
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

The Security Picalculus and

Noninterference

Matthew Hennessy

Report 05/2000 revised November 2000

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

The Seurity Pialulus and

Non-interferene

Matthew Hennessy

Abstrat. The seurity �-alulus is a typed version of the asyn-

hronous �-alulus in whih the types, in addition to onstraining

the input/output behaviour of proesses, have seurity levels asso-

iated with them. This enables us to introdue a range of typing

disiplines whih allow input or output behaviour, or both, to be

bounded above or below by a given seurity level.

We de�ne typed versions of may and must equivalenes for the

seurity �-alulus, where the tests are parameterised relative to

a seurity level. We provide alternative haraterisations of these

equivalenes in terms of ations in ontext ; these desribe the a-

tions a proess may perform in a given typing environment, assum-

ing the observer is onstrained by a related but possibly di�erent

environment.

The paper also ontains non-interferene results with respet to

may and must testing. These show that ertain forms of non-

interferene an be enfored using our typing systems.

Keywords: Distributed Systems, Pialulus, seurity types, non-interferene,

testing equivalenes.

1 Introdution

The asynhronous �-alulus, [3, 11℄, is a simple formalism for desribing

distributed proesses. It presupposes a set of hannel names through whih

proesses ommuniate. Thus

a

?(X)P is a proess whih inputs some

value v on the hannel

a

, and exeutes the body P in whih X has been

substituted by the value v, while output on the same hannel is denoted

by

a

a!hvi. These two primitives, together with operators for parallelism,

j, repetition, �, and hannel soping, (new n) , make the �-alulus a very

powerful language. For example the term P ,

� req?(x; y) (new r)

s

!hx; ri j r?(z) y!hzi

desribes a proess whih repeatedly reeives a request on the hannel req,

onsisting of a value, bound to x, and a return hannel, bound to y. This

value is in turn sent along the hannel

s

, presumably servied by some

2 Matthew Hennessy

independent server, together with a private return hannel r, generated

spei�ally for this purpose. A response is awaited from the servie, on

the reply hannel r, whih is then forwarded on the original return hannel

y.

Numerous typing systems have been developed for this language, [16,

21, 22℄. Most are based on judgements of the form

� ` P

indiating that the proess P is well-typed with respet to the hannel

environment �, whih assoiates apabilities with the free hannel names

of P . Usually these apabilities are some elaboration of

read apabilities rhTi: the ability to read values of type T from a hannel

write apabilities whTi: the ability to write values of type T to a hannel

For example let A denote the tuple type (int;whinti); a value of this

type will onsist of a pair, the �rst element of whih is an integer, and

the seond a hannel on whih integers may be written. If � assoiates

the type rhAi with the hannel req and the type whAi with

s

, we would

expet the above term, P , to be well-typed with respet to �. However

for this to be true the loal hannel

r

needs to be generated with the write

apability whinti, to be sent along the hannel

s

, and the read apability

rhinti, whih is used by the proess itself. Thus if we were to annotate all

bound names and variables with their required types we would obtain the

annotated term

� req?(x; y)

:

A (new r

:

R)

s

!hx; ri j r?(z) y!(z) (�)

where R is the type fwhinti; rhintig. This term is well-typed with respet

to the above mentioned environment �.

Intuitively the use of types onstrain the behaviour of proesses, en-

suring no misuse of hannels. By de�ning sophistiated forms of types

proess behaviour an be more or less onstrained, while at the same time

the advantages of well-typing an be preserved. For example a form of

polymorphism is investigated in [16℄, while in [10℄ seurity levels are assoi-

ated with apabilities, to obtain so-alled seurity types. Suppose we have

two seurity levels, high, denoted by top, and low, denoted by bot. Then

we would have apabilities of the form r

top

hTi; r

bot

hTi; w

top

hTi; w

bot

hTi,

where T in turn a seurity type. By varying the preise de�nition of a

seurity type we an either implement resoure aess ontrol methodolo-

gies, or ensure forms of non-interferene, [2, 8, 6℄. In this paper we will

be onerned with the latter, using a mild variation of the I-types of [10℄;

essentially types are sets of read/write apabilities, where in addition eah

The Seurity Pialulus and Non-interferene 3

apability is annotated by a seurity level taken from some omplete lat-

tie hSL;�;u;t; top; boti. We will refer to the asynhronous �-alulus,

augmented with these types, as the seurity �-alulus.

The statement of non-interferene results requires some de�nition of

proess behaviour ; intuitively a system is interferene-free if it's low level

behaviour is independent of hanges to high-level behaviour. The main

topi of this paper is an investigation of the notion of behaviour of proess,

relative to a seurity level, for the seurity �-alulus.

Proess behaviour is relative to some typing environment � and there-

fore we wish to develop a relation of the form

� .

�

P ' Q

meaning, intuitively, that in the typing environment �, both P and Q ex-

hibit the same �-level behaviour. By this we mean that a �-level observer

will be unable to disern a di�erene between P and Q. For example

low-level observers will be unable to see any high-level ations performed

by P; Q. But more importantly we assume that these observers are on-

strained by the typing environment � and therefore ations disallowed by

this environment will also be invisible to observers.

For example suppose the hannel

a

is not in the domain of �. Then

we would expet

� .

�

a

!hvi j

b

!hwi '

b

!hwi

regardless of the value of � beause no observer, well-typed with respet to

�, will be able to interat with P along the hannel

a

. More generally this

will also be true if � assoiates with

a

only an output apability. Similarly

if � only assoiates with it an input apability we will have

� .

�

Q j

a

?(x)T ' Q

for any proess Q.

In this paper we investigate may and must testing equivalenes, [14, 9℄

for the seurity �-alulus. In partiular we give an alternative harateri-

sation of these behavioural equivalenes whih, as might be expeted from

[14, 9℄, are based on the sequenes of ations that a proess an perform.

But here these sequenes are relative to both a seurity level and a typing

environment.

Unfortunately the situation is even more ompliated, as the typing

environment of the observer and that of the proess being observed may

not in general be the same. For example onsider the term P , given in

(�) above. To be well-typed relative to an environment �, � needs to

assoiate appropriate types with the free names of P , namely req and

s

.

Now onsider a omputation involving an observer, also well-typed with

4 Matthew Hennessy

respet to �, interating with P . After an interation on the hannel req

the proess evolves to P

1

:

(new r

:

R)

s

!hv; ri j r?(z)

b

!(z) ;

for some value v and hannel

b

sent by the observer. At this stage both

the observer and the observed proess P

1

an still be typed relative to �,

as both v and

b

must have been known to the observer, and therefore be

typeable in �. However now the observed proess generates a new hannel

r

, with type R = frhinti;whintig. But beause of the type assoiated

with

s

in �,

r

is only sent to the observer with the subtype onsisting of

the one apability whinti. Subsequently the observer is working relative

to �;

r
:

fwhintig, the environment � augmented with a new entry for

r

,

whereas the observed proess is working with respet to the di�erent en-

vironment �;

r
:

frhinti;whintig.

In general the observed proess and the observing proess will be on-

strained by related but di�erent environments.

Our haraterisation of the behavioural equivalenes will be based on

what we all a Context Labelled Transition System. Here ations take the

form

�;� . P

�

�!

�

�

0

; �

0

. P

0

indiating that in the typing environment � the proess P an perform the

ation � to interat with some �-level observer whih in turn is typeable

in the environment �; this ation may hange the typing environments of

both the observer and the observed proesses, to �

0

and �

0

respetively.

If the type environments � and � satisfy some minor onditions, (are

ompatible), we say that the above judgement is an ation in ontext.

May equivalene will be haraterised in terms of appropriate sequenes

of suh ations in ontext while must equivalene will also require the

development of appropriate notions of aeptane sets.

The remainder of the paper is organised as follows. In Setion 2 we

formally de�ne the syntax of the seurity �-alulus, together with its

(standard) operational semantis. This is followed, in Sub-setion 2.3,

with a range of typing systems. In the most straightforward we have the

judgements

� ` P

where � is a type environment, assoiating types to hannel names and

variables. This means that relative to �, P uses its hannels orretly as

input/output devies, ignoring their seurity annotations. We also have

judgements of the form

� `

�

P

The Seurity Pialulus and Non-interferene 5

whih indiates that in addition P uses hannels with seurity level at

most �. Similarly we have a typing relation

� `

�

P

indiating that P uses hannels with at least seurity level �. Indeed we

an go further, designing relations suh as � `

r�

P or � `

w�

P where the

read apabilities or the write apabilities of proesses are independently

onstrained. For all of these typing relations Subjet Redution is easily

established.

Setion 3 is the heart of the paper. First the behavioural preorders and

equivalenes are de�ned, by adapting the standard framework, [14, 9℄, to

the seurity �-alulus. We obtain the relations

� .

�

P '

may

Q

and

� .

�

P '

must

Q

indiating that P and Q an not be distinguished, relative to may/must

experiments respetively, by any testing proess T suh that � `

�

T , that

is any test running at seurity level at most �, relative to the type envi-

ronment. This is followed by an exposition of the Context LTS, ations in

ontext, and their properties. Sub-setion 3.3 then ontains an alternative

haraterisation of '

may

in terms of sequenes of ations in ontext, while

in Subsetion 3.4 we give the muh more ompliated haraterisation of

'

must

.

One bene�t of having behavioural equivalenes relativised to seurity

levels is that non-interferene results an be stated suintly. Setion 4

ontains two suh statements, and their proofs. The �rst gives onditions

ensure that

� .

�

P '

may

Q implies � .

�

P jH '

may

Q jK:

It turns out to be suÆient to require that the read apabilities of P and Q

be bounded above by �, that is � `

r�

P;Q, and that the write apabilities

of H and K be bounded below by some Æ 6� �, that is � `

wÆ

H; K.

This is quite a general non-interferene result. For example in the ase

where Q is P and K is the empty proess 0 we obtain

� .

�

P '

may

P jH

indiating that, under the onditions of the theorem, the proess H an

not interfere with the behaviour of P .

This result is not true for the must equivalene. As explained in Se-

tion 4, this is beause our types allow ontention between proesses run-

6 Matthew Hennessy

ning at di�erent seurity levels over read aess to hannels. However by

restriting the type system, allowing only single level types, we show that

the same result holds for '

must

.

The paper ends with a brief survey of related work.

2 The Language

In this setion we de�ne the language, its operational semantis and the

typing system with whih we will be onerned.

2.1 The Types

We presuppose a omplete lattie hSL;�;u;t; top; boti of seurity anno-

tations, ranged over by �; �; : : : . For eah � we assume a set of basi types

at that level, of the form B

�

. If the seurity annotation is omitted, as in

int, then we assume it has seurity level bot; as we shall see values of these

types are available to all proesses. Also, as explained in the Introdution,

a �-level hannel type, for hannels aessible to proesses with seurity

learane at level �, onsists of a set of �-level apabilities, i.e. a subset of

Cap

�

. These may either be a read apability, of the form r

�

hTi, for some

appropriate � and T, or a write apability, of the form w

�

hTi. These a-

pabilities are onstrained by onsisteny requirements. For example sine

values with the apability w

�

hTi are written to by �-level proesses we

require that T in turn be a �-level type.

Types, i.e. sets of apabilities, are also onstrained. For simpliity in

a given type we only allow at most one write apability, and for eah

level � at most one read apability at that level. More importantly we

ensure that, relative to seurity levels, only write-ups, [8, 2℄, are allowed by

requiring that if w

�

hTi and r

�

0

hSi are in a type then � � �

0

; the additional

onstraint that T be a sub-type of S is well-known [16, 17℄. The formal

de�nition is as follows:

Definition 2.1. (Types, Capabilities and Subtyping) Let Type

�

; Cap

�

The Seurity Pialulus and Non-interferene 7

be the least sets, and <

:

; onsistent the least relations, whih satisfy:

(rt-base)

B

�

2 Type

�

� � �

(rt-wr)

A 2 Type

�

w

�

hAi 2 Cap

�

(rt-wrrd)

S �

fin

Cap

�

S 2 Type

�

S onsistent

(rt-rd)

A 2 Type

�

r

�

hAi 2 Cap

�

� � �

(rt-tup)

A

i

2 Type

�

(8i)

(A

1

; : : : ;A

k

) 2 Type

�

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B

(u-base) B

�

<

:

B

�

if � � �

(u-res) fap

i

g

i2I

<

:

fap

0

j

g

j2J

if (8j)(9i) ap

i

<

:

ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i

The set of apabilities Cap is onsistent if

� w

�

hAi; w

�

hBi 2 Cap implies � = � and A is B

� r

�

hAi; r

�

hBi 2 Cap implies A is B

� w

�

hAi; r

�

hBi 2 Cap implies A <

:

B.

These types orrespond very losely to the I-types of [10℄; the rule

(rt-rd) ensures that only write-ups are allowed, from low-level proesses

to high-level proesses. But we allow multiple read apabilities, whih will

enable us to be more exible with respet to allowing/disallowing reading

from a hannel at di�erent seurity levels. However subtyping is more

restritive; unlike [10℄ they an only be sub-typed at the same seurity

level; r

�

hAi <

:

r

�

hBi only if � = �. Nevertheless this is ompensated for

in the existene of multiple read apabilities.

Example 2.2.

� The set fw

bot

hinti; r

bot

hinti; r

top

hintig is a bot-level hannel type, an

element of Type

bot

; that is hannels of this type may be transmitted

on bot-level hannels. In turn these hannels may be written to by a

bot-level proess or read by either a bot-level or a top-level proess.

� The type fw

bot

hinti; r

top

hintig restrits reading from the hannel to

top-level proesses, although bot-level ones an write to it.

8 Matthew Hennessy

� The set fw

top

hinti; r

bot

hinti; r

top

hintig is not a valid type as it ontains

a read apability at a lower level than its write apability.

� The set fw

top

hinti; r

top

hintig is a top-level type but not a bot-level one;

that is, it is in Type

top

but not in Type

bot

.

Proposition 2.3. For every �, Type

�

is a preorder with respet to <

:

,

with both a partial meet operation u and a partial join t.

Proof. The (partial) funtions u and t are de�ned by strutural indution

on types. They are determined by the lauses

r

�

hAi u r

�

hA

0

i = r

�

hA uA

0

i

r

�

hAi u r

�

hA

0

i = fr

�

hAi; r

�

hAig

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

hA

0

i = r

�

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

and these de�nitions are extended homomorphially to tuple types. �

Multiple read apabilities in a type, suh as fw

bot

hinti; r

bot

hinti; r

top

hintig,

allows proesses at di�erent seurity levels to read from the same hannel.

We an eliminate suh ontention by using a restrited set of types.

Definition 2.4 (Single-level Types). Let SlType be the least set of

types obtained by hanging the ondition on read apabilities in the de�-

nition of onsistent of De�nition 2.1 to read:

r

�

hAi; r

�

hBi 2 Cap implies � = � and A is B.

Note that these types still allow ommuniation from low-level proesses

to high-level proesses. We leave the reader to hek that these types,

ordered by <

:

also has both partial meet and join operations.

2.2 Syntax and Operational Semantis

The syntax of the �-alulus, given in Figure 1, uses a prede�ned set of

names, ranged over by a; b; : : : and a set of variables, ranged over by x; y; z.

Identi�ers are either variables or names. We also assume a set of basi

values, ranged over by bv, eah of whih belong to a given basi type.

The binding onstruts (new a

:

A) Q and u?(X

:

A)Q introdue the

usual notions of free names and variables, fn(P) and fv(P), respetively,

and assoiated notions of substitution and �-equivalene, �

�

, are de�ned

as usual. Moreover the typing annotations on the binding onstruts are

omitted whenever they do not play a role, as will most ourrenes of the

empty proess 0.

The Seurity Pialulus and Non-interferene 9

Figure 1 Syntax

P;Q ::= Terms

u!hvi Output

u?(X

:

A)P Input

if u = v then P else Q Mathing

(new a

:

A) P Name reation

P jQ Composition

�P Repliation

0 Termination

X;Y ::= Patterns

x Variable

(X

1

; : : : ; X

k

) Tuple

u; v; w ::= Values

bv Base Value

a Name

x Variable

(u

1

; : : : ; u

k

) Tuple

The behaviour of a proess is determined by the interations in whih

it an engage. To de�ne these, we give a labelled transition semantis

(LTS) for the language. The set At of ations, is de�ned as follows:

� ::= Ations

� Internal ation

a?v Input of v on a

(~

:

~

C)a!v Output of v on a revealing private names ~ (~ � fn(v))

Visible ations (all exept �) are ranged over by �, � and if � is an

output ation we use E(�) to denote the bound names in �, together with

their types: E((~

:

~

C)a!v) = (~

:

~

C). Further, let

n

(�) be the set of names

ourring in �, whether free or bound. We say that the ations `a?v' and

`(~

:

~

C)a!v' are omplementary, with � denoting a omplement of �.

The LTS is de�ned in Figure 2 and for the most part the rules are

straightforward; it is based on the standard operational semantis from

[13℄, to whih the reader is referred for more motivation. Note that in

the input rule (l-om) it is assumed that � is an output ation; we omit

the orresponding symmetri rule, in whih Q performs the output. The

last rule (l-txt) uses a standard strutural ongruene over terms. This

is de�ned to be the least equivalene generated by the axioms given in

Figure 2, whih extends �

�

and is preserved by the stati operators (j

and (new a)). Note that beause of this rule struturally equivalent

proesses an perform exatly the same set of ations.

We end this sub-setion with a result whih emphasises the asynhrony

of message reeption:

Lemma 2.5 (Asynhronous Ations). If P

(~

:

~

C)a!v

�����! P

0

then P �

st

(new ~

:

~

C) (a!hvi j P

0

).

Proof. By indution on the derivation of P

(~

:

~

C)a!v

�����! P

0

. �

10 Matthew Hennessy

Figure 2 Labelled Transition Semantis

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

a?v

��! Pfj

v

=Xjg

(l-open)

P

(~

:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-txt)

P

�

�! P

0

�P

�

�! �P j P

0

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

P �

st

Q; Q

�

�! P

0

P

�

�!
P

0

The strutural ongruene axioms:

(s-newnew) (new a)(new b) P �

st

(new b)(new a) P if a 6= b

(s-newpar) P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P)

(s-omm) P jQ �

st

Q j P

(s-zero) P j 0 �

st

P

2.3 The Typing System

A type environment is a �nite mapping from identi�ers (names and vari-

ables) to types. We adopt some standard notation. For example, let

�; u

:

A denote the obvious extension of �; �; u

:

A is only de�ned if u is

not in the domain of �. The subtyping relation <

:

together with the partial

operators u and t may also be extended to environments. For example

The Seurity Pialulus and Non-interferene 11

Figure 3 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A ` P

� ` u

:

r

�

hAi

� ` u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� ` u!hvi

(t-eq)

� ` u

:

A; v

:

B

� ` Q

� u fu

:

B; v

:

Ag ` P

� ` if u = v then P else Q

(t-new)

�; a

:

A ` P

� ` (new a

:

A) P

(t-str)

� ` P; Q

� ` P jQ; �P; 0

� <

:

� if for all u in the domain of �, �(u) <

:

�(u). We will normally ab-

breviate the simple environment fu

:

Ag to u

:

A and moreover use v

:

A to

denote its obvious generalisation to values; this is only well-de�ned when

the value v has the same struture as the type A.

The �rst typing system is given in Figure 3, where the judgements take

the form

� ` P

Intuitively this means that the proess P uses all hannels as input/output

devies in aordane with their types, as given in �. It is the standard

typing system for the �-alulus, [16℄, adapted to our types; note that the

seurity levels on the apabilities do not play any role.

We an also design a type inferene system whih not only ensures that

hannels are used aording to their types but also ontrols the seurity

levels of the hannels used. One suh system is given in Figure 4, where

the judgements now take the form

� `

�

P

This indiates that not only is P well-typed as before but in addition it uses

hannels with seurity level at most �. (This orresponds to the typing

system used in [10℄.) The only di�erene is in the input/output rules,

where the seurity level of the hannels used are heked. For example

� `

�

a!hvi only if in � the hannel a an be assigned a seurity level Æ � �,

in addition to having the appropriate output apability in �.

We an also design a typing system

� `

�

P

12 Matthew Hennessy

Figure 4 Seurity Typing Rules

(lt-in)

�; X

:

A `

�

P

� ` u

:

r

Æ

hAi

� `

�

u?(X

:

A)P

Æ � �

(lt-out)

� ` v

:

A

� ` u

:

w

Æ

hAi

� `

�

u!hvi

Æ � �

(lt-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(lt-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(lt-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

whih whih ensures that P uses hannels with seurity level at least �.

The only hange is to demand in the input/output rules that � � Æ:

(hl-in)

�; X

:

A `

�

P

� ` u

:

r

Æ

hAi

� `

�

u?(X

:

A)P

� � Æ

(hl-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

� � Æ

We an provide further mix and mathes. For example the type system

� `

r�

P

ensures that all hannels from whih values are read have a read apability

of at most �; the seurity level of the output hannels is unexamined. This

system is obtained by using the rules in the original Figure 3 but with the

rule (t-in) replaed with (lt-in); the output rule is left unhanged. In a

similar manner we an de�ne relations � `

w�

P; � `

r�

P and � `

w�

P .

Theorem 2.6 (Subjet Redution). Let represent any of the re-

lations, `; `

�

; `

r�

; `

r�

; `

w�

; `

w�

and suppose � P . Then

� P

�

�! Q implies � Q

� P

a?v

��! Q implies there exists a type A suh that r

Æ

hAi 2 �(a) and if

� u v

:

A is well-de�ned then � u v

:

A Q.

Moreover Æ � � when is `

�

or `

r�

and � � Æ if it is `

�

or `

r�

.

� P

(~

:

~

C)a!v

�����! Q implies there exists a type A suh that � ` a

:

w

Æ

hAi,

�; ~

:

~

C ` v

:

A and �; ~

:

~

C Q.

Moreover Æ � � when is `

�

or `

w�

and � � Æ if it is `

�

or `

w�

.

Proof. Similar to that of Theorem 3.5 of [10℄, although in the ase of

the ation a?v, the onlusion is a little stronger. However the proof

is straightforward. For example onsider the ase when P is the term

The Seurity Pialulus and Non-interferene 13

a?(X

:

B)R, the move is a?(X)R

a?v

��! Rfj

v

=Xjg and � `

�

P . From the

typing rules we have � ` a

:

r

Æ

hBi for some Æ � � and �; X

:

B `

�

R. From

the former we know that there exists some A <

:

B suh that r

Æ

hAi 2 �(a);

from the latter, and Subsumption, we have �; X

:

A `

�

R. A standard

Substitution Lemma an now be applied for any v suh that � u v

:

A is

well-de�ned to obtain � u v

:

A `

�

Rfj

v

=Xjg.

�

3 Behavioural Theories

In this setion we develop two behavioural theories of typed proesses,

based on the general testing theories of [14, 9℄. In the �rst setion we adapt

the original de�nitions from [14, 9℄ to our language. This is followed by a

subsetion de�ning the Context LTS alluded to in the Introdution. Two

further subsetions use this LTS to determine the may and must versions

of our behavioural equivalene.

3.1 Testing Proesses

A test or observer is a proess with an ourrene of a new reserved

resoure name !, used to report suess. We let T to range over tests,

with the typing rule � `

�

!!hi for all �. When plaed in parallel with a

proess P , a test may interat with P , produing an output on ! if some

desired behaviour of P has been observed. We write

P may T

T j P

�

�!

�

R for some R suh that R an report suess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whih an report suess.

We an obtain a testing based behavioural preorder between proesses

by demanding that they reat in a similar manner to a given lass of tests.

Here we hoose the lass of tests whih are well-typed and use hannels

from at most a given seurity level �; that is we require that proesses

reat in the same manner to all tests T suh that � `

�

T .

Definition 3.1 (Testing Preorders). We write � .

�

P

�

�

may

Q if for

every test �nite T suh that � `

�

T , P may T implies Qmay T .

14 Matthew Hennessy

Similarly � .

�

P

�

�

must

Q means that for every suh T , P must T implies

Qmust T .

We use '

may

and '

must

denote the related equivalene relations.

So for example setting � to be bot, � .

bot

P '

may

Q means that in the

type environment �, P and Q are indistinguishable by low-level observers,

from a may testing point of view.

For tehnial reasons we have limited tests to be �nite, that ontain

no ourrene of the reursive operator �. It is well-known (see [9℄) that

this does not lead to any less distinguishing power.

3.2 The Context Labelled Transition System

It is well-known, [14, 9℄, that testing equivalenes are losely related to the

ability of proesses to perform sequenes of ations. We have explained in

the Introdution that here we need to relativise these sequenes to seurity

levels and to a pair of typing environments, one for the observer and one

for the proess being observed.

The rules for the Context LTS, are given in Figure 5. The judgements

take the form

�;� . P

�

�!

�

�

0

; �

0

. P

0

This judgement should be understood as expressing the fat that:

The proess P , in it's urrent type environment �, when run on-

urrently with any observing proess T suh that � `

�

T , an per-

form the ation �. This will transform P into P

0

and may also

transform the urrent type environment to �

0

and that of the ob-

serving proess to �

0

.

These ations an take three forms:

internal move: �;� . P

�

�!

�

�;� . P

0

This orresponds to an internal

move by P , whih does not depend on its environment. These moves

are ompletely determined by the semantis given in Figure 2; see the

rule (-red).

input move: �;� . P

a?v

��!

�

�;�

0

. P

0

Here the observing proess sends

a value v to P along the hannel a. The type environment of the

observing proess does not hange, but that of P may be augmented

by knowledge of v of whih it was previously unaware. An appropriate

write apability on a is required of the observing proess for the ation

to take plae; see the rule (-in).

output move: �;� . P

(~)a!v

���!

�

�

0

; �

0

. P

0

Here P sends a value v along

The Seurity Pialulus and Non-interferene 15

Figure 5 Context LTS

(-out)

r

Æ

hAi 2 �(a)

�;� . a!hvi

a!v

��!

�

� u v

:

A;� . 0

Æ � �

(-in)

� ` a

:

w

Æ

hBi

� ` v

:

B

�;� . a?(X

:

A)P

a?v

��!

�

�;� u v

:

A . Pfj

v

=Xjg

Æ � �

B <

:

A

(-open)

�;�; b

:

B . P

(~)a!v

���!

�

�

0

; �

0

. P

0

�;� . (new b

:

B) P

(b)(e)a!v

�����!

�

�

0

; �

0

. P

0

b 6= a

b 2 fn(v)

(-red)

P

�

�! P

0

�;� . P

�

�!

�

�;� . P

0

(-equiv)

�;� . P

�

�!

�

�

0

; �

0

. P

0

P �

st

Q

�;� . Q

�

�!

�

�;�

0

. P

0

(-txt)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�;� . �P

�

�!

�

�

0

; �

0

. �P j P

0

�;� . P

�

�!

�

�

0

; �

0

. P

0

�;� . P jQ

�

�!

�

�

0

; �

0

. P

0

jQ

�;� . Q j P

�

�!

�

�

0

; �

0

. Q j P

0

bn(�) 62 fn(Q)

�; a

:

A;�; a

:

A . P

�

�!

�

�

0

; a

:

A;�

0

; a

:

A . P

0

�;� . (new a

:

A) P

�

�!

�

�;�

0

. (new a

:

A) P

0

a 62

n

(�)

the hannel a to the observing proess, and typially the observers

type environment � will be augmented with knowledge of v. However

the type environment of P may also be inreased by assoiating with

the new identi�ers (~) their delared types; this is implemented in the

rule (-open). Here an appropriate read apability is required of the

observing proess for the ation to take plae; see the rule (-out).

The rules in Figure 5 are straightforward and only the �rst two deserve

omment. (-in) states that a?(X

:

A)P an reeive v along a from a �-

level observer provided the observer has a write apability on a at a level

at most �, and it has the value v at an appropriate type. (-out) is

more subtle. In priniple the observer ould reeive v from the observed

16 Matthew Hennessy

proess a!hvi at any type B suh that � ` a

:

r

Æ

hBi, where Æ � �. However

to eliminate muh potential nondeterminism in the LTS our rule ditates

that for a given Æ � � the observer reeives v at the minimum B suh that

� ` a

:

r

Æ

hBi; this is the type A suh that r

Æ

hAi 2 �(a).

Note that in the output ations we do not reord the types of the

bound names. These we only required in Figure 2 in order to implement

ommuniation between proesses; see the rule (l-om). Here we do not

need to formalise, at least diretly, ommuniation between the proess P

and its observer.

We an desribe preisely the form these judgements in an take:

Lemma 3.2. Suppose �;� . P

�

�!

�

�

0

; �

0

. P

0

.

� = � : Here �

0

= � and �

0

= �.

� = a?v: Here �

0

= � while �

0

= � u v

:

A for some type A suh that

� ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B <

:

A

� = (~)a!v: Here �

0

= �; ~

:

~

C for some sequene of types

~

C suh that

�; ~

:

~

C ` v

:

A, while �

0

= �uv

:

A for some A suh that r

Æ

hAi 2 �(a),

where Æ � �.

Proof. Straightforward rule indution on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

However we are only interested in a subset of the possible judgements

whih an be derived from the rules in Figure 5. We say that the two type

environments � and � are ompatible if

� � u� exists

� domain(�) � domain(�).

The main property of this relation is given by:

Lemma 3.3. Suppose � and � are ompatible. Then � ` a

:

w

�

hAi and

� ` a

:

r

�

0

hA

0

i imply A <

:

A

0

and � � �

0

.

Proof. Simple alulation. �

The triple �;� . P is said to be a on�guration if

� � and � are ompatible

� � ` P .

When this is the ase we will refer to the judgment �;�.P

�

�!

�

�

0

; �

0

.P

0

as an ation in ontext.

Con�gurations are preserved by these ations:

The Seurity Pialulus and Non-interferene 17

Lemma 3.4. If �;� . P

�

�!

�

�

0

; �

0

. P

0

is an ation in ontext then

�

0

; �

0

. P

0

is a on�guration.

Proof. From Lemma 3.2 we know exatly the form �

0

and �

0

an take,

depending on �. In eah ase it is straightforward to show that they are

ompatible. The simplest way to show that �

0

` P

0

is to use rule indution

on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

In future we will limit our attention to judgements �;�.P

�

�!

�

�

0

; �

0

.P

0

,

whih are ations in ontext. This has important onsequenes, in the ase

when � is an output ation (~

:

~

C)a!v. It means that the only new names

gained by the observer, that is names in the domain of �

0

whih are not

in that of �, are ~. In other words if w is an identi�er in v whih does

not our in ~ the observer already knows about it. However the ation

may inrease the type at whih the observer knows w. It is also worth

noting that the two rules (-in) and (-out) are apriori partial; that

is (-in) an only be applied if � u v

:

A is well-de�ned while (-out)

requires � u v

:

A to be well-de�ned. However it is easy to show that for

ations in ontext these environments are in fat well-de�ned whenever

the orresponding premises hold. Moreover in (-in) the side-ondition

B <

:

A may be omitted as it is always satis�ed.

We an also determine the irumstanes under whih the unon-

strained ations, from Figure 5, an give rise to ations in ontext.

Lemma 3.5. Suppose P

�

�! Q and let �;� . P be a on�guration.

� = � : Here �;� . P

�

�!

�

�;� . Q

� = a?v: Here if � ` v

:

B; a

:

w

Æ

hBi, where Æ � � then �;� . P

a?v

��!

�

�;� u v

:

A . Q for some A suh that B <

:

A.

� = (~

:

~

C)a!v: Here if r

Æ

hAi 2 �(a) for some Æ � � then �;� . P

(~)a!v

���!

�

� u v

:

A;�; ~

:

~

C . Q.

Proof. By rule indution on P

�

�! Q. We examine the ase when � is

(~

:

~

C)a!v, where the indution requires a weakening of the hypothesis,

namely that � ` P and � u� exists.

� Suppose P

�

�! Q is inferred using (l-out). We an immediately apply

(-out) to obtain the required �;�.P

a!v

��!

�

�uv

:

A;�.Q, provided

� u v

:

A exists.

However P has the form a!hvi and from � ` P we know that

� ` v

:

B; a

:

w

�

hBi for some B. Applying Lemma 3.3 we obtain B <

:

A.

Then it is easy to show the existene of � u v

:

A from the fat that �

and � are ompatible.

18 Matthew Hennessy

� Suppose P

�

�! Q is inferred using (l-open), that is

(new b

:

B) P

0 (b

:

B)(~

:

~

C)a!v

���������! Q

beause P

0

(~

:

~

C)a!v

�����! Q.

� ` P implies �; b

:

B ` P

0

and the existene of of � u � also

ensures that of �u�; b

:

B. In short the (weaker) indutive hypothesis

holds of �;�; b

:

B . P

0

and therefore by indution we an obtain the

ation in ontext �;�; b

:

B.P

0

(~)a!v

���!

�

Q. An appliation of (-open)

gives the required �;� . P

(b)(~)a!v

�����!

�

Q

�

Note that in ations in ontext �;� . P

�

�!

�

�

0

; �

0

. Q the resulting

environments, �

0

; �

0

, are not in general determined by � and �. The

hange in the environment of the observed proess, the hange from � to

�

0

, is determined by the delared types of new names introdued by the

proess. For example onsider

P

1

= (new

:

C

1

) a!hi 0; P

2

= (new

:

C

2

) a!hi 0;

where C

i

are two di�erent types. Then, assuming �;� have appropriate

apabilities assoiated with a, we have

�;� . P

1

()a!

���!

�

�

0

; �;

:

C

1

. 0

�;� . P

2

()a!

���!

�

�

0

; �;

:

C

2

. 0

The reason for this lak of determinism is that the types of bound names

are not reorded in the ations in ontext. However were we to reord their

types we would then have proesses whih are obviously behaviourally in-

distinguishable, P

1

and P

2

for example, whih would have di�erent ations

in ontext.

The lak of determinism of the observers type environment, the hange

from � to �

0

, will however play a role in the next setion. This arises

beause of the rule (l-out) in Figure 5. In general �(a) may ontain two

read apabilities, r

Æ

1

hA

1

i and r

Æ

2

hA

2

i, in whih ase �

0

may take either

of the forms � u v

:

A

1

or � u v

:

A

2

. However by restriting ourselves to

single-level types this problem does not arise.

We say � is a single-level environment if it only uses single-level types.

For suh environments we an de�ne the partial prediate � after

�

s by

indution on s as follows:

s = ": Here � after

�

s = �

s = a?v � s

0

: Here � after

�

s = � after

�

s

0

The Seurity Pialulus and Non-interferene 19

s = (~)a!v � s

0

: Here � after

�

s is only de�ned if r

Æ

hAi 2 �(a) for some

Æ � �, in whih ase it is (� u v

:

A) after

�

s

0

.

Lemma 3.6. If �;� .P

s

�!

�

�

0

; �

0

.Q, where � is a single-level environ-

ment, then � after

�

s is de�ned and �

0

= � after

�

s.

Proof. By indution on the derivation of �;� . P

s

�!

�

�

0

; �

0

. Q. �

3.3 May testing

In this setion we give a haraterisation of the relation � .

�

P

�

�

may

Q.

Ations in ontext are generalised to (asynhronous) traes in ontext

as follows:

Definition 3.7 (Traes). Let �;� . P

s

=)

�

�

0

; �

0

. P

0

be the least

relation suh that:

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

s

=)

�

�

00

; �

00

. P

00

(tr-�)

�;� . P

�

=)

�

�;� . P

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

��s

=)

�

�

00

; �

00

. P

00

(tr-asyn)

� ` v

:

A

�;� u v

:

A u a

:

w

Æ

hAi . P j a!hvi

s

=)

�

�

00

; �

00

. P

00

�;� . P

a?v�s

===)

�

�

00

; �

00

. P

00

Æ � �

Note that there is some redundany here. The rule (tr-�), where � is an

input ation a?v, an atually be derived from (tr-asyn) and (tr-�).

We now show how interations between a proess P and a �-level

observer T , that is a omputation from T j P , an be deomposed into a

trae in ontext from P and the omplementary sequene from T . It will

beome lear that it is suÆient to only onsider newfree observers, that

is observers whih ontain no ourrene of the binders (new a) .

20 Matthew Hennessy

Theorem 3.8 (Trae Deomposition). Let �;�.P be a on�guration

and suppose T j P

�

�!

�

R for some newfree observer T suh that � `

�

T .

Then there exists a trae in ontext

�;� . P

s

=)

�

�

0

; �

0

. P

0

and a derivation T

s

=) T

0

, where R has the form (new ~

:

~

C) (T

0

j P

0

).

Proof. By indution on the derivation of T jP

�

�!

�

R. Consider the non-

trivial ase when this is of the form T jP

�

�!

�

�!

�

R. There are essentially

three ases:

� Output from T to P . In this ase we have T

a!v

��! T

1

; P

a?v

��! P

1

and

T

1

j P

1

�

�!

�

R.

� `

�

T means � ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B, and so we

may apply Lemma 3.5 to obtain the ation in ontext

�;� . P

a?v

��!

�

�;� u v

:

A . P

1

for some B <

:

A. Moreover the ompatibility of � and �uv

:

A follows

from that of � and �.

Subjet Redution implies that � `

�

T

1

and therefore we may apply

indution to obtain

�;� . P

1

s

0

=)

�

�

0

; �

0

. P

0

and T

1

s

0

=) T

0

where R has the form (new ~

:

~

C) (T

0

j P

0

). The required s is a?v � s

0

.

� Output from P to T . In this ase we have T

a?v

��! T

1

; P

(~

:

~

C)a!v

�����! P

1

,

and T

1

j P

1

�

�!

�

R

1

, where R has the form (new ~

:

~

C) R

1

.

Here � `

�

T implies r

Æ

hAi for some Æ � � and so we an apply

Lemma 3.5 to obtain the ation in ontext

�;� . P

(~)a!v

���!

�

� u v

:

A;�; ~

:

~

C . P

1

:

Also by Subjet Redution we know � u v

:

A `

�

T

1

. So we may apply

indution to obtain a trae in ontext

� u v

:

A;�; ~

:

~

C . P

1

s

0

=)

�

�

0

; �

0

. P

0

;

and the redution T

1

s

0

=) T

0

. The required s in this ase is (~)a!v � s

0

.

� Internal ations by P or T . In this ase a simple argument by indution

suÆes.

�

The onverse is more straightforward:

The Seurity Pialulus and Non-interferene 21

Theorem 3.9 (Trae Composition). Suppose �;�.P

s

=)

�

�

0

; �

0

.P

0

and T

s

=) T

0

for some s. Then there exists a derivation T j P

�

�!

�

R,

where R has the form (new ~

:

~

C) (T

0

j P

0

).

Proof. By indution on s. �

Refering to the statement of this theorem note that Subjet Redution

ensures that �

0

` P

0

. However in general we do not have that �

0

`

�

T

0

,

even under the assumption � `

�

T .

Example 3.10. Let P; T be the proesses (new

:

C) a!hi and a?(x

:

A

2

) x!hi

respetively and let �;� map a to the type fr

Æ

1

hA

1

i; r

Æ

2

hA

2

i; w

bot

hCig,

where A

1

; A

2

; C are the types r

bot

hi; w

bot

hi; fA

1

;A

2

g respetively; here

we assume Æ

i

� �. Then

� `

�

T

� ` P

�;� . P

()a!

���!

�

�;

:

A

1

; �

0

. 0

T

a?

��! !hi

but �;

:

A

1

6`

�

!hi.

The problem lies, again, with the use of multi-level types.

Lemma 3.11. Let � be a single-level environment. Suppose � `

�

T and

� after

�

s is de�ned. Then T

s

=) T

0

implies � after

�

s `

�

T

0

.

Proof. By indution on s. �

This Lemma may now be applied to the onditions of the Trae Composi-

tion Theorem, Theorem 3.9, to ensure when � is a single-level environment

we an also onlude that �

0

`

�

T

0

; here �

0

an only be � after

�

s.

We may now state a suÆient ondition to ensure two proesses are

related with respet to may testing.

Definition 3.12. For any on�guration C let Aseq

�

(C) = f s j C

s

=)

�

g

Then we write

� .

�

(� ` P)�

may

(�

0

` Q):

if for every appropriate �

0

, Aseq

�

(�;�

0

; � . P) � Aseq

�

(�;�

0

; �

0

. Q)

Notie that in this de�nition we allow the testing environment, �, to be

inreased via �

0

; this enables tests to generate new names to send to the

proesses under observation.

22 Matthew Hennessy

Proposition 3.13. Suppose � ` P; Q, where � and � are ompatible.

Then � .

�

(� ` P)�

may

(�

0

` Q) implies � .

�

P

�

�

may

Q.

Proof.

Suppose � .

�

P

�

�

may

Q and P may T , where � ` T ; we must show

Qmay T .

Notie that the Trae Deomposition Theorem, Theorem 3.8, is only

valid for newfree proesses and T may in fat ontain ourrenes of

(new n) , intuitively generating new names with whih to test the pro-

esses. However, beause we only employ �nite tests, it is easy to show

that

T �

st

(new ~

:

~

C) T

0

for some newfree test T

0

, where �

st

is the strutural ongruene generated

by the equations:

P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P)

if u = v then (new a) P else Q �

st

(new a) (if u = v then P else Q)

if a 62 fn(Q); a 6= u; v

u?(x) (new a) P �

st

(new a) (u?(x)P) if a 6= u

P jQ �

st

Q j P

(We have omitted two obvious symmetri rules for Cap and input, respe-

tively.) Moreover it is possible to show that �

st

is preserved by redution,

�

�!, form whih it follows that for any proess S, S may T if and only

S may T

0

. So it is suÆient to prove Qmay T

0

.

Sine P may T

0

we know there exists a omputation T

0

j P

�

�!

�

R,

where R an report a suess. For onveniene let �

0

denote �; ~

:

~

C, an

extension of �. Beause �

0

; � . P is a on�guration Theorem 3.8 an be

used to obtain the deomposition into a trae in ontext

�

0

; � . P

s

=)

�

�

0

; �

0

. P

0

and a sequene T

0

s

=) T

00

, where R has the form (new

~

d

:

~

D) (T

00

j P

0

).

Sine Aseq

�

(�

0

; �.P) � Aseq

�

(�

0

; �.Q) there exists a orresponding

trae in ontext from Q,

�

0

; � . Q

s

=)

�

�

0

; �

0

. Q

0

:

Trae Composition, Theorem 3.9, an now be used to reombine this with

T

0

s

=) T

00

to obtain a suessful omputation from T

0

jQ. �

To prove the onverse we need to design tests whih an detet the

ability of proesses to perform traes in ontext. Spei�ally we will on-

strut a test T (�; s; �), a newfree proess suh that � `

�

T (�; s; �), with

The Seurity Pialulus and Non-interferene 23

the property that P may T (�; s; �) if and only if there is some � suh

that �;� . P

s

=). Note � will not be used in the de�nition and the tests

will only be de�ned for ertain ombinations of � and s.

For onveniene we only onsider traes in whih only simple identi�ers

are output, rather than vetors; that is the output ations are of the form

a!v or ()a!. The generalisation to general output ations of the form

(~

:

~

C)a!v is very straightforward, but notationally omplex. The de�nition

of T (�; s; �) is by indution on s.

": T (�; "; �) is !!hi.

a?v � s: In this ase the test is de�ned only if

{ there exists some Æ � � suh that � ` a

:

w

Æ

hAi for some type A

suh that � ` v

:

A

{ T (�; s; �) is de�ned.

If this is the ase then T (�; a?v � s; �) is de�ned to be

a!hvi j T (�; s; �):

a!v � s: Here the test is de�ned if

{ v 2 domain(�)

{ there exists some type A suh that r

Æ

hAi 2 �(a) for some Æ � �

{ T (� u v

:

A; s; �) is de�ned.

For eah suh A let T

A

(�; a!v � s; �) be the test

a?(x

:

A) if x = v then T (� u v

:

A; s; �) else 0

Then the required test is

T

A

1

(�; a!v � s; �)� : : :� T

A

k

(�; a!v � s; �)

where A

1

: : :A

k

is the set of all types whih satisfy the onditions above

and � represents an internal hoie operator. This is easily de�nable

by

T � U = (new

:

C) (!hi j ?()T j ?()U)

where C is the type fw

�

hi; r

�

hig.

()a! � s: Here the test is de�ned if

{ there exists some type A suh that r

Æ

hAi 2 � for some Æ � �

{ T (�;

:

A; s; �) is de�ned.

Here again T (�; ()a! � s; �) has the form

T

A

1

(�; ()a! � s; �) � : : : T

A

k

(�; ()a! � s; �)

24 Matthew Hennessy

where A

i

range over all the types satisfying these onditions. For suh

an A, T

A

(�; ()a! � s; �) given by

a?(x

:

A) if x 2 I(�;A) then 0 else (T (�;

:

A; s; �))fj

x

=jg

where I(�;A) is the �nite set of identi�ers fu j � ` u

:

A g and if x 2

I then P else Q represents the obvious nested if then else struture.

The required properties of these tests are olleted in the following Lem-

mas.

Lemma 3.14. If T (�; s; �) is de�ned then

� � `

�

T (�; s; �)

� T (�; s; �)

s

=) R, where R

w!hi

��!

Proof. By a straightforward indution on s, although there are onsider-

able details to be heked. For example when s has the form a!v � s

0

then

for � `

�

T (�; s; �) to be true it is essential that v be in the domain of �. �

Lemma 3.15. If there exists some P and some � suh that �;� . P

s

=)

then T (�; s; �) is de�ned.

Proof. By indution on the judgement �;� . P

s

=). As an example we

onsider one ase, when it has the form

�;� . P

a!v

��! � u v

:

A;� . P

0 s

0

=)

where r

Æ

hAi 2 � for some A and Æ � �.

By indution we know T (� u v

:

A; s

0

; �) is de�ned. From Subjet Re-

dution we know � ` v

:

A and sine � and � are ompatible we have that

v is in the domain of �. So for at least one A the test T

A

(�; a!v � s

0

; �) is

de�ned. It follows that T (�; a!v � s

0

; �) is also de�ned. �

It therefore follows from the Composition Theorem that �;� . P

s

=)

implies P may T (�; s; �). We also have the onverse:

Lemma 3.16. Suppose T (�; s; �) exists and �;� . P is a on�guration.

Then P may T (�; s; �) implies �;� . P

s

=).

Proof. By indution on s, and by way of example we onsider the ase

when it has the form a!v � s

0

.

By examining the form of T (�; s; �) it must be that P

�

�!

�

a?v

��! P

0

for some P

0

suh that P

0

may T (� u v

:

A; s

0

; �) for some A suh that

r

Æ

hAi 2 �(a), where Æ � �.

The Seurity Pialulus and Non-interferene 25

Subjet Redution means � ` P

0

and therefore it is easy to hek that

� u v

:

A;� . P

0

is a on�guration. So we may apply indution to obtain

� u v

:

A;� . P

0 s

0

=)

Lemma 3.5 gives

�;� . P

�

�!

� a!v

��! � u v

:

A;� . P

0

and the result now follows by (tr-�) in De�nition 3.7. �

It therefore follows that

Theorem 3.17 (Alternative Charaterisation of May Testing).

Suppose � ` P;Q, and � is ompatible with �. Then � .

�

P

�

�

may

Q if

and only if � .

�

(� ` P)�

may

(� ` P).

Proof. We need to prove the onverse of Proposition 3.13, namely that

� .

�

P

�

�

may

Q and �;�

0

; � . P

s

=) implies �;�

0

; � . Q

s

=).

From Lemma 3.15 we know that the test T = T ((�;�

0

); s; �) is de�ned,

and using the seond part of Lemma 3.14, together with the Composition

Theorem, we have that P may T . Let the extra environment �

0

be ~

:

~

C.

Then � ` T

0

= (~

:

~

C)T and, using the fat that � .

�

P

�

�

may

Q we have

that Qmay T ; here we are using the fat that if � ` R then Rmay T if

and only if Rmay T

0

. It follows from Lemma 3.16 that �;�

0

; � . Q

s

=).

�

3.4 Must Testing

In this setion examine the relation � .

�

P

�

�

must

Q; in partiular we give

neessary and suÆient riteria for ensuring � .

�

P

�

�

must

Q, based on

traes in ontext.

The extra ingredients required to apture must testing, in addition to

traes, are well-known from [14, 9℄; they inlude a onvergene prediate,

indiating that a proess has no internal in�nite omputations, and a-

eptane sets, indiating the next possible ations in whih a proess an

engage. Here these need to be generalised from proesses to on�gurations;

they must also be relativised to seurity levels.

First some notation We use I

�

(C) to denote the set of input ations

whih the on�guration C an perform at level �, f a?v j C

a?v

��!

�

g. More

generally we use I to denote an arbitrary multi-set of input ations, I the

obvious term of all the orresponding output ations in parallel, (I) to

denote f a? j a?v 2 I g and �nally (I) its onverse, f a! j a?v 2 I g.

26 Matthew Hennessy

Definition 3.18 (Convergene). We say the on�guration C onverges,

written C +, if there is no in�nite sequene of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This relation is then parameterised to sequenes in ontext, seurity levels

and �nite multisets of input ations, by

": C +

I

�

if (C j I) +

s = (~)a!v � s

0

: C +

I

�

s if C + and whenever C

(~)a!v

===)

�

C

0

, C

0

+

I

�

s

0

.

s = a?v � s

0

: C +

I

�

s if, assuming C has the form �;� . P ,

� � ` a

:

w

Æ

hAi; v

:

A for some Æ � �

� �;� u v

:

A u a

:

w

Æ

hAi . a!hvi j P +

I

�

s.

Note that the requirements in the input ase are taken diretly from the

rule (tr-asyn). Note also that for a on�guration �;�.P whether or not

it onverges is atually independent of the typing environments � and �;

it is only dependent on the semantis of P as given in Figure 2. However

onvergene relative to a sequene in ontext is in general dependent on

these environments.

We now adapt the de�nition of Aeptane sets, [9℄, to the seurity

�-alulus. First let

O

�

(C) = f a! j 9v:C

a!v

��!

�

g

and

R

�

(C) = f a? j 9v:C

a?v

��!

�

g [O

�

(C):

Definition 3.19 (Aeptane sets). For a on�guration C, letA

�

(C; s),

its �-level aeptane set after s , be de�ned by

fR

�

(C

0

) j C

s

=)

�

C

0

6

�

�! g

Similarly let its output aeptane set after s be given by

fO

�

(C

0

) j C

s

=)

�

C

0

6

�

�! g

Note only aeptane sets from stable on�gurations, on�gurations C

0

suh that C

0

6

�

�!, are used.

The seurity �-alulus is asynhronous and therefore, as explained in [4℄,

aeptane sets are too disriminating, when used to haraterise must

testing; to see this it is suÆient to onsider the simple example

a?(x) 0

�

�

must

0 :

The same referene goes on to explain that the use of output aeptane

sets must also be relativised to sets of input ations, whih we now explain.

The Seurity Pialulus and Non-interferene 27

We use I

�

(C) to denote the set of input ations whih the on�guration

C an perform at level �, f a?v j C

a?v

��!

�

g. More generally we use I to

denote an arbitrarymulti-set of input ations, I the obvious term of all the

orresponding output ations in parallel, (I) to denote f a? j a?v 2 I g

and �nally (I) its onverse, f a! j a?v 2 I g.

Definition 3.20 (Asynhronous aeptane sets). For a on�gu-

ration C, let O

�

I

(C; s), its �-level asynhronous aeptane set after s,

relative to the multi-set of input ations I, be de�ned by

fO

�

I

(C

00

) j C

s

=)

�

C

0

; (C

0

j I) + and (C

0

j I)

�

�! C

00

6

�

�!g:

Note that aeptane sets in O

�

I

(C; s) are only generated from on�gura-

tions C

0

whih an never diverge after exeuting any sequene of inputs in

I.

With one �nal notational onvention we an mimi the alternative

haraterisation of must testing from [4℄. We write � allows

�

a?v if � `

�

a!hvi; this is generalised to sets of ations in the normal manner.

Definition 3.21. Let C; D be on�gurations of the form �;�.P , �;�

0

.

Q respetively. Then C �

�

must

D if for every s and I suh that (� after

�

s) allows

�

I,

C +

I

�

s implies a) D +

I

�

s

b) 8D 2 A

�

(D; s); suh that (I) \D = ;

9O 2 O

�

I

(C; s) suh that O � (I) � D:

Then we write � .

�

(� ` P)�

must

(� ` P) if

(�;�

0

);� . P �

�

must

(�;�

0

);� . Q;

for every appropriate �

0

.

Theorem 3.22. Let �; � be single-level environments and suppose � `

P;Q, where � is ompatible with �. Then � .

�

P

�

�

must

Q if and only if

� .

�

(� ` P)�

must

(� ` P).

The remainder of this subsetion is devoted to the proof of this theo-

rem. We will assume all triples �;� . P are on�gurations, and that all

environments are single-level.

Proposition 3.23. �.

�

(� ` P)�

must

(� ` P) implies �.

�

P

�

�

must

Q.

28 Matthew Hennessy

Proof. (Outline) The proof follows the outline of that of Lemma 4.4.13 of

[9℄, although the details are more ompliated beause of asynhrony and

the use of type environments and seurity levels.

Let T be an arbitrary newfree test suh that � `

�

T and suppose

P must T . We show Qmust T . To keep the argument simple we assume

T is newfree; the more general ase is handled exatly as in Proposi-

tion 3.13.

Let

T jQ (� T

0

) jQ

0

�

�! C

1

�

�! : : : : : : C

k

�

�! : : : (y)

be an arbitrary maximal omputation from T jQ, where we may assume

eah C

k

has the form (new ~

k

:

~

C

k

) (T

k

jQ

k

). We must show that for some

k, T

k

!!hi

��!.

First suppose that the omputation (y) is �nite, ending in C

n

. Using

Trae Deomposition it an deomposed into

�;� . Q

s

=) �;� . Q

n

T

s

=) T

n

From Lemma 2.5 we an assume T

n

has the form a

1

!hv

1

i j : : : a

k

!hv

k

i j T

0

,

where T

0

annot perform any output moves. Let I denote the multi-set

of input ations, fa

1

?v

1

; : : : ; a

k

?v

k

g and D the aeptane set determined

by the on�guration C

n

. Note that (I) \D = ;.

At this stage let us suppose that �;� . P +

I

�

s. Then we an apply

the hypothesis to obtain an O 2 O

�

I

(�;� . P; s) suh that O � (I) � D.

This means that there is a trae

�;� . P

s

=)

�

�

1

; �

1

. P

1

I

0

=)

�

�

m

; �

m

. P

m

where

�

m

; �

m

. P

m

6

�

�! (1)

�

m

; �

m

. P

m

6

a?v

��!

�

for any a?v 2 I � I

0

(2)

By trae omposition we an form

T j P

�

�!

�

T

n

j P

1

�

�!

�

(I

2

j T

0

) j P

m

; I

2

= I � I

0

:

If we an show that this is maximal, that is (I

2

j T

0

) jP

m

6

�

�!, then we are

�nished beause P must T means that for some k, T

k

!!hi

��!.

The only possibility is a ommuniation between P

m

and I

2

j T

0

. In

both ases below we rely on the fat that the environments are single-level,

enabling us to employ Lemmas 3.6 and 3.11.

Input: For some a?v 2 I

2

; P

m

a?v

��!.

Here from Lemma 3.6 we know that �

1

and �

m

are � after

�

s. Ap-

The Seurity Pialulus and Non-interferene 29

plying Lemma 3.11 it follows that �

m

`

�

a!hvi, whih by Lemma 3.5

is suÆient to ensure that �

m

; �

m

. P

m

a?v

��!

�

. This ontradits (2)

above.

Output: Here we have P

m

()a!hvi

����! and T

0

a?v

��!.

Again from Lemma 3.11 we know �

m

`

�

T

0

and therefore a! 2 O �

D; so Q

n

(~)a!w

����! for some value w. Beause of the struture of our

language, T

0

a?v

��! implies that T

0

a?w

��! is also true, and therefore we

have a ontradition of the maximality of C

n

.

This ompletes the proof, under the assumptions that �;� . P +

I

�

s and the omputation under srutiny, (y), is �nite. However these

assumptions an be taken are of in the standard manner, as in the

proof of Lemma 4.4.13 of [9℄.

�

As in the ase of may testing the proof of the onverse depends on the

ability to de�ne well-typed tests whih determine the relation �

�

. Here

there are two possible reasons why on�gurations may not be related; one

assoiated with onvergene, the other with a mismath of aeptane

sets. We treat eah in turn. As in the previous sub-setion to avoid

notational omplexity we only onsider simple output ations, where only

single names are transmitted. We also use some of the derived notation

developed in that sub-setion.

Tests for Convergene. We de�ne the terms T

C

(�; s; I; �) by indution

on s:

": Here T

C

(�; s; I; �) = (!!hi � !!hi) j I

a!v � s

0

: Here T

C

(�; s; I; �) is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T

C

(� u v

:

A; s

0

; I; �)

else 0

where r

Æ

hAi 2 �(a) for some Æ � �

()a! � s

0

: In this ase T

C

(�; s; I; �) is given by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T

C

(�;

:

A; s

0

; I; �))fj

x

=jg

where again r

Æ

hAi 2 �(a) for some Æ � �

a?v � s

0

: Here T

C

(�; s; I; �) is only de�ned if � ` a

:

w

Æ

hAi; v

:

A for some

30 Matthew Hennessy

Æ � �, in whih ase it is

a!hvi j T

C

(�; s

0

; �)

We leave the reader to hek the following:

Lemma 3.24. Suppose �;�.Q

s

=)

�

�

0

; �

0

.Q

0

, where (Q

0

jI) 6+, for some

I suh that (� after

�

s) allows

�

I. Then

� T

C

(�; s; I; �) is de�ned

� � `

�

T

C

(�; s; I; �)

� Q 6must T

C

(�; s; I; �).

Proof. By indution on s. �

Corollary 3.25. �.

�

P

�

�

must

Q and �;�.P +

I

�

s implies �;�.Q +

I

�

s.

Proof. Suppose, on the ontrary, that for some s, �;� . P +

I

�

s, while

�;� .Q

s

=)

�

�

0

; �

0

.Q, for some Q

0

suh that (Q

0

j I) 6+. By the previous

Lemma it is suÆient to show P must T

C

(�; s; I; �), whih an easily be

done by indution on s. �

Tests for Aeptane Sets. Let us �rst extend the prediate allows

�

to apply to output aeptane sets, in addition to sets of input ations.

We write �allows

�

O if, for eah a! 2 O, r

Æ

hAi 2 �(a) for some Æ � �, and

� ` v

:

A for some value v; note that this means � `

�

a!hvi.

We now de�ne terms T (�; s; O; I; �), where O is an output aeptane

set and I is a set of input ations, by indution on s. The indutive ases

are very similar to the orresponding ases in the de�nition of the tests

for onvergene.

": Here T (�; s; O; I; �) is only de�ned if � allows

�

O; I, in whih ase it is

Y

f a!hvi j a?v 2 I g j

Y

f a?(x

:

A

a

)!!hi j a! 2 O g:

Here the type A

a

is determined by the fat that � allows

�

O.

a!v � s

0

: Here the test is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T (� u v

:

A; s

0

; O; I; �)

else 0

where A is determined by r

Æ

hAi 2 �(a) for some Æ � �.

The Seurity Pialulus and Non-interferene 31

()a! � s

0

: Here it is de�ned by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T (�;

:

A; s

0

; O; I; �))fj

x

=jg

where, again, r

Æ

hAi 2 �(a) for some Æ � �.

a?v � s

0

: Here, as in the tests for onvergene, the test is only de�ned if

� ` a

:

w

Æ

hAi; v

:

A for some Æ � �, in whih ase it is

a!hvi j T

C

(�; s

0

; O; I; �)

We leave the reader to establish the following two Lemmas:

Lemma 3.26. Suppose (�after

�

s)allows

�

O; I and that �;�.Q

s

=)

�

, for

some �. Then T (�; s; O; I; �) is well-de�ned and � `

�

T (�; s; O; I; �). �

Lemma 3.27. Suppose T (�; s; O; I; �) is de�ned and O

0

\O 6= ; for every

O

0

2 O

�

I

(�;� . P; s). Then �;� . P +

I

�

s implies P must T (�; s; O; I; �).

�

We are now ready to prove the alternative haraterisation:

Theorem 3.28. (Theorem 3.22) � .

�

P

�

�

must

Q if and only if � .

�

(� `

P)�

must

(� ` P)

Proof. Beause of the previous sequene of results it is suÆient to prove

(�;�

0

);� . P 6�

�

(�;�

0

);� . Q, for some �

0

, implies that there exists a

test T suh that � `

�

T , P must T , while Q 6must T . For simpliity we

only onsider the ase when �

0

is empty; the more general ase is treated

in a manner analogous to Theorem 3.17.

In view of Corollary 3.25 there must be some s suh that �;�.P +

I

�

s

and some omputation

�;� . Q

s

=)

�

C; A = R

�

(C) (�)

and some I suh that (� after

�

s) allows

�

I and (I) \ A = ; with the

property that for every O

0

2 O

�

I

(�;�.P; s); O

0

6� A[(I). Let O

�

I

(�;�.

P; s) = fO

1

; : : : ; O

n

g and for eah i hoose a

i

! suh that a

i

! 2 O

i

� (A [

(I)). Let O be the set fa

1

!; : : : ; a

n

!g.

We now have all the ingredients to apply the previous two Lemmas to

obtain the test T (�; s; O; I; �), well-typed with respet to � at level � suh

that P must T (�; s; O; I; �). However the omputation (�) above shows

that Q 6must T (�; s; O; I; �), sine (O) \ (I) = ;.

�

32 Matthew Hennessy

4 Non-Interferene Results

In this setion we reonsider the approah taken to non-interferene in

Setion 4 of [10℄. The essential idea is that if a proess is well-typed at a

given level � then its behaviour at that level is independent of proesses

\running at higher seurity levels"; or more generally \running at seurity

levels independent to �". A partiular formulation of suh a result was

given in Theorem 5.3 of [10℄:

Theorem 4.1. If � `

�

P;Q and � `

>

H;K, where H; K are �-free pro-

esses, then � .

�

P '

may

Q implies � .

�

P jH '

may

Q jK.

Here, beause of our more re�ned notions of well-typing, we an give o�er

a signi�ant improvement on this Theorem, and moreover the formulation

is atually easier.

Let us say that the seurity level Æ is independent of � if Æ 6� �. We

an ensure that a proess H is \running at a seurity level independent

to �" by demanding that � `

Æ

H , for some Æ independent of �. In fat we

will only require the weaker typing relation � `

wÆ

H . This ensures that all

the output ations of H are at a level independent of �, as an be dedued

from the following property:

Lemma 4.2. Suppose � `

wÆ

H. Then �;� .H

�

�!

�

, where � is an output

ation, implies Æ � �.

Proof. By indution on the derivation of �;� . H

�

�!

�

. The only non-

trivial ase is the base ase �;� . a!hvi

a!v

��!

�

0.

Here we have � ` a

:

w

Æ

0

hAi for some Æ � Æ

0

. Beause of (-out) we

know � ` a

:

r

�

0

hBi for some �

0

� �. We an now apply Lemma 3.3 to

obtain Æ

0

� �

0

from whih it follows that Æ � �. �

We an now state our �rst non-interferene result. Note that it applies

to proesses suh that � `

r�

P; Q rather than � `

�

P; Q; only their input

ations need to be at level at most �.

Theorem 4.3 (Non-Interferene 1). Let � and � be ompatible and

suppose � `

r�

P; Q. Then

� .

�

P

�

�

may

Q implies � .

�

P jH

�

�

may

Q jK

provided � `

wÆ

H; K for some Æ independent of �.

Proof. Beause of Proposition 3.13 it is suÆient to prove

�;�

0

; � . P jH

s

=)

�

implies �;�

0

; � . P

s

=)

�

The Seurity Pialulus and Non-interferene 33

This is proved by indution on the derivation of �;�

0

; � . P j H

s

=)

�

.

The base ase, when s is ", is trivial, and there are three possibilities for

the indutive ase. For notational onveniene let us suppose that �

0

is

empty; the more general ase adds no extra ompliations.

First suppose the derivation has the form

�;� . P jH

�

�!

�

�

0

; �

0

. R

s

0

=)

�

Here there are two ases.

� is performed by P : So R has the form P

0

jH and

�;� . P

�

�!

�

�

0

; �

0

. P

0

:

By Subjet Redution, Theorem 2.6, we know �

0

`

r�

P

0

and therefore

we an apply indution to obtain the result.

� is performed by H : Here R has the form P jH

0

and

�;� . H

�

�!

�

�

0

; �

0

. H

0

:

From the previous Lemma we know � must be an input, say a?v, and

from Lemma 3.2 we know that �

0

is simply � and �

0

must take the form

� u v

:

A for some type A. By weakening we therefore have �

0

`

r�

P

and we may apply indution to obtain �

0

; �

0

. P

s

0

=)

�

.

From the same Lemma we know that � ` a

:

w

Æ

hBi; v

:

B for some

Æ � � and B <

:

A. So we an infer

�;�

0

u v

:

B u a

:

w

Æ

hBi . P j a!hvi

s

0

=)

�

:

An appliation of (tr-asyn) now gives the required �;� . P

��s

0

==)

�

.

The seond possibility is that the derivation is derived using an instane

of (tr-asyn). Here a simple indutive argument suÆes.

The �nal possibility is that it has the form

�;� . P jH

�

�!

�

�

0

; �

0

. R

s

=)

�

If the initial � ation is performed either by P , or by H then (by Subjet

Redution) we an apply indution to obtain the result. So there remains

two ases:

Output from H to P : It turns out that this is not possible, beause Æ 6� �.

Suppose we did have suh an output. Then we would have

� `

wÆ

H; H

(~)a!v

���! H

0

� `

r�

P; P

a?v

��! P

0

Applying Subjet Redution we would have

� ` a

:

w

Æ

0

hAi; Æ � Æ

0

� ` a

:

r

�

0

hBi; �

0

� �:

34 Matthew Hennessy

The onsisteny requirement on types implies Æ

0

� �

0

, whih ontra-

dits Æ 6� �.

Output from P to H : Here the derivation takes the form

�;� . P jH

�

�!

�

�;� . (~

:

~

C)(P

0

jH

0

)

s

=)

�

where P

(~)a!v

���! P

0

and H

a?v

��! H

0

. So there exists a sequene s

C

,

assoiated with s, suh that

�;� ; ~

:

~

C . P

0

jH

0 s

C

=)

�

(�)

with the property that for for any R suh that �;� ; ~

:

~

C . R

s

C

=)

�

it

follows that �;� . (~

:

~

C)R

s

=)

�

.

Applying indution to (�) we obtain

�;� ; ~

:

~

C . P

0 s

C

=)

�

Note that this is possible sine Subjet Redution gives

�; ~

:

~

C `

r�

P

0

; � u v

:

A `

wÆ

H

0

where A is a type suh that �; ~

:

~

C <

:

�u v

:

A. (In fat A is the type

at whih v is sent by P .)

It follows that �;�; ~

:

~

C . P

0

j a!hvi

s

C

=)

�

and therefore

�;� . (new ~

:

~

C) (P

0

j a!hvi)

s

=)

�

:

But by Lemma 2.5 we know

P �

st

(new ~

:

~

C) (P

0

j a!hvi)

and the result follows.

�

We end the paper with a non-interferene result with respet to must

testing. Note that Theorem 4.3 is no longer true when

�

�

may

is replaed

by

�

�

must

, as the following example shows.

Example 4.4. Let A denote the type fw

bot

hi; r

bot

hi; r

top

hig and B denote

fr

top

hig. Further, let � map a to A and n to the type fw

bot

hAi; r

bot

hAi; r

top

hBig.

Now onsider the proesses P and H de�ned by

P (n!hai j n?(x

:

A) x!hi H (n?(x

:

B) 0

It is very easy to hek that � `

rbot

P and � `

wtop

H . However

�; � .

bot

P j 0 6

�

�

must

P jH

beause of the bot level test a?() !!hi.

The Seurity Pialulus and Non-interferene 35

The presene or absene of H determines whether or not there is read on-

tention on the hannel n, whih in turn inuenes the deadlok apabilities

of P with respet to the hannel a.

Here the problem is the type of the hannel n; it may be read at both

level bot and top. A not unreasonable restrition would be to require that

the read apability of hannels be on�ned to a partiular seurity level,

using single-level types. This would not rule out inter-level ommunia-

tion, but simply ontrol it more tightly.

Theorem 4.5 (Non-Interferene 2). Let � and � be ompatible single-

level environments and suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite proesses H; K suh that � `

wÆ

H; K for some Æ independent

of �.

Note that we must restrit our attention to �nite H and K sine must

testing is sensitive to divergene; if H is a divergent term then we ould

not expet � .

�

P j 0 '

must

P jH to hold when P is a onvergent term.

This problem is avoided by restriting attention to �nite terms,whih an

never diverge.

The remainder of the setion is devoted to the proof of this �nal result

of the paper. Throughout we will assume � and � are ompatible single-

level environments, � `

r�

P , � `

wÆ

H for some Æ independent of �, and

moreover that H is a �nite proess.

Lemma 4.6. For every s, �;� . P +

I

�

s if and only if �;� . P jH +

I

�

s.

Proof. One diretion is easy, �;� . P 6+

I

�

s implies �;� . P jH 6+

I

�

s.

Conversely, beause H is �nite, we an assume that

�;� . P jH

s

=)

�

�

0

; �

0

. (~

:

~

C)(P

0

jH

0

)

for some P

0

suh that (P

0

jI) 6+. We leave the reader to prove, by indution

on this derivation, that �;� . P

s

=)

�

�

0

; �

0

. P

0

. �

Proposition 4.7. Suppose A 2 A

�

(�;� . P; s) and I is a multi-set of

inputs suh that (I) \ A = ; and (� after

�

s) allows

�

I. Suppose further

that �;� . P +

I

�

s. Then there exists some O 2 O

�

I

(�;� . P jH; s) suh

that O � (I) � A.

Proof. By indution on the derivation

�;� . P

s

=)

�

D; where A = R

�

(D)

36 Matthew Hennessy

� The empty derivation.

Here A = R

�

(�;� . P). This means that P 6

�

�! but we may have

P j H

�

�! either beause H

�

�! or there may be a write up from P

to H . But beause H is syntatially �nite and P + we know there is

some P

0

jH

0

suh that P jH

�

�!

�

P

0

jH

0

6

�

�!. Let O be O

�

(�;�.P

0

jH

0

).

Sine (I)\A = ; we know that O 2 O

�

I

(�;�.P jH; s) and beause

P

0

is obtained from P by write-ups it follows that O � A.

� The derivation has the form �;� . P

()a!v

���!

�

�

0

; �

0

. P

0

s

=)

�

D.

By Subjet Redution we know �

0

`

r�

P

0

and therefore we may apply

indution to obtain O 2 O

�

I

(�;� . P

0

jH; s) with the required proper-

ties. The result now follows sine O

�

I

(�;� . P

0

jH; s) � O

�

I

(�;� . P j

H; ()a!v � s)

� The remaining ases are similar.

�

We also have the onverse.

Proposition 4.8. Suppose A 2 A

�

(�;�.P jH; s) and, as in the previous

Proposition, I is a set of inputs suh that (I) \ A = ; and (� after

�

s) allows

�

I. Then there exists some O 2 O

�

I

(�;� . P; s) suh that O �

(I) � A.

Proof. Again by indution on the derivation

�;� . P jH

s

=)

�

D; where A = R

�

(D)

As an example we examine the ase

�;� . P jH

�

�! D

0 s

=)

�

D;

where the initial � onsists of a ommuniation between P and H . This

must be a write-up from P to H ; so D

0

has the form �;� . (~

:

~

C)P

0

j

H

0

, where P

(~

:

~

C)a!v

�����! P

0

and H

a?v

��! H

0

. We know P has the form

(~

:

~

C)(a!hvi j P

0

), but more importantly that r

Æ

hAi 2 �(a) for some Æ

independent from � (y). What this means is there an an be no om-

muniation between a!hvi and any Q suh that � `

r�

Q.

Now the derivation �;� . (~

:

~

C)(P

0

jH

0

)

s

=)

�

D an be transformed

into �;�; ~

:

~

C . P

0

jH

0

s

C

=)

�

E , where R

�

(E) = R

�

(D). Moreover we an

apply indution to this derivation, to obtain O 2 O

�

I

(�;�; ~

:

~

C . P

0

; s

C

)

suh that O � (I) � A.

We an use (y) to prove O is also in O

�

I

(�;�; ~

:

~

C .a!hai jP

0

; s

C

). The

result now follows sine

O

�

I

(�;�; ~

:

~

C . a!hai j P

0

; s

C

) � O

�

I

(�;�; ~

:

~

C . (~

:

~

C)(a!hai j P

0

); s):

The Seurity Pialulus and Non-interferene 37

�

Corollary 4.9. (Theorem 4.5) suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite proesses H; K suh that � `

wÆ

H; K for some Æ independent

of �.

Proof. It is suÆient to prove

(�;�

0

);�.P �

�

(�;�

0

);�.P jH and (�;�

0

);�.P jH �

�

(�;�

0

);�.P:

These follow from the two previous Propositions and Lemma 4.6. �

5 Conlusions and Related Work

This paper is a diret ontinuation of the researh reported in [10℄. There

we foused on the general topi of seurity types, showing that resoure a-

ess ontrol ould be enfored using a typing system and information ow

ontrol ould be obtained by a restrition to the set of types employed.

The import of Subjet Redution was emphasised by developing a Type

Safety Theorem, whih in turn required a version of the language in whih

proesses were tagged with their seurity levels. Here we onentrated on

types for information ow, alling the resulting language the seurity �-

alulus. The �rst main result onsists of alternative haraterisations of

may and must testing for this language. These uses a novel labelled tran-

sition system, whih reords the seurity levels at whih ations our,

together with their e�et on the type environment of the proess under

observation and the e�et on the, possibly di�erent, type environment

of the observing proess. To our knowledge this is the �rst time typed

behavioural equivalenes for �-alulus-like languages have been hara-

terised in terms of an lts, although in publiations suh as [15℄ an lts

formulated using types has been used to give a sound, but inomplete,

method for inferring a typed version of barbed ongruene, [16℄. We be-

lieve that the tehnique is quite general and will be appliable to other

proess languages whih use sub-typing.

Our seond main result extends the non-interferene result from [10℄,

showing that non-interferene, with respet to both may and must testing,

an be enfored using types. However it remains to be seen to what extent

this approah, non-interferene through types, an be used to obtain useful

instanes of non-interferene. For example in [7℄ a wide range of seurity

38 Matthew Hennessy

properties have been shown to be expressible in terms of non-interferene

and it would be interesting to see whether these an be enfored by typing

onstraints using a type system suh as ours. This would involve extending

our language to inlude ryptographi primitives, suh as those from [1℄

but we believe that this is not problemati.

Apart from [12℄, most of the work on non-interferene for proess lan-

guages use a behavioural approah; see [5, 19℄ for useful surveys

1

. There

systems are deemed to be interferene-free if their trae sets, sequenes

of ations labelled high or low, satisfy ertain properties. Here we use

a more extensional approah, saying that a system is interferene-free if

low-level observers are unable to disern the presene of absene of high-

level omponents. There must, of ourse be some onnetion between our

de�nition and at least one of the behavioural de�nitions in the literature.

However the omparison is not straightforward. The de�nitions, in papers

suh as [18, 5℄ are for very simple untyped versions of CCS, while muh

of the power of our approah omes from the use of types for the more

sophistiated �-alulus.

Aknowledgements: The researh was partially funded by EPSRC

grant GR/M71169.

Referenes

[1℄ Mart��n Abadi. Serey by typing in seurity protools. In Proeedings of TACS'97,

volume 1281 of Leture Notes in Computer Siene, pages 611{637. Springer Ver-

lag, 1997.

[2℄ D. E. Bell and L. J. LaPadula. Seure omputer system: Uni�ed exposition and

multis interpretation. Tehnial report MTR-2997, MITRE Corporation, 1975.

[3℄ G. Boudol. Asynhrony and the �-alulus. Tehnial Report 1702, INRIA-Sophia

Antipolis, 1992.

[4℄ Ilaria Castellani and Matthew Hennessy. Testing theories for asynhronous lan-

guages. In V Arvind and R Ramanujam, editors, 18th Conferene on Foundations

of Software Tehnology and Theoretial Computer Siene (Chennai, India, De-

ember 17{19, 1998), LNCS 1530. Springer-Verlag, Deember 1998.

[5℄ Riardo Foardi and Roberto Gorrieri. A lassi�ation of seurity properties for

proess algebras. Journal of Computer Seurity, 3(1), 1995.

[6℄ Riardo Foardi and Roberto Gorrieri. Non interferene: Past, present and future.

In Proeedings of DARPA Workshop on Foundations for Seure Mobile Code,

1997.

[7℄ Riardo Foardi, Roberto Gorrieri, and Fabio Martinelli. Non-interferene for

the analysis of ryptographi protools. In U. Montanari and J. Rolim, editors,

1

For the use of types for other languages see [20℄.

The Seurity Pialulus and Non-interferene 39

27th Internationa Conferene on Automata, Languages and Programming, LNCS

1853, pages 354{371. Springer-Verlag, July 2000.

[8℄ J. A. Goguen and J. Meseguer. Seurity poliies and seurity models. In IEEE

Symposium on Seurity and privay, 1992.

[9℄ M. Hennessy. An Algebrai Theory of Proesses. MIT Press, 1988.

[10℄ Matthew Hennessy and James Riely. Information ow vs resoure aess in the

asynhronous pi-alulus (extended abstrat). In U. Montanari, J. Rolim, and

E. Welzl, editors, Automata, Languages and Programming, 27th International

Colloquium, volume 1853 of Leture Notes in Computer Siene, pages 415{427,

Geneva, Switzerland, 9{15 July 2000. Springer-Verlag. Full version available as

CSR Tehnial Report 200:3, University of Sussex.

[11℄ Kohei Honda and Mario Tokoro. On asynhronous ommuniation semantis.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Proeedings of the ECOOP '91

Workshop on Objet-Based Conurrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[12℄ Kohei Honda, Vaso Vasonelos, and Nobuko Yoshida Honda. Seure informa-

tion ow as typed proess behaviour. In Proeedings of European Symposium on

Programming (ESOP) 2000. Springer-Verlag, 2000.

[13℄ R. Milner, J. Parrow, and D. Walker. Mobile logis for mobile proesses. Theo-

retial Computer Siene, 114:149{171, 1993.

[14℄ R. De Niola and M. Hennessy. Testing equivalenes for proesses. Theoretial

Computer Siene, 24:83{113, 1984.

[15℄ B. Piere and D. Sangiorgi. Behavioral equivalene in the polymorphi pi-alulus.

In Pro. 24th POPL. ACM Press, 1997. Full paper to appear in Journal of the

ACM.

[16℄ Benjamin Piere and Davide Sangiorgi. Typing and subtyping for mobile proesses.

Mathematial Strutures in Computer Siene, 6(5):409{454, 1996. Extended ab-

strat in LICS '93.

[17℄ James Riely and Matthew Hennessy. Resoure aess ontrol in systems of mobile

agents (extended abstrat). In Proeedings of 3rd International Workshop on

High-Level Conurrent Languages, Nie, Frane, September 1998. Full version

available as Computer Siene Tehnial Report 2/98, University of Sussex, 1997.

Available from http://www.ogs.susx.a.uk/.

[18℄ A.W. Rosoe, J.C.P. Woodok, and L. Wulf. Non-interferene through determin-

ism. In European Symposium on Researh in Computer Seurity, volume 875 of

LNCS, 1994.

[19℄ P.Y.A. Ryan and S.A. Shneider. Proess algebra and non-interferene. In CSFW

12. IEEE, 1997.

[20℄ Geo�rey Smith and Dennis Volpano. Seure information ow in a multi-threaded

imperative language. In Conferene Reord of the ACM Symposium on Priniples

of Programming Languages, San Diego, January 1998.

[21℄ David Turner. The Polymorphi Pi-Calulus: Theory and Implementation. Ph.d.

thesis, Edinburgh University, 1995.

[22℄ Nobuko Yoshida. Graph types for monadi mobile proesses. In FSTTCS, volume

1180, pages 371{386. Springer-Verlag, 1996.

