [ fv(Q) � fxg. However the hypothesis

says that Pf

E

=

x

g � Qf

E

=

x

g for arbitrary messages E which is all that is

required to prove the conclusion; the only possible moves from (x):P are

of the form (x):P

(E)

����! Pf

E

=

x

g.

For all other operators it is su�cient to consider only closed terms and so

the reasoning is very similar to that in Theorem 4.13. The main novelty

consists in using the communication rule (� Comm) to prove that � is

preserved by parallel composition. �
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This, together with the straightforward extension of Lemma 4.1 to the

message-passing calculus, immediately establishes that � is contained in

�

=

. In fact the converse is also true.

Theorem 5.3. Relations

�

=

and � coincide over arbitrary terms in the

message-passing language.

Proof: For processes the proof that

�

=

is contained in � follows from a

straightforward extension of Theorem 4.4 to the message-passing calculus.

It su�ces to prove that the relation

S = f(P;Q) : P

�

=

pop

Q; P;Q processesg

is a bisimilarity up to �. The main di�erence with respect to the proof of

Theorem 4.17 is that we have to consider the cases for input and output

actions.

� Let P

(M)

����! P

0

; we want to conclude that there is Q

0

such that

Q

(M)

====) Q

0

and P

0

S Q

0

. As a distinguishing context take:

C

�

[�]

def

= [�] j hMi:(h

1

� h

2

)

with h

1

and h

2

fresh.

� Let P

h�iR

�����! P

0

; we want to conclude that there is Q

0

such that

Q

h�iR

=====) Q

0

and P

0

S Q

0

. As a distinguishing context take:

C

�R

[�]

def

= [�] j (x):(SPY

a

ha; h

1

; h

2

; Ri � a[b[outha; h

3

i]]))

with a; b; h

i

fresh.

So we can conclude that for processes P

�

=

Q implies P � Q.

Now consider two arbitrary terms P;Q such that P

�

=

Q. We need

to show that P� � Q� for any substitution �. Let x

1

; x

2

; : : : ; x

n

be

all the variables free in both P and Q. From P

�

=

Q we know that

(x

1

):(x

2

): : : : :(x

n

):P

�

=

(x

1

):(x

2

): : : : :(x

n

):Q and since these are closed

terms we can conclude that (x

1

):(x

2

): : : : :(x

n

):P � (x

1

):(x

2

): : : : :(x

n

):Q.

But now examining the behaviour of these processes with respect to the

input actions (�(x

1

)); (�(x

2

)); : : : we can conclude that P� � Q� �

We end this section with two comments on our version of message-

passing. First notice that we have a more restricted form of message than

in [6, 9]. In particular we do not allow ambient names to be transmitted.

This has been a deliberate choice as, apriori, when the name is transmitted

the recipient gets considerable control over that ambient. Moreover, much

of the power of name transmission can still be captured in our language.
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For example the transmission of an ambient name into a static context,

as in

hni:P j (x):� ~m(x[R] j Q)

�

��! P j � ~m(n[R] j Q)

with x 62 fv(Q), can be easily emulated in our language, using passwords,

by writing

(y):(z):(P j n[y:z])

�

�

�(ha)(hinhn; hii:hopenhaii:� ~m(a[inhn; hi:openhai:R] j Q))

�

��!

�

��!

�

=

P j � ~m(n[R] j Q)

where a; h 62 fn(Q;R).

The second comment regards the formalisation of output actions using

�~nhMiP . This in itself is complicated but it also leads to considerably

more complicated output actions in the derived lts of ambient transitions;

they are higher-order, as they are parameterised on the term R.

The reader might think of avoiding these by using a simpler rule for

output actions such as

(Wrong Output)

�

hEi:P

hEi

����! P

Unfortunately with the rule above we are obliged to introduce bound out-

put actions of the form

�nhinhn;hii

����������!. Unfortunately, these actions are not

observable. That is, there does not exist a context which is capable of

recognising whether or not a process can perform the action

�nhinhn;hii

����������!.

Intuitively, this is because the name n is private and no context may use

it as an ambient name to recognise the action �nhinhn; hii. This implies

that the resulting ambient bisimilarity would not coincide with barbed

congruence.

6 Examples

In this section we brie
y outline how our results could form the basis for

reasoning techniques for ambients.

First of all our language is expressive. By simply using the names of

ambients as passwords we can consider the language of Safe ambients [9]

as a sub-language, although the semantics of the out is slightly di�erent.

Thus the various examples programmed in that paper could now be be

analysised using our bisimulations. We also give two examples, similar to

those given in [6, 9], which show that the existence of passwords can be

of help when designing ambients.
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Routable packets: In [6], Cardelli and Gordon present a protocol to

route a packet to various destinations. The content P and the destination

E are contained in an ambient route. The act of sending P to destination

E is realized by the following steps. Ambient route enters inside the packet

and is opened. This liberates a message hEi, which is then consumed so

that the path E can be executed. At the end, the packet, which contains

P , has reached the destination. Here is the program in Mobile Ambients:

PKT

def

= pkt[!(x):x j !openhroutei] (the packet)

hP;Ei

def

= route[inhpkti:hEi j P ] (P is routed to destination E)

As already pointed out in [9], the protocol above works only under

severe constraint on process P and on the environment. Possible dangers

are:

1. process P may interfere with the path to follow;

2. two routers might enter pkt and interfere with the path to follow;

3. pkt and route might be opened by the environment.

These three problems are addressed in [9] by providing a new protocol

along the lines of the taxi protocol in [4]. Below we adapt Levi and San-

giorgi's protocol making use of passwords. We replace hP;Ei with hP;E; ki

where k represents the password that must be used by the target ambient

to open, and therefore access, the desired packet. Passwords allows the

target ambient to distinguish between di�erent packets addressed to it.

For the sake of simplicity we rename ambients pkt and route with p and

r, respectively. Moreover, as in [6], to avoid interferences from P on the

path to follow, we enclose P in an ambient d.

PKT

def

= !p[ inhpi:openhri:(x):x ]

hP;E; ki

def

= (�d)r[ inhpi:openhri:hE:openhdii:d[openhdi:openhp; ki:P ] ]

Notice that in our protocol, unlike [6, 9], the ambient p is replicated to

increase the parallelism. Now, an ambient p represents a one-time \enve-

lope" to deliver a package P at destination E. The \envelope" p is opened

by the recipient by means of the password k. Notice that this example

uses full replication but it can be easily rewritten in terms of replicated

pre�xing.

Crossing a Firewall A protocol is discussed in [6] for controlling

accesses through a �rewall. Again our version is inspired by that in [9]

but now passwords are used. Ambient f represents the �rewall and h

f

is
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the password to cross it; ambient a represents a trusted agent inside which

is a process Q that is supposed to cross the �rewall. h

a

is the password

to access a. The �rewall sends into the agent a pilot ambient k with the

ability inhf; h

f

i to enter the �rewall. The agent acquires the capability

by opening k and then enters f . The process Q carried by the agent is

�nally liberated inside the �rewall by the opening of ambient a. Here is

the protocol:

FW

def

= �h

f

�

f [ inhf; h

f

i:openhai:P j

k[outhf; h

f

i:inha; h

a

i:openhki:hinhf; h

f

ii] ] j

outhf; h

f

i

�

AG

def

= a[ inha; h

a

i:openhki:(x):x:openhai:Q ]

Note that here, unlike [9], the names f an a, of the �rewall and agent

respectively, can be considered public information; the security of the

system resides in keeping the passwords h

f

and h

a

private.

We now turn our attention to some example laws which we can justify

straightforwardly using bisimulations. In [9] it is shown that by establish-

ing a set of basic set of such laws between ambients non-trivial reasoning

can be carried out. Indeed most of our laws are taken directly from that

paper, or are simple modi�cations thereof. Here we show how they can

be established using bisimulations, rather than the more complicated con-

textual reasoning in [9].

The simplest example is

n[ ] = 0

These two processes are bisimilar because the singleton set

f(n[0] ; 0)g

is a trivial bisimulation; neither side can perform any action.

Another example is the perfect �rewall equation of [6]

(�n)n[P ] = 0

where n 62 fn(P ). This law is not true in our setting, nor does it hold for

the Safe Ambients of [9]. For example, consider the case when P is given

by

P = inhki:P

0

with k 6= n and n 62 fn(P

0

). Then the context

C[�] = [�] j k[ inhki:r[outhki] ] j outhki

is capable of distinguishing the two processes. Indeed, when r 62 fn(P ),

we have C[(�n)n[P ]]+

r

whereas C[0] 6+

r

. Roughly, this means that the
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movements of secret ambients are not visible in Mobile Ambients while

they are in the presence of co-capabilities.

However in our setting we can prove a law similar to the perfect �rewall

equation:

Theorem 6.1.

(�n

1

)(�n

2

)n

1

[n

2

[P ]] � 0

Proof: Again

f

�

(�n

1

)(�n

2

)n

1

[n

2

[P ]] ; 0

�

g

is a bisimulation since neither side can perform any external action. �

Here are a collection of laws taken from [9]:

Theorem 6.2.

1. �h(m[inhn; hi:P ] j n[inhn; hi:Q]) � �h(n[Q j m[P ]])

2. k[m[inhn; hi:P ] j n[inhn; hi:Q])] � k[n[Q j m[P ]]]

3. �h(openhm;hi:P j m[openhm;hi:Q]) � �h(P j Q)

4. k[openhm;hi:P j m[openhm;hi:Q]] � k[P j Q]

5. �h(n[m[outhn; hi:Q]] j outhn; hi:P ) � �h(m[Q] j P )

6. n[hEi:P j (x):Q] � n[P j Qf

E

=xg]

Proof: By exhibiting the appropriate bisimulation. In all cases the

bisimulation has a similar form:

S = f(LHS;RHS)g[ �

where LHS; RHS denote the left hand side, right hand side respectively

of the identity. In the proof of part 5 we require the law n[ ] � 0. �

These laws may now be used to prove our version of crossing a �rewall:

Theorem 6.3. If h

a

62 fn(P ) and h

f

62 fn(Q), then:

�h

a

(AG j FW ) � �(h

a

h

f

)f [P j Q]

Proof: Similar to the proof of Equation (15) of [9], but now applying

Laws 5, 1, 4, 6, 1, 4 of Theorem 6.2. �

Note that because of the security of the system is only maintained by

keeping the passwords secret, in this law we have to restrict on these,

rather than on the names f and a.



Bisimulation Congruences in Safe Ambients 37

7 Conclusion and Related Work

We have introduced the calculus SAP, a variant of Levi and Sangiorgi's

Safe Ambients enriched with passwords. In SAP by managing passwords,

for example generating new ones and distributing them selectively, an am-

bient may now program who may migrate into its computation space, and

when. Moreover ambients in SAP may provide di�erent services depend-

ing on the passwords exhibited by its clients to enter it.

The main result of the paper is

� an lts based operational semantics for SAP

� a bisimulation based equivalence over this lts which coincides with

barbed congruence.

Higher-order ltss for Mobile Ambients can be found in [3, 20]. But we

are not aware of any form of bisimilarity de�ned using these ltss. Our lts

is inspired by that in [9] which di�ers from ours mainly for two reasons.

The �rst is that in our lts the co-capability out is exercised by the target

computation space and not by the surrounding ambient; this allows us to

avoid the action ?n of [9] for which it is di�cult to conceive of a distin-

guishing context. The second point is that we have a di�erent kind of

concretion with a di�erent meaning. In SA a concretion �~phP iQ means

that P is moving whereas Q stays where it is; in SAP we are more precise,

a concretion � ~phP i

n

Q means that P is the computation inside ambient n

and Q is the computation outside n. This allows us to de�ne a reasonable

lts and therefore use a standard notion of bisimilarity (c.f. De�nitions 4.11

and 4.12 ) for SAP.

A simple �rst-order lts for MA without restriction is proposed by San-

giorgi in [17]. Using this lts the author de�nes an intensional bisimilarity

for MA which separates terms on the basis of their internal structure. San-

giorgi shows that his bisimilarity coincides with the equivalence induced

by the logic for MA given in [5] and and more surprisingly with struc-

tural congruence

1

. This result somehow shows that the algebraic theory

of Mobile Ambient is quite poor.

Our lts can be smoothly adapted to MA and SA. We believe that in

both cases it is possible to derive a bisimulation congruence similar to our

ambient bisimilarity. However in both cases there are severe di�culties

in proving that such bisimilarity completely characterise barbed congru-

ence. In MA ambient movements are completely asynchronous (there are

1

This is proved in synchronous MA where communication, like in SAP, is synchronous;

in asynchronous MA the di�erence between bisimilarity and � is captured by a single

axiom.
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no co-capabilities) and this leads to a stuttering phenomena originated

by ambients that may repeatedly enter and exit another ambient. As a

consequence, it is far from trivial to �nd a distinguishing context for ac-

tions like enterhni. Stuttering does not show up in SA and SAP because

movements are achieved by means of synchronisation between a capabil-

ity and a co-capability. However characterisations results for SA, similar

to Theorem 4.17, are very di�cult to prove. The technical problem is

due to the di�culty in conceiving a distinguishing context for actions like

enterhni. Roughly, in order to test that a process can allow entry to an

ambient n a context has to move an ambient m into n. In SAP probing

for this using fresh passwords ensures that ambient m has indeed been

accepted at n. Without fresh passwords there would be no distinguishing

feature of the particular ambient m which could be used in the probe. Al-

ternatively, instead of using passwords, one may think of equipping SA

2

with guarded choice �a la CCS. We believe that in SA with guarded choice

ambient bisimilarity coincides with barbed congruence. The proof that

ambient bisimilarity implies barbed congruence does not present particu-

lar di�culties. The interesting part is the converse where guarded choice

plays a crucial role in the proof. However, a general implementation of

guarded choice is problematic as it involves non-local consensus decisions.

For this reason we prefer our version of ambients with passwords, SAP,

which we believe is a good basis for developing interesting typing disci-

plines for mobile code making use of passwords. Even more, we think we

can derive a labelled characterisation of typed barbed congruence along

the lines of Hennessy and Rathke's [7].
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