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The Security Picalculus and
Non-interference

MATTHEW HENNESSY

ABSTRACT. The security 7m-calculus is a typed version of the asyn-
chronous m-calculus in which the types, in addition to constraining
the input/output behaviour of processes, have security levels asso-
ciated with them. This enables us to introduce a range of typing
disciplines which allow input or output behaviour, or both, to be
bounded above or below by a given security level.

We define typed versions of may and must equivalences for the
security m-calculus, where the tests are parameterised relative to
a security level. We provide alternative characterisations of these
equivalences in terms of actions in context; these describe the ac-
tions a process may perform in a given typing environment, assum-
ing the observer is constrained by a related but possibly different
environment.

The paper also contains non-interference results with respect to
may and must testing. These show that certain forms of non-
interference can be enforced using our typing systems.

Keywords: Distributed Systems, Picalculus, security types, non-interference,
testing equivalences.

1 Introduction

The asynchronous 7-calculus, [3, 11], is a simple formalism for describing
distributed processes. It presupposes a set of channel names through which
processes communicate. Thus a?(X) P is a process which inputs some
value v on the channel a, and executes the body P in which X has been
substituted by the value v, while output on the same channel is denoted
by aal(v). These two primitives, together with operators for parallelism,
|, repetition, *, and channel scoping, (newn) , make the m-calculus a very
powerful language. For example the term P,

xreq?(z,y) (newr) sl{z,r) | r?(z)y!(z)

describes a process which repeatedly receives a request on the channel req,
consisting of a value, bound to x, and a return channel, bound to y. This
value is in turn sent along the channel s, presumably serviced by some
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independent server, together with a private return channel r, generated
specifically for this purpose. A response is awaited from the service, on
the reply channel , which is then forwarded on the original return channel
Y.

Numerous typing systems have been developed for this language, [16,
21, 22]. Most are based on judgements of the form

'FP

indicating that the process P is well-typed with respect to the channel
environment I', which associates capabilities with the free channel names
of P. Usually these capabilities are some elaboration of

read capabilities r(T): the ability to read values of type T from a channel
write capabilities w(T): the ability to write values of type T to a channel

For example let A denote the tuple type (int,w(int)); a value of this
type will consist of a pair, the first element of which is an integer, and
the second a channel on which integers may be written. If I associates
the type r(A) with the channel req and the type w(A) with s, we would
expect the above term, P, to be well-typed with respect to I'. However
for this to be true the local channel r needs to be generated with the write
capability w(int), to be sent along the channel s, and the read capability
r{int), which is used by the process itself. Thus if we were to annotate all
bound names and variables with their required types we would obtain the
annotated term

xreq?(z,y): A (newr:R) sz, r) | r?(2)y!(z) (%)

where R is the type {w(int), r(int)}. This term is well-typed with respect
to the above mentioned environment I'.

Intuitively the use of types constrain the behaviour of processes, en-
suring no misuse of channels. By defining sophisticated forms of types
process behaviour can be more or less constrained, while at the same time
the advantages of well-typing can be preserved. For example a form of
polymorphism is investigated in [16], while in [10] security levels are associ-
ated with capabilities, to obtain so-called security types. Suppose we have
two security levels, high, denoted by top, and low, denoted by bot. Then
we would have capabilities of the form riop(T), rbot(T), Wiop(T), Whot (T),
where T in turn a security type. By varying the precise definition of a
security type we can either implement resource access control methodolo-
gies, or ensure forms of non-interference, [2, 8, 6]. In this paper we will
be concerned with the latter, using a mild variation of the I-types of [10];
essentially types are sets of read /write capabilities, where in addition each



The Security Picalculus and Non-interference 3

capability is annotated by a security level taken from some complete lat-
tice (SL,=<,M, L, top,bot). We will refer to the asynchronous w-calculus,
augmented with these types, as the security m-calculus.

The statement of non-interference results requires some definition of
process behaviour; intuitively a system is interference-free if it’s low level
behaviour is independent of changes to high-level behaviour. The main
topic of this paper is an investigation of the notion of behaviour of process,
relative to a security level, for the security m-calculus.

Process behaviour is relative to some typing environment I' and there-
fore we wish to develop a relation of the form

To” P

meaning, intuitively, that in the typing environment I', both P and @) ex-
hibit the same o-level behaviour. By this we mean that a o-level observer
will be unable to discern a difference between P and (). For example
low-level observers will be unable to see any high-level actions performed
by P, (. But more importantly we assume that these observers are con-
strained by the typing environment I' and therefore actions disallowed by
this environment will also be invisible to observers.

For example suppose the channel a is not in the domain of I'. Then
we would expect

['>7 al(v) | bl{(w) ~ bl(w)
regardless of the value of ¢ because no observer, well-typed with respect to
I', will be able to interact with P along the channel a. More generally this

will also be true if I' associates with a only an output capability. Similarly
if I' only associates with it an input capability we will have

7@ |a?(z)T ~ Q

for any process Q.

In this paper we investigate may and must testing equivalences, [14, 9]
for the security m-calculus. In particular we give an alternative characteri-
sation of these behavioural equivalences which, as might be expected from
[14, 9], are based on the sequences of actions that a process can perform.
But here these sequences are relative to both a security level and a typing
environment.

Unfortunately the situation is even more complicated, as the typing
environment of the observer and that of the process being observed may
not in general be the same. For example consider the term P, given in
(x) above. To be well-typed relative to an environment I', T' needs to
associate appropriate types with the free names of P, namely req and s.
Now consider a computation involving an observer, also well-typed with
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respect to I', interacting with P. After an interaction on the channel req
the process evolves to P;:

(newr:R) sl(v,r) | r?(z) bl(z),

for some value v and channel b sent by the observer. At this stage both
the observer and the observed process P; can still be typed relative to I',
as both v and b must have been known to the observer, and therefore be
typeable in I'. However now the observed process generates a new channel
r, with type R = {r(int),w(int)}. But because of the type associated
with s in I', r is only sent to the observer with the subtype consisting of
the one capability w(int). Subsequently the observer is working relative
to I',r:{w(int)}, the environment I" augmented with a new entry for r,
whereas the observed process is working with respect to the different en-
vironment I, r :{r(int), w(int)}.

In general the observed process and the observing process will be con-
strained by related but different environments.

Our characterisation of the behavioural equivalences will be based on
what we call a Context Labelled Transition System. Here actions take the
form

AP 2 T A > P

indicating that in the typing environment A the process P can perform the
action y to interact with some o-level observer which in turn is typeable
in the environment I'; this action may change the typing environments of
both the observer and the observed processes, to IV and A’ respectively.
If the type environments I' and A satisfy some minor conditions, (are
compatible), we say that the above judgement is an action in context.
May equivalence will be characterised in terms of appropriate sequences
of such actions in context while must equivalence will also require the
development of appropriate notions of acceptance sets.

The remainder of the paper is organised as follows. In Section 2 we
formally define the syntax of the security m-calculus, together with its
(standard) operational semantics. This is followed, in Sub-section 2.3,
with a range of typing systems. In the most straightforward we have the
judgements

I'-P

where I' is a type environment, associating types to channel names and
variables. This means that relative to I', P uses its channels correctly as
input/output devices, ignoring their security annotations. We also have
judgements of the form

' P
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which indicates that in addition P uses channels with security level at
most o. Similarly we have a typing relation

rerp

indicating that P uses channels with at least security level o. Indeed we
can go further, designing relations such as I' ., P or I' ¥7 P where the
read capabilities or the write capabilities of processes are independently
constrained. For all of these typing relations Subject Reduction is easily
established.

Section 3 is the heart of the paper. First the behavioural preorders and
equivalences are defined, by adapting the standard framework, [14, 9], to
the security m-calculus. We obtain the relations

'y P ey @
and
r Do P “must Q

indicating that P and @ can not be distinguished, relative to may/must
experiments respectively, by any testing process T such that I' i; T', that
is any test running at security level at most o, relative to the type envi-
ronment. This is followed by an exposition of the Context LTS, actions in
context, and their properties. Sub-section 3.3 then contains an alternative
characterisation of ~,,,, in terms of sequences of actions in context, while
in Subsection 3.4 we give the much more complicated characterisation of
Smust-

One benefit of having behavioural equivalences relativised to security
levels is that non-interference results can be stated succinctly. Section 4
contains two such statements, and their proofs. The first gives conditions
ensure that

I'>y P~y @ implies ', P | H ~pgy Q| K.

It turns out to be sufficient to require that the read capabilities of P and ()
be bounded above by o, that is I' k-, P, (), and that the write capabilities
of H and K be bounded below by some § £ o, that is ' *° H, K.

This is quite a general non-interference result. For example in the case
where () is P and K is the empty process 0 we obtain

Ty P otppay P | H

indicating that, under the conditions of the theorem, the process H can
not interfere with the behaviour of P.

This result is not true for the must equivalence. As explained in Sec-
tion 4, this is because our types allow contention between processes run-
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ning at different security levels over read access to channels. However by
restricting the type system, allowing only single level types, we show that
the same result holds for ~,,,,s¢-

The paper ends with a brief survey of related work.

2 The Language

In this section we define the language, its operational semantics and the
typing system with which we will be concerned.

2.1 The Types

We presuppose a complete lattice (SL, <, 1, L, top, bot) of security anno-
tations, ranged over by o, p,.... For each o we assume a set of basic types
at that level, of the form B,. If the security annotation is omitted, as in
int, then we assume it has security level bot; as we shall see values of these
types are available to all processes. Also, as explained in the Introduction,
a o-level channel type, for channels accessible to processes with security
clearance at level o, consists of a set of o-level capabilities, i.e. a subset of
Cap,. These may either be a read capability, of the form r,(T), for some
appropriate p and T, or a write capability, of the form w,(T). These ca-
pabilities are constrained by consistency requirements. For example since
values with the capability w,(T) are written to by o-level processes we
require that T in turn be a o-level type.

Types, i.e. sets of capabilities, are also constrained. For simplicity in
a given type we only allow at most one write capability, and for each
level 0 at most one read capability at that level. More importantly we
ensure that, relative to security levels, only write-ups, [8, 2], are allowed by
requiring that if w,(T) and r, (S) are in a type then p < p'; the additional
constraint that T be a sub-type of S is well-known [16, 17]. The formal
definition is as follows:

DEFINITION 2.1. (Types, Capabilities and Subtyping) Let Type,, Cap,
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be the least sets, and <:, consistent the least relations, which satisfy:

(RT-BASE)
g
B, € Type,
(RT-WR) (RT-RD)
A € Type, AeT
ype, Yypep o< p
w,(A) € Cap, rp,(A) € Cap,
(RT-WRRD) (RT-TUP)
S C n O o A'L S T o V
=1 w S consistent ype ( 2)
S € Type, (Ay,...,Ax) € Type,
(U-WR) we(A) < w,(B) if B<: A
(U-RD) re(A) <t ry(B) if A< B
(U-BASE) B, < B, ifo<p
(U-RES) {capitier < {cap’}jes if (V7)(3) cap; < cap
(u-tup) (Aq,...,Ax) <t (By,...,Bg) if (Vi) A; <t By

The set of capabilities Cap is consistent if

e w,(A), w,(B) € Cap implies 0 = p and A is B
e r,(A), r,(B) € Cap implies A is B
e w,(A), r,(B) € Cap implies A <: B

These types correspond very closely to the I-types of [10]; the rule
(RT-RD) ensures that only write-ups are allowed, from low-level processes
to high-level processes. But we allow multiple read capabilities, which will
enable us to be more flexible with respect to allowing/disallowing reading
from a channel at different security levels. However subtyping is more
restrictive; unlike [10] they can only be sub-typed at the same security
level; ry(A) <t r,(B) only if 0 = p. Nevertheless this is compensated for
in the existence of multiple read capabilities.

ExXAMPLE 2.2.

e The set {wpot (Int), rpot (int), reop(int) } is a bot-level channel type, an
element of Typepor; that is channels of this type may be transmitted
on bot-level channels. In turn these channels may be written to by a
bot-level process or read by either a bot-level or a top-level process.

e The type {wpot(int), riop(int)} restricts reading from the channel to
top-level processes, although bot-level ones can write to it.
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o The set {wiop(int), rpor (int), rop(int)} is not a valid type as it contains
a read capability at a lower level than its write capability.

e The set {wiop(int), riop (int) } is a top-level type but not a bot-level one;
that is, it is in Typero, but not in Typepot.

PROPOSITION 2.3. For every o, Type, is a preorder with respect to <:,
with both a partial meet operation M and a partial join L.

Proof. The (partial) functions M and LI are defined by structural induction
on types. They are determined by the clauses
re(A) Mry(A") =r.(AMA")
o (A) Mrp(A") = {rs(A), rp(A)}
we (A) Mw, (A") = wy (A LA
re(A) Urg(A") = r (ALIA")
We(A) Uw,(A") = w,(ATTA")

and these definitions are extended homomorphically to tuple types. []

Multiple read capabilities in a type, such as {wpot (int), rpor (int), ryop (int) },
allows processes at different security levels to read from the same channel.
We can eliminate such contention by using a restricted set of types.

DEFINITION 2.4 (SINGLE-LEVEL TYPES). Let SIType be the least set of
types obtained by changing the condition on read capabilities in the defi-
nition of consistent of Definition 2.1 to read:

r,(A),rs(B) € Cap implies p = o and A is B.

Note that these types still allow communication from low-level processes
to high-level processes. We leave the reader to check that these types,
ordered by <: also has both partial meet and join operations.

2.2 Syntax and Operational Semantics

The syntax of the m-calculus, given in Figure 1, uses a predefined set of
names, ranged over by a, b, ... and a set of variables, ranged over by x, y, 2.
Identifiers are either variables or names. We also assume a set of basic
values, ranged over by bwv, each of which belong to a given basic type.

The binding constructs (newa:A) @ and u?(X:A)Q introduce the
usual notions of free names and variables, fn(P) and fv(P), respectively,
and associated notions of substitution and a-equivalence, =, are defined
as usual. Moreover the typing annotations on the binding constructs are
omitted whenever they do not play a role, as will most occurrences of the
empty process 0.
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FIGURE 1 Syntax

PO = Torms XY == Patterns
(o) Output T Variable
u?(X:A)P Input (X, oo X) Tuple
if u = v then P else () Matching UV W = Values
(newa:A) P Name creation ’ b;) i Base Value
P|Q Composition a Name
<P Replication - Variable
0 Termination (w1, ..., ug) Tuple

The behaviour of a process is determined by the interactions in which
it can engage. To define these, we give a labelled transition semantics
(LTS) for the language. The set Act of actions, is defined as follows:

o= Actions
T Internal action
a?v Input of v on a
(&:C)alv Output of v on a revealing private names ¢ (¢ C fn(v))

Visible actions (all except 7) are ranged over by «, § and if « is an
output action we use £(«) to denote the bound names in «a, together with
their types: £((¢:C)alv) = (¢:C). Further, let n(u) be the set of names
occurring in u, whether free or bound. We say that the actions ‘a?v’ and
‘(¢: C)a!v’ are complementary, with @ denoting a complement of «.

The LTS is defined in Figure 2 and for the most part the rules are
straightforward; it is based on the standard operational semantics from
[13], to which the reader is referred for more motivation. Note that in
the input rule (L-COM) it is assumed that « is an output action; we omit
the corresponding symmetric rule, in which ) performs the output. The
last rule (L-CTXT) uses a standard structural congruence over terms. This
is defined to be the least equivalence generated by the axioms given in
Figure 2, which extends =, and is preserved by the static operators (|
and (newa) ). Note that because of this rule structurally equivalent
processes can perform exactly the same set of actions.

We end this sub-section with a result which emphasises the asynchrony
of message reception:

LEMMA 2.5 (ASYNCHRONOUS ACTIONS). If P (e:Chalw, pryhen P =,
(new¢: C) (al{v) | P').
Proof. By induction on the derivation of P (&:¢aly, pr, ]
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Ficure 2 Labelled Transition Semantics

(L-ouT) (L-1N)

al(v) 4% 0 a?(X) P 2% p{v/x}

(L-OPEN)
P [6:C§a!v; P’ b
a
] (b:B)(c: a)a!v\ I b e fn(v)
(newb:B) P = P

(L-cowm)
P-%P,Q-%Q
PQ = (new&(a)) (P [ Q')

(1-EQ)
. ; u # w
if u =wu then Pelse @ — P if u=w then Pelse ) — @
(L-cTXT)
p &y P/ p & p! X f

Q|P Q| P
pP £ p’

a & n(p)

(newa:A) P -5 (newa:A) P’

PEstQaQ—Il_)P,
pP £ P

The structural congruence axioms:

(S-NEWNEW) (new a)(newb) P =4 (newb)(newa) P ifa #b

(S-NEWPAR) P | (newa) @ =4 (newa) (P | Q) if a & fn(P)
(s-coMMm) PlQ=4Q|P
(S-ZERO) P|0 =, P

2.3 The Typing System

A type environment is a finite mapping from identifiers (names and vari-
ables) to types. We adopt some standard notation. For example, let
I',u: A denote the obvious extension of I'; I', u: A is only defined if u is
not in the domain of I'. The subtyping relation <: together with the partial
operators 'l and LI may also be extended to environments. For example
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Ficure 3 Typing Rules

(T-D) (T-BASE) (T-TUP)

[(u) < A bv € B, Ckw A (Vi)

'Fu:A Fl—bU:Bo- Fl—(vl,...,Uk)Z(Al,...,Ak)

(T-EQ)

(T-IN) (T-ouT) '+ u:A,U:B

[LX:ARP I'Fu:wg(A) '@

C'Fu:ry(A) F'Fov:A F'M{u:B,v:A}F P

FFu?(X:A)P T Ful{v) I' - if u = v then P else
(T-NEW) (T-STR)
Ta:AF P TP, Q

'k (newa:A)P T FP|Q,=*P,0

[ <: Aif for all u in the domain of A, I'(u) <: A(u). We will normally ab-
breviate the simple environment {u: A} to u: A and moreover use v: A to
denote its obvious generalisation to values; this is only well-defined when
the value v has the same structure as the type A.

The first typing system is given in Figure 3, where the judgements take
the form

'-pP

Intuitively this means that the process P uses all channels as input/output
devices in accordance with their types, as given in I'. It is the standard
typing system for the m-calculus, [16], adapted to our types; note that the
security levels on the capabilities do not play any role.

We can also design a type inference system which not only ensures that
channels are used according to their types but also controls the security
levels of the channels used. One such system is given in Figure 4, where
the judgements now take the form

' P

o

This indicates that not only is P well-typed as before but in addition it uses
channels with security level at most o. (This corresponds to the typing
system used in [10].) The only difference is in the input/output rules,
where the security level of the channels used are checked. For example
[k a!(v) only if in ' the channel a can be assigned a security level § < o,
in addition to having the appropriate output capability in T'.

We can also design a typing system

rerp
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FiGUure 4 Security Typing Rules

(LT-EQ)
(LT-IN) (LT-0UT) '+ u:A,U:B
I'X:AEP '-ov:A 't Q@
I'Fu:rs(A) 5 < I'Fu:ws(A) 5 Fn{u:B,v:A} K P
TEu?(X:A)P °~° Tk ul) =% TEifu=uvthen Pelse Q
(LT-NEW) (LT-STR)
Ta:AL P Tk P,Q
'k (newa:A) P 'L PlQ, *P,0

which which ensures that P uses channels with security level at least o.
The only change is to demand in the input/output rules that o < é:

(HL-IN) (HL-0UT)
[X:AFP ['Fuiw,(A)
I'Fu:rs(A) FFv:A
oc=<4 o4
Lt u?(X:A)P It ulv)
We can provide further mix and matches. For example the type system
e, P

o

ensures that all channels from which values are read have a read capability
of at most o; the security level of the output channels is unexamined. This
system is obtained by using the rules in the original Figure 3 but with the
rule (T-IN) replaced with (LT-IN); the output rule is left unchanged. In a
similar manner we can define relations I' ;,, P, ' P and I' ¥° P.

THEOREM 2.6 (SUBJECT REDUCTION).  Let |- represent any of the re-
lations, b, &, ., F7°  E_, 7 and suppose A I+ P. Then

e P (Q implies AIFQ
o P 9% Q) implies there exists a type A such that rs(A) € A(a) and if
AT wv:A is well-defined then AMv:AlF Q.
Moreover 6§ < o when - is k5 ort, and o < ¢ if it is I* or 7.
o P (&0 ) yyplies there exists a type A such that A + a:ws(A),
Ae:CruiA and Aé:CIFQ.
Moreover § < o when - isk ort,, and o <6 if it is1* or F7.
Proof. Similar to that of Theorem 3.5 of [10], although in the case of
the action a?v, the conclusion is a little stronger. However the proof
is straightforward. For example consider the case when P is the term
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a?(X :B) R, the move is a?(X) R %% R{vx} and A & P. From the
typing rules we have A F a:rs(B) for some § < o and A, X:BE R. From
the former we know that there exists some A <: B such that rs(A) € A(a);
from the latter, and Subsumption, we have A, X:A K R. A standard
Substitution Lemma can now be applied for any v such that AT v:A is
well-defined to obtain AMwv:A L R{Yx}.

[

3 Behavioural Theories

In this section we develop two behavioural theories of typed processes,
based on the general testing theories of [14, 9]. In the first section we adapt
the original definitions from [14, 9] to our language. This is followed by a
subsection defining the Context LTS alluded to in the Introduction. Two
further subsections use this LTS to determine the may and must versions
of our behavioural equivalence.

3.1 Testing Processes

A test or observer is a process with an occurrence of a new reserved
resource name w, used to report success. We let T to range over tests,
with the typing rule I' ; w!() for all ' When placed in parallel with a
process P, a test may interact with P, producing an output on w if some
desired behaviour of P has been observed. We write

Pmay T

T | P —-* R for some R such that R can report success, i.e. R w) . The
stronger relation

P must T
holds when in every computation

TIPSR ... 5 R, ...

there is some Ry, k > 0, which can report success.

We can obtain a testing based behavioural preorder between processes
by demanding that they react in a similar manner to a given class of tests.
Here we choose the class of tests which are well-typed and use channels
from at most a given security level o; that is we require that processes
react in the same manner to all tests T such that I' E T'.

DEFINITION 3.1 (TESTING PREORDERS). We write I'>, P 4, @ if for
every test finite T such that I' 5 T', P may T implies () may T'.
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Similarly I'>, P 45t @ means that for every such 7', P must 7" implies
Q must 7.
We use =4, and ~,,, denote the related equivalence relations.

So for example setting o to be bot, I' bpot P 4y ) means that in the
type environment I', P and () are indistinguishable by low-level observers,
from a may testing point of view.

For technical reasons we have limited tests to be finite, that contain
no occurrence of the recursive operator x. It is well-known (see [9]) that
this does not lead to any less distinguishing power.

3.2 The Context Labelled Transition System

It is well-known, [14, 9], that testing equivalences are closely related to the
ability of processes to perform sequences of actions. We have explained in
the Introduction that here we need to relativise these sequences to security
levels and to a pair of typing environments, one for the observer and one
for the process being observed.

The rules for the Context LTS, are given in Figure 5. The judgements
take the form

AP 5 T A > P
This judgement should be understood as expressing the fact that:

The process P, in it’s current type environment A, when run con-
currently with any observing process 7' such that I' i; T, can per-
form the action p. This will transform P into P’ and may also
transform the current type environment to A’ and that of the ob-
serving process to I".

These actions can take three forms:

internal move: I'; A > P T3, I'; A > P’ This corresponds to an internal
move by P, which does not depend on its environment. These moves
are completely determined by the semantics given in Figure 2; see the
rule (C-RED).

input move: T; A > P 2% T A’ > P’ Here the observing process sends
a value v to P along the channel a. The type environment of the
observing process does not change, but that of P may be augmented
by knowledge of v of which it was previously unaware. An appropriate
write capability on a is required of the observing process for the action
to take place; see the rule (C-IN).

output move: ['; A > P {8e'% V. A’y P’ Here P sends a value v along
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Ficure 5 Context LTS

(c-ouT)

rs(A) € I'(a)

5 <
T;Abal(v) 2% Trv:A; A0 —
(c-IN)
I'Fa:ws(B)
I'Fv:B §<o
[;Ava?(X:A)P %, T;ANv: A P{yx} B<A
(C-OPEN) 3
I;A,b:Br P &aly, T A’ P/ b+a

T; A (newb:B) P A0@aly, 1. A7 pr b€ fn(v)

(c-EQUIV)
(C-RED) F;ADP —— F/;A’DP’
P -7y P’ P=,0

AP -, T A P/ [;A>Q 25, T;A'> P/

(c-cTXT)

[A> P 5, T A’ > P/

AP &, T A'>+P | P/
[A> P 5, T A’ > P/

b fi
T AsP|Q B, T A s P Q W EMQ)

AP Q| P&, T A'>Q | P
Fa:A; A a:Av P 25, T a:A;A Ja:A> P’

;A (newa:A) P45, T;A’> (newa:A) P a & n(p)

the channel a to the observing process, and typically the observers
type environment I' will be augmented with knowledge of v. However
the type environment of P may also be increased by associating with
the new identifiers (¢) their declared types; this is implemented in the
rule (C-OPEN). Here an appropriate read capability is required of the
observing process for the action to take place; see the rule (c-ouT).

The rules in Figure 5 are straightforward and only the first two deserve
comment. (C-IN) states that a?(X :A) P can receive v along a from a o-
level observer provided the observer has a write capability on a at a level
at most o, and it has the value v at an appropriate type. (C-OUT) is
more subtle. In principle the observer could receive v from the observed
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process al(v) at any type B such that I' - a:rs(B), where § < 0. However
to eliminate much potential nondeterminism in the LTS our rule dictates
that for a given 0 < o the observer receives v at the minimum B such that
['F a:rs(B); this is the type A such that rs(A) € I'(a).

Note that in the output actions we do not record the types of the
bound names. These we only required in Figure 2 in order to implement
communication between processes; see the rule (L-coMm). Here we do not
need to formalise, at least directly, communication between the process P
and its observer.

We can describe precisely the form these judgements in can take:

LEMMA 3.2. Suppose I'; A P L5, T": A’ > P,

pw=r1: Here " =T and A’ = A.

uw=a?v: Here I" = ' while A’ = AMwv:A for some type A such that
I'Fv:B, a:ws(B), for some d <o and B <: A

p = (¢é)alv: Here A’ = A,é:C for some sequence of types C such that
A é:CHu:A, whileI” =TMNuv: A for some A such that rs(A) € T'(a),

where 6 < 0.

Proof. Straightforward rule induction on I'; A> P &5, TV; A’ > P’. H

However we are only interested in a subset of the possible judgements
which can be derived from the rules in Figure 5. We say that the two type
environments I' and A are compatible if

o I'M A exists
e domain(A) C domain(T").

The main property of this relation is given by:

LEMMA 3.3. Suppose I' and A are compatible. Then I' - a:w,(A) and
AFa:r, (A" imply A< A" and p < p'.

Proof. Simple calculation. H

The triple I'; A > P is said to be a configuration if

e I' and A are compatible
e AFP.

When this is the case we will refer to the judgment I'; Ab P &5, TV; A'> P’
as an action in contert.
Configurations are preserved by these actions:
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LEmMMA 3.4. If T; A P £, T'; A’ > P’ is an action in context then
I'; A’ > P’ is a configuration.
Proof. From Lemma 3.2 we know exactly the form IV and A’ can take,

depending on p. In each case it is straightforward to show that they are

compatible. The simplest way to show that A’ - P’ is to use rule induction
on A P £, T, A" P ]

In future we will limit our attention to judgements I'; A>P £+, T7; A'> P/,
which are actions in context. This has important consequences, in the case
when 4 is an output action (¢: C)alv. It means that the only new names
gained by the observer, that is names in the domain of I'” which are not
in that of I', are ¢. In other words if w is an identifier in v which does
not occur in ¢ the observer already knows about it. However the action
may increase the type at which the observer knows w. It is also worth
noting that the two rules (C-IN) and (C-OUT) are apriori partial; that
is (C-IN) can only be applied if A M wv:A is well-defined while (c-ouUT)
requires I' MM v : A to be well-defined. However it is easy to show that for
actions in context these environments are in fact well-defined whenever
the corresponding premises hold. Moreover in (C-IN) the side-condition
B <: A may be omitted as it is always satisfied.

We can also determine the circumstances under which the uncon-
strained actions, from Figure 5, can give rise to actions in context.

LEMMA 3.5. Suppose P £+ Q) and let I'; A> P be a configuration.

pw=rT1: Here T; A> P T, T A>Q

p=a?v: Here if T + v:B, a:ws(B), where 6 < o then I';A> P aty,
ATNMv:A> Q for some A such that B <: A.

p = (¢:C)alv: Here if rs(A) € T'(a) for some § < o then T'; A P {&aly, |
TMov:A;Ac:CrQ.

Proof. By rule induction on P £ (). We examine the case when p is

(é:C)alv, where the induction requires a weakening of the hypothesis,
namely that A - P and I' T A exists.

e Suppose P 5 (@) is inferred using (L-0UT). We can immediately apply
(C-0UT) to obtain the required T; AP 4% T'Mov:A; A>Q, provided
['Mov:A exists.

However P has the form a!(v) and from A + P we know that
AF v:B,a:w,(B) for some B. Applying Lemma 3.3 we obtain B <: A.
Then it is easy to show the existence of I' v : A from the fact that A
and I' are compatible.
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e Suppose P -5 @ is inferred using (L-OPEN), that is

(newb:B) P’ (b:B)(E: Clalu, Q

because P’ {&:Clals,

A F P implies A,b:B F P’ and the existence of of I' 1T A also
ensures that of ' A, b:B. In short the (weaker) inductive hypothesis
holds of I'; A,b:B > P’ and therefore by induction we can obtain the
action in context ['; A, b: B> P’ {8a!% 0 An application of (C-OPEN)
gives the required I'; A > P (b)()atv, )

[

Note that in actions in context I'; A> P £+, T7; A’ > () the resulting
environments, A’;I”, are not in general determined by I' and A. The
change in the environment of the observed process, the change from A to
A’, is determined by the declared types of new names introduced by the
process. For example consider

Py = (newc:Cq) al(c)0, Py = (newc:Cs) al(c)0,

where C; are two different types. Then, assuming I', A have appropriate
capabilities associated with a, we have

D;Ap Py Laels T/ A ¢:Cy >0
D;A> P, Lele T/ A ¢:Cyp0

The reason for this lack of determinism is that the types of bound names
are not recorded in the actions in context. However were we to record their
types we would then have processes which are obviously behaviourally in-
distinguishable, P; and P, for example, which would have different actions
in contert.

The lack of determinism of the observers type environment, the change
from I to I, will however play a role in the next section. This arises
because of the rule (L-oUT) in Figure 5. In general I'(a) may contain two
read capabilities, rs, (A1) and rs,(As), in which case IV may take either
of the forms I'Mwv: Ay or I' Mv:A,. However by restricting ourselves to
single-level types this problem does not arise.

We say I is a single-level environment if it only uses single-level types.
For such environments we can define the partial predicate I' after, s by
induction on s as follows:

s = ¢: Here I' after, s =T

s =a?v-s': Here I after, s =T after, s
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s = (¢)alv - s': Here T after, s is only defined if rs(A) € T'(a) for some
d = o, in which case it is (I' v : A) after, s'.

LEMMA 3.6. IfT; AP =5, IV; A'>Q, where I is a single-level environ-
ment, then I" after, s is defined and I'' =T after, s.

Proof. By induction on the derivation of I'; A P 25, I'V; A’ > Q. ]

3.3 May testing

In this section we give a characterisation of the relation I' >, P L0y Q.
Actions in context are generalised to (asynchronous) traces in context
as follows:

DEFINITION 3.7 (TRACES). Let I';A > P ==, TY; A’ > P’ be the least
relation such that:

(TR-T)

F;ADP e F/;A’ > P’ (TR-€)

;A > P =%, T, A" > P"

AP =, T, A"> P IA> P =%,T;A>P
(TR-¢)

AP S, T A > P/
I'";A"> PP =, T"; A" > P"
AP 2, T, A" > P

(TR-ASYNC)

F'Fov:A
CAMNv:ANa:ws(A) > Plal{v)y =, T"; A" > P”
T':Ap> P a?”'é - A" > P 020

Note that there is some redundancy here. The rule (TR-«), where « is an
input action a?v, can actually be derived from (TR-ASYNC) and (TR-T).

We now show how interactions between a process P and a o-level
observer T, that is a computation from T' | P, can be decomposed into a
trace in context from P and the complementary sequence from T'. It will
become clear that it is sufficient to only consider new free observers, that
is observers which contain no occurrence of the binders (newa) .
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THEOREM 3.8 (TRACE DECOMPOSITION). LetT'; A>P be a configuration
and suppose T | P —>* R for some newfree observer T' such that 'L T.
Then there exists a trace in context

AP ==, T ;A'> P’
and a derivation T == T', where R has the form (newé:C) (T' | P').

Proof. By induction on the derivation of T'| P —* R. Consider the non-
trivial case when this is of the form 7| P ——-* R. There are essentially
three cases:

e Output from 7T to P. In this case we have T aly, Ty, P e’ P oand
Ty | PL —* R.
'L T means I' - v:B, a:wg(B), for some § < o and B, and so we
may apply Lemma 3.5 to obtain the action in context

;AP 9% T:AMv:A> Py

for some B <: A. Moreover the compatibility of I' and ATwv: A follows
from that of I and A.

Subject Reduction implies that I' k5 T7 and therefore we may apply
induction to obtain

T;Ab P =5, T A > P and Ty == T

where R has the form (newé:C) (T" | P'). The required s is a?v - .
e Output from P to T. In this case we have T <% Ty, P (e:Caly P,
and Ty | P, —&* Ry, where R has the form (new¢: é’) R;.
Here T' & T implies rs(A) for some 6 < o and so we can apply
Lemma 3.5 to obtain the action in context

D;AsP Qe Try:AA ¢:Cs Py

Also by Subject Reduction we know I'Mwv: Ak T7. So we may apply
induction to obtain a trace in context

TMov:A;AE:Co P =25, T A'> P,

and the reduction 7} = T". The required s in this case is (¢)alv - .
e Internal actions by P or T'. In this case a simple argument by induction
suffices.

[l

The converse is more straightforward:
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THEOREM 3.9 (TRACE COMPOSITION). Suppose I'; AP =%, T; A’ P’
and T == T' for some s. Then there exists a derivation T | P =" R,
where R has the form (newé:C) (T' | P').

Proof. By induction on s. ]

Refering to the statement of this theorem note that Subject Reduction
ensures that A’ = P’. However in general we do not have that IV | T”,
even under the assumption I' k5 T

EXAMPLE 3.10. Let P, T be the processes (new c:C) al(c) and a?(xz: Ay) z!()
respectively and let I'; A map a to the type {rs, (A1), rs,(A2), Wpot(C)},
where A1, Ay, C are the types rpot(), Wpot(), {A1, Ao} respectively; here

we assume 0; < o. Then

T

AFP

;AP Leels T e AA B0
T 2% cl()

but T',c: Ay t£ c!().

The problem lies, again, with the use of multi-level types.

LEMMA 3.11. Let T be a single-level environment. Suppose I' iz T and
[ after, s is defined. Then T == T"' implies T after, s & T".

Proof. By induction on s. ]

This Lemma may now be applied to the conditions of the Trace Composi-
tion Theorem, Theorem 3.9, to ensure when I is a single-level environment
we can also conclude that IV k T”; here I can only be T after, s.

We may now state a sufficient condition to ensure two processes are
related with respect to may testing.

DEFINITION 3.12. For any configuration C let Aseq”(C) = {s | C ==, }
Then we write

[y (AF P) <may (A F Q).
if for every appropriate IV, Aseq” (I',T"; A> P) C Aseq” (I, T'; A’ > Q)
Notice that in this definition we allow the testing environment, I', to be

increased via I'; this enables tests to generate new names to send to the
processes under observation.
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PROPOSITION 3.13. Suppose A = P, @Q, where I' and A are compatible.
Then T'>y (AF P) Kimay (A" F Q) implies Ty P Tiay Q-
Proof.

Suppose I'>5 P T ey @ and P may T, where I' = T'; we must show
Q may T.

Notice that the Trace Decomposition Theorem, Theorem 3.8, is only
valid for newfree processes and 7" may in fact contain occurrences of
(newn) , intuitively generating new names with which to test the pro-
cesses. However, because we only employ finite tests, it is easy to show
that

T =5 (newé:C) T'

for some new free test T, where =; is the structural congruence generated
by the equations:

P|(newa) Q
if w = v then (newa) P else Q)

st (newa) (P|Q) if a & fn(P)
st (newa) (if u = v then P else Q)
if a & fn(Q),a # u,v
u?(x) (newa) P =4 (newa) (u?(x) P) ifa # u
PlQ=uyQ|P

(We have omitted two obvious symmetric rules for Cap and input, respec-
tively.) Moreover it is possible to show that =, is preserved by reduction,
—T», form which it follows that for any process S, S may T if and only
S may T’. So it is sufficient to prove () may T".

Since P may T’ we know there exists a computation 77| P —* R,
where R can report a success. For convenience let I denote I',é:C, an
extension of I'. Because I''; A > P is a configuration Theorem 3.8 can be
used to obtain the decomposition into a trace in context

I'' AP =%,T"A"> P’

and a sequence 7" == T", where R has the form (newd: D) (T" | P').
Since Aseq® (I'"; A> P) C Aseq® (I'"; A> Q) there exists a corresponding

trace in context from (),

I'''AvQ=,T";A">Q".

Trace Composition, Theorem 3.9, can now be used to recombine this with
T" =% T" to obtain a successful computation from 7" | Q. O

To prove the converse we need to design tests which can detect the
ability of processes to perform traces in context. Specifically we will con-
struct a test T'(I', s, 0), a newfree process such that I' i; T(T, s,0), with
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the property that P may T'(T',s, o) if and only if there is some A such
that I'; A P ==. Note A will not be used in the definition and the tests
will only be defined for certain combinations of I' and s.

For convenience we only consider traces in which only simple identifiers

are output, rather than vectors; that is the output actions are of the form
alv or (c)alc. The generalisation to general output actions of the form

(¢:

()alv is very straightforward, but notationally complex. The definition

of T(T, s, o) is by induction on s.

£:
alv - s:

alv - s:

(c)ale - s:

T(T,e, o) is wl().
In this case the test is defined only if

— there exists some § < ¢ such that I' F a:ws(A) for some type A
such that ' Fv: A
— T(T, s,0) is defined.

If this is the case then T'(I',a?v - s,0) is defined to be
al{v) | T(T,s,0).
Here the test is defined if

— v € domain(I)
— there exists some type A such that rs(A) € I'(a) for some § < o
— T(T'Mwv:A,s,0) is defined.

For each such A let TA (T, alv - s,0) be the test
a?(x:A)if z =vthenT(T'Mv:A s,0)else 0
Then the required test is
Ta,(T,alv-s,0)® ... 0T, (T,alv-s,0)

where A; ... Ay is the set of all types which satisfy the conditions above

and @ represents an internal choice operator. This is easily definable
by

ToU = (newe:C) (1) | e?()T | 2() U)

where C is the type {w,(),ro()}.
Here the test is defined if

— there exists some type A such that rs(A) € T for some § < o
— T(',c: A, s,0) is defined.

Here again T'(T', (¢)alc - s,0) has the form
Ta, (T, (c)ale-s,0) @ ...Ta, (T, (c)alc-s,0)
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where A; range over all the types satisfying these conditions. For such
an A, TA(T, (c)ale - s,0) given by

a?(x:A)if x € I(I', A) then 0 else (T'(I',c: A, s,0)){%/]}

where I(I', A) is the finite set of identifiers {u | ' F u: A} and if z €
I then P else () represents the obvious nested if then else structure.

The required properties of these tests are collected in the following Lem-
mas.

LEMMA 3.14. If T(T',s,0) is defined then

e 'L T(T,s,0)
e I'(T',s,0) = R, where R wi,
Proof. By a straightforward induction on s, although there are consider-

able details to be checked. For example when s has the form alv - s’ then
for T’k T(T', s,0) to be true it is essential that v be in the domain of T'. [J

LEMMA 3.15. If there exists some P and some A such that T'; A> P =
then T(T',s,0) is defined.

Proof. By induction on the judgement I'; A > P =£. As an example we
consider one case, when it has the form

T:A>P A% Try:A;As P/ =

where rs(A) € I' for some A and § < o.
By induction we know T(I' v : A, s’ o) is defined. From Subject Re-
duction we know A F v: A and since I' and A are compatible we have that

v is in the domain of T'. So for at least one A the test Tx(T",alv - s',0) is
defined. It follows that T'(I',alv - s’, o) is also defined. O

It therefore follows from the Composition Theorem that I';A > P =%
implies P may T'(T', s,0). We also have the converse:

LEMMA 3.16. Suppose T'(T',s,0) exists and I'; A> P is a configuration.
Then P may T (T, s,o) implies T; A> P =%,
Proof. By induction on s, and by way of example we consider the case
when it has the form alv - s'.

By examining the form of T(T,s,o) it must be that P —T+*4%% P/
for some P’ such that P’ may T(I'Mwv:A,s’ o) for some A such that
rs(A) € I'(a), where § < 0.
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Subject Reduction means A F P’ and therefore it is easy to check that
'Mov:A; A> P’ is a configuration. So we may apply induction to obtain

FI‘IU:A;ADP'%
Lemma 3.5 gives
;AP P -T2 Py A; A P/

and the result now follows by (TR-«) in Definition 3.7. O

It therefore follows that

THEOREM 3.17 (ALTERNATIVE CHARACTERISATION OF MAY TESTING).
Suppose A = P,Q, and I' is compatible with A. Then I' b5 P Tay @ of
and only if ' by (A F P) K may (A F P).

Proof. We need to prove the converse of Proposition 3.13, namely that
I'>y P ey @ and I T"; A P =% implies I', TY; A > Q =,

From Lemma 3.15 we know that the test T = T'((T', "), s, o) is defined,
and using the second part of Lemma 3.14, together with the Composition
Theorem, we have that P may T. Let the extra environment I/ be ¢:C.
Then '+ T = (6:C~’)T and, using the fact that I' >, P 0y @) we have
that () may T'; here we are using the fact that if A - R then R may T if
and only if R may T’. It follows from Lemma 3.16 that I',T"; A > Q ==-.

O

3.4 Must Testing

In this section examine the relation I'>, P st @; in particular we give
necessary and sufficient criteria for ensuring I' >, P 45t @, based on
traces in contert.

The extra ingredients required to capture must testing, in addition to
traces, are well-known from [14, 9]; they include a convergence predicate,
indicating that a process has no internal infinite computations, and ac-
ceptance sets, indicating the next possible actions in which a process can
engage. Here these need to be generalised from processes to configurations;
they must also be relativised to security levels.

First some notation We use I?(C) to denote the set of input actions
which the configuration C can perform at level o, {a?v | C 2%, }. More
generally we use I to denote an arbitrary multi-set of input actions, I the
obvious term of all the corresponding output actions in parallel, ¢(I) to
denote {a? | a?v € I } and finally ¢([) its converse, {a! | a?v € I }.
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DEFINITION 3.18 (CONVERGENCE). We say the configuration C converges,
written C |}, if there is no infinite sequence of derivations

C—=C —...=C —

This relation is then parameterised to sequences in context, security levels
and finite multisets of input actions, by
e: CULif(C|T) | ]
s = (&)alv-s': C L s if C |} and whenever C £24% ¢’ ¢’ ||I o
s=a? -s": C ! s if, assuming C has the form I'; A> P,
e 'a:ws(A),v:A for some § <o
e ;ATIv:AMa:ws(A) b al(v) | P I s.

Note that the requirements in the input case are taken directly from the
rule (TR-ASYNC). Note also that for a configuration I'; A>P whether or not
it converges is actually independent of the typing environments I' and A;
it is only dependent on the semantics of P as given in Figure 2. However
convergence relative to a sequence in context is in general dependent on
these environments.

We now adapt the definition of Acceptance sets, [9], to the security
m-calculus. First let

O°(C) ={a!| Iv.C ¥5,}

and

R7(C) = {a? | v.C 25,1 UO(C).

DEFINITION 3.19 (ACCEPTANCE SETS). For a configuration C, let A7 (C, s),
its o-level acceptance set after s , be defined by

(R7(C) € =2, C /)
Similarly let its output acceptance set after s be given by
(07| €=, ¢ /5

Note only acceptance sets from stable configurations, configurations C’
such that C’ />, are used.

The security w-calculus is asynchronous and therefore, as explained in [4],
acceptance sets are too discriminating, when used to characterise must
testing; to see this it is sufficient to consider the simple example

a?(z) 0 Cust 0.

The same reference goes on to explain that the use of output acceptance
sets must also be relativised to sets of input actions, which we now explain.
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We use 17(C) to denote the set of input actions which the configuration
C can perform at level o, {a?v | C 2%, }. More generally we use I to
denote an arbitrary multi-set of input actions, I the obvious term of all the
corresponding output actions in parallel, ¢(I) to denote {a? | a?v € I}
and finally ¢(7) its converse, {a! | a?v € T }.

DEFINITION 3.20 (ASYNCHRONOUS ACCEPTANCE SETS). For a configu-
ration C, let O7(C,s), its o-level asynchronous acceptance set after s,
relative to the multi-set of input actions I, be defined by

{ose"n|c=,¢, ') and (C'|T) =+ C" /= }.

Note that acceptance sets in O7(C, s) are only generated from configura-
tions C’ which can never diverge after executing any sequence of inputs in
I.

With one final notational convention we can mimic the alternative
characterisation of must testing from [4]. We write I' allows, a?v if ' |5
al(v); this is generalised to sets of actions in the normal manner.

DEFINITION 3.21. Let C, D be configurations of the form I'; Ax P, I'; A'>
@ respectively. Then C <7, ., D if for every s and I such that (I" after,
s) allows, 1,
C UL s implies a) D ||. s
b) VD € A° (D, s), such that ¢(I)ND =10
30 € 07 (C, s) such that O —¢(I) C D.
Then we write I'>, (A F P) <pmust (A F P) if

(T, T);A> P <8, (T, T); A Q,

must

for every appropriate I".

THEOREM 3.22. Let I'; A be single-level environments and suppose A +
P,Q, where I' is compatible with A. Then I' >, P Cpuse @ if and only if

The remainder of this subsection is devoted to the proof of this theo-

rem. We will assume all triples I'; A > P are configurations, and that all
environments are single-level.

PROPOSITION 3.23. I'b, (A F P) K pmust (A F P) impliesTo, P T st Q.
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Proof. (Outline) The proof follows the outline of that of Lemma 4.4.13 of
[9], although the details are more complicated because of asynchrony and
the use of type environments and security levels.

Let T be an arbitrary new free test such that I' i; T and suppose
P must T. We show () must 7. To keep the argument simple we assume
T is newfree; the more general case is handled exactly as in Proposi-
tion 3.13.

Let

T|Q(ET0)‘Q0L>C'1L> ...... Ck,L> (T)

be an arbitrary maximal computation from 7T | ), where we may assume
each Cj has the form (new ¢ : ék) (Tx | Q). We must show that for some
k, Tp <X

First suppose that the computation (}) is finite, ending in C,. Using
Trace Decomposition it can decomposed into

[A>Q = T1T5A>Q,
T =T,
From Lemma 2.5 we can assume T}, has the form a1!(vy) | ...ax!(vg) | T",
where T’ cannot perform any output moves. Let I denote the multi-set
of input actions, {a17v1,... ,a;?v;} and D the acceptance set determined
by the configuration C,. Note that ¢(I) N D = {.
At this stage let us suppose that T'; A> P ||Z s. Then we can apply

the hypothesis to obtain an O € O7(['; A> P, s) such that O —¢(I) C D.
This means that there is a trace

T:Ab P =5, T A > P L, T, Ay > P

where
Lo Ay > Py /A (1)
[ Ay > Py, 79’?—”>U for any a?v el — 1T (2)

By trace composition we can form
T|P-=*T,| P -=* (I3 |T") | Pn, Io=1-1".

If we can show that this is maximal, that is (I3 |T") | P 7L>, then we are
finished because P must T means that for some k, T}, <

The only possibility is a communication between P, and I, |T'. In
both cases below we rely on the fact that the environments are single-level,
enabling us to employ Lemmas 3.6 and 3.11.

Input: For some a?v € Iy, P, 4%,
Here from Lemma 3.6 we know that I'y and I',, are I' after, s. Ap-
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plying Lemma 3.11 it follows that I',, & a!(v), which by Lemma 3.5
is sufficient to ensure that T'y; Ay, > P, 22%,. This contradicts (2)
above.
Output: Here we have P, {22Xv) and 77 7%

Again from Lemma 3.11 we know I'),, k5 T” and therefore a! € O C
D; so @ (Glalw for some value w. Because of the structure of our
language, T7 ™% implies that 7" 2% is also true, and therefore we
have a contradiction of the maximality of C,,.

This completes the proof, under the assumptions that I'; A P |1
s and the computation under scrutiny, (1), is finite. However these

assumptions can be taken care of in the standard manner, as in the
proof of Lemma 4.4.13 of [9].

[

As in the case of may testing the proof of the converse depends on the
ability to define well-typed tests which determine the relation <?. Here
there are two possible reasons why configurations may not be related; one
associated with convergence, the other with a mismatch of acceptance
sets. We treat each in turn. As in the previous sub-section to avoid
notational complexity we only consider simple output actions, where only
single names are transmitted. We also use some of the derived notation
developed in that sub-section.

Tests for Convergence. We define the terms T¢(T, s, I, o) by induction
on s:

e: Here To (T, s,1,0) = (W) @ w!()) | T
alv - s': Here Te(T, s,1,0) is given by
(newn) n!() | n?()w!() |a?(x:A) fx=wv
then n?()To(TMov: A, 8", 1,0)
else 0
where rs(A) € I'(a) for some § < o
(c)ale - s': In this case T (T, s,I,0) is given by
(newn) n!(} | n?()w!() |a?(x:A) ifx e I(T,A)
then 0
else (n?() Te(T,c:A,s", I,0)){%.}

where again rs(A) € I'(a) for some 6 < o
a?v-s': Here To (I, s,1,0) is only defined if I' - a:wg(A),v: A for some
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0 < o, in which case it is
al(v) | To(T, s, o)
We leave the reader to check the following:

LEMMA 3.24. Suppose I'; A>Q ==, T"; A'>Q’, where (Q'|I) ¥, for some
I such that (T after, s) allows, I. Then

o To(I',s,1,0) is defined
o 'L To(T,s,1,0)
o Q 1mustTo(T,s,I,0).
Proof. By induction on s. ]

COROLLARY 3.25. T, P Coust @ and T; AP L s implies T; AxQ )L s.
Proof. Suppose, on the contrary, that for some s, I'Ap> P U s, while
[A>Q ==, TV, A’ > Q, for some @' such that (Q'|I) f. By the previous
Lemma it is sufficient to show P must T¢(T', s, I,0), which can easily be
done by induction on s. ]

Tests for Acceptance Sets. Let us first extend the predicate allows,
to apply to output acceptance sets, in addition to sets of input actions.
We write I" allows, O if, for each a! € O, r5(A) € I'(a) for some § < o, and
' v:A for some value v; note that this means I' k5 al(v).

We now define terms T'(I", 5,0, I, o), where O is an output acceptance
set and [ is a set of input actions, by induction on s. The inductive cases
are very similar to the corresponding cases in the definition of the tests
for convergence.

e: Here T(T',s,0,1,0) is only defined if T allows, O, I, in which case it is
[[{alw) [a?v e T} [ [[{a?(z: Aa) w)() | al € O}.

Here the type A, is determined by the fact that I' allows, O.
alv - s’: Here the test is given by

(newn) n!() | n?()w!() |a?(x:A) ifx=v
thenn?()T(T'Mv:A,s",0,I,0)
else 0

where A is determined by rs(A) € I'(a) for some § < o.
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(c)ale - s': Here it is defined by
(newn) n!(} | n?()w!() |a?(x:A) ifx e I(T,A)
then 0
else (n?() T(T,c:A,s",0,1,0)){%}

where, again, rs(A) € T'(a) for some § < 0.
a?v - s': Here, as in the tests for convergence, the test is only defined if
['Fa:ws(A),v: A for some § < o, in which case it is

al(v) | Te(T,s',0,1,0)

We leave the reader to establish the following two Lemmas:

LEMMA 3.26. Suppose (I after, s)allows, O, I and that T'; A>Q =, for
some A. Then T(T',s,0,1,0) is well-defined and T't; T(I',s,0,1,0). O

LEMMA 3.27. Suppose T(T',s,0,1,0) is defined and O'NO # O for every
O' € OI(T;Av P,s). ThenT;A>P |1 s implies P must T(T,s,0,1,0).
[

We are now ready to prove the alternative characterisation:

THEOREM 3.28. (Theorem 3.22) T'by P Ciust @ if and only if ', (A F
P) < must (AF P)

Proof. Because of the previous sequence of results it is sufficient to prove
(I, I"); A P £ (I, TY); A > Q, for some IV, implies that there exists a
test T such that I' 5 T, P must 7', while () yhust T'. For simplicity we
only consider the case when I is empty; the more general case is treated
in a manner analogous to Theorem 3.17.

In view of Corollary 3.25 there must be some s such that I'; As P ||L s
and some computation

TA>Q =,C, A=TR?(C) (%)

and some I such that (T after, s) allows, I and ¢(I) N A = () with the
property that for every O’ € O7(I'; A>P,s), O' € AUe¢(I). Let Of(T'; Av
P,s) = {01,...,0,} and for each i choose a;! such that a;! € O; — (AU
¢(I)). Let O be the set {a1!,...,a,!}.

We now have all the ingredients to apply the previous two Lemmas to
obtain the test T'(T', s, 0, I, o), well-typed with respect to I' at level o such
that P must T'(I',s, O, I,0). However the computation (x) above shows
that @ vhust T(T, s,0,1,0), since ¢(0O) Ne(I) = 0.

[]
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4 Non-Interference Results

In this section we reconsider the approach taken to non-interference in
Section 4 of [10]. The essential idea is that if a process is well-typed at a
given level o then its behaviour at that level is independent of processes
“running at higher security levels”; or more generally “running at security
levels independent to ¢”. A particular formulation of such a result was
given in Theorem 5.3 of [10]:

THEOREM 4.1. If 'L P,Q and I' &= H, K, where H, K are o-free pro-
cesses, then I'>y P ~p 0, Q implies I'>y P | H ~p0y Q| K.

Here, because of our more refined notions of well-typing, we can give offer
a significant improvement on this Theorem, and moreover the formulation
is actually easier.

Let us say that the security level ¢ is independent of o if § £ 0. We
can ensure that a process H is “running at a security level independent
to 0” by demanding that A I* H, for some § independent of o. In fact we
will only require the weaker typing relation A F° H. This ensures that all
the output actions of H are at a level independent of o, as can be deduced
from the following property:

LEMMA 4.2. Suppose A H. Then T; A>H 5, where u is an output
action, implies 6 < p.
Proof. By induction on the derivation of I'yA > H —£+5,. The only non-

trivial case is the base case T'; A b al(v) 2%, 0.

Here we have A F a:ws (A) for some § < ¢’. Because of (C-0UT) we

know I' - a:r, (B) for some p’ < p. We can now apply Lemma 3.3 to
obtain ¢’ < p’ from which it follows that § < p. ]

We can now state our first non-interference result. Note that it applies
to processes such that A &, P, () rather than Ak P, @; only their input
actions need to be at level at most o.

THEOREM 4.3 (NON-INTERFERENCE 1). Let I' and A be compatible and
suppose Ak, P, Q. Then

I'>e P Cmay @ implies Ty P H Cigy Q| K
provided A1’ H, K for some § independent of o.

Proof. Because of Proposition 3.13 it is sufficient to prove

I, A> P|H =%, implies I''T'; A P =%,
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This is proved by induction on the derivation of I',T';A> P | H =%,.
The base case, when s is ¢, is trivial, and there are three possibilities for
the inductive case. For notational convenience let us suppose that I is
empty; the more general case adds no extra complications.
First suppose the derivation has the form
T;AbP|H %, T;A >R =,
Here there are two cases.
« is performed by P: So R has the form P’ | H and
AP %, T A > P
By Subject Reduction, Theorem 2.6, we know A’ -, P’ and therefore
we can apply induction to obtain the result.
« is performed by H: Here R has the form P | H' and
;A>H -2, T A > H.
From the previous Lemma we know o must be an input, say a?v, and
from Lemma 3.2 we know that I'V is simply I" and A’ must take the form
A Mwv:A for some type A. By weakening we therefore have A’ i, P
and we may apply induction to obtain I'V; A’ > P ==
From the same Lemma we know that I' F a:ws(B), v:B for some
0 <o and B <: A. So we can infer
;A" Mv:BMNa:ws(B) > P al(v) = .
An application of (TR-ASYNC) now gives the required I'; A > P sy
The second possibility is that the derivation is derived using an instance
of (TR-ASYNC). Here a simple inductive argument suffices.
The final possibility is that it has the form
AP H S, T;A'>R =%,

If the initial 7 action is performed either by P, or by H then (by Subject
Reduction) we can apply induction to obtain the result. So there remains
two cases:

Output from H to P: Tt turns out that this is not possible, because § £ o.
Suppose we did have such an output. Then we would have

AW’ H, H {8a fp
AL, P, P24 P
Applying Subject Reduction we would have
AFa:wg(A), §=<0
AFa:ry(B), o <o.
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The consistency requirement on types implies ¢’ < ¢/, which contra-

dicts § £ 0.
Output from P to H: Here the derivation takes the form

T;AbP|H T, T;A (6:C)(P' | H') =,

where P {92% P’ and H 2% H’. So there exists a sequence Sc,
associated with s, such that

T;A;¢6:C> P |H 25, (%)

with the property that for for any R such that T'; A; ¢:Cb>R=ES, it
follows that T'; A (¢: C)R ==,.
Applying induction to (*) we obtain

A é:Cs P2,
Note that this is possible since Subject Reduction gives
Aé:CE, P, AMv:Ar H

where A is a type such that A,é:C < AMwv:A. (In fact A is the type
at which v is sent by P.)
It follows that T'; A,é: C'> P’ | al(v) 22, and therefore

T;Av (newé:C) (P | al(v)) =%, .
But by Lemma 2.5 we know
P =, (newé:C) (P | al(v))
and the result follows.

[

We end the paper with a non-interference result with respect to must
testing. Note that Theorem 4.3 is no longer true when L,,,, is replaced
by Ciust, as the following example shows.

EXAMPLE 4.4. Let A denote the type {Wpot (), rvot (), rtop()} and B denote
{ftop() }. Further, let I' map a to A and n to the type {wpot (A), rbot (A), rtop(B) }-
Now consider the processes P and H defined by

P <=nl(a) [ n?(x:A) z) H<n?z:B)0
It is very easy to check that I' k,,, P and ' *** H. However
DT P PO Zppust P | H

because of the bot level test a?() w!().
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The presence or absence of H determines whether or not there is read con-
tention on the channel n, which in turn influences the deadlock capabilities
of P with respect to the channel a.

Here the problem is the type of the channel n; it may be read at both
level bot and top. A not unreasonable restriction would be to require that
the read capability of channels be confined to a particular security level,
using single-level types. This would not rule out inter-level communica-
tion, but simply control it more tightly.

THEOREM 4.5 (NON-INTERFERENCE 2). LetI' and A be compatible single-
level environments and suppose A+, P, Q. Then

Iy P Crust @ timplies T, P H Chust Q| K

for all finite processes H, K such that A’ H, K for some § independent
of 0.

Note that we must restrict our attention to finite H and K since must
testing is sensitive to divergence; if H is a divergent term then we could
not expect I'b? P |0 ~,,,st P | H to hold when P is a convergent term.
This problem is avoided by restricting attention to finite terms,which can
never diverge.

The remainder of the section is devoted to the proof of this final result
of the paper. Throughout we will assume I' and A are compatible single-
level environments, A k, P, A ¥’ H for some § independent of o, and
moreover that H is a finite process.

LEMMA 4.6. For every s, I'; A P L s if and only if ;A P | H |JL s.
Proof. One direction is easy, I'; A> P £ s implies T; A P | H I s.
Conversely, because H is finite, we can assume that
;AP |H=,T;A"> (&:C)(P' | H)
for some P’ such that (P’|I) }f. We leave the reader to prove, by induction
on this derivation, that I'; A> P =, T"; A’ > P’ ]

PROPOSITION 4.7. Suppose A € A7(I'; A P,s) and I is a multi-set of
inputs such that ¢c(I) N A =0 and (T after, s) allows, I. Suppose further
that T; A> P I s. Then there exists some O € OI(T; A P | H,s) such
that O —&(I) C A.

Proof. By induction on the derivation

I'Ap P =, D, where A=TR7(D)
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e The empty derivation.
Here A = R?(I'; A > P). This means that P /~ but we may have
P | H =5 either because H —— or there may be a write up from P
to H. But because H is syntactically finite and P |} we know there is
some P’'|H’ such that P|H —* P'|H" /. Let O be O7(T'; AbP'|H').

Since ¢(I)NA = ) we know that O € OJ(T'; A>P|H, s) and because

P’ is obtained from P by write-ups it follows that O C A.

e The derivation has the form I'; A p P {edals, V. A7y PP =55 D,
By Subject Reduction we know A’ k-, P’ and therefore we may apply
induction to obtain O € O¢(I'; A> P’ | H, s) with the required proper-
ties. The result now follows since O (I'; A> P' | H,s) C O7(I'; A> P |
H,(c)alv - s)

e The remaining cases are similar.

We also have the converse.

PROPOSITION 4.8. Suppose A € A°(I'; A>P|H, s) and, as in the previous
Proposition, I is a set of inputs such that ¢c(I) N A = 0 and (T after,
s) allows, I. Then there exists some O € O7(I'; A> P, s) such that O —
¢(I) C A.
Proof. Again by induction on the derivation

I'A> P|H =, D, where A=R?(D)
As an example we examine the case

[;A>P|H -5 D =%, D,

where the initial 7 consists of a communication between P and H. This
must be a write-up from P to H; so D' has the form T;A > (é:C)P' |
H', where P {&:€)alv prand H 2% H’'. We know P has the form
(¢:C)(a!(v) | P'), but more importantly that rs(A) € A(a) for some §
independent from o (t). What this means is there can can be no com-
munication between a!(v) and any @ such that Ak, Q.

Now the derivation T'; A (¢: C)(P' | H') =%, D can be transformed
into I; A, é:C> P | H' 25, £, where R?(£) = R? (D). Moreover we can
apply induction to this derivation, to obtain O € OJ([; A, ¢é: Cv P, sc)
such that O —¢(I) C A.

We can use (1) to prove O is also in OF(T; A, é: Cal{a) | P, s¢). The
result now follows since

O ([;A,é:Calla) | P se) C O A, é:Cv (6:C)(alla) | P, s).
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COROLLARY 4.9. (Theorem 4.5) suppose AL, P, Q. Then
Loy P Crust @ tmplies Ty P H Cust Q| K

for all finite processes H, K such that AV’ H, K for some § independent
of 0.

Proof. 1t is sufficient to prove
(T, T"); AP «? (I,T'); AbP|H and (T, T");A>P|H <7 (T, T"); A> P.

These follow from the two previous Propositions and Lemma 4.6. Il

5 Conclusions and Related Work

This paper is a direct continuation of the research reported in [10]. There
we focused on the general topic of security types, showing that resource ac-
cess control could be enforced using a typing system and information flow
control could be obtained by a restriction to the set of types employed.
The import of Subject Reduction was emphasised by developing a Type
Safety Theorem, which in turn required a version of the language in which
processes were tagged with their security levels. Here we concentrated on
types for information flow, calling the resulting language the security m-
calculus. The first main result consists of alternative characterisations of
may and must testing for this language. These uses a novel labelled tran-
sition system, which records the security levels at which actions occur,
together with their effect on the type environment of the process under
observation and the effect on the, possibly different, type environment
of the observing process. To our knowledge this is the first time typed
behavioural equivalences for m-calculus-like languages have been charac-
terised in terms of an lts, although in publications such as [15] an lts
formulated using types has been used to give a sound, but incomplete,
method for inferring a typed version of barbed congruence, [16]. We be-
lieve that the technique is quite general and will be applicable to other
process languages which use sub-typing.

Our second main result extends the non-interference result from [10],
showing that non-interference, with respect to both may and must testing,
can be enforced using types. However it remains to be seen to what extent
this approach, non-interference through types, can be used to obtain useful
instances of non-interference. For example in [7] a wide range of security
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properties have been shown to be expressible in terms of non-interference
and it would be interesting to see whether these can be enforced by typing
constraints using a type system such as ours. This would involve extending
our language to include cryptographic primitives, such as those from [1]
but we believe that this is not problematic.

Apart from [12], most of the work on non-interference for process lan-
guages use a behavioural approach; see [5, 19] for useful surveys!. There
systems are deemed to be interference-free if their trace sets, sequences
of actions labelled high or low, satisfy certain properties. Here we use
a more extensional approach, saying that a system is interference-free if
low-level observers are unable to discern the presence of absence of high-
level components. There must, of course be some connection between our
definition and at least one of the behavioural definitions in the literature.
However the comparison is not straightforward. The definitions, in papers
such as [18, 5] are for very simple untyped versions of CCS, while much
of the power of our approach comes from the use of types for the more
sophisticated w-calculus.
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