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The Se
urity Pi
al
ulus and

Non-interferen
e

Matthew Hennessy

Abstra
t. The se
urity �-
al
ulus is a typed version of the asyn-


hronous �-
al
ulus in whi
h the types, in addition to 
onstraining

the input/output behaviour of pro
esses, have se
urity levels asso-


iated with them. This enables us to introdu
e a range of typing

dis
iplines whi
h allow input or output behaviour, or both, to be

bounded above or below by a given se
urity level.

We de�ne typed versions of may and must equivalen
es for the

se
urity �-
al
ulus, where the tests are parameterised relative to

a se
urity level. We provide alternative 
hara
terisations of these

equivalen
es in terms of a
tions in 
ontext ; these des
ribe the a
-

tions a pro
ess may perform in a given typing environment, assum-

ing the observer is 
onstrained by a related but possibly di�erent

environment.

The paper also 
ontains non-interferen
e results with respe
t to

may and must testing. These show that 
ertain forms of non-

interferen
e 
an be enfor
ed using our typing systems.

Keywords: Distributed Systems, Pi
al
ulus, se
urity types, non-interferen
e,

testing equivalen
es.

1 Introdu
tion

The asyn
hronous �-
al
ulus, [3, 11℄, is a simple formalism for des
ribing

distributed pro
esses. It presupposes a set of 
hannel names through whi
h

pro
esses 
ommuni
ate. Thus

a

?(X)P is a pro
ess whi
h inputs some

value v on the 
hannel

a

, and exe
utes the body P in whi
h X has been

substituted by the value v, while output on the same 
hannel is denoted

by

a

a!hvi. These two primitives, together with operators for parallelism,

j, repetition, �, and 
hannel s
oping, (new n) , make the �-
al
ulus a very

powerful language. For example the term P ,

� req?(x; y) (new r)

s

!hx; ri j r?(z) y!hzi

des
ribes a pro
ess whi
h repeatedly re
eives a request on the 
hannel req,


onsisting of a value, bound to x, and a return 
hannel, bound to y. This

value is in turn sent along the 
hannel

s

, presumably servi
ed by some
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independent server, together with a private return 
hannel r, generated

spe
i�
ally for this purpose. A response is awaited from the servi
e, on

the reply 
hannel r, whi
h is then forwarded on the original return 
hannel

y.

Numerous typing systems have been developed for this language, [16,

21, 22℄. Most are based on judgements of the form

� ` P

indi
ating that the pro
ess P is well-typed with respe
t to the 
hannel

environment �, whi
h asso
iates 
apabilities with the free 
hannel names

of P . Usually these 
apabilities are some elaboration of

read 
apabilities rhTi: the ability to read values of type T from a 
hannel

write 
apabilities whTi: the ability to write values of type T to a 
hannel

For example let A denote the tuple type (int;whinti); a value of this

type will 
onsist of a pair, the �rst element of whi
h is an integer, and

the se
ond a 
hannel on whi
h integers may be written. If � asso
iates

the type rhAi with the 
hannel req and the type whAi with

s

, we would

expe
t the above term, P , to be well-typed with respe
t to �. However

for this to be true the lo
al 
hannel

r

needs to be generated with the write


apability whinti, to be sent along the 
hannel

s

, and the read 
apability

rhinti, whi
h is used by the pro
ess itself. Thus if we were to annotate all

bound names and variables with their required types we would obtain the

annotated term

� req?(x; y)

:

A (new r

:

R)

s

!hx; ri j r?(z) y!(z) (�)

where R is the type fwhinti; rhintig. This term is well-typed with respe
t

to the above mentioned environment �.

Intuitively the use of types 
onstrain the behaviour of pro
esses, en-

suring no misuse of 
hannels. By de�ning sophisti
ated forms of types

pro
ess behaviour 
an be more or less 
onstrained, while at the same time

the advantages of well-typing 
an be preserved. For example a form of

polymorphism is investigated in [16℄, while in [10℄ se
urity levels are asso
i-

ated with 
apabilities, to obtain so-
alled se
urity types. Suppose we have

two se
urity levels, high, denoted by top, and low, denoted by bot. Then

we would have 
apabilities of the form r

top

hTi; r

bot

hTi; w

top

hTi; w

bot

hTi,

where T in turn a se
urity type. By varying the pre
ise de�nition of a

se
urity type we 
an either implement resour
e a

ess 
ontrol methodolo-

gies, or ensure forms of non-interferen
e, [2, 8, 6℄. In this paper we will

be 
on
erned with the latter, using a mild variation of the I-types of [10℄;

essentially types are sets of read/write 
apabilities, where in addition ea
h
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apability is annotated by a se
urity level taken from some 
omplete lat-

ti
e hSL;�;u;t; top; boti. We will refer to the asyn
hronous �-
al
ulus,

augmented with these types, as the se
urity �-
al
ulus.

The statement of non-interferen
e results requires some de�nition of

pro
ess behaviour ; intuitively a system is interferen
e-free if it's low level

behaviour is independent of 
hanges to high-level behaviour. The main

topi
 of this paper is an investigation of the notion of behaviour of pro
ess,

relative to a se
urity level, for the se
urity �-
al
ulus.

Pro
ess behaviour is relative to some typing environment � and there-

fore we wish to develop a relation of the form

� .

�

P ' Q

meaning, intuitively, that in the typing environment �, both P and Q ex-

hibit the same �-level behaviour. By this we mean that a �-level observer

will be unable to dis
ern a di�eren
e between P and Q. For example

low-level observers will be unable to see any high-level a
tions performed

by P; Q. But more importantly we assume that these observers are 
on-

strained by the typing environment � and therefore a
tions disallowed by

this environment will also be invisible to observers.

For example suppose the 
hannel

a

is not in the domain of �. Then

we would expe
t

� .

�

a

!hvi j

b

!hwi '

b

!hwi

regardless of the value of � be
ause no observer, well-typed with respe
t to

�, will be able to intera
t with P along the 
hannel

a

. More generally this

will also be true if � asso
iates with

a

only an output 
apability. Similarly

if � only asso
iates with it an input 
apability we will have

� .

�

Q j

a

?(x)T ' Q

for any pro
ess Q.

In this paper we investigate may and must testing equivalen
es, [14, 9℄

for the se
urity �-
al
ulus. In parti
ular we give an alternative 
hara
teri-

sation of these behavioural equivalen
es whi
h, as might be expe
ted from

[14, 9℄, are based on the sequen
es of a
tions that a pro
ess 
an perform.

But here these sequen
es are relative to both a se
urity level and a typing

environment.

Unfortunately the situation is even more 
ompli
ated, as the typing

environment of the observer and that of the pro
ess being observed may

not in general be the same. For example 
onsider the term P , given in

(�) above. To be well-typed relative to an environment �, � needs to

asso
iate appropriate types with the free names of P , namely req and

s

.

Now 
onsider a 
omputation involving an observer, also well-typed with
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respe
t to �, intera
ting with P . After an intera
tion on the 
hannel req

the pro
ess evolves to P

1

:

(new r

:

R)

s

!hv; ri j r?(z)

b

!(z) ;

for some value v and 
hannel

b

sent by the observer. At this stage both

the observer and the observed pro
ess P

1


an still be typed relative to �,

as both v and

b

must have been known to the observer, and therefore be

typeable in �. However now the observed pro
ess generates a new 
hannel

r

, with type R = frhinti;whintig. But be
ause of the type asso
iated

with

s

in �,

r

is only sent to the observer with the subtype 
onsisting of

the one 
apability whinti. Subsequently the observer is working relative

to �;

r
:

fwhintig, the environment � augmented with a new entry for

r

,

whereas the observed pro
ess is working with respe
t to the di�erent en-

vironment �;

r
:

frhinti;whintig.

In general the observed pro
ess and the observing pro
ess will be 
on-

strained by related but di�erent environments.

Our 
hara
terisation of the behavioural equivalen
es will be based on

what we 
all a Context Labelled Transition System. Here a
tions take the

form

�;� . P

�

�!

�

�

0

; �

0

. P

0

indi
ating that in the typing environment � the pro
ess P 
an perform the

a
tion � to intera
t with some �-level observer whi
h in turn is typeable

in the environment �; this a
tion may 
hange the typing environments of

both the observer and the observed pro
esses, to �

0

and �

0

respe
tively.

If the type environments � and � satisfy some minor 
onditions, (are


ompatible), we say that the above judgement is an a
tion in 
ontext.

May equivalen
e will be 
hara
terised in terms of appropriate sequen
es

of su
h a
tions in 
ontext while must equivalen
e will also require the

development of appropriate notions of a

eptan
e sets.

The remainder of the paper is organised as follows. In Se
tion 2 we

formally de�ne the syntax of the se
urity �-
al
ulus, together with its

(standard) operational semanti
s. This is followed, in Sub-se
tion 2.3,

with a range of typing systems. In the most straightforward we have the

judgements

� ` P

where � is a type environment, asso
iating types to 
hannel names and

variables. This means that relative to �, P uses its 
hannels 
orre
tly as

input/output devi
es, ignoring their se
urity annotations. We also have

judgements of the form

� `

�

P
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whi
h indi
ates that in addition P uses 
hannels with se
urity level at

most �. Similarly we have a typing relation

� `

�

P

indi
ating that P uses 
hannels with at least se
urity level �. Indeed we


an go further, designing relations su
h as � `

r�

P or � `

w�

P where the

read 
apabilities or the write 
apabilities of pro
esses are independently


onstrained. For all of these typing relations Subje
t Redu
tion is easily

established.

Se
tion 3 is the heart of the paper. First the behavioural preorders and

equivalen
es are de�ned, by adapting the standard framework, [14, 9℄, to

the se
urity �-
al
ulus. We obtain the relations

� .

�

P '

may

Q

and

� .

�

P '

must

Q

indi
ating that P and Q 
an not be distinguished, relative to may/must

experiments respe
tively, by any testing pro
ess T su
h that � `

�

T , that

is any test running at se
urity level at most �, relative to the type envi-

ronment. This is followed by an exposition of the Context LTS, a
tions in


ontext, and their properties. Sub-se
tion 3.3 then 
ontains an alternative


hara
terisation of '

may

in terms of sequen
es of a
tions in 
ontext, while

in Subse
tion 3.4 we give the mu
h more 
ompli
ated 
hara
terisation of

'

must

.

One bene�t of having behavioural equivalen
es relativised to se
urity

levels is that non-interferen
e results 
an be stated su

in
tly. Se
tion 4


ontains two su
h statements, and their proofs. The �rst gives 
onditions

ensure that

� .

�

P '

may

Q implies � .

�

P jH '

may

Q jK:

It turns out to be suÆ
ient to require that the read 
apabilities of P and Q

be bounded above by �, that is � `

r�

P;Q, and that the write 
apabilities

of H and K be bounded below by some Æ 6� �, that is � `

wÆ

H; K.

This is quite a general non-interferen
e result. For example in the 
ase

where Q is P and K is the empty pro
ess 0 we obtain

� .

�

P '

may

P jH

indi
ating that, under the 
onditions of the theorem, the pro
ess H 
an

not interfere with the behaviour of P .

This result is not true for the must equivalen
e. As explained in Se
-

tion 4, this is be
ause our types allow 
ontention between pro
esses run-



6 Matthew Hennessy

ning at di�erent se
urity levels over read a

ess to 
hannels. However by

restri
ting the type system, allowing only single level types, we show that

the same result holds for '

must

.

The paper ends with a brief survey of related work.

2 The Language

In this se
tion we de�ne the language, its operational semanti
s and the

typing system with whi
h we will be 
on
erned.

2.1 The Types

We presuppose a 
omplete latti
e hSL;�;u;t; top; boti of se
urity anno-

tations, ranged over by �; �; : : : . For ea
h � we assume a set of basi
 types

at that level, of the form B

�

. If the se
urity annotation is omitted, as in

int, then we assume it has se
urity level bot; as we shall see values of these

types are available to all pro
esses. Also, as explained in the Introdu
tion,

a �-level 
hannel type, for 
hannels a

essible to pro
esses with se
urity


learan
e at level �, 
onsists of a set of �-level 
apabilities, i.e. a subset of

Cap

�

. These may either be a read 
apability, of the form r

�

hTi, for some

appropriate � and T, or a write 
apability, of the form w

�

hTi. These 
a-

pabilities are 
onstrained by 
onsisten
y requirements. For example sin
e

values with the 
apability w

�

hTi are written to by �-level pro
esses we

require that T in turn be a �-level type.

Types, i.e. sets of 
apabilities, are also 
onstrained. For simpli
ity in

a given type we only allow at most one write 
apability, and for ea
h

level � at most one read 
apability at that level. More importantly we

ensure that, relative to se
urity levels, only write-ups, [8, 2℄, are allowed by

requiring that if w

�

hTi and r

�

0

hSi are in a type then � � �

0

; the additional


onstraint that T be a sub-type of S is well-known [16, 17℄. The formal

de�nition is as follows:

Definition 2.1. (Types, Capabilities and Subtyping) Let Type

�

; Cap

�
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be the least sets, and <

:

; 
onsistent the least relations, whi
h satisfy:

(rt-base)

B

�

2 Type

�

� � �

(rt-wr)

A 2 Type

�

w

�

hAi 2 Cap

�

(rt-wrrd)

S �

fin

Cap

�

S 2 Type

�

S 
onsistent

(rt-rd)

A 2 Type

�

r

�

hAi 2 Cap

�

� � �

(rt-tup)

A

i

2 Type

�

(8i)

(A

1

; : : : ;A

k

) 2 Type

�

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B

(u-base) B

�

<

:

B

�

if � � �

(u-res) f
ap

i

g

i2I

<

:

f
ap

0

j

g

j2J

if (8j)(9i) 
ap

i

<

:


ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i

The set of 
apabilities Cap is 
onsistent if

� w

�

hAi; w

�

hBi 2 Cap implies � = � and A is B

� r

�

hAi; r

�

hBi 2 Cap implies A is B

� w

�

hAi; r

�

hBi 2 Cap implies A <

:

B.

These types 
orrespond very 
losely to the I-types of [10℄; the rule

(rt-rd) ensures that only write-ups are allowed, from low-level pro
esses

to high-level pro
esses. But we allow multiple read 
apabilities, whi
h will

enable us to be more 
exible with respe
t to allowing/disallowing reading

from a 
hannel at di�erent se
urity levels. However subtyping is more

restri
tive; unlike [10℄ they 
an only be sub-typed at the same se
urity

level; r

�

hAi <

:

r

�

hBi only if � = �. Nevertheless this is 
ompensated for

in the existen
e of multiple read 
apabilities.

Example 2.2.

� The set fw

bot

hinti; r

bot

hinti; r

top

hintig is a bot-level 
hannel type, an

element of Type

bot

; that is 
hannels of this type may be transmitted

on bot-level 
hannels. In turn these 
hannels may be written to by a

bot-level pro
ess or read by either a bot-level or a top-level pro
ess.

� The type fw

bot

hinti; r

top

hintig restri
ts reading from the 
hannel to

top-level pro
esses, although bot-level ones 
an write to it.
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� The set fw

top

hinti; r

bot

hinti; r

top

hintig is not a valid type as it 
ontains

a read 
apability at a lower level than its write 
apability.

� The set fw

top

hinti; r

top

hintig is a top-level type but not a bot-level one;

that is, it is in Type

top

but not in Type

bot

.

Proposition 2.3. For every �, Type

�

is a preorder with respe
t to <

:

,

with both a partial meet operation u and a partial join t.

Proof. The (partial) fun
tions u and t are de�ned by stru
tural indu
tion

on types. They are determined by the 
lauses

r

�

hAi u r

�

hA

0

i = r

�

hA uA

0

i

r

�

hAi u r

�

hA

0

i = fr

�

hAi; r

�

hAig

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

hA

0

i = r

�

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

and these de�nitions are extended homomorphi
ally to tuple types. �

Multiple read 
apabilities in a type, su
h as fw

bot

hinti; r

bot

hinti; r

top

hintig,

allows pro
esses at di�erent se
urity levels to read from the same 
hannel.

We 
an eliminate su
h 
ontention by using a restri
ted set of types.

Definition 2.4 (Single-level Types). Let SlType be the least set of

types obtained by 
hanging the 
ondition on read 
apabilities in the de�-

nition of 
onsistent of De�nition 2.1 to read:

r

�

hAi; r

�

hBi 2 Cap implies � = � and A is B.

Note that these types still allow 
ommuni
ation from low-level pro
esses

to high-level pro
esses. We leave the reader to 
he
k that these types,

ordered by <

:

also has both partial meet and join operations.

2.2 Syntax and Operational Semanti
s

The syntax of the �-
al
ulus, given in Figure 1, uses a prede�ned set of

names, ranged over by a; b; : : : and a set of variables, ranged over by x; y; z.

Identi�ers are either variables or names. We also assume a set of basi


values, ranged over by bv, ea
h of whi
h belong to a given basi
 type.

The binding 
onstru
ts (new a

:

A) Q and u?(X

:

A)Q introdu
e the

usual notions of free names and variables, fn(P ) and fv(P ), respe
tively,

and asso
iated notions of substitution and �-equivalen
e, �

�

, are de�ned

as usual. Moreover the typing annotations on the binding 
onstru
ts are

omitted whenever they do not play a role, as will most o

urren
es of the

empty pro
ess 0.
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Figure 1 Syntax

P;Q ::= Terms

u!hvi Output

u?(X

:

A)P Input

if u = v then P else Q Mat
hing

(new a

:

A) P Name 
reation

P jQ Composition

�P Repli
ation

0 Termination

X;Y ::= Patterns

x Variable

(X

1

; : : : ; X

k

) Tuple

u; v; w ::= Values

bv Base Value

a Name

x Variable

(u

1

; : : : ; u

k

) Tuple

The behaviour of a pro
ess is determined by the intera
tions in whi
h

it 
an engage. To de�ne these, we give a labelled transition semanti
s

(LTS) for the language. The set A
t of a
tions, is de�ned as follows:

� ::= A
tions

� Internal a
tion

a?v Input of v on a

(~


:

~

C)a!v Output of v on a revealing private names ~
 (~
 � fn(v))

Visible a
tions (all ex
ept � ) are ranged over by �, � and if � is an

output a
tion we use E(�) to denote the bound names in �, together with

their types: E((~


:

~

C)a!v) = (~


:

~

C). Further, let

n

(�) be the set of names

o

urring in �, whether free or bound. We say that the a
tions `a?v' and

`(~


:

~

C)a!v' are 
omplementary, with � denoting a 
omplement of �.

The LTS is de�ned in Figure 2 and for the most part the rules are

straightforward; it is based on the standard operational semanti
s from

[13℄, to whi
h the reader is referred for more motivation. Note that in

the input rule (l-
om) it is assumed that � is an output a
tion; we omit

the 
orresponding symmetri
 rule, in whi
h Q performs the output. The

last rule (l-
txt) uses a standard stru
tural 
ongruen
e over terms. This

is de�ned to be the least equivalen
e generated by the axioms given in

Figure 2, whi
h extends �

�

and is preserved by the stati
 operators (j

and (new a) ). Note that be
ause of this rule stru
turally equivalent

pro
esses 
an perform exa
tly the same set of a
tions.

We end this sub-se
tion with a result whi
h emphasises the asyn
hrony

of message re
eption:

Lemma 2.5 (Asyn
hronous A
tions). If P

(~


:

~

C)a!v

�����! P

0

then P �

st

(new ~


:

~

C) (a!hvi j P

0

).

Proof. By indu
tion on the derivation of P

(~


:

~

C)a!v

�����! P

0

. �
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Figure 2 Labelled Transition Semanti
s

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

a?v

��! Pfj

v

=Xjg

(l-open)

P

(~


:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e


:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-
om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-
txt)

P

�

�! P

0

�P

�

�! �P j P

0

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

P �

st

Q; Q

�

�! P

0

P

�

�!
P

0

The stru
tural 
ongruen
e axioms:

(s-newnew) (new a)(new b) P �

st

(new b)(new a) P if a 6= b

(s-newpar) P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P )

(s-
omm) P jQ �

st

Q j P

(s-zero) P j 0 �

st

P

2.3 The Typing System

A type environment is a �nite mapping from identi�ers (names and vari-

ables) to types. We adopt some standard notation. For example, let

�; u

:

A denote the obvious extension of �; �; u

:

A is only de�ned if u is

not in the domain of �. The subtyping relation <

:

together with the partial

operators u and t may also be extended to environments. For example
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Figure 3 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A ` P

� ` u

:

r

�

hAi

� ` u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� ` u!hvi

(t-eq)

� ` u

:

A; v

:

B

� ` Q

� u fu

:

B; v

:

Ag ` P

� ` if u = v then P else Q

(t-new)

�; a

:

A ` P

� ` (new a

:

A) P

(t-str)

� ` P; Q

� ` P jQ; �P; 0

� <

:

� if for all u in the domain of �, �(u) <

:

�(u). We will normally ab-

breviate the simple environment fu

:

Ag to u

:

A and moreover use v

:

A to

denote its obvious generalisation to values; this is only well-de�ned when

the value v has the same stru
ture as the type A.

The �rst typing system is given in Figure 3, where the judgements take

the form

� ` P

Intuitively this means that the pro
ess P uses all 
hannels as input/output

devi
es in a

ordan
e with their types, as given in �. It is the standard

typing system for the �-
al
ulus, [16℄, adapted to our types; note that the

se
urity levels on the 
apabilities do not play any role.

We 
an also design a type inferen
e system whi
h not only ensures that


hannels are used a

ording to their types but also 
ontrols the se
urity

levels of the 
hannels used. One su
h system is given in Figure 4, where

the judgements now take the form

� `

�

P

This indi
ates that not only is P well-typed as before but in addition it uses


hannels with se
urity level at most �. (This 
orresponds to the typing

system used in [10℄.) The only di�eren
e is in the input/output rules,

where the se
urity level of the 
hannels used are 
he
ked. For example

� `

�

a!hvi only if in � the 
hannel a 
an be assigned a se
urity level Æ � �,

in addition to having the appropriate output 
apability in �.

We 
an also design a typing system

� `

�

P
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Figure 4 Se
urity Typing Rules

(lt-in)

�; X

:

A `

�

P

� ` u

:

r

Æ

hAi

� `

�

u?(X

:

A)P

Æ � �

(lt-out)

� ` v

:

A

� ` u

:

w

Æ

hAi

� `

�

u!hvi

Æ � �

(lt-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(lt-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(lt-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

whi
h whi
h ensures that P uses 
hannels with se
urity level at least �.

The only 
hange is to demand in the input/output rules that � � Æ:

(hl-in)

�; X

:

A `

�

P

� ` u

:

r

Æ

hAi

� `

�

u?(X

:

A)P

� � Æ

(hl-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

� � Æ

We 
an provide further mix and mat
hes. For example the type system

� `

r�

P

ensures that all 
hannels from whi
h values are read have a read 
apability

of at most �; the se
urity level of the output 
hannels is unexamined. This

system is obtained by using the rules in the original Figure 3 but with the

rule (t-in) repla
ed with (lt-in); the output rule is left un
hanged. In a

similar manner we 
an de�ne relations � `

w�

P; � `

r�

P and � `

w�

P .

Theorem 2.6 (Subje
t Redu
tion). Let 
 represent any of the re-

lations, `; `

�

; `

r�

; `

r�

; `

w�

; `

w�

and suppose � 
 P . Then

� P

�

�! Q implies � 
 Q

� P

a?v

��! Q implies there exists a type A su
h that r

Æ

hAi 2 �(a) and if

� u v

:

A is well-de�ned then � u v

:

A 
 Q.

Moreover Æ � � when 
 is `

�

or `

r�

and � � Æ if it is `

�

or `

r�

.

� P

(~


:

~

C)a!v

�����! Q implies there exists a type A su
h that � ` a

:

w

Æ

hAi,

�; ~


:

~

C ` v

:

A and �; ~


:

~

C 
 Q.

Moreover Æ � � when 
 is `

�

or `

w�

and � � Æ if it is `

�

or `

w�

.

Proof. Similar to that of Theorem 3.5 of [10℄, although in the 
ase of

the a
tion a?v, the 
on
lusion is a little stronger. However the proof

is straightforward. For example 
onsider the 
ase when P is the term
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a?(X

:

B)R, the move is a?(X)R

a?v

��! Rfj

v

=Xjg and � `

�

P . From the

typing rules we have � ` a

:

r

Æ

hBi for some Æ � � and �; X

:

B `

�

R. From

the former we know that there exists some A <

:

B su
h that r

Æ

hAi 2 �(a);

from the latter, and Subsumption, we have �; X

:

A `

�

R. A standard

Substitution Lemma 
an now be applied for any v su
h that � u v

:

A is

well-de�ned to obtain � u v

:

A `

�

Rfj

v

=Xjg.

�

3 Behavioural Theories

In this se
tion we develop two behavioural theories of typed pro
esses,

based on the general testing theories of [14, 9℄. In the �rst se
tion we adapt

the original de�nitions from [14, 9℄ to our language. This is followed by a

subse
tion de�ning the Context LTS alluded to in the Introdu
tion. Two

further subse
tions use this LTS to determine the may and must versions

of our behavioural equivalen
e.

3.1 Testing Pro
esses

A test or observer is a pro
ess with an o

urren
e of a new reserved

resour
e name !, used to report su

ess. We let T to range over tests,

with the typing rule � `

�

!!hi for all �. When pla
ed in parallel with a

pro
ess P , a test may intera
t with P , produ
ing an output on ! if some

desired behaviour of P has been observed. We write

P may T

T j P

�

�!

�

R for some R su
h that R 
an report su

ess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every 
omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whi
h 
an report su

ess.

We 
an obtain a testing based behavioural preorder between pro
esses

by demanding that they rea
t in a similar manner to a given 
lass of tests.

Here we 
hoose the 
lass of tests whi
h are well-typed and use 
hannels

from at most a given se
urity level �; that is we require that pro
esses

rea
t in the same manner to all tests T su
h that � `

�

T .

Definition 3.1 (Testing Preorders). We write � .

�

P

�

�

may

Q if for

every test �nite T su
h that � `

�

T , P may T implies Qmay T .
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Similarly � .

�

P

�

�

must

Q means that for every su
h T , P must T implies

Qmust T .

We use '

may

and '

must

denote the related equivalen
e relations.

So for example setting � to be bot, � .

bot

P '

may

Q means that in the

type environment �, P and Q are indistinguishable by low-level observers,

from a may testing point of view.

For te
hni
al reasons we have limited tests to be �nite, that 
ontain

no o

urren
e of the re
ursive operator �. It is well-known (see [9℄) that

this does not lead to any less distinguishing power.

3.2 The Context Labelled Transition System

It is well-known, [14, 9℄, that testing equivalen
es are 
losely related to the

ability of pro
esses to perform sequen
es of a
tions. We have explained in

the Introdu
tion that here we need to relativise these sequen
es to se
urity

levels and to a pair of typing environments, one for the observer and one

for the pro
ess being observed.

The rules for the Context LTS, are given in Figure 5. The judgements

take the form

�;� . P

�

�!

�

�

0

; �

0

. P

0

This judgement should be understood as expressing the fa
t that:

The pro
ess P , in it's 
urrent type environment �, when run 
on-


urrently with any observing pro
ess T su
h that � `

�

T , 
an per-

form the a
tion �. This will transform P into P

0

and may also

transform the 
urrent type environment to �

0

and that of the ob-

serving pro
ess to �

0

.

These a
tions 
an take three forms:

internal move: �;� . P

�

�!

�

�;� . P

0

This 
orresponds to an internal

move by P , whi
h does not depend on its environment. These moves

are 
ompletely determined by the semanti
s given in Figure 2; see the

rule (
-red).

input move: �;� . P

a?v

��!

�

�;�

0

. P

0

Here the observing pro
ess sends

a value v to P along the 
hannel a. The type environment of the

observing pro
ess does not 
hange, but that of P may be augmented

by knowledge of v of whi
h it was previously unaware. An appropriate

write 
apability on a is required of the observing pro
ess for the a
tion

to take pla
e; see the rule (
-in).

output move: �;� . P

(~
)a!v

���!

�

�

0

; �

0

. P

0

Here P sends a value v along
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Figure 5 Context LTS

(
-out)

r

Æ

hAi 2 �(a)

�;� . a!hvi

a!v

��!

�

� u v

:

A;� . 0

Æ � �

(
-in)

� ` a

:

w

Æ

hBi

� ` v

:

B

�;� . a?(X

:

A)P

a?v

��!

�

�;� u v

:

A . Pfj

v

=Xjg

Æ � �

B <

:

A

(
-open)

�;�; b

:

B . P

(~
)a!v

���!

�

�

0

; �

0

. P

0

�;� . (new b

:

B) P

(b)(e
)a!v

�����!

�

�

0

; �

0

. P

0

b 6= a

b 2 fn(v)

(
-red)

P

�

�! P

0

�;� . P

�

�!

�

�;� . P

0

(
-equiv)

�;� . P

�

�!

�

�

0

; �

0

. P

0

P �

st

Q

�;� . Q

�

�!

�

�;�

0

. P

0

(
-
txt)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�;� . �P

�

�!

�

�

0

; �

0

. �P j P

0

�;� . P

�

�!

�

�

0

; �

0

. P

0

�;� . P jQ

�

�!

�

�

0

; �

0

. P

0

jQ

�;� . Q j P

�

�!

�

�

0

; �

0

. Q j P

0

bn(�) 62 fn(Q)

�; a

:

A;�; a

:

A . P

�

�!

�

�

0

; a

:

A;�

0

; a

:

A . P

0

�;� . (new a

:

A) P

�

�!

�

�;�

0

. (new a

:

A) P

0

a 62

n

(�)

the 
hannel a to the observing pro
ess, and typi
ally the observers

type environment � will be augmented with knowledge of v. However

the type environment of P may also be in
reased by asso
iating with

the new identi�ers (~
) their de
lared types; this is implemented in the

rule (
-open). Here an appropriate read 
apability is required of the

observing pro
ess for the a
tion to take pla
e; see the rule (
-out).

The rules in Figure 5 are straightforward and only the �rst two deserve


omment. (
-in) states that a?(X

:

A)P 
an re
eive v along a from a �-

level observer provided the observer has a write 
apability on a at a level

at most �, and it has the value v at an appropriate type. (
-out) is

more subtle. In prin
iple the observer 
ould re
eive v from the observed
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pro
ess a!hvi at any type B su
h that � ` a

:

r

Æ

hBi, where Æ � �. However

to eliminate mu
h potential nondeterminism in the LTS our rule di
tates

that for a given Æ � � the observer re
eives v at the minimum B su
h that

� ` a

:

r

Æ

hBi; this is the type A su
h that r

Æ

hAi 2 �(a).

Note that in the output a
tions we do not re
ord the types of the

bound names. These we only required in Figure 2 in order to implement


ommuni
ation between pro
esses; see the rule (l-
om). Here we do not

need to formalise, at least dire
tly, 
ommuni
ation between the pro
ess P

and its observer.

We 
an des
ribe pre
isely the form these judgements in 
an take:

Lemma 3.2. Suppose �;� . P

�

�!

�

�

0

; �

0

. P

0

.

� = � : Here �

0

= � and �

0

= �.

� = a?v: Here �

0

= � while �

0

= � u v

:

A for some type A su
h that

� ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B <

:

A

� = (~
)a!v: Here �

0

= �; ~


:

~

C for some sequen
e of types

~

C su
h that

�; ~


:

~

C ` v

:

A, while �

0

= �uv

:

A for some A su
h that r

Æ

hAi 2 �(a),

where Æ � �.

Proof. Straightforward rule indu
tion on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

However we are only interested in a subset of the possible judgements

whi
h 
an be derived from the rules in Figure 5. We say that the two type

environments � and � are 
ompatible if

� � u� exists

� domain(�) � domain(�).

The main property of this relation is given by:

Lemma 3.3. Suppose � and � are 
ompatible. Then � ` a

:

w

�

hAi and

� ` a

:

r

�

0

hA

0

i imply A <

:

A

0

and � � �

0

.

Proof. Simple 
al
ulation. �

The triple �;� . P is said to be a 
on�guration if

� � and � are 
ompatible

� � ` P .

When this is the 
ase we will refer to the judgment �;�.P

�

�!

�

�

0

; �

0

.P

0

as an a
tion in 
ontext.

Con�gurations are preserved by these a
tions:
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Lemma 3.4. If �;� . P

�

�!

�

�

0

; �

0

. P

0

is an a
tion in 
ontext then

�

0

; �

0

. P

0

is a 
on�guration.

Proof. From Lemma 3.2 we know exa
tly the form �

0

and �

0


an take,

depending on �. In ea
h 
ase it is straightforward to show that they are


ompatible. The simplest way to show that �

0

` P

0

is to use rule indu
tion

on �;� . P

�

�!

�

�

0

; �

0

. P

0

. �

In future we will limit our attention to judgements �;�.P

�

�!

�

�

0

; �

0

.P

0

,

whi
h are a
tions in 
ontext. This has important 
onsequen
es, in the 
ase

when � is an output a
tion (~


:

~

C)a!v. It means that the only new names

gained by the observer, that is names in the domain of �

0

whi
h are not

in that of �, are ~
. In other words if w is an identi�er in v whi
h does

not o

ur in ~
 the observer already knows about it. However the a
tion

may in
rease the type at whi
h the observer knows w. It is also worth

noting that the two rules (
-in) and (
-out) are apriori partial; that

is (
-in) 
an only be applied if � u v

:

A is well-de�ned while (
-out)

requires � u v

:

A to be well-de�ned. However it is easy to show that for

a
tions in 
ontext these environments are in fa
t well-de�ned whenever

the 
orresponding premises hold. Moreover in (
-in) the side-
ondition

B <

:

A may be omitted as it is always satis�ed.

We 
an also determine the 
ir
umstan
es under whi
h the un
on-

strained a
tions, from Figure 5, 
an give rise to a
tions in 
ontext.

Lemma 3.5. Suppose P

�

�! Q and let �;� . P be a 
on�guration.

� = � : Here �;� . P

�

�!

�

�;� . Q

� = a?v: Here if � ` v

:

B; a

:

w

Æ

hBi, where Æ � � then �;� . P

a?v

��!

�

�;� u v

:

A . Q for some A su
h that B <

:

A.

� = (~


:

~

C)a!v: Here if r

Æ

hAi 2 �(a) for some Æ � � then �;� . P

(~
)a!v

���!

�

� u v

:

A;�; ~


:

~

C . Q.

Proof. By rule indu
tion on P

�

�! Q. We examine the 
ase when � is

(~


:

~

C)a!v, where the indu
tion requires a weakening of the hypothesis,

namely that � ` P and � u� exists.

� Suppose P

�

�! Q is inferred using (l-out). We 
an immediately apply

(
-out) to obtain the required �;�.P

a!v

��!

�

�uv

:

A;�.Q, provided

� u v

:

A exists.

However P has the form a!hvi and from � ` P we know that

� ` v

:

B; a

:

w

�

hBi for some B. Applying Lemma 3.3 we obtain B <

:

A.

Then it is easy to show the existen
e of � u v

:

A from the fa
t that �

and � are 
ompatible.
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� Suppose P

�

�! Q is inferred using (l-open), that is

(new b

:

B) P

0 (b

:

B)(~


:

~

C)a!v

���������! Q

be
ause P

0

(~


:

~

C)a!v

�����! Q.

� ` P implies �; b

:

B ` P

0

and the existen
e of of � u � also

ensures that of �u�; b

:

B. In short the (weaker) indu
tive hypothesis

holds of �;�; b

:

B . P

0

and therefore by indu
tion we 
an obtain the

a
tion in 
ontext �;�; b

:

B.P

0

(~
)a!v

���!

�

Q. An appli
ation of (
-open)

gives the required �;� . P

(b)(~
)a!v

�����!

�

Q

�

Note that in a
tions in 
ontext �;� . P

�

�!

�

�

0

; �

0

. Q the resulting

environments, �

0

; �

0

, are not in general determined by � and �. The


hange in the environment of the observed pro
ess, the 
hange from � to

�

0

, is determined by the de
lared types of new names introdu
ed by the

pro
ess. For example 
onsider

P

1

= (new 


:

C

1

) a!h
i 0; P

2

= (new 


:

C

2

) a!h
i 0;

where C

i

are two di�erent types. Then, assuming �;� have appropriate


apabilities asso
iated with a, we have

�;� . P

1

(
)a!


���!

�

�

0

; �; 


:

C

1

. 0

�;� . P

2

(
)a!


���!

�

�

0

; �; 


:

C

2

. 0

The reason for this la
k of determinism is that the types of bound names

are not re
orded in the a
tions in 
ontext. However were we to re
ord their

types we would then have pro
esses whi
h are obviously behaviourally in-

distinguishable, P

1

and P

2

for example, whi
h would have di�erent a
tions

in 
ontext.

The la
k of determinism of the observers type environment, the 
hange

from � to �

0

, will however play a role in the next se
tion. This arises

be
ause of the rule (l-out) in Figure 5. In general �(a) may 
ontain two

read 
apabilities, r

Æ

1

hA

1

i and r

Æ

2

hA

2

i, in whi
h 
ase �

0

may take either

of the forms � u v

:

A

1

or � u v

:

A

2

. However by restri
ting ourselves to

single-level types this problem does not arise.

We say � is a single-level environment if it only uses single-level types.

For su
h environments we 
an de�ne the partial predi
ate � after

�

s by

indu
tion on s as follows:

s = ": Here � after

�

s = �

s = a?v � s

0

: Here � after

�

s = � after

�

s

0
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s = (~
)a!v � s

0

: Here � after

�

s is only de�ned if r

Æ

hAi 2 �(a) for some

Æ � �, in whi
h 
ase it is (� u v

:

A) after

�

s

0

.

Lemma 3.6. If �;� .P

s

�!

�

�

0

; �

0

.Q, where � is a single-level environ-

ment, then � after

�

s is de�ned and �

0

= � after

�

s.

Proof. By indu
tion on the derivation of �;� . P

s

�!

�

�

0

; �

0

. Q. �

3.3 May testing

In this se
tion we give a 
hara
terisation of the relation � .

�

P

�

�

may

Q.

A
tions in 
ontext are generalised to (asyn
hronous) tra
es in 
ontext

as follows:

Definition 3.7 (Tra
es). Let �;� . P

s

=)

�

�

0

; �

0

. P

0

be the least

relation su
h that:

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

s

=)

�

�

00

; �

00

. P

00

(tr-�)

�;� . P

�

=)

�

�;� . P

(tr-�)

�;� . P

�

�!

�

�

0

; �

0

. P

0

�

0

; �

0

. P

0

s

=)

�

�

00

; �

00

. P

00

�;� . P

��s

=)

�

�

00

; �

00

. P

00

(tr-asyn
)

� ` v

:

A

�;� u v

:

A u a

:

w

Æ

hAi . P j a!hvi

s

=)

�

�

00

; �

00

. P

00

�;� . P

a?v�s

===)

�

�

00

; �

00

. P

00

Æ � �

Note that there is some redundan
y here. The rule (tr-�), where � is an

input a
tion a?v, 
an a
tually be derived from (tr-asyn
) and (tr-� ).

We now show how intera
tions between a pro
ess P and a �-level

observer T , that is a 
omputation from T j P , 
an be de
omposed into a

tra
e in 
ontext from P and the 
omplementary sequen
e from T . It will

be
ome 
lear that it is suÆ
ient to only 
onsider newfree observers, that

is observers whi
h 
ontain no o

urren
e of the binders (new a) .
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Theorem 3.8 (Tra
e De
omposition). Let �;�.P be a 
on�guration

and suppose T j P

�

�!

�

R for some newfree observer T su
h that � `

�

T .

Then there exists a tra
e in 
ontext

�;� . P

s

=)

�

�

0

; �

0

. P

0

and a derivation T

s

=) T

0

, where R has the form (new ~


:

~

C) (T

0

j P

0

).

Proof. By indu
tion on the derivation of T jP

�

�!

�

R. Consider the non-

trivial 
ase when this is of the form T jP

�

�!

�

�!

�

R. There are essentially

three 
ases:

� Output from T to P . In this 
ase we have T

a!v

��! T

1

; P

a?v

��! P

1

and

T

1

j P

1

�

�!

�

R.

� `

�

T means � ` v

:

B; a

:

w

Æ

hBi, for some Æ � � and B, and so we

may apply Lemma 3.5 to obtain the a
tion in 
ontext

�;� . P

a?v

��!

�

�;� u v

:

A . P

1

for some B <

:

A. Moreover the 
ompatibility of � and �uv

:

A follows

from that of � and �.

Subje
t Redu
tion implies that � `

�

T

1

and therefore we may apply

indu
tion to obtain

�;� . P

1

s

0

=)

�

�

0

; �

0

. P

0

and T

1

s

0

=) T

0

where R has the form (new ~


:

~

C) (T

0

j P

0

). The required s is a?v � s

0

.

� Output from P to T . In this 
ase we have T

a?v

��! T

1

; P

(~


:

~

C)a!v

�����! P

1

,

and T

1

j P

1

�

�!

�

R

1

, where R has the form (new ~


:

~

C) R

1

.

Here � `

�

T implies r

Æ

hAi for some Æ � � and so we 
an apply

Lemma 3.5 to obtain the a
tion in 
ontext

�;� . P

(~
)a!v

���!

�

� u v

:

A;�; ~


:

~

C . P

1

:

Also by Subje
t Redu
tion we know � u v

:

A `

�

T

1

. So we may apply

indu
tion to obtain a tra
e in 
ontext

� u v

:

A;�; ~


:

~

C . P

1

s

0

=)

�

�

0

; �

0

. P

0

;

and the redu
tion T

1

s

0

=) T

0

. The required s in this 
ase is (~
)a!v � s

0

.

� Internal a
tions by P or T . In this 
ase a simple argument by indu
tion

suÆ
es.

�

The 
onverse is more straightforward:
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Theorem 3.9 (Tra
e Composition). Suppose �;�.P

s

=)

�

�

0

; �

0

.P

0

and T

s

=) T

0

for some s. Then there exists a derivation T j P

�

�!

�

R,

where R has the form (new ~


:

~

C) (T

0

j P

0

).

Proof. By indu
tion on s. �

Refering to the statement of this theorem note that Subje
t Redu
tion

ensures that �

0

` P

0

. However in general we do not have that �

0

`

�

T

0

,

even under the assumption � `

�

T .

Example 3.10. Let P; T be the pro
esses (new 


:

C) a!h
i and a?(x

:

A

2

) x!hi

respe
tively and let �;� map a to the type fr

Æ

1

hA

1

i; r

Æ

2

hA

2

i; w

bot

hCig,

where A

1

; A

2

; C are the types r

bot

hi; w

bot

hi; fA

1

;A

2

g respe
tively; here

we assume Æ

i

� �. Then

� `

�

T

� ` P

�;� . P

(
)a!


���!

�

�; 


:

A

1

; �

0

. 0

T

a?


��! 
!hi

but �; 


:

A

1

6`

�


!hi.

The problem lies, again, with the use of multi-level types.

Lemma 3.11. Let � be a single-level environment. Suppose � `

�

T and

� after

�

s is de�ned. Then T

s

=) T

0

implies � after

�

s `

�

T

0

.

Proof. By indu
tion on s. �

This Lemma may now be applied to the 
onditions of the Tra
e Composi-

tion Theorem, Theorem 3.9, to ensure when � is a single-level environment

we 
an also 
on
lude that �

0

`

�

T

0

; here �

0


an only be � after

�

s.

We may now state a suÆ
ient 
ondition to ensure two pro
esses are

related with respe
t to may testing.

Definition 3.12. For any 
on�guration C let Aseq

�

(C) = f s j C

s

=)

�

g

Then we write

� .

�

(� ` P )�

may

(�

0

` Q):

if for every appropriate �

0

, Aseq

�

(�;�

0

; � . P ) � Aseq

�

(�;�

0

; �

0

. Q)

Noti
e that in this de�nition we allow the testing environment, �, to be

in
reased via �

0

; this enables tests to generate new names to send to the

pro
esses under observation.
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Proposition 3.13. Suppose � ` P; Q, where � and � are 
ompatible.

Then � .

�

(� ` P )�

may

(�

0

` Q) implies � .

�

P

�

�

may

Q.

Proof.

Suppose � .

�

P

�

�

may

Q and P may T , where � ` T ; we must show

Qmay T .

Noti
e that the Tra
e De
omposition Theorem, Theorem 3.8, is only

valid for newfree pro
esses and T may in fa
t 
ontain o

urren
es of

(new n) , intuitively generating new names with whi
h to test the pro-


esses. However, be
ause we only employ �nite tests, it is easy to show

that

T �

st

(new ~


:

~

C) T

0

for some newfree test T

0

, where �

st

is the stru
tural 
ongruen
e generated

by the equations:

P j (new a) Q �

st

(new a) (P jQ) if a 62 fn(P )

if u = v then (new a) P else Q �

st

(new a) (if u = v then P else Q)

if a 62 fn(Q); a 6= u; v

u?(x) (new a) P �

st

(new a) (u?(x)P ) if a 6= u

P jQ �

st

Q j P

(We have omitted two obvious symmetri
 rules for Cap and input, respe
-

tively.) Moreover it is possible to show that �

st

is preserved by redu
tion,

�

�!, form whi
h it follows that for any pro
ess S, S may T if and only

S may T

0

. So it is suÆ
ient to prove Qmay T

0

.

Sin
e P may T

0

we know there exists a 
omputation T

0

j P

�

�!

�

R,

where R 
an report a su

ess. For 
onvenien
e let �

0

denote �; ~


:

~

C, an

extension of �. Be
ause �

0

; � . P is a 
on�guration Theorem 3.8 
an be

used to obtain the de
omposition into a tra
e in 
ontext

�

0

; � . P

s

=)

�

�

0

; �

0

. P

0

and a sequen
e T

0

s

=) T

00

, where R has the form (new

~

d

:

~

D) (T

00

j P

0

).

Sin
e Aseq

�

(�

0

; �.P ) � Aseq

�

(�

0

; �.Q) there exists a 
orresponding

tra
e in 
ontext from Q,

�

0

; � . Q

s

=)

�

�

0

; �

0

. Q

0

:

Tra
e Composition, Theorem 3.9, 
an now be used to re
ombine this with

T

0

s

=) T

00

to obtain a su

essful 
omputation from T

0

jQ. �

To prove the 
onverse we need to design tests whi
h 
an dete
t the

ability of pro
esses to perform tra
es in 
ontext. Spe
i�
ally we will 
on-

stru
t a test T (�; s; �), a newfree pro
ess su
h that � `

�

T (�; s; �), with
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the property that P may T (�; s; �) if and only if there is some � su
h

that �;� . P

s

=). Note � will not be used in the de�nition and the tests

will only be de�ned for 
ertain 
ombinations of � and s.

For 
onvenien
e we only 
onsider tra
es in whi
h only simple identi�ers

are output, rather than ve
tors; that is the output a
tions are of the form

a!v or (
)a!
. The generalisation to general output a
tions of the form

(~


:

~

C)a!v is very straightforward, but notationally 
omplex. The de�nition

of T (�; s; �) is by indu
tion on s.

": T (�; "; �) is !!hi.

a?v � s: In this 
ase the test is de�ned only if

{ there exists some Æ � � su
h that � ` a

:

w

Æ

hAi for some type A

su
h that � ` v

:

A

{ T (�; s; �) is de�ned.

If this is the 
ase then T (�; a?v � s; �) is de�ned to be

a!hvi j T (�; s; �):

a!v � s: Here the test is de�ned if

{ v 2 domain(�)

{ there exists some type A su
h that r

Æ

hAi 2 �(a) for some Æ � �

{ T (� u v

:

A; s; �) is de�ned.

For ea
h su
h A let T

A

(�; a!v � s; �) be the test

a?(x

:

A) if x = v then T (� u v

:

A; s; �) else 0

Then the required test is

T

A

1

(�; a!v � s; �)� : : :� T

A

k

(�; a!v � s; �)

where A

1

: : :A

k

is the set of all types whi
h satisfy the 
onditions above

and � represents an internal 
hoi
e operator. This is easily de�nable

by

T � U = (new 


:

C) (
!hi j 
?()T j 
?()U)

where C is the type fw

�

hi; r

�

hig.

(
)a!
 � s: Here the test is de�ned if

{ there exists some type A su
h that r

Æ

hAi 2 � for some Æ � �

{ T (�; 


:

A; s; �) is de�ned.

Here again T (�; (
)a!
 � s; �) has the form

T

A

1

(�; (
)a!
 � s; �) � : : : T

A

k

(�; (
)a!
 � s; �)
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where A

i

range over all the types satisfying these 
onditions. For su
h

an A, T

A

(�; (
)a!
 � s; �) given by

a?(x

:

A) if x 2 I(�;A) then 0 else (T (�; 


:

A; s; �))fj

x

=
jg

where I(�;A) is the �nite set of identi�ers fu j � ` u

:

A g and if x 2

I then P else Q represents the obvious nested if then else stru
ture.

The required properties of these tests are 
olle
ted in the following Lem-

mas.

Lemma 3.14. If T (�; s; �) is de�ned then

� � `

�

T (�; s; �)

� T (�; s; �)

s

=) R, where R

w!hi

��!

Proof. By a straightforward indu
tion on s, although there are 
onsider-

able details to be 
he
ked. For example when s has the form a!v � s

0

then

for � `

�

T (�; s; �) to be true it is essential that v be in the domain of �. �

Lemma 3.15. If there exists some P and some � su
h that �;� . P

s

=)

then T (�; s; �) is de�ned.

Proof. By indu
tion on the judgement �;� . P

s

=). As an example we


onsider one 
ase, when it has the form

�;� . P

a!v

��! � u v

:

A;� . P

0 s

0

=)

where r

Æ

hAi 2 � for some A and Æ � �.

By indu
tion we know T (� u v

:

A; s

0

; �) is de�ned. From Subje
t Re-

du
tion we know � ` v

:

A and sin
e � and � are 
ompatible we have that

v is in the domain of �. So for at least one A the test T

A

(�; a!v � s

0

; �) is

de�ned. It follows that T (�; a!v � s

0

; �) is also de�ned. �

It therefore follows from the Composition Theorem that �;� . P

s

=)

implies P may T (�; s; �). We also have the 
onverse:

Lemma 3.16. Suppose T (�; s; �) exists and �;� . P is a 
on�guration.

Then P may T (�; s; �) implies �;� . P

s

=).

Proof. By indu
tion on s, and by way of example we 
onsider the 
ase

when it has the form a!v � s

0

.

By examining the form of T (�; s; �) it must be that P

�

�!

�

a?v

��! P

0

for some P

0

su
h that P

0

may T (� u v

:

A; s

0

; �) for some A su
h that

r

Æ

hAi 2 �(a), where Æ � �.
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Subje
t Redu
tion means � ` P

0

and therefore it is easy to 
he
k that

� u v

:

A;� . P

0

is a 
on�guration. So we may apply indu
tion to obtain

� u v

:

A;� . P

0 s

0

=)

Lemma 3.5 gives

�;� . P

�

�!

� a!v

��! � u v

:

A;� . P

0

and the result now follows by (tr-�) in De�nition 3.7. �

It therefore follows that

Theorem 3.17 (Alternative Chara
terisation of May Testing).

Suppose � ` P;Q, and � is 
ompatible with �. Then � .

�

P

�

�

may

Q if

and only if � .

�

(� ` P )�

may

(� ` P ).

Proof. We need to prove the 
onverse of Proposition 3.13, namely that

� .

�

P

�

�

may

Q and �;�

0

; � . P

s

=) implies �;�

0

; � . Q

s

=).

From Lemma 3.15 we know that the test T = T ((�;�

0

); s; �) is de�ned,

and using the se
ond part of Lemma 3.14, together with the Composition

Theorem, we have that P may T . Let the extra environment �

0

be ~


:

~

C.

Then � ` T

0

= (~


:

~

C)T and, using the fa
t that � .

�

P

�

�

may

Q we have

that Qmay T ; here we are using the fa
t that if � ` R then Rmay T if

and only if Rmay T

0

. It follows from Lemma 3.16 that �;�

0

; � . Q

s

=).

�

3.4 Must Testing

In this se
tion examine the relation � .

�

P

�

�

must

Q; in parti
ular we give

ne
essary and suÆ
ient 
riteria for ensuring � .

�

P

�

�

must

Q, based on

tra
es in 
ontext.

The extra ingredients required to 
apture must testing, in addition to

tra
es, are well-known from [14, 9℄; they in
lude a 
onvergen
e predi
ate,

indi
ating that a pro
ess has no internal in�nite 
omputations, and a
-


eptan
e sets, indi
ating the next possible a
tions in whi
h a pro
ess 
an

engage. Here these need to be generalised from pro
esses to 
on�gurations;

they must also be relativised to se
urity levels.

First some notation We use I

�

(C) to denote the set of input a
tions

whi
h the 
on�guration C 
an perform at level �, f a?v j C

a?v

��!

�

g. More

generally we use I to denote an arbitrary multi-set of input a
tions, I the

obvious term of all the 
orresponding output a
tions in parallel, 
(I) to

denote f a? j a?v 2 I g and �nally 
(I) its 
onverse, f a! j a?v 2 I g.
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Definition 3.18 (Convergen
e). We say the 
on�guration C 
onverges,

written C +, if there is no in�nite sequen
e of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This relation is then parameterised to sequen
es in 
ontext, se
urity levels

and �nite multisets of input a
tions, by

": C +

I

�

if (C j I) +

s = (~
)a!v � s

0

: C +

I

�

s if C + and whenever C

(~
)a!v

===)

�

C

0

, C

0

+

I

�

s

0

.

s = a?v � s

0

: C +

I

�

s if, assuming C has the form �;� . P ,

� � ` a

:

w

Æ

hAi; v

:

A for some Æ � �

� �;� u v

:

A u a

:

w

Æ

hAi . a!hvi j P +

I

�

s.

Note that the requirements in the input 
ase are taken dire
tly from the

rule (tr-asyn
). Note also that for a 
on�guration �;�.P whether or not

it 
onverges is a
tually independent of the typing environments � and �;

it is only dependent on the semanti
s of P as given in Figure 2. However


onvergen
e relative to a sequen
e in 
ontext is in general dependent on

these environments.

We now adapt the de�nition of A

eptan
e sets, [9℄, to the se
urity

�-
al
ulus. First let

O

�

(C) = f a! j 9v:C

a!v

��!

�

g

and

R

�

(C) = f a? j 9v:C

a?v

��!

�

g [ O

�

(C):

Definition 3.19 (A

eptan
e sets). For a 
on�guration C, letA

�

(C; s),

its �-level a

eptan
e set after s , be de�ned by

fR

�

(C

0

) j C

s

=)

�

C

0

6

�

�! g

Similarly let its output a

eptan
e set after s be given by

fO

�

(C

0

) j C

s

=)

�

C

0

6

�

�! g

Note only a

eptan
e sets from stable 
on�gurations, 
on�gurations C

0

su
h that C

0

6

�

�!, are used.

The se
urity �-
al
ulus is asyn
hronous and therefore, as explained in [4℄,

a

eptan
e sets are too dis
riminating, when used to 
hara
terise must

testing; to see this it is suÆ
ient to 
onsider the simple example

a?(x) 0

�

�

must

0 :

The same referen
e goes on to explain that the use of output a

eptan
e

sets must also be relativised to sets of input a
tions, whi
h we now explain.
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We use I

�

(C) to denote the set of input a
tions whi
h the 
on�guration

C 
an perform at level �, f a?v j C

a?v

��!

�

g. More generally we use I to

denote an arbitrarymulti-set of input a
tions, I the obvious term of all the


orresponding output a
tions in parallel, 
(I) to denote f a? j a?v 2 I g

and �nally 
(I) its 
onverse, f a! j a?v 2 I g.

Definition 3.20 (Asyn
hronous a

eptan
e sets). For a 
on�gu-

ration C, let O

�

I

(C; s), its �-level asyn
hronous a

eptan
e set after s,

relative to the multi-set of input a
tions I, be de�ned by

fO

�

I

(C

00

) j C

s

=)

�

C

0

; (C

0

j I) + and (C

0

j I)

�

�! C

00

6

�

�!g:

Note that a

eptan
e sets in O

�

I

(C; s) are only generated from 
on�gura-

tions C

0

whi
h 
an never diverge after exe
uting any sequen
e of inputs in

I.

With one �nal notational 
onvention we 
an mimi
 the alternative


hara
terisation of must testing from [4℄. We write � allows

�

a?v if � `

�

a!hvi; this is generalised to sets of a
tions in the normal manner.

Definition 3.21. Let C; D be 
on�gurations of the form �;�.P , �;�

0

.

Q respe
tively. Then C �

�

must

D if for every s and I su
h that (� after

�

s) allows

�

I,

C +

I

�

s implies a) D +

I

�

s

b) 8D 2 A

�

(D; s); su
h that 
(I) \D = ;

9O 2 O

�

I

(C; s) su
h that O � 
(I) � D:

Then we write � .

�

(� ` P )�

must

(� ` P ) if

(�;�

0

);� . P �

�

must

(�;�

0

);� . Q;

for every appropriate �

0

.

Theorem 3.22. Let �; � be single-level environments and suppose � `

P;Q, where � is 
ompatible with �. Then � .

�

P

�

�

must

Q if and only if

� .

�

(� ` P )�

must

(� ` P ).

The remainder of this subse
tion is devoted to the proof of this theo-

rem. We will assume all triples �;� . P are 
on�gurations, and that all

environments are single-level.

Proposition 3.23. �.

�

(� ` P )�

must

(� ` P ) implies �.

�

P

�

�

must

Q.
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Proof. (Outline) The proof follows the outline of that of Lemma 4.4.13 of

[9℄, although the details are more 
ompli
ated be
ause of asyn
hrony and

the use of type environments and se
urity levels.

Let T be an arbitrary newfree test su
h that � `

�

T and suppose

P must T . We show Qmust T . To keep the argument simple we assume

T is newfree; the more general 
ase is handled exa
tly as in Proposi-

tion 3.13.

Let

T jQ (� T

0

) jQ

0

�

�! C

1

�

�! : : : : : : C

k

�

�! : : : (y)

be an arbitrary maximal 
omputation from T jQ, where we may assume

ea
h C

k

has the form (new ~


k

:

~

C

k

) (T

k

jQ

k

). We must show that for some

k, T

k

!!hi

��!.

First suppose that the 
omputation (y) is �nite, ending in C

n

. Using

Tra
e De
omposition it 
an de
omposed into

�;� . Q

s

=) �;� . Q

n

T

s

=) T

n

From Lemma 2.5 we 
an assume T

n

has the form a

1

!hv

1

i j : : : a

k

!hv

k

i j T

0

,

where T

0


annot perform any output moves. Let I denote the multi-set

of input a
tions, fa

1

?v

1

; : : : ; a

k

?v

k

g and D the a

eptan
e set determined

by the 
on�guration C

n

. Note that 
(I) \D = ;.

At this stage let us suppose that �;� . P +

I

�

s. Then we 
an apply

the hypothesis to obtain an O 2 O

�

I

(�;� . P; s) su
h that O � 
(I) � D.

This means that there is a tra
e

�;� . P

s

=)

�

�

1

; �

1

. P

1

I

0

=)

�

�

m

; �

m

. P

m

where

�

m

; �

m

. P

m

6

�

�! (1)

�

m

; �

m

. P

m

6

a?v

��!

�

for any a?v 2 I � I

0

(2)

By tra
e 
omposition we 
an form

T j P

�

�!

�

T

n

j P

1

�

�!

�

(I

2

j T

0

) j P

m

; I

2

= I � I

0

:

If we 
an show that this is maximal, that is (I

2

j T

0

) jP

m

6

�

�!, then we are

�nished be
ause P must T means that for some k, T

k

!!hi

��!.

The only possibility is a 
ommuni
ation between P

m

and I

2

j T

0

. In

both 
ases below we rely on the fa
t that the environments are single-level,

enabling us to employ Lemmas 3.6 and 3.11.

Input: For some a?v 2 I

2

; P

m

a?v

��!.

Here from Lemma 3.6 we know that �

1

and �

m

are � after

�

s. Ap-
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plying Lemma 3.11 it follows that �

m

`

�

a!hvi, whi
h by Lemma 3.5

is suÆ
ient to ensure that �

m

; �

m

. P

m

a?v

��!

�

. This 
ontradi
ts (2)

above.

Output: Here we have P

m

(
)a!hvi

����! and T

0

a?v

��!.

Again from Lemma 3.11 we know �

m

`

�

T

0

and therefore a! 2 O �

D; so Q

n

(~
)a!w

����! for some value w. Be
ause of the stru
ture of our

language, T

0

a?v

��! implies that T

0

a?w

��! is also true, and therefore we

have a 
ontradi
tion of the maximality of C

n

.

This 
ompletes the proof, under the assumptions that �;� . P +

I

�

s and the 
omputation under s
rutiny, (y), is �nite. However these

assumptions 
an be taken 
are of in the standard manner, as in the

proof of Lemma 4.4.13 of [9℄.

�

As in the 
ase of may testing the proof of the 
onverse depends on the

ability to de�ne well-typed tests whi
h determine the relation �

�

. Here

there are two possible reasons why 
on�gurations may not be related; one

asso
iated with 
onvergen
e, the other with a mismat
h of a

eptan
e

sets. We treat ea
h in turn. As in the previous sub-se
tion to avoid

notational 
omplexity we only 
onsider simple output a
tions, where only

single names are transmitted. We also use some of the derived notation

developed in that sub-se
tion.

Tests for Convergen
e. We de�ne the terms T

C

(�; s; I; �) by indu
tion

on s:

": Here T

C

(�; s; I; �) = (!!hi � !!hi) j I

a!v � s

0

: Here T

C

(�; s; I; �) is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T

C

(� u v

:

A; s

0

; I; �)

else 0

where r

Æ

hAi 2 �(a) for some Æ � �

(
)a!
 � s

0

: In this 
ase T

C

(�; s; I; �) is given by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T

C

(�; 


:

A; s

0

; I; �))fj

x

=
jg

where again r

Æ

hAi 2 �(a) for some Æ � �

a?v � s

0

: Here T

C

(�; s; I; �) is only de�ned if � ` a

:

w

Æ

hAi; v

:

A for some
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Æ � �, in whi
h 
ase it is

a!hvi j T

C

(�; s

0

; �)

We leave the reader to 
he
k the following:

Lemma 3.24. Suppose �;�.Q

s

=)

�

�

0

; �

0

.Q

0

, where (Q

0

jI) 6+, for some

I su
h that (� after

�

s) allows

�

I. Then

� T

C

(�; s; I; �) is de�ned

� � `

�

T

C

(�; s; I; �)

� Q 6must T

C

(�; s; I; �).

Proof. By indu
tion on s. �

Corollary 3.25. �.

�

P

�

�

must

Q and �;�.P +

I

�

s implies �;�.Q +

I

�

s.

Proof. Suppose, on the 
ontrary, that for some s, �;� . P +

I

�

s, while

�;� .Q

s

=)

�

�

0

; �

0

.Q, for some Q

0

su
h that (Q

0

j I) 6+. By the previous

Lemma it is suÆ
ient to show P must T

C

(�; s; I; �), whi
h 
an easily be

done by indu
tion on s. �

Tests for A

eptan
e Sets. Let us �rst extend the predi
ate allows

�

to apply to output a

eptan
e sets, in addition to sets of input a
tions.

We write �allows

�

O if, for ea
h a! 2 O, r

Æ

hAi 2 �(a) for some Æ � �, and

� ` v

:

A for some value v; note that this means � `

�

a!hvi.

We now de�ne terms T (�; s; O; I; �), where O is an output a

eptan
e

set and I is a set of input a
tions, by indu
tion on s. The indu
tive 
ases

are very similar to the 
orresponding 
ases in the de�nition of the tests

for 
onvergen
e.

": Here T (�; s; O; I; �) is only de�ned if � allows

�

O; I, in whi
h 
ase it is

Y

f a!hvi j a?v 2 I g j

Y

f a?(x

:

A

a

)!!hi j a! 2 O g:

Here the type A

a

is determined by the fa
t that � allows

�

O.

a!v � s

0

: Here the test is given by

(newn) n!hi j n?()!!hi j a?(x

:

A) if x = v

then n?()T (� u v

:

A; s

0

; O; I; �)

else 0

where A is determined by r

Æ

hAi 2 �(a) for some Æ � �.
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(
)a!
 � s

0

: Here it is de�ned by

(new n) n!hi j n?()!!hi j a?(x

:

A) if x 2 I(�;A)

then 0

else (n?()T (�; 


:

A; s

0

; O; I; �))fj

x

=
jg

where, again, r

Æ

hAi 2 �(a) for some Æ � �.

a?v � s

0

: Here, as in the tests for 
onvergen
e, the test is only de�ned if

� ` a

:

w

Æ

hAi; v

:

A for some Æ � �, in whi
h 
ase it is

a!hvi j T

C

(�; s

0

; O; I; �)

We leave the reader to establish the following two Lemmas:

Lemma 3.26. Suppose (�after

�

s)allows

�

O; I and that �;�.Q

s

=)

�

, for

some �. Then T (�; s; O; I; �) is well-de�ned and � `

�

T (�; s; O; I; �). �

Lemma 3.27. Suppose T (�; s; O; I; �) is de�ned and O

0

\O 6= ; for every

O

0

2 O

�

I

(�;� . P; s). Then �;� . P +

I

�

s implies P must T (�; s; O; I; �).

�

We are now ready to prove the alternative 
hara
terisation:

Theorem 3.28. (Theorem 3.22) � .

�

P

�

�

must

Q if and only if � .

�

(� `

P )�

must

(� ` P )

Proof. Be
ause of the previous sequen
e of results it is suÆ
ient to prove

(�;�

0

);� . P 6�

�

(�;�

0

);� . Q, for some �

0

, implies that there exists a

test T su
h that � `

�

T , P must T , while Q 6must T . For simpli
ity we

only 
onsider the 
ase when �

0

is empty; the more general 
ase is treated

in a manner analogous to Theorem 3.17.

In view of Corollary 3.25 there must be some s su
h that �;�.P +

I

�

s

and some 
omputation

�;� . Q

s

=)

�

C; A = R

�

(C) (�)

and some I su
h that (� after

�

s) allows

�

I and 
(I) \ A = ; with the

property that for every O

0

2 O

�

I

(�;�.P; s); O

0

6� A[
(I). Let O

�

I

(�;�.

P; s) = fO

1

; : : : ; O

n

g and for ea
h i 
hoose a

i

! su
h that a

i

! 2 O

i

� (A [


(I)). Let O be the set fa

1

!; : : : ; a

n

!g.

We now have all the ingredients to apply the previous two Lemmas to

obtain the test T (�; s; O; I; �), well-typed with respe
t to � at level � su
h

that P must T (�; s; O; I; �). However the 
omputation (�) above shows

that Q 6must T (�; s; O; I; �), sin
e 
(O) \ 
(I) = ;.

�
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4 Non-Interferen
e Results

In this se
tion we re
onsider the approa
h taken to non-interferen
e in

Se
tion 4 of [10℄. The essential idea is that if a pro
ess is well-typed at a

given level � then its behaviour at that level is independent of pro
esses

\running at higher se
urity levels"; or more generally \running at se
urity

levels independent to �". A parti
ular formulation of su
h a result was

given in Theorem 5.3 of [10℄:

Theorem 4.1. If � `

�

P;Q and � `

>

H;K, where H; K are �-free pro-


esses, then � .

�

P '

may

Q implies � .

�

P jH '

may

Q jK.

Here, be
ause of our more re�ned notions of well-typing, we 
an give o�er

a signi�
ant improvement on this Theorem, and moreover the formulation

is a
tually easier.

Let us say that the se
urity level Æ is independent of � if Æ 6� �. We


an ensure that a pro
ess H is \running at a se
urity level independent

to �" by demanding that � `

Æ

H , for some Æ independent of �. In fa
t we

will only require the weaker typing relation � `

wÆ

H . This ensures that all

the output a
tions of H are at a level independent of �, as 
an be dedu
ed

from the following property:

Lemma 4.2. Suppose � `

wÆ

H. Then �;� .H

�

�!

�

, where � is an output

a
tion, implies Æ � �.

Proof. By indu
tion on the derivation of �;� . H

�

�!

�

. The only non-

trivial 
ase is the base 
ase �;� . a!hvi

a!v

��!

�

0.

Here we have � ` a

:

w

Æ

0

hAi for some Æ � Æ

0

. Be
ause of (
-out) we

know � ` a

:

r

�

0

hBi for some �

0

� �. We 
an now apply Lemma 3.3 to

obtain Æ

0

� �

0

from whi
h it follows that Æ � �. �

We 
an now state our �rst non-interferen
e result. Note that it applies

to pro
esses su
h that � `

r�

P; Q rather than � `

�

P; Q; only their input

a
tions need to be at level at most �.

Theorem 4.3 (Non-Interferen
e 1). Let � and � be 
ompatible and

suppose � `

r�

P; Q. Then

� .

�

P

�

�

may

Q implies � .

�

P jH

�

�

may

Q jK

provided � `

wÆ

H; K for some Æ independent of �.

Proof. Be
ause of Proposition 3.13 it is suÆ
ient to prove

�;�

0

; � . P jH

s

=)

�

implies �;�

0

; � . P

s

=)

�
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This is proved by indu
tion on the derivation of �;�

0

; � . P j H

s

=)

�

.

The base 
ase, when s is ", is trivial, and there are three possibilities for

the indu
tive 
ase. For notational 
onvenien
e let us suppose that �

0

is

empty; the more general 
ase adds no extra 
ompli
ations.

First suppose the derivation has the form

�;� . P jH

�

�!

�

�

0

; �

0

. R

s

0

=)

�

Here there are two 
ases.

� is performed by P : So R has the form P

0

jH and

�;� . P

�

�!

�

�

0

; �

0

. P

0

:

By Subje
t Redu
tion, Theorem 2.6, we know �

0

`

r�

P

0

and therefore

we 
an apply indu
tion to obtain the result.

� is performed by H : Here R has the form P jH

0

and

�;� . H

�

�!

�

�

0

; �

0

. H

0

:

From the previous Lemma we know � must be an input, say a?v, and

from Lemma 3.2 we know that �

0

is simply � and �

0

must take the form

� u v

:

A for some type A. By weakening we therefore have �

0

`

r�

P

and we may apply indu
tion to obtain �

0

; �

0

. P

s

0

=)

�

.

From the same Lemma we know that � ` a

:

w

Æ

hBi; v

:

B for some

Æ � � and B <

:

A. So we 
an infer

�;�

0

u v

:

B u a

:

w

Æ

hBi . P j a!hvi

s

0

=)

�

:

An appli
ation of (tr-asyn
) now gives the required �;� . P

��s

0

==)

�

.

The se
ond possibility is that the derivation is derived using an instan
e

of (tr-asyn
). Here a simple indu
tive argument suÆ
es.

The �nal possibility is that it has the form

�;� . P jH

�

�!

�

�

0

; �

0

. R

s

=)

�

If the initial � a
tion is performed either by P , or by H then (by Subje
t

Redu
tion) we 
an apply indu
tion to obtain the result. So there remains

two 
ases:

Output from H to P : It turns out that this is not possible, be
ause Æ 6� �.

Suppose we did have su
h an output. Then we would have

� `

wÆ

H; H

(~
)a!v

���! H

0

� `

r�

P; P

a?v

��! P

0

Applying Subje
t Redu
tion we would have

� ` a

:

w

Æ

0

hAi; Æ � Æ

0

� ` a

:

r

�

0

hBi; �

0

� �:
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The 
onsisten
y requirement on types implies Æ

0

� �

0

, whi
h 
ontra-

di
ts Æ 6� �.

Output from P to H : Here the derivation takes the form

�;� . P jH

�

�!

�

�;� . (~


:

~

C)(P

0

jH

0

)

s

=)

�

where P

(~
)a!v

���! P

0

and H

a?v

��! H

0

. So there exists a sequen
e s

C

,

asso
iated with s, su
h that

�;� ; ~


:

~

C . P

0

jH

0 s

C

=)

�

(�)

with the property that for for any R su
h that �;� ; ~


:

~

C . R

s

C

=)

�

it

follows that �;� . (~


:

~

C)R

s

=)

�

.

Applying indu
tion to (�) we obtain

�;� ; ~


:

~

C . P

0 s

C

=)

�

Note that this is possible sin
e Subje
t Redu
tion gives

�; ~


:

~

C `

r�

P

0

; � u v

:

A `

wÆ

H

0

where A is a type su
h that �; ~


:

~

C <

:

�u v

:

A. (In fa
t A is the type

at whi
h v is sent by P .)

It follows that �;�; ~


:

~

C . P

0

j a!hvi

s

C

=)

�

and therefore

�;� . (new ~


:

~

C) (P

0

j a!hvi)

s

=)

�

:

But by Lemma 2.5 we know

P �

st

(new ~


:

~

C) (P

0

j a!hvi)

and the result follows.

�

We end the paper with a non-interferen
e result with respe
t to must

testing. Note that Theorem 4.3 is no longer true when

�

�

may

is repla
ed

by

�

�

must

, as the following example shows.

Example 4.4. Let A denote the type fw

bot

hi; r

bot

hi; r

top

hig and B denote

fr

top

hig. Further, let � map a to A and n to the type fw

bot

hAi; r

bot

hAi; r

top

hBig.

Now 
onsider the pro
esses P and H de�ned by

P ( n!hai j n?(x

:

A) x!hi H ( n?(x

:

B) 0

It is very easy to 
he
k that � `

rbot

P and � `

wtop

H . However

�; � .

bot

P j 0 6

�

�

must

P jH

be
ause of the bot level test a?() !!hi.
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The presen
e or absen
e of H determines whether or not there is read 
on-

tention on the 
hannel n, whi
h in turn in
uen
es the deadlo
k 
apabilities

of P with respe
t to the 
hannel a.

Here the problem is the type of the 
hannel n; it may be read at both

level bot and top. A not unreasonable restri
tion would be to require that

the read 
apability of 
hannels be 
on�ned to a parti
ular se
urity level,

using single-level types. This would not rule out inter-level 
ommuni
a-

tion, but simply 
ontrol it more tightly.

Theorem 4.5 (Non-Interferen
e 2). Let � and � be 
ompatible single-

level environments and suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite pro
esses H; K su
h that � `

wÆ

H; K for some Æ independent

of �.

Note that we must restri
t our attention to �nite H and K sin
e must

testing is sensitive to divergen
e; if H is a divergent term then we 
ould

not expe
t � .

�

P j 0 '

must

P jH to hold when P is a 
onvergent term.

This problem is avoided by restri
ting attention to �nite terms,whi
h 
an

never diverge.

The remainder of the se
tion is devoted to the proof of this �nal result

of the paper. Throughout we will assume � and � are 
ompatible single-

level environments, � `

r�

P , � `

wÆ

H for some Æ independent of �, and

moreover that H is a �nite pro
ess.

Lemma 4.6. For every s, �;� . P +

I

�

s if and only if �;� . P jH +

I

�

s.

Proof. One dire
tion is easy, �;� . P 6+

I

�

s implies �;� . P jH 6+

I

�

s.

Conversely, be
ause H is �nite, we 
an assume that

�;� . P jH

s

=)

�

�

0

; �

0

. (~


:

~

C)(P

0

jH

0

)

for some P

0

su
h that (P

0

jI) 6+. We leave the reader to prove, by indu
tion

on this derivation, that �;� . P

s

=)

�

�

0

; �

0

. P

0

. �

Proposition 4.7. Suppose A 2 A

�

(�;� . P; s) and I is a multi-set of

inputs su
h that 
(I) \ A = ; and (� after

�

s) allows

�

I. Suppose further

that �;� . P +

I

�

s. Then there exists some O 2 O

�

I

(�;� . P jH; s) su
h

that O � 
(I) � A.

Proof. By indu
tion on the derivation

�;� . P

s

=)

�

D; where A = R

�

(D)
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� The empty derivation.

Here A = R

�

(�;� . P ). This means that P 6

�

�! but we may have

P j H

�

�! either be
ause H

�

�! or there may be a write up from P

to H . But be
ause H is synta
ti
ally �nite and P + we know there is

some P

0

jH

0

su
h that P jH

�

�!

�

P

0

jH

0

6

�

�!. Let O be O

�

(�;�.P

0

jH

0

).

Sin
e 
(I)\A = ; we know that O 2 O

�

I

(�;�.P jH; s) and be
ause

P

0

is obtained from P by write-ups it follows that O � A.

� The derivation has the form �;� . P

(
)a!v

���!

�

�

0

; �

0

. P

0

s

=)

�

D.

By Subje
t Redu
tion we know �

0

`

r�

P

0

and therefore we may apply

indu
tion to obtain O 2 O

�

I

(�;� . P

0

jH; s) with the required proper-

ties. The result now follows sin
e O

�

I

(�;� . P

0

jH; s) � O

�

I

(�;� . P j

H; (
)a!v � s)

� The remaining 
ases are similar.

�

We also have the 
onverse.

Proposition 4.8. Suppose A 2 A

�

(�;�.P jH; s) and, as in the previous

Proposition, I is a set of inputs su
h that 
(I) \ A = ; and (� after

�

s) allows

�

I. Then there exists some O 2 O

�

I

(�;� . P; s) su
h that O �


(I) � A.

Proof. Again by indu
tion on the derivation

�;� . P jH

s

=)

�

D; where A = R

�

(D)

As an example we examine the 
ase

�;� . P jH

�

�! D

0 s

=)

�

D;

where the initial � 
onsists of a 
ommuni
ation between P and H . This

must be a write-up from P to H ; so D

0

has the form �;� . (~


:

~

C)P

0

j

H

0

, where P

(~


:

~

C)a!v

�����! P

0

and H

a?v

��! H

0

. We know P has the form

(~


:

~

C)(a!hvi j P

0

), but more importantly that r

Æ

hAi 2 �(a) for some Æ

independent from � (y). What this means is there 
an 
an be no 
om-

muni
ation between a!hvi and any Q su
h that � `

r�

Q.

Now the derivation �;� . (~


:

~

C)(P

0

jH

0

)

s

=)

�

D 
an be transformed

into �;�; ~


:

~

C . P

0

jH

0

s

C

=)

�

E , where R

�

(E) = R

�

(D). Moreover we 
an

apply indu
tion to this derivation, to obtain O 2 O

�

I

(�;�; ~


:

~

C . P

0

; s

C

)

su
h that O � 
(I) � A.

We 
an use (y) to prove O is also in O

�

I

(�;�; ~


:

~

C .a!hai jP

0

; s

C

). The

result now follows sin
e

O

�

I

(�;�; ~


:

~

C . a!hai j P

0

; s

C

) � O

�

I

(�;�; ~


:

~

C . (~


:

~

C)(a!hai j P

0

); s):
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�

Corollary 4.9. (Theorem 4.5) suppose � `

r�

P; Q. Then

� .

�

P

�

�

must

Q implies � .

�

P jH

�

�

must

Q jK

for all �nite pro
esses H; K su
h that � `

wÆ

H; K for some Æ independent

of �.

Proof. It is suÆ
ient to prove

(�;�

0

);�.P �

�

(�;�

0

);�.P jH and (�;�

0

);�.P jH �

�

(�;�

0

);�.P:

These follow from the two previous Propositions and Lemma 4.6. �

5 Con
lusions and Related Work

This paper is a dire
t 
ontinuation of the resear
h reported in [10℄. There

we fo
used on the general topi
 of se
urity types, showing that resour
e a
-


ess 
ontrol 
ould be enfor
ed using a typing system and information 
ow


ontrol 
ould be obtained by a restri
tion to the set of types employed.

The import of Subje
t Redu
tion was emphasised by developing a Type

Safety Theorem, whi
h in turn required a version of the language in whi
h

pro
esses were tagged with their se
urity levels. Here we 
on
entrated on

types for information 
ow, 
alling the resulting language the se
urity �-


al
ulus. The �rst main result 
onsists of alternative 
hara
terisations of

may and must testing for this language. These uses a novel labelled tran-

sition system, whi
h re
ords the se
urity levels at whi
h a
tions o

ur,

together with their e�e
t on the type environment of the pro
ess under

observation and the e�e
t on the, possibly di�erent, type environment

of the observing pro
ess. To our knowledge this is the �rst time typed

behavioural equivalen
es for �-
al
ulus-like languages have been 
hara
-

terised in terms of an lts, although in publi
ations su
h as [15℄ an lts

formulated using types has been used to give a sound, but in
omplete,

method for inferring a typed version of barbed 
ongruen
e, [16℄. We be-

lieve that the te
hnique is quite general and will be appli
able to other

pro
ess languages whi
h use sub-typing.

Our se
ond main result extends the non-interferen
e result from [10℄,

showing that non-interferen
e, with respe
t to both may and must testing,


an be enfor
ed using types. However it remains to be seen to what extent

this approa
h, non-interferen
e through types, 
an be used to obtain useful

instan
es of non-interferen
e. For example in [7℄ a wide range of se
urity
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properties have been shown to be expressible in terms of non-interferen
e

and it would be interesting to see whether these 
an be enfor
ed by typing


onstraints using a type system su
h as ours. This would involve extending

our language to in
lude 
ryptographi
 primitives, su
h as those from [1℄

but we believe that this is not problemati
.

Apart from [12℄, most of the work on non-interferen
e for pro
ess lan-

guages use a behavioural approa
h; see [5, 19℄ for useful surveys

1

. There

systems are deemed to be interferen
e-free if their tra
e sets, sequen
es

of a
tions labelled high or low, satisfy 
ertain properties. Here we use

a more extensional approa
h, saying that a system is interferen
e-free if

low-level observers are unable to dis
ern the presen
e of absen
e of high-

level 
omponents. There must, of 
ourse be some 
onne
tion between our

de�nition and at least one of the behavioural de�nitions in the literature.

However the 
omparison is not straightforward. The de�nitions, in papers

su
h as [18, 5℄ are for very simple untyped versions of CCS, while mu
h

of the power of our approa
h 
omes from the use of types for the more

sophisti
ated �-
al
ulus.
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