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ABSTRACT. In [25, 26], we presented a theory of concurrent combinators for the asynchronous

monadic π-calculus without match or summation operator [8, 22]. The system of concurrent com-

binators is based on a finite number of atoms and fixed interaction rules, but is as expressive as

the original calculus, so that it can represent diverse interaction structures, including polyadic syn-

chronous name passing [35] and input guarded summations [40]. The present paper shows that each

of the five basic combinators introduced in [25] is indispensable to represent the whole computation,

i.e. if one of the combinators is missing, we can no longer express the original calculus up to seman-

tic equalities. Expressive power of several interesting subsystems of the asynchronous π-calculus

is also measured by using appropriate subsets of the combinators and their variants. Finally as an

application of the main result, we show there is no semantically sound encoding of the calculus into

its proper subsystem under a certain condition.

1 Introduction

The calculi of mobile processes [34, 35, 38] have been studied as a mathematical

basis of concurrent computing due to their surprising expressive power in spite

of simple syntactic constructs. Since Milner, Parrow and Walker introduced the

original system in [38], various variants of this calculus have been considered in

many settings: a polyadic or monadic, synchronous or asynchronous π-calculus

with or without match, mismatch, and summation operators. In sequential com-

putation, the hierarchy of computable functions has been traditionally used to

measure the expressive power of programming languages based on a rigid math-

ematical background. This notion is, however, too function-oriented to examine

the whole expressiveness realisable in π-calculi. Consider the result in [34],

which showed lazy and call-by-value λ-calculi can be simulated in an opera-

tionally correct way in monadic π-calculus without match or summation opera-

tor. The two λ-calculi are in the same computability hierarchy, but their encod-

ings in π-calculus represent quite different communication protocols: computa-

tional behaviour in π-calculus is based on much finer interactions than functional

one. The question then arises as to what are general methods to measure repre-

sentability for π-calculi, which would also be applicable to other concurrency

formalisms and programming languages.

One of the major ways to understand the expressiveness of π-calculi is to ex-

amine existence of reasonable encodings of high-level communication structures
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into them. Specifically if we restrict our attention to the family of π-calculi, the

problem is reducible to knowing whether an operation or a construct of some in-

stance of π-calculi can be represented by its sub-calculus without the construct.

If so, the added computational element can be regarded as just a “macro” or a

“syntactic sugar”. If not, then it is indispensable to describe the whole behaviour:

we say that the additional construct separates the world with it from without it.

In the absence of match operator, one remarkable separation result on ex-

pressiveness was proved by Palamidessi [44]: “mixed summations” cannot be

embedded into any of π-calculi without them. Her result reinforces the intuitive

understanding that this mechanism is very difficult to implement and quite differ-

ent from other constructs in the name passing world. On the other hand, without

match or summation, the output prefixless monadic π-calculus [22, 16, 24, 8, 3]

is known as a powerful formalism to represent a wide repertoire of interactive

computational structures: polyadic and synchronous communications [22, 8]

and even input-guarded summations [40] are embeddable within this calculus.

At the practical level, this expressiveness gives rise to a useful high-level con-

current programming language Pict [49] and TyCo [56], which are built on the

polyadic version of this calculus with a strong typing system. At the semantic

level, there exists a theory of combinators, which is derived from the analysis

of the asynchronous name-passing operation [25, 26]. These and other results

suggest that we may consider this asynchronous calculus as a basic syntax in the

concurrency world just as λ-calculus in the function world; and that the study on

expressive power of this calculus would deepen our understating of concurrent

computation at the fundamental level. The basic questions which would natu-

rally arise in this context are: How can we reduce this calculus without loss of its

expressive power? What computational elements are indispensable to represent

the whole behaviour realisable in this calculus?

This paper studies the expressive power of this calculus and its subsystems

using the concurrent combinators in [25, 26]. More concretely, we show that

five atoms introduced in [25, 26], which can represent all processes in this calcu-

lus, are indeed semantically indispensable: if any one of combinators is missing,

we can no longer express the whole calculus up to semantic equalities.1 Each

combinator has a distinct role to separate a class of interactive behaviours real-

isable by the original calculus, and is essential for clarifying expressive power

of its several interesting proper subsystems. Just like BCWIK-combinators of

λ-calculus are useful to categorise and analyse the applicative behaviour of the

family of λ-calculi [1, 4, 55], it is often easier and more tractable to check rep-

resentability in terms of the fixed and finite interaction of the combinators than

1This question about minimality of the combinators was independently posed by B. Pierce, D. San-

giorgi and V. Vasconcelos.
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considering interaction between arbitrary processes, cf. Sections 3 and 4. An-

other technical interest would be the introduction of a simple way of measuring

expressive power, generation and minimality, which does not depend on the no-

tion of encodings.2 In spite of its simplicity, we show that the minimality result is

applicable to the establishment of several negative results on (the encodings into)

proper subsystems of this calculus, cf. Sections 4 and 5. We hope that these no-

tions would be useful to understand expressiveness of concurrent programming

languages in a formal way.

The structure of the rest of the paper follows. Section 2 introduces prelimi-

nary definitions and shows the finite generation theorem with a new quick proof.

Section 3 proves the main theorem, the minimality of the concurrent combina-

tors. The results in the next two sections are established using this theorem.

Section 4 identifies expressive power of several significant proper subsystems of

this asynchronous calculus, related to three important elements in name-passing:

locality, sharing of names and synchronisation. Section 5 then shows there is

no semantically sound encoding of the whole calculus into its proper subsystem

under a certain condition. Finally Section 6 summarises the main results and

discusses the related works [22, 25, 6, 44, 40, 32] and further issues.

This paper includes all omitted definitions and proofs of [60]. In this full

version, we shall newly prove that all of the main theorems (Theorems 2.5,

3.14,3.18 and 5.9) and the main proposition (Proposition 5.6) which were for-

malised and proposed based on the synchronous bisimilarity in [60] can hold

based on other behavioural equalities too: the asynchronous bisimilarity [22]

and asynchronous/synchronous reduction based equalities [24, 53].

2 Generation Theorem

This section first introduces the asynchronous π-calculus and its combinatorial

representation as far as needed, then establishes the finite generation theorem,

which is that, only 5 combinators, which are small proper subset of this calcu-

lus, can represent the whole behaviour realisable in this calculus up to parallel

composition, replication and name hiding.

2.1 the Asynchronous π-calculus

The formalism we are going to introduce in the following is a small fragment of

the original π-calculus [34, 38] based on the notion of asynchronous name pass-

ing [22, 8]. It is a succinct yet powerful calculus for concurrent computation, into

which we can soundly embed various languages and calculi, for example parallel

2Closely related ideas have already been studied by Parrow to examine expressiveness of vari-

ous synchronisation primitives in a non-value-passing process calculus [45]. See Section 6.2 for

discussions.
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object-oriented programming languages and λ-calculi. We call this calculus the

asynchronous π-calculus, or often simply π-calculus if there is no confusion.3

Let N be a countable set of names (fixed throughout the paper), ranged over by

a;b;c; ::,x;y;z;v;w; ::. The syntax of the calculus is given as follows.

P ::= ax:P j av j P jQ j (νa)P j !P j 0

P;Q;R; : : : range over the set of terms denoted by Pπ generated by the above

grammar. “av” denotes a message which sends a value v to a port a. “ax:P”

denotes an input agent which receives a name and instantiates it in free x’s in P.

In ax:P, the name x binds free occurrences of x in P. “(νa)P” is a name hiding

of a in P where the initial a binds its free occurrences in P. “P jQ” is a parallel

composition of P and Q. “!P” is a replicator which represents the copy of P.

“0” is the inaction. The definitions of free and bound names in P are standard

and denoted by fn(P) and bn(P). W.l.o.g. we assume all bound names in P

are distinct and disjoint from free names. A name “a” in av and ax:P is called

an output subject and an input subject, respectively. The structural congruence

� [5, 34] and the reduction relation �! and �!! (
def

=�!

�

[ �) are given in

Appendix A again following the standard definitions [38, 34, 22, 16]. We also

use �α and
def

� for the α-conversion and the literal equality, respectively. The

following notations concerning name usage in terms are important.

� fs

"

(P) and fs

#

(P) are the sets of the free output/input subjects of P, respec-

tively. E.g. fs
#

(ax:bx:xy:ce) = fa;bg and fs

"

(ax:bx:ce) = fcg.

� The sets of output/input active names are given by: a 2 an

"

(P) iff

P� (ν c̃)(av jR) and a 2 an

#

(P) iff P� (ν c̃)(ax:Q jR) with a 62 fc̃g.

� The convergence predicate is defined by:

– P +a" iff 9P0

: P�!! P0

^ a 2 an

"

(P0

)

– P +a# iff 9P0

: P�!! P0

^ a 2 an

#

(P0

)

– P +

al

iff P +a" or P +a# .

� The number of free occurrences of a in P, written ]hP; ai, is given as: ]h0; ai=

]h(ν a)P; ai= ]hba:P; ai= 0, ]hav; ai= ]hva; ai= 1, ]haa; ai= 2, ]h!P; ai=

ω if a2 fn(P) else ]h!P; ai= 0, ]hba:P; bi= 1+]hP; bi, ]hP jQ; ai= ]hP; ai+

]hQ; ai.

We also use the standard synchronous early transition relation
l

�!, and syn-

chronous weak bisimilarity �. See Appendix A for these definitions. The fol-

lowing fact on � is notable and used throughout this paper.

3This calculus is called ν-calculus in [24, 25, 26]. We call the calculus the asynchronous π-calculus

since the name is more widely in use nowadays.
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PROPOSITION 2.1. (weak bisimilarity) (i) � is a congruence relation [16], and

(ii) P� Q then P +

al

, Q +

al

.

2.2 Concurrent Combinators

Concurrent combinators are tractable and powerful self-contained proper subset

of the asynchronous π-terms, just as S and K are of λ-calculi. Atomic agents are

formed from atoms by connecting “ports” to real “locations” (names), and their

computation is based on the notion of dyadic interaction: two atoms interact via a

common interaction port to generate new nodes and a new connection topology.

See [25, 26, 58] for the full account of basic concepts as well as motivations of

this study. Here we begin with seven basic atoms which represent basic elements

of communication behaviour in name passing.

m(av)

def

= av d(abc)

def

= ax:(bx jcx) k(a)

def

= ax:0 fw(ab)

def

= ax:bx

br(ab)

def

= ax:fw(bx) bl(ab)

def

= ax:fw(xb) s(abc)

def

= ax:fw(bc)

Their interactive behaviour can be understood in terms of their reduction, as

follows.

d(abc) jm(ae) �! m(be) jm(ce) k(a) jm(ae) �! 0

fw(ab) jm(ae) �! m(be) br(ab) jm(ae) �! fw(be)

bl(ab) jm(ae) �! fw(eb) s(abc) jm(ae) �! fw(bc)

We write c;c0; :::; to denote these agents. m(ab) (message) carries a name b to

name a, d (duplicator) distributes a message to two locations, fw (forwarder)

forwards a message (thus linking two locations), k (killer) kills a message, while

br (right binder), bl (left binder) and s (synchroniser) generate new links. In

particular br and bl represent two different ways of binding names — in br one

uses the received name for output, while in bl one uses it for input. s is used

for pure synchronisation without value passing, which is indeed necessary in

interaction scenarios as seen in the main theorem later.

2.3 Finite Generation

We introduce the ideas of generation and basis (following the treatment in λ-

theory, cf. Def 8.1.1 in [4]), as well as subsystems. A closely related idea has

also been proposed in [45] for the non-value passing language. These ideas

would be generally applicable to both functional and concurrent calculi with

suitable adaptation. Then the main theorem of this section is stated and proved.

DEFINITION 2.2.

(i) (generation) Let X � Pπ. The set of terms generated by X , notation X+,

is the least set Y such that:

(1) X � Y .
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(2) (a) P� Q and P 2Y ) Q 2 Y , (b) 0 2Y ,

(c) P; Q 2Y ) P jQ2 Y , (d) P 2Y ) (νa)P 2Y ,

(e) P 2Y ) !P 2Y , and

(f) P 2Y ) Pσ 2Y where σ is a injective renaming.

(ii) (basis) Let Y � Pπ. Then X � Pπ is a basis for Y (up to �) iff

8P 2Y:9Q 2 X+ P� Q

X is called a basis if X is a basis for the set of π-terms.

(iii) (subsystem) Let P � Pπ and P+

= P. Then P is called:

subsystem if P 2 P ^ P�!! Q ) Q 2 P.

subsystem up to � if P 2 P ^ P�!! Q ) 9R:Q� R 2 P.

t-subsystem if P 2 P ^ P
l̂

=) Q ) Q 2 P.

t-subsystem up to � if P 2 P ^ P
l̂

=) Q ) 9R:Q� R 2 P.

We also say P1 is a (t-)subsystem of P2 (up to �) if P1 and P2 are (t-

)subsystems and P1 � P2.

(iv) (subbasis) Y1 is a subbasis of Y2, written Y1 . Y2, if Pi = fP j P� Q 2

Y+

i g is a subsystem (i = 1;2) and P1 � P2. We write Y1 ' Y2 if both

Y1 . Y2 and Y2 . Y1; and Y1 � Y2 if both Y1 . Y2 and Y2 6. Y1.

In (i), the set Y generated by X includes structural rules (a) and inaction (b), and

it is closed under reduction contexts (c–e) and renaming operators (f) (cf. [17,

18, 44])4. (ii) says that if X is a basis then any π-term should be behaviourally

equivalent to some term generated by X . (iii) means a subsystem P should be

self-contained w.r.t reduction. In (iv), Y1 ' Y2 means two subsystems generated

by Y1 and Y2 have the same expressive power. Note the relation Y1 . Y2 can be

defined even if Y1 6�Y2 and Y2 6�Y1 and Y1 and Y2 themselves are not subsystems.

From a programming viewpoint, if X is a basis for Y , any program written in a

language Y can be described by a composition of programs written in its “core

language” X , and if X is a subsystem, then X can be used as a self-contained lan-

guage because it is closed under evaluation. A fact related with (iii,iv) follows.

FACT 2.3. Let P;P1;P2 be subsystems. Then we have:

(i) . is a preorder and P1 � P2 ) P1 . P2.

(ii) Y is a basis of P iff P.Y .

(iii) If Y1 .Y2 and Y1 �Y2, then Y1 ' Y2.

4The use of injective renaming instead of usual substitution (i.e. non-injective renaming) is prefer-

able because equalities over processes found in the literature are usually closed under injective re-

naming, but may not be closed under substitutions. See [18, 17] for details.
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(iv) If Y is a subbasis, then Y+ is a subsystem up to �.

(v) If P0 is a (t-)subsystem up to�, then fP j P�Q2 P0g is a (t-)subsystem.

REMARK 2.4.

� Without “!” in (i) in Definition 2.2, the finite generation with at most 19

combinators is possible by the result in [26]. Here we include !P because we

are concerned with expressiveness in terms of communication behaviours.

� In (ii), we can use any weak equalities (asynchronous weak bisimilarity [22],

barbed congruence [3], and the maximum sound theory [24]) instead of the

synchronous bisimilarity to reach the main theorems of this paper; see Re-

mark 2.10, Theorems 3.24, 3.25 and 5.14 for more details.

� (iii,iv) can be generally extended to discuss the relationship among the family

of π-calculi by considering the subsystems of the full synchronous polyadic

π-calculus. E.g. the asynchronous π-calculus is a subsystem of monadic

synchronous π-calculus [34] and the monadic synchronous π-calculus is that

of polyadic π-calculus [35] etc. See Sections 5 and 6 for more discussions

on expressiveness in π-family.

Now let us define a set of five combinators as follows. We assume a;b and c

are pairwise distinct.

C
def

= fm(ab); d(abc); br(ab); bl(ab); s(abc)g

The main theorem of this section states these 5 combinators can generate whole

set of terms up to the weak bisimilarity. The next subsection shows the proof of

this theorem.

THEOREM 2.5. (finite generation) C is a basis and Pπ ' C.

2.4 Proof of the Finite Generation Theorem

We first introduce the set of combinators corresponding to subsection 2.2.

C7
def

= fm(ab); m(aa); d(abc); d(abb); d(aab); d(aaa); k(a);

fw(ab); fw(aa); br(ab); br(bb); bl(ab); bl(bb);

s(abc);s(aab); s(aba); s(abb); s(aaa) g

where a;b and c are pairwise distinct. Let Pcc
def

= C+

7 . Then clearly Pcc is a t-

subsystem of Pπ by checking the reduction rules for atomic agents. To prove

the main theorem, we first show C7 is a basis: any prefix of the asynchronous

π-calculus can be represented following the idea in [25] (the rule (IV) is newly

defined). We assume the following annotations, which denote how each name is

used in the rules of interaction.

m(a+v�);d(a�b+c+);k(a�); fw(a�b+);bl(a

�b+);br(a
�b�);s(a�b�c+)
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Note the annotated polarities are preserved by reduction, e.g.

d(a�b+c+) jm(a+v)�! m(b+v) jm(b+v):

It will be clear from the following definition that 7 atoms are in appropriate forms

to decompose input prefixes.

DEFINITION 2.6. (name abstraction) For P being any agent, we inductively

form the agent denoted by a�x:P in Table 1 where rules are applied from (I)

to (XIII) in this order and c;c1;c2 are fresh and pairwise distinct.

(I): a�x:(P jQ)

def

= (νc1c2)(d(ac1c2) jc

�

1x:P jc�2x:Q)

(II): a�x:(νc0)P
def

= (νc)a�x:Pfc=c0g
(III): a�x:0

def

= k(a)

(IV): a�x:!P
def

= (νc)(fw(ac) j !c�x:(P jm(cx)))

(V): a�x:c(v+w̃)

def

= (νc)(s(acv) jc(c+w̃)) x 62 fvw̃g

(VI): a�x:c(v�w̃)

def

= (νc)(s(avc) jc(c�w̃)) x 62 fvw̃g

(VII): a�x:m(vx)

def

= fw(av) x 6= v

(VIII): a�x:fw(xv)

def

= bl(av) x 6= v

(IX): a�x:fw(vx)
def

= br(av) x 6= v

(X): a�x:c(ṽ1x+ṽ2)
def

= (νc)a�x:(fw(cx) jc(ṽ1c+ṽ2)) x 62 fṽ1g

(XI): a�x:c(x�ṽ)

def

= (νc)a�x:(fw(xc) jc(c�ṽ))

(XII): a�x:br(vx�)

def

= (νc1c2c3)a

�x:(d(vc1c2) js(c1xc3) jbr(c2c3)) x 6= v

(XIII): a�x:s(vx�w)

def

= (νc1c2)a

�x:(s(vc1c2) jm(c1x) jbl(c2w)) x 6= v

TABLE 1. Prefix Mapping

The following proposition shows that a�x:P behaves as we expected.

PROPOSITION 2.7.

(i) ax:P � a�x:P.

(ii) P � Q ) a�x:P � a�x:Q.

(iii) a�x:P jm(av)�!� Pfv=xg.

PROOF. (i) By rule induction in Definition 2.6. Rules except (II) and (VI) are all

mechanical. For (II) and (VI), we use the (extended) β-reduction!β in [25]. See

Appendix B. For (ii), by Proposition 2.1 (i), we have P � Q ) ux:P � ux:Q,

then by (i), u�x:P � ux:P � ux:Q � u�x:Q, as required. (iii) u�x:P jm(uv)�!

!� Pfv=xg is from (i) and Proposition 2.1 (i). �!! becomes�! by the proof
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of (i).

Now we can decompose all the asynchronous π-terms to Pcc with the following

mapping.

[[ab]]

def

= m(ab) [[ax:Q]]

def

= a�x:[[Q]] [[P jQ]]

def

= [[P]] j [[Q]]

[[(νa)P]]

def

= (νa)[[P]] [[!P]]

def

= ![[P]] [[0]]

def

= 0

Note that for all v;x, we have [[Pfv=xg]]� [[P]]fv=xg. The key lemma follows.

LEMMA 2.8. P� [[P]].

PROOF. By the structural induction. Base cases, P� 0 and P� ab, are easy. At

the induction step, we use Proposition 2.7 (i) for the input prefix, while others

are done by Proposition 2.1 (i).

Notice the above lemma together with (i) in Proposition 2.1 immediately

establishes that [[ ]] is a fully abstract mapping, i.e. P� Q , [[P]]� [[Q]]. Now

we know C7 is a basis via [[ ]], but C7 is not a minimal basis: the number of atoms

in C7 can be decreased to C in the following way.

First fw(ab) and k(a) can be expressed with other 5 combinators,

e.g. fw(ab)� (νc)d(abc) and k(b)� (νc)bl(bc). Thus the number has become

15 from 18. Secondly note, for each renaming σ, an atom with the identical

arguments like m(aa) can not be directly generated by renaming one atom in C7;

i.e. for all renaming σ, m(bb) 6�m(ab)σ, etc. But substitution can be represented

by forwarders up to �, by the following lemma.

LEMMA 2.9. (substitution decomposition)

(i) c(a�b̃) � (νc)(fw(ac) jc(cb̃)) and c(ãb+ã0) � (νc)(fw(cb) jc(ãc+ã0))

with c fresh.

(ii) For all c2C, we have: c(ṽ)� (ν c̃)(c1(ṽ1) j ::: jcn(ṽn)) where c(ṽi)σi 2C

and σi is a renaming operator.

PROOF. (i) is mechanical. Then (ii) is proved by (i) as follows:

� m(aa) � (νc)(m(ca) j fw(ca)),

� d(aaa)� (νc1c2)(d(ac1c2) j fw(c1a) j fw(c2a)),

� br(aa) � (νc)(fw(ac) jbr(ca)),

� bl(aa) � (νc)(fw(ac) jbl(ca)), and

� s(aaa)� (νc1c2)(fw(ac1) j s(c1ac2) j fw(c2a)).

Now we finish proving Theorem 2.5: by the above arguments, if P 2 Pcc,

then 9Q 2C+

: Q� P. Moreover if P 2 Pπ, then [[P]]2 Pcc. Thus by P� [[P]] for
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all P2 Pπ in Lemma 2.8, we have P� [[P]]� Q2C+, hence Pπ.C as required.

The second inclusion is by Fact 2.3 (iii) with Pπ� C.

REMARK 2.10. (finite generation by other equivalences) The finite generation

theorem can be established based on other known weaker equalities — (1) the

asynchronous bisimilarity (denoted by �a) [22, 23, 16] and (2) the synchronous

and asynchronous maximum sound equalities (denoted by =s and =a [24]) which

coincide with the synchronous and asynchronous barbed congruences (cf.[10]).

See Appendix A for the definitions of the asynchronous bisimilarity and the

sound equalities.

For the proof of the finite generation in these settings, we need to change the

definition of basis, subsystem and subbasis by replacing� with �a, =s and =a,

respectively. Then all we have to prove is Lemma 2.8 for each equality, which is

immediate from ���a�=a and ��=s�=a.

3 Minimality Theorem

3.1 Minimal Basis

This section establishes the main result of this paper — the minimality of C, i.e.

any proper subset of C cannot become a basis. We also show that this result

can be extended even if we use more weak behavioural equalities in Subsection

3.7. Intuitively, the main theorem means there exists a program which can be

described in a core-language, but not in its proper subset.

DEFINITION 3.1. (minimal basis) Letnbe the set difference operator. Assume

Y is a basis and P 2Y . Then we say P is essential w.r.t. Y if YnfPg is not a basis.

We call Y a minimal basis if all elements of Y are essential.

LEMMA 3.2. Let Y �C7 and write Ync for Ynfc(ṽ1); ::;c(ṽn)g with c(ṽi)2Y ,

i.e. all terms of the form c(ṽi) are deleted from Y . Then for all c(ṽ) 2 C, we

have:

(i) (C7nc)+ is a subsystem, and (Cnc)+ is a subsystem up to �. If c 6= m,

then (C7nc)+ is a t-subsystem and (Cnc)+ is a t-subsystem up to �.

(ii) Cnc . C7, and Cnc ' C7nc ' (C7nc)+.

(iii) (C7nc)+ is not a basis iff Cnc is not a basis.

PROOF. (i) The case c = m is obvious because P 6

l

�! with l an output for all

P 2 (C7nm)

+. Let c 6= m. Then if c(ã)

l

�! P, then for all l, P is a forwarder

or messages. Hence (C7nc)+ is a t-subsystem, and by Fact 2.3 (iv), (Cnc)+ is a

t-subsystem up to�. (ii) Cnc is a basis of (C7nc)+ since fw(ab) and k(a) can be

represented by whichever d(abc), bl(ab), br(ab) or s(abc) (for cases bl and br,

we need m, e.g. fw(ab) � (νc)(bl(cb) jm(ca)) � (νc)(br(ca) jm(cb))). Then
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we use Fact 2.3, noting C7nc and Cnc are both basses of a subsystem (C7nc)+.

(iii) is an easy corollary of (ii).

We often simply say “P is essential” to mean “P is essential w.r.t. C” and

write Pccnc for (C7nc)+ with c(ṽ) 2 C from the following. Note if c = fw, then

Pccnc is not a subsystem. By (iv) above, to verify the essentiality of c we will

equivalently prove Pccnc � C.

3.2 Output and Duplication

It is clear that “the minimum output”, i.e. a message, is needed.

PROPOSITION 3.3. m(ab) is essential.

PROOF. Clearly 8P 2 Pccnm. :P
ab

=), while we have: m(ab)

ab

�! 0.

d(abc) is the only agent who distributes the same value to two locations.

Therefore, without d(abc), we can not realize sharing of names in π-calculus, as

formally proved in the following lemma (]hP; ei was given in 2.1.).

LEMMA 3.4.

(i) For all P 2 Pccnd, P�!! P0 implies ]hP; ei � ]hP0

; ei.

(ii) Suppose P 2 Pπ and P
l

=)

l0
=) P0 where l = be or b(e) and l0 = ce0 or

c(e0) with bn(l)\bn(l0) = /0. Then there exists Q0 such that

P�!! (ν f̃ )(Q0

jm(be) jm(ce0)).

PROOF. (i) Note if e appears under replication in P, then ]hP; ei = ω. Hence

we have P � Q ) ]hP; ei = ]hQ; ei. The rest is straightforward by checking

reduction rules in 2.2. (ii) is because of asynchrony of combinators.

PROPOSITION 3.5. d(abc) is essential.

PROOF. Suppose P 2 Pccnd and P � d(abc) as a contradiction with e fresh.

By Proposition 2.1 (i), we have (P jm(ae)) � (d(abc) jm(ae)). Then we know:

(d(abc) jm(ae)) �!

be

�!

ce

�! 0 while (P jm(ae))

be

=)

ce

=) is impossible because

if so, (P jm(ae)) �!! (ν c̃)(m(ae) jm(be) jQ) for some c̃ and Q by Lemma 3.4

(ii), but this contradicts Lemma 3.4 (i) because of ]h(P jm(ae)); ei= 1.

The duplicator d(abc) has two functionalities: duplication of the same value

and distribution of two messages. There is a further point which needs to be

clarified: whether parallelism is increased without duplicator. The answer will

be given in Section 4 later using a pure distributor which just increments paral-

lelism.
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3.3 Binders

Next we consider two link generators bl(ab) and br(ab). The former is the only

agent which can create a new input-subject by a value which it receives (x in

ax:fw(xb)), and the latter is the only one which can create a new output-subject

(x in ax:fw(bx)).

LEMMA 3.6.

(i) For all P 2 Pccnbl , P
l

�! P0 implies fs
#

(P)� fs

#

(P0

).

(ii) For all P 2 Pccnbr, P
l

�! P0 implies fs
"

(P)� fs

"

(P0

).

PROPOSITION 3.7. Both bl(ab) and br(ab) are essential.

PROOF. Assume P 2 Pccnbl and P
ae

�! P0 with e fresh. Then by Lemma 3.2

(i), P0

2 Pccnbl , hence :P0

ec

=) by Lemma 3.6 (i). But we have bl(ab)

ae

�!

fw(eb)

ec

�! m(bc), a contradiction. The case br(ab) is just similar by changing

input with output.

Lemma 3.6 simplily explains roles of bl and br through the proof of their

essentiality. We can not reduce, however, the syntax of bl(ab) and br(ab) even

if we still keep the capability to create the new input and output subject names

in the following sense: bl(ab) can not be replaced with ax:xy:0 and br(ab) can-

not be replaced with ax:xb. These results will be proved in Theorem 3.18 and

Proposition D.4. The next section also shows that bl separates locality from

non-locality of name-passing in π-calculus, and a commutative version of br

characterises a more asynchronous calculus than this asynchronous π-calculus.

3.4 Needed redex pair

To formalise the causality of interaction between combinators, we here introduce

the notions of an occurrence and a needed redex pair, following the notion of λ-

calculus (cf. [4]).

DEFINITION 3.8. (occurrence and subterms) Let ε be a empty sequence. Then

the set of occurrences of term P, denoted by O(P) and ranged over by u;u0; :::, is

inductively defined as:

� P
def

� 0 or P
def

� c(ṽ) ) O(P) = fεg.

� P
def

� P1 jP2 ) O(P) = fεg[fi �u j u 2 O(Pi); i = 1;2g.

� P
def

� (νa)P0

; !P0

) O(P) = fεg[f1 �u j u 2 O(P0

)g.

The subterm of P at u2O(P) is denoted by P=u. We represent the occurrence of

a subterm of P by the corresponding subterm if there is no ambiguity.
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For the simple example, let R
def

� (νa)(m(ab) j (bl(ab) jm(ac))). Then R=1
def

�

m(ab) j (bl(ab) jm(ac)) and R=1 � 2 � 1
def

� bl(ab). In the following, we define

which pair of combinators are needed to create a new combinator.

DEFINITION 3.9. (a needed redex pair)

(1) Let ∆ be a tuple of occurrences, say ∆ = hu1; u2i, and write P
∆

�! P0 if

P
τ

�! P0 is obtained by interaction between c(x�ṽ)

def

� P=u1 and m(xy)

def

�

P=u2 in P. Assume the derivation of P
∆

�! P0 includes either

c(x�ṽ)

xy

�! c0(w̃),

c(x�ṽ)

xy

�! c0(w̃) jc0(ṽ), or

c(x�ṽ)

xy

�! c0(ṽ) jc

0

(w̃)

in its proof. Then we say ∆ in P is directly needed for c0(w̃).

(2) Assume a finite and infinite τ-action sequence

P0
∆0

�! P1
∆1

�! P2
∆2

�! �� �

∆n�1

�! Pn � � �:

� Suppose ∆0 is directly needed for c0(w̃)

def

� P1=u. If 8 j 0� j� i:u 62 ∆ j,

then we say ∆0 is needed for (the occurrence of) c0(w̃0

)

def

� Pi=u in Pi.
5

� Write ∆i � ∆ j (0 � i < j) if ∆i is needed for one of the combinators at

∆ j in Pj. We say ∆i in Pi is needed for (the occurrence of) c0(w̃) in Pn if

there is a chain of needed pairs s.t.

∆i
def

= ∆i0 � ∆i1 � ∆i2 � �� � � ∆im with i� ik < ik+1 � n�1

and ∆im is needed for c0(w̃) in Pn.

For example, assume a given reduction sequence in the following.

(νc)(d(abc) jm(ae) jbr(bd))

τ

�! (νc)(m(be) jm(ce) j0jbr(bd))

τ

�! (νc0)(0 jm(c0e) j0j fw(de))

Note 0 comes from τ-actions. Here d(abc) and m(ae) are needed for m(be)
and m(ce), and m(be) and br(bd) are needed for fw(de), hence d(abc) and

m(ae) are needed for fw(de). d(abc) and m(ae) are also needed for m(c0e).

Notice there may be several needed chains for one combinator (cf. Example in

Subsection 3.2). The following simple fact, however, holds because
τ

�! is based

on the labelled transition relation without �, cf. Appendix A.

5I.e. c0(w̃) in P1 remains as c0(w̃0

) in Pi without interaction with any combinators. Note c0(w̃) may

be changed to c0(w̃0

) by α-conversions during τ-actions.
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FACT 3.10. Suppose P0
∆0

�! P1
∆1

�! P2
∆2

�! �� �

∆n�1

�! Pn and there is a sequence

of needed redex pairs ∆i
def

= ∆i0 � �� � � ∆im with im � 1 for c(w̃) in Pn. Then:

(i) ∆im and a set of needed chains to c(ṽ) are unique.

(ii) for all ik, ∆ik does not contains either 0 nor k(ṽ).

(iii) c(w̃) in Pn does not occur under replicators.

3.5 Synchronisation

Now we prove the most interesting and difficult part: creating some term (a

forwarder or a message, cf. Lemma 3.16) after synchronisation, while doing no

name-instantiation, is really essential to represent the whole behaviour of π-

calculus.

To prove the key proposition, we formalise the idea of general synchroniser

in name-passing. The following definition says that interaction with a message

m(ae) is needed to create a new interaction point at b, and at the same time a

value e is not used for that purpose.

DEFINITION 3.11. (general synchroniser) Let a 6= b. A general synchroniser

from a to b is a term P such that (1) :P +b# , (2) (P jm(ae)) +b# , and (3)

:(P jm(ae) jm(bc)) +el where e is fresh in (2) and (3).

We can easily check none of m, d, fw and bl is a general synchroniser be-

cause they cannot create a new input subject after interaction with a message

m(ae). If k(a) interacts with a message m(ae), then a value e is thrown away.

Hence it satisfies (1) and (3), but does not have the property (2). br(ab) satisfies

(1) and (2), but does not have the property (3) since a value is used as an output

subject. On the other hand, s(abc) is a general synchroniser at a to b as shown

later.

In this way, it is easy to check every atom except s(abc) is not a general

synchroniser. But is it indeed impossible to represent a general synchroniser by

any composition of six combinators except s(abc) using operators j , ! and ν up

to weak bisimilarity? The following lemma answers this question.

LEMMA 3.12. (Main Lemma) Pccns has no general synchroniser.

PROOF. Suppose P2Pccns is a general synchroniser at a to b. Since b 62 an

#

(P0

)

for all P0 s.t. P �!! P0, there are only two ways for b to be created as a new

active input subject:

(a) br(db) and m(d f ) interact,

i.e. br(db) jm(d f ) �! fw(b f ) for some d and f .

(b) bl(d f ) and m(db) interact,

i.e. bl(d f ) jm(db)�! fw(b f ) for some d and f .
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Notice either br(db) or bl(d f ) should be a subterm of P since no combinator can

generate br or bl . Now assume

P0
def

= P jm(ae)

τ

�! P0

1 jm(ae) � � �

τ

�! P0

i jm(ae)

τ

�! Pi+1 � � �

τ

�! Pn

with b 62 an

#

(Pi) (1 � i � n� 1) and b 2 an

#

(Pn). By the above argument, we

note:

� either hbr(db); m(d f )i or hbl(d f ); m(db)i in Pn�1 is needed for fw(b f ) in

Pn, and

� either i = n� 1 or hc(a�ṽ); m(ae)i in P0

i jm(ae) is needed for m(d f ) or

m(db) in Pn�1 with i < n�1.

Case (a) i = n�1: We have either (1) hc(a�ṽ); m(ae)i = hbr(db); m(d f )i or

(2) hc(a�ṽ); m(ae)i= hbl(d f ); m(db)i. For the case (1), with d = a and f = e,

we have P jm(ae) jm(bc) � P0

0 jbr(ab) jm(ae) jm(bc) �! (P0

0 j fw(be) jm(bc))

�! (m(ec) jQ)+e" , which is a contradiction. The case (2) is impossible because

e is chosen fresh.

Case (b) 1� i < n�1: There are three cases. (i) Suppose c(a� ṽ)� d(aa21a22)

for some a21;a22 (the case c(aṽ) � fw(aa21) amounts to this case, and k(a) is

never needed by Fact 3.10 (i)). Then by definition for needed redex pairs, at least

either m(a21e) or m(a22e) is needed again, and there exists a needed c2(a2 jṽ) in

Pl (i < l � n�1) which should interact with m(a2 je) ( j = 1;2). If again c2(a2 jṽ)

is d(a2 ja31a32), then again m(a31e) or m(a32e) is needed. Because the chain of

needed redex pairs is always finite, either bl(ak jg) or br(ak jg) is needed for some

i < k � n� 1 since m(ak je) is forwarded just throughout a chain of d without

changing the value e. The case k = n�1 is just the same with the case i = n�1

by replacing a with ak j. So assume k < n�1. Then there are the two cases.

(1) Case bl(ak jg) is needed for some g: then (bl(ak jg) jm(ak je)) �! fw(eg),

hence (P jm(ae)) +e# , contradicting our assumption.

(2) Case br(ak jg) is needed for some g: Then br(ak jg) jm(ak je) �! fw(ge).

By definition of needed redex pairs, fw(ge) should be needed for m(d f )

or m(db) again. Thus there exists a needed m(gg0) in Pk0 for some k0 <

n� 1, and we get: fw(ge) jm(gg0) �! m(eg0), hence (P jm(ae)) +e" , a

contradiction again.

(ii,iii) Cases c(a�ṽ) � br(ag) and c(a�ṽ) � bl(ag) for some g are just the same

with the above cases (i-1) and (i-2), respectively.

Now we can show s(abc) can not be represented by other atoms.

PROPOSITION 3.13. s(abc) is essential.

PROOF. First we note that P is a general synchroniser and P � Q implies Q is
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a general synchroniser by Proposition 2.1. Assume a 6= b and e is fresh. Then

we know :s(abc) +b# and (s(abc) jm(ae)) +b# . Since s(abc)

ae

�! fw(bc)

b f

�!

m(c f )

c f

�! 0 is the only possible transition s(abc) can have, we get

:(s(abc) jm(ae) jm(bc))+

el

, hence s(abc) is a general synchroniser at a from b.

But by the previous lemma, we know there is no P 2 Pccns such that P� s(abc),

as desired.

This result says that the prefix “ax:P” in π-calculus plays the role not only

of binding x in P but also of synchronising at a (and then activating P). See the

next section for a study of the calculus with even less synchronisation. Now we

reach the main theorem.

THEOREM 3.14. (Minimality) C is a minimal basis. Hence Cnc�C.

PROOF. By Propositions 3.3, 3.5, 3.7 and 3.13 and Fact 2.3.

Because c(ṽ) 2 C can not be generated by other four combinators, it is not

possible to be generated by other three, two, one and zero combinators in C.

Notice that we can prove the same statement of Lemma 3.2 even if we extend

Cnc to Cnc1n� � �ncn (0� i� n� 5). Hence we have:

COROLLARY 3.15. Y1 ( Y2 � C implies Y1 � Y2, hence fY+

j Y � Cg forms a

complete lattice with Σ0�n�5 5Cn = 32 elements w.r.t �.

3.6 Strong Minimality

In programming languages, a user sometimes wants to replace an existent prim-

itive with another new primitive defined by him/herself, and delete the previous

one without loss of expressive power. If a basis is minimal, we can automatically

check the essentiality of a new primitive.

LEMMA 3.16. (exchange) Suppose Y is a minimal basis and Z
def

= YnfXg[fX 0

g

with X 2Y . Then there exists P s.t. X � P 2 Z+ iff Z is a minimal basis.

PROOF. Suppose X � P 2 Z+. Since X is essential, there is no R s.t. X � R 2

(YnX)

+. Therefore P should include X 0σ as its subterm with some renaming σ.

Set P � Cn[X

0σ1]1::::[X

0σn]n for some n � 1 where Cn is a n-hole context with

Cn 2 (Y nX)

+, and σi is a renaming function. Assume contradictorily we have

X 0

� Q 2 (Y nX)

+. Then by Proposition 2.1 (i), X � Cn[X

0σ1]1::::[X

0σn]n �

Cn[Qσ1]1::::[Qσn]n 2 (YnX)

+, which is against the essentiality of X .

We can replace s(abc) with a message synchroniser sm(abc)

def

= ax:bc.

PROPOSITION 3.17. (message synchroniser) Cm
def

= Cns[fsm(abc)g is a mini-

mal basis.
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PROOF. By s(abc)� (νe)(sm(aeb) jbl(ec)) and the previous lemma.

Note ax:by:0� (νc)s(abc) is a general synchroniser in the sense of Defini-

tion 3.11. However, this process together with 4 atoms except s(abc) can not

generate the whole π-calculus: if we diminish any atom in C by name-hiding, it

is no longer a basis for Pπ.

THEOREM 3.18. (strong minimality of C) LetY
def

= (Cnc)[1�i�n Pi with c(ã)2

C, Pi
def

= (ν b̃i)c(ã) and /0 6= fb̃ig � fãg for some b̃i and n. Then Y is not a basis.

PROOF. We already know that 0, k(ab) and fw(ab) are not essential by sub-

section 2.3, so, by cutting off trivial cases, we only have to check the following

three sets are not basses.

(1) Y1
def

= Cnm(ab)[f(ν b)m(ab)g with a 6= b.

(2) Y2
def

= Cnbl(ab)[f(νb)bl(ab)g with a 6= b (note ax:xy:0� (νb)bl(ab)).

(3) Y3
def

= Cns(abc)[f(νc)s(abc)g with a 6= b (note ax:by:0� (νc)s(abc)).

By Lemma 3.16, we show Y1;2;3 can not generate m(ab), bl(ab) and s(abc), re-

spectively. (1) Suppose P � Q 2 Y+

1 . Then for all P0 s.t. P �!! P0, P0 can not

include free names as objects of messages. Hence P
ab

=) P0 is not possible for

all a and b, while m(ab)

ab

�! 0.

(2) Suppose bl(ab) � P 2 Y+

2 . Then if P
ae

=) P0
ee0

=) P1 with e;e0 fresh, then

P should include (νb)bl(a

0b) as its subterm by Lemma 3.6 (i), and we can

write P0 �!! (c̃)((νb)ey:by jR). By the form of the term, we know, for any

f , P1
f e0

=) P0 is impossible, while bl(ab)

ae

�!

ee0

�!

be0

�! 0.

(3) We assume P 2 Y+

3 and P � s(abc). Then by the same reasoning in the

proof of Lemma 3.12, P should include (νc)s(dbc) (� dx:by:0) as its subterm.

But this time, with e;e0 fresh, s(abc)

ae

�!

be0

�!

ce0

�! 0, while the third transition of

P
ae

=)

be0

=)

ce0

=) P0 is clearly impossible.

Thus five atoms are not only essential in the sense of Definition 3.1, but also

have indeed “atomic” properties in that we can not reduce its syntax further.

REMARK 3.19. (minimum number) It is uninteresting to discuss just what is the

minimum number of concurrent combinators rather than what combinators are

indeed essential. Consider the following term.

Big(abcde f ghi jkl)

def

= m(ab) jd(cde) jbr( f g) jbl(hi) js( jkl)
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Then we can easily guess that the whole asynchronous π-calculus can be gen-

erated only from this term since we can generate any atom from it by using

name hiding, e.g. m(ab) � (νc f h j)Big(abcde f ghi jkl). However it can not be

said that this term is a combinatorial representation because it has several active

names, and then a reduction rule between them is not fixed. In addition, this is

not minimum in the sense of Theorem 3.18.

3.7 Minimality under Other Behavioural Equivalences

In the following subsection, we shall show the minimality theorem is also proved

even if we replace the synchronous bisimulation � with (1) the asynchronous

bisimulation �a, (2) the synchronous maximum sound theory =s and (3) the

asynchronous maximum sound theory =a. In the case of (1) and (3), the most

difficult case is to prove the essentiality of s(abc). For the proof in the case of

�, we used the following fact:

if P� Q and P is a general synchroniser at a to b,

then Q is the same general synchroniser.

But it is not satisfied if we replace� with either�a or =a since the input action

cannot be observed in the asynchronous equivalences. Hence Main Lemma is not

directly applicable. However the same proof technique based on the concurrent

combinators will be used in the following way; first we will show there is no

general message synchroniser in Pccns with a similar proof reasoning as Main

Lemma, then the following fact will be used instead of the above.

if P�a Q and P is a general message synchroniser at a to b,

then Q is the same general message synchroniser.

Finally by Lemma 3.16, the essentiality of sm will be exchanged by that of s.

On the other hand, in the cases of (2) and (3), we can not observe the value of

messages. But we can again prove both minimality and strong minimality using

another concurrent combinator called switcher [24].

Minimality on the Asynchronous Bisimilarity

First �a is a congruent relation [16], and if P �a Q then P +a" , Q +a" .

Then essentiality of m(ab), d(abc) and br(ab) are obvious by the previous lem-

mas. Note, for the essentiality of bl(ab), we used increment of input observation

(Lemma 3.6 (i)), which does not seem to work for the case of �a. But we can

again use this property to prove the following result.

PROPOSITION 3.20. bl(ab) is essential.

PROOF. By Lemma 3.6 (ii), we first note if P 2 Pccnbl and e 62 fs

#

(P), then for

all P0 s.t. (P jm(ec)) �!! P0, we have P0

+e" . Suppose bl(ab) �a P 2 Pccnbl

and e fresh. Then we have bl(ab) jm(ae) jm(ec) �a P jm(ae) jm(ec). Now we
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know bl(ab) jm(ae) jm(ec)�!2 m(bc) and :m(bc) +e" . By assumption, there

exists P0 such that P jm(ae) jm(ec)�!! P0 with m(bc) �a P0, hence :P0

+e" .

But this is a contradiction.

The most difficult case in this asynchronous bisimulation is the essentiality of

s(abc) again. Instead of proving this directly, we show a message synchroniser

sm(abc)

def

= ax:be can not generated without s(abc).

DEFINITION 3.21.

(i) (switcher) Let us define sw(ab)

def

= ax:xb. Then sw(ab) jm(av)�!m(vb).

We call sw(ab) switcher. We also denote sw(a) for (νb)sw(ab).

(ii) Let a 6= b. A general message synchroniser from a to b is a term P such

that (1) :P +b" , (2) P jm(ae) +b" , (3) :(P jm(ae) jsw(b)) +e" where e

is fresh in (2) and (3).

A switcher switches a received value to a subject of message, and it is generated

without s(abc) (e.g. sw(ab) � (νc)(br(ac) jm(cb))). We can easily check none

of m(ab), d(abc), bl(ab) and br(ab) is a general message synchroniser.

PROPOSITION 3.22.

(i) (main lemma) Pccns has no general message synchroniser up to �a.

(ii) s(abc) is essential up to �a.

PROOF. (i) See Appendix C. (ii) By Proposition 3.17 and Remark 2.10, Cm

is a basis up to �a, and by (i), sm(abc) is essential (up to �a) w.r.t. Cm [since:

if P is a general message synchroniser from a to b and P �a Q, then Q is the

same general message synchroniser, and obviously sm(abc) is a general mes-

sage synchroniser]. Note sm(abc)�a (νe)(s(aeb) jm(ec)) with e fresh. Then by

applying Lemma 3.16 again, we now know s(abc) is essential w.r.t. C.

Minimality under the Synchronous/Asynchronous Maximum Sound Theories

First all propositions except Proposition 3.5, we did not use observation of val-

ues for proofs. Thus all essentialities except d(abc) are obviously obtained by

preceeding propositions.

PROPOSITION 3.23. d(abc) is essential up to =s and =a.

PROOF. We prove the esseintiality up to =a. The case of =s is just the same.

First by Theorem 3.19 (Observability Theorem) in [24], if P =a Q and P
"a
 P0,

then there exists Q0, s.t. Q �!!

"a

 �!! Q0 and P0

=a Q0 where

"a

 is an asyn-

chronous transition relation which does not care a value of labels (cf.[24]). Now

suppose d(abc)=a P2Pccnd. Then with e fresh, d(abc) jm(ae) j sw(b) j s(c)�!

!

"e

 �!!

"e

 0. But two output transitions to e from (P jm(ae) jsw(b) j s(c)) 2
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Pccnd is impossible by Lemma 3.4 (i).

Note for the essentiality of s(abc) up to =s (resp. =a), we can directly use

the proofs of the non-existence of a general synchroniser (resp. message syn-

chroniser) because Definition 3.11 (resp. Definition 3.21 (ii)) was given based

on the synchronous (resp. asynchronous) convergence predicate.

Finally we have:

THEOREM 3.24. (Minimality) C is a minimal basis up to �a, =s and =a.

This result makes the essentiality of each combinator stronger: in both asyn-

chronous and synchronous, and both labelled transition-based and reduction-

based semantics, we can not miss any one of 5 combinators to generate the whole

π-calculus. Further, we have:

THEOREM 3.25. (strong minimality of C) LetY
def

= (Cnc)[1�i�n Pi with c(ã)2

C, Pi
def

= (ν b̃i)c(ã) and /0 6= fb̃ig � fãg for some b̃i and n. Then Y is not a basis

up to either�a, =s or =a.

PROOF. We only show the case for =a. Hereafter (1), (2) and (3) stand

for the same cases (1), (2) and (3) in the proof of Theorem 3.18. For (1),

if P 2 Y+

1 , we have the same property with Lemma 3.6 (ii) because there is

no free values of messages. Hence done. For (2), we use the context C[ ]

def

=

[ ] jm(ae) jm(ee0) jsw(b) with e;e0 fresh, while for (3), we use the context

C[ ]

def

= [ ] jm(ae) jm(be0) jsw(c) with e;e0 fresh. The detailed reasoning is left to

the reader.

4 Measuring Expressiveness of Subsystems of π-calculus (1)

This section measures expressive power of interesting subsystems of the asyn-

chronous π-calculus by concurrent combinators, focusing our attention on three

key elements of name-passing computation. First we study locality by intro-

ducing the local π-calculus [21, 6, 2, 32] in which no value is instantiated with

input-subjects. Next we examine sharing of names by studying the linear and

affine π-calculi where the number of free names is not changed or decreased

during communications. Finally we consider synchronisation by formulating

the commutative π-calculus which has more asynchrony than the asynchronous

π-calculus. To examine their expressive power, we first decompose their compu-

tational behaviours (i.e. prefixes) into the corresponding systems of combinators.

They are generated by a proper subset of C (in some case with refinement), hence

have strictly less power than the whole asynchronous π-calculus by the results in

Section 3. The proof method shows how we can use combinators as a tractable

and informative tool to analyse the concurrent communication protocols. We
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begin with the formulation of separation.

DEFINITION 4.1. (separation) Assume P is essential w.r.t. Y and X . Y nfPg.

Then we say a subsystem P = fQ j Q � R 2 X+

g is separated by P from a

subsystem P0

= fQ j Q� R 2Y+

g. We also say P is a proper subsystem of P0.

By the main theorem and lemma 3.2, we have

LEMMA 4.2. (separation) The maximum set separated by c from Pπ, denoted

by P

nc = fP j P � Q 2 (Cnc)+g, is a proper subsystem of Pπ. Moreover with

c 6= m, P

nc is a t-subsystem.

4.1 Local π-calculus

The asynchronous π-calculus was originally considered as a simple formal sys-

tem for concurrent object-based computation with asynchronous communication

[22, 23, 21], regarding av as a pending message and ax:P as a waiting object. But

it includes a non-local future which is prohibited in most of object-oriented lan-

guages, cf.[21]. Consider the following example.

(νb)(ab jbx:P) jax:xy:Q �! (νb)(bx:P jby:Q)

The left hand-side process represents an object which will send the object id b

to another object. After communication, the other object with the same id b is

created, violating the standard manner of the uniqueness of object id. To avoid

such a situation in a simple way, we restrict the grammar of receptors as follows.

ax:P (x 62 fs

#

(P))

We call this calculus local π-calculus (written πl for short) and write Pl for the

set of terms.6

Here we briefly observe that this system can be regarded as an independent

powerful subsystem. First we note that it is a t-subsystem. Next by the same

way in [22, 25], local polyadic input agent a(ṽ):P and output agent a[ṽ]:P can be

encoded in (monadic) πl-calculus.

ā[v1::vn]:P
def

= (νc)(ac jcz:(zv1 jcz:(:: jcz:(zvn jP)::)))

a(x1::xn):P
def

= ay:(νc)(yc jcx1:(yc j ::(yc jcxn:P))))

with z, c, and y all fresh. Local branching structures are embedded without in-

stantiation of input subject following the technique of [22] again. One important

remark here is that, using these encodings, the weak call-by-value λ-calculus

can be simulated in this subsystem by slightly changing the encoding in [34] as

6Such a subset was already discussed independently in [21, 22, 6, 2, 32] (cf. [51]).
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follows.

[[x]]u
def

= (νq)(uq j !fw(qx))

[[λx:M]]u
def

= (νq)(uq j !q(xw):[[M]]w)

[[MN]]u
def

= (νqr)(qy:rz:v[zu] j [[M]]q j [[N]]r)

Thus πl-calculus enjoys the universal computational power up to �. More com-

plex structures (OOPL, cf. [22, 57]) can be translated in this subsystem. But

what is the exact difference between π and local-π? The next proposition gives

us a simple answer.

PROPOSITION 4.3. Cnbl is a minimal basis of πl-calculus, hence we have

P

nbl

' Pl ' Cnbl � C.

PROOF. Any P 2 Pl can be decomposed to C7nbl by the same rules in Defi-

nition 2.6 without using (VIII), (XI), (XII) and (XIII), so the same statement as

in Lemma 2.8 can be automatically proved. Hence the generation theorem as in

Theorem 2.5 holds, and minimality and separation are given by Theorem 3.14.

Thus, just by having the essentiality of a simple combinator bl , we know for

sure that π-calculus includes non-local elements which cannot be represented by

any element in the local world (though the direct proof is not difficult either).

Notice that the above not only proves minimality but also shows that C7nbl is

a system of combinators for πl-calculus: there is fully abstract correspondence

between them. This and other observations indicate the local π-world forms a

self-contained universe, so that πl-calculus would be worth being studied as an

independent calculus like λI-calculus [4].

4.2 Linear and Affine π-calculi

The π-calculus has two elements to increase non-determinism during communi-

cation – sharing of names and parallelism as ax:(P jQ) jav�! Pfv=xgjQfv=xg.

Such elements are represented by d(abc) in a concise way. To closely look at

two elements separately, we examine the following communication which gains

only parallelism.

ax:(P jQ) jav�! Pfv=xgjQ

We introduce two subsystems of the asynchronous π-calculus by restricting the

syntax of the prefix:

(a) ax:P if ]hP; xi= 1

(b) ax:P if ]hP; xi= 0 or 1.

These two subsystems are called linear and affine π-calculi (πLin and πAf for

short) and we denote PLin and PAf for the sets of terms of πLin and πAf-calculi,
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respectively. Note PLin ( PAf ( Pπ.7 Then a natural question is what expressive-

ness relation lies between with/without parallelism and/or sharing. In particular,

is there any difference between linear and affine name-passing? For answer-

ing these questions, we also decompose prefixes of these calculi into a system

of combinators. Since d(abc) cannot be used directly to represent non-sharing

communication, we here introduce the following simple new combinator, called

1-distributer.

d1(abc)

def

= (νd)ax:(bx jcd)

Intuitively this is similar with combinators B = λxyz:x(yz) and C = λxyz:(xz)y in

linear and affine λ-calculi [12, 1]. d1 distributes two messages while forwarding

only one value, hence this has the same parallelism as d, but not sharing.

In the following, we first clarify the difference between parallelism and non-

parallelism, introducing the notion of parallel distributer.

DEFINITION 4.4. (parallel name passing) Let us assume a 6= b;c. We say

P is a parallel distributer at a to b and c if (1) :P + f " for all f and (2)

(P jm(ae))

l

=)

l0
=) and (P jm(ae))

l0
=)

l

=) where l = be or b(e) and l0 = ce0

or c(e0) with bn(l)\bn(l0) = /0.

It is clear that d(abc) and d1(abc) are parallel distributors at a to b and c.

Now we formulate causality of dependency on reduction relations by a se-

quence of needed redex pairs.

DEFINITION 4.5. (independence) Assume P0
∆0

�! P1
∆1

�! P2
∆2

�! �� �

∆n�1

�! Pn

where n� 1 and c1;2(ṽ1;2)

def

� Pn=u1;2 with u1 6= u2. We say a sequence of needed

redex pairs ∆i0 � ∆i1 � �� � � ∆im for c1(ṽ1) is independent from a sequence of

needed redex pairs ∆ j0 � ∆ j1 � �� � � ∆ jm0

for c2(ṽ2) if, for all ik and jl , we have

ik 6= jl (i.e. ∆ik 6� ∆ jl and ∆ jl 6� ∆ik ).

In a word, two reduction sequences are independent when neither of needed

sequences has any effect on computation by the other. As an example, suppose

P0
def

� d(abc) jm(av) jbl(db) jm(de)

has the following τ-action sequence.

P0
∆0

�! m(bv) jm(cv) j0jbl(db) jm(de)

def

� P1
∆1

�! m(bv) jm(cv) j0j fw(be) j0
def

� P2
∆2

�! 0 jm(cv) j0jm(ev) j0
def

� P3

7 πLin and πAf-calculi include infinite behaviour like !ax:bx and !ae, but do not include replication

under prefix ax:!P if x 2 fn(P) (e.g. ax:!bx) by definition.
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Then the needed sequence ∆0 for m(cv) is independent from the needed sequence

∆1 for fw(be) in P2 but it is not so from the needed sequence ∆0 � ∆2 for m(ev)

in P3.

LEMMA 4.6. Let P 2 Pccnd and P
τ

�!

+

P0

� (ν c̃)(c1(ṽ1) jc2(ṽ2) jR) with

c1(ṽ1) and c2(ṽ2) are in different occurrences in P0. Then any sequence of needed

redex pairs for c1(ṽ1) is independent from any of that for c2(ṽ2).

PROOF. First we note if all needed sequence for c1(ṽ1) or c2(w̃2) is empty,

then the lemma obviously holds. Suppose ∆̃i
def

= ∆i0 � ∆i1 � �� � � ∆im with

1 � i0 < im � n� 1 is a needed sequence for c1(ṽ1). In Pccnd, all reduction

rules are in a form either c(aṽ) jm(aw) �! c0(w̃) or c(aṽ) jm(aw) �! 0 (the

latter is not needed reduction). Then if c(aṽ) and m(aw) in ∆i0 are needed for

c0(w̃) in Pi1 , then it is no longer possible that ∆i0 becomes needed for another

combinator c00(w̃0

) which is different from c0(w̃). Hence either there is unique

∆i1 s.t. ∆i0 � ∆i1 with l < k � n�1, or ∆i1 = ∆im by definition. Repeating this

from 1 to m, we prove that ∆̃i is independent from any needed chain of c2(ṽ2),

hence we are done.

LEMMA 4.7. Pccnd has no parallel distributer.

PROOF. Suppose P 2 Pccnd has a parallel distributer at a to b and c. Then by

Lemma 3.4 (ii), there exists Q0 s.t. (P jm(ae))

τ

�!

+

Q0

� (ν c̃)(Q jm(b f ) jm(c f 0))

for some f ; f 0. Assume ∆̃i is a needed sequence for m(b f ) and ∆̃ j is that for

m(c f 0). Note m(ae) is needed for both m(b f ) and m(c f 0) and the occurrence of

m(ae) is unique because e is fresh. Hence we have ∆ik = ∆ jl for some ∆ik in ∆̃i

and ∆ jl in ∆̃ j, which contradicts Lemma 4.6.

Now we have

PROPOSITION 4.8.

(i) Cnd � CAf � C with CAf
def

= fd1(abc);m(ab);br(ab);bl(ab);s(abc)g

with a;b;c pairwise distinct.

(ii) CAf is a minimal basis of πLin and πAf-calculi, hence we have:

P

nd � PLin ' PAf � Pπ.

PROOF. For (i), first note that d1(abc) is generated in C by Theorem 2.5. Hence

we know CAf . C. Then by Lemma 3.4 (ii), we have CAf � C. Cnd . CAf is

obvious, while Cnd� CAf is obtained by Lemma 4.7 because if P�Q and Q is

a parallel distributer, then P is also parallel distributer.

For (ii), we first observe that CAf is a basis for πAf-calculus by checking that

any πAf-prefix is decomposed by replacing d with d1 in (I) and (XII) and adding

the side condition x 62 fn(P) for (IV) in Definition 2.6. Then the minimality
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and P

nd � PAf � Pπ are given by (i). For PLin ' PAf, we have PLin . PAf by

Fact 2.3 (i). For the converse inclusion, we note s(abc) 62 PLin but we have

s(abc)� ax:by:(cy j (νb)bx). Then we use Lemma 3.16.

REMARK 4.9.

� We have observed that d(abc) represents two roles in a concise way: sharing

of names and increment of parallelism, and extraction of parallelism from it

gives rise to two proper π-calculi. For further examination of parallelism, it is

proved that 0-distributer d0(abc)

def

= ax:(νee0)(be jce0) can not be generated

in Pccnd and can not generate d1 by Proposition 4.7. More exactly, we have:

Cnd � Cnd[fd0(abc)g � CAf, but a proper subset generated by Cnd[

fd0(abc)g seems to have no interest.

� Causality of communication in π-calculus was studied based on parametric

labelled transition systems in [13, 54, 7] from more general viewpoints. On

the other hand, neededness and independence between sequences of reduc-

tion relations (τ-actions) in our concurrent combinators are simply defined

without introducing additional information on labelled transition systems be-

cause the form of terms generated after one-step reduction is always fixed. A

general study on true concurrency and non-interleaving semantics based on

our combinators would be an interesting research topic.

REMARK 4.10. (affine local π-calculus) The finite affine local π-calculus whose

minimal basis is

CAfl
def

= fm(ab);d1(abc);br(ab);s(abc)g with a;b;c pairwise distinct

has an enough power (without replication) to embed linear and affine λ-calculi

[12, 1] where substitution of a term is occurred only once or at most once. The

former is inductively defined by the following rules (1) and (2), while the latter

is only by (1) (drops restriction of abstraction) where F V (M) is a set of free

variables in M.

(i) MN if F V (M)\F V (N) =

/0.

(ii) λx:M if x 2 F V (M).

Their embedding is given based on [34] without replication.8

[[x]]u
def

= fw(qx)

[[λx:M]]u
def

= (νw)u(x):u[w]:[[M]]w

[[MN]]u
def

= (νqr)(q[r]:q(x):fw(ux) j [[M]]q j [[N]]r)
8This version does not evaluate under λ-body as usual encodings of λ-calculi in π-calculus but with

[[λx:M]]u
def

= (νw)(u(z):u[w]:fw(zx) j [[M]]w), we can simulate the full linear and affine λ-calculi (this

forwarder technique does not work if a variable appears more than twice in a λ-body).
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More formal analysis related to linear typing systems on this subsystem, e.g.[59],

is worth studying.

4.3 Commutative π-calculus

The asynchronous π-calculus was born by deleting output synchronisation from

the synchronous π-calculus [34]. But what calculus is obtained if we further

delete input synchronisation from the asynchronous π-calculus? This subsection

studies synchronisation of π-calculus by introducing a more asynchronous π-

calculus separated by a synchroniser. This calculus, which is called commutative

π-calculus (πc for short), allows communication by a process under prefix if

there is no binding. We define πc-calculus following the ideas in [9] and [36]. It

is notable that πc-calculus is not a subsystem of π-calculus because of additional

structural rules; this makes direct comparison of its expressiveness difficult. But

we can prove that πc-calculus has less power than the asynchronous π-calculus

by using the combinators again.

DEFINITION 4.11. (commutative π-calculus) We use the same syntax as in 2.1.

for the syntax of πc-calculus. Then the following two rules are added to the

structural rules.

(1) ax:(P jQ) � ax:P jQ (x 62 fn(Q))

(2) ax:by:P � by:ax:P (x 6= b; y 6= a)

We denote Pπc for the set of πc-terms. �! is defined in the same way as in the

asynchronous π-calculus and
l

�! is given in Appendix C. Then we write �c for

a weak bisimilarity for πc-calculus.9

The first structural rule (1) is found in [9], while the second one (2) comes from

[36]. Notice that in any strong and weak semantics, we have ax:by:P 6� by:ax:P

in π-calculus. An example of reduction of πc-calculus (with x 6= a and b 6= y) is:

av jbx:ay:aw � av jax:by:aw (by (2) in Def.4.11)

� av jax:by:(0jaw) (by P j0� P)

� av jax:(by:0jaw) (by (1) in Def.4.11)

� av jax:by:0jaw (by (1) in Def.4.11)

�! av jby:0

We have another possible reduction from the second line like:

av jax:by:aw�! by:aw� by:0 jaw

It seems impossible to construct a synchroniser satisfying Definition 3.11 since

we have ax:by:cy� ax:0 jby:cy. But how can we prove this? First we observe that

to represent πc-calculus by combinators, br(ab) cannot be directly used because

9

�c is defined up to �, as shown in Appendix C.
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ax:by:xy� by:ax:xy in πc-calculus but br(ab) 6�br(ba). This commutation on πc-

prefixes, however, is faithfully represented by a commutative version of a right

binder of the asynchronous π-calculus, defined by:

bc
r(ab)

def

= (νc1c2)(fw(ac1) j fw(bc2) jbr(c1c2))

Note bc
r(ab) � bc

r(ba) 2 Pccns. Now set Cc
def

= fm(ab);d(abc);bc
r(ab);bl(ab)g

with a;b;c pairwise distinct. Then we can show Cc is a set of combinators of

πc-calculus, just as C is for the asynchronous π-calculus. This is proved by

commutative prefix mapping a?x:P in Pc defined in the following.

DEFINITION 4.12. Set Pc
def

= (C7nfbr;sg[fbc
r(ab);bc

r(aa)g)+. Then the com-

mutative prefix mapping u?x:P : N�N�Pc ! Pc is given by simply changing

(V,VI), (IX) and (XII) as follows, deleting (XIII) and replacing u�x:P with u?x:P

in other rules in Definition 2.6.

(V,VI): a?x:c(w̃)

def

= (νc)(k(a) jc(w̃)) x 62 fw̃g

(IX): a?x:fw(bx)

def

= bc
r(ab) x 6= b

(XII): a?x:bc
r(bx�)

def

= (νc)(fw(ac) jbc
r(bc)) x 6= b

Define [[ ]]c : Pπc !Pc with [[ax:Q]]c
def

= a?x:[[Q]]c, [[ ]]πc : Pc !Pπc with [[bc
r(ab)]]πc

def

=

ax:by:xy, plus homomorphic mappings (see Appendix C). Now we can derive

non-synchronisation of πc-calculus throughout concurrent combinators.

PROPOSITION 4.13.

(i) πc-calculus has no synchroniser which satisfies Definition 3.11.

(ii) (full abstraction) (1) [[[[P]]c]]πc �c P and [[[[P]]πc]]c � P.

(2) P�c Q , [[P]]c � [[Q]]c and P� Q , [[P]]πc �c [[Q]]πc .

(iii) P

nfbr; sg � Cc ' Pc � P

ns.

PROOF. First we check that a?x:[[P jQ]]c � a?x:[[P]]c j [[Q]]c with x 62 fn(Q) and

a?x:b?y:[[Q]]c � b?y:a?x:[[Q]]c with x 6= b and y 6= a by induction on terms. Then

we can prove, for all Q 2 Pπc , Q +al , [[Q]]c +al by Proposition D.2. Sup-

pose towards a contradiction P 2 Pπc is a synchroniser from a to b. Then:P +b#
implies:[[P]]c +b# , and (P jae) +b# implies ([[P jae]]c)

def

= ([[P]]c jm(ae)) +b# with

e fresh. Since [[P]]c 2 Pc ( Pccns, we have [[P]]c jm(ae) jm(bc) +

el

by Lemma

3.12, then P jae jbc +

el

, which contradicts our assumption. (ii) is left to Ap-

pendix C. The first proper inclusion is done by Lemma 3.6 (i), while the second

proper inclusion is proved by showing that br(ab) can not be generated in Cc,

whose proof we leave to Appendix C.
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Note P1
def

= fQ j Q � [[P]]cg is a t-subsystem, and P1 ' Cc. Hence the be-

haviour of πc-calculus is exactly simulated in the asynchronous π-calculus with-

out s. In addition, πc-calculus has a combinatorial representation with

fm(ab);d(abc);br(ab);bl(ab)g (a;b;c pairwise distinct) as its subsystem.

REMARK 4.14. Two additional structural rules in πc-calculus represent more

asynchronous computation we can obtain from the asynchronous π-calculus with-

out synchroniser in a simple way. On the other hand, in the framework of action

structures [36], a more asynchronous calculus called reflexive π-calculus is stud-

ied and a family of π-calculi is defined by adding appropriate control structures

one by one based on it.10 Roughly the essential π-calculus does not impose any

sequencing, but only identification between two names. Such a general connec-

tion itself is difficult to be represented directly as π-syntax, but we can define (a

version of) this system as a subset of the asynchronous π-calculus, following the

idea found in Example 6.4 in [18]. Define the encoding of reflexive π-terms by

as subterms of Pπ generated by:

P ::= ab j ab:eq(cb) j P jQ j (νa)P j eq(ab) j 0

where eq(ab)

def

=!fw(ab) j !fw(ba) is an equator originally introduced in [24].

Note ab:eq(cb) is generated by d(abc);br(ab) and bl(ab), hence it seems evident

this system can not have a machinery of synchroniser. Now we write P[b=a] for

(νa)(P jeq(ab)), and a(x)P for (νx)(ay:eq(yx) jP) with y fresh. Then we have:

a(x)P j ab �! P[b=x] (1)

P above can interact with outside processes even before substitution, hence syn-

chronisation is even less than πc-calculus (e.g. consider a term

a(x)(xy jx(y))). Note in the maximum sound equality, we have

P[b=a] =a Pfb=ag

(cf. Proposition 4.3 in [24]), so that the same result holds as in Proposition 4.13.

Thus this subset of the asynchronous π-calculus can simulate a reflexive be-

haviour found in [36] up to =a.11 See Remark 5.11 for the examination of its

expressive power related to encodings.

5 Measuring Expressiveness of Subsystems of π-calculus (2)

In the family of both synchronous and asynchronous π-calculi, the expressive

power is often measured by encoding between two systems, which is either fully

10A similar calculus which reduces under prefixes was also discussed in [9]. Its local version is

studied in [32].
11We can use bc

r(ab) instead of br(ab) to simulate (1) up to =a. Hence πc-calculus can simulate this

essential π-calculus as we expect.
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abstract (i.e. [[P]] � [[Q]] , P � Q) or adequate (i.e. [[P]] � [[Q]] ) P � Q)

[25, 22, 40, 44, 6]. One of the most intriguing questions related to our present

study in this context is: if we miss any one of 5 combinators, i.e. in any proper

subsystem of C, is it absolutely impossible to construct any “good” encoding

of Pπ? This section shows the minimality theorem is applicable to derive sev-

eral non-existence results of encodings: there is no uniform, reasonable [44],

reduction-closed [24, 52] encodings of the whole asynchronous π-calculus into

(1) any proper subsystem of the asynchronous π-calculus studied in Sections 3

and 4, assuming the message/transition preserving conditions, and (2) a proper

subsystem without a message or without a duplicator (without any additional

condition). (2) shows that parallelism can not be taken away to embed π-calculi.

First we introduce a new formulation of measuring expressive power based

on encodings, extending our view to the whole π-family. Hereafter “subsystems”

etc. denote those of the full polyadic synchronous π-calculus Pfull (with match

and mixed summation operators [35]), defined as in Definition 2.2 (iii).

5.1 Standard Encodings

We formulate the notion of standard encoding extending our view to the whole

π-family then summarise the known results about encodings between π-family

[22, 25, 6, 44, 40]. Hereafter “subsystems” etc. denote those of the full polyadic

π-calculus Pfull (with match and mixed summation operators [35]), defined as in

Definition 2.2 (iii).

DEFINITION 5.1. (standard encoding) Let P1 and P2 be subsystems (of Pfull).

A mapping [[ ]] from P1 to P2 is standard if it satisfies the following conditions.

(1) [[ ]] is homomorphic, i.e. [[P jQ]]

def

= [[P]] j [[Q]], [[(ν c̃)P]]

def

= (ν c̃)[[P]], [[!P]]

def

=

![[P]] and [[Pσ]] def

= [[P]]σ with σ an injective renaming, and [[0]]

def

= 0.

(2) P +

al

, [[P]] +

al

.

(3) (a) P�!! P0

) [[P]]�!! Q� [[P0

]], and

(b) [[P]]�!! Q ) 9R: (P�!! R ^ Q � [[R]]).

We say P2 can embed P1, written P1 .

e P2 if there is a standard encoding from

P1 into P2, and P2 properly embed P1, written P1 �

e P2 if both P1 .

e P2 and

P2 6.

e P1. We also denote'e for .e

\(.

e

)

�1.

(1) and (2) nearly correspond to uniform and reasonable conditions in [44] (but

we do not require divergent-sensitivity). (3) describes the standard operational

closure properties found in almost existing adequate encodings, cf. [34, 22,

40]. These conditions are general enough for reduction-based equivalences (e.g.

sound theories) [24, 25, 3]. The usage of the synchronous action predicate and

synchronous bisimilarity in (2) and (3) are natural when we consider the whole

family of π-calculi because the full π-calculus is synchronous, while the asyn-
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chronous notion of convergence now becomes more standard in asynchronous

π-family [24, 3, 40]. We will study other standard encodings based on asyn-

chronous bisimulation and sound equalities in Subsection 5.4. Note that: (1)

P1 � P2 implies P1 .

e P2 with an identity mapping, and (2) .e is a preoder.

In a word, generation of a basis indicates how to span a core set of terms

to represent the whole set up to semantic equality, while standard embedding

formalises how to bridge two sets by a homomorphic mapping. More technically,

if P1 . P2, then there is a fully abstract standard encoding as will be shown

in Proposition 5.4, and P1 .

e P2 is related with an existence of an adequate

encoding from P1 into P2 up to the reduction-based equalities (see Proposition

5.13 (ii)).

PROPOSITION 5.2. (relationship with Definition 2.2) Let us assume a mapping

[[ ]] from a subsystem P1 to a subsystem P2. Then:

(i) Suppose [[ ]] satisfies (1) and (3) in Definition 5.1. Then f[[P]] j P 2 P1g

is a subsystem up to �.

(ii) Suppose [[ ]] satisfies (1) in Definition 5.1 and the following condition.

(a) P
l

�! P0

) [[P]]
l

=) Q � [[P0

]] and

(b) [[P]]

l̂

=) Q ) 9P0

: (P
l̂

=) P0

^ Q� [[P0

]]).

Then [[ ]] is standard and adequate, i.e. [[P]]� [[Q]] ) P� Q. Moreover

f[[P]] j P 2 P1g is a t-subsystem up to �.

PROOF. All are mechanical except the adequacy of (ii). For the adequacy, we

construct a relation R such that P ' Q if [[P]] � [[Q]] and show it is a weak

bisimulation. Assume [[P]]� [[Q]]. Then:

P
l

�! P0

) [[P]]

l

=) P00

^ P00

� [[P0

]] ((a) in (ii))

) [[Q]]

l̂

=) Q00

^ Q00

� P00

� [[P0

]] (by [[P]]� [[Q]])

) 9Q0

:(Q00

� [[Q0

]] and Q
l̂

=) Q0

) ((b) in (ii))

) P0 R Q0

Notice we can not replace [[P]]

l

=)Q in (ii-a) by [[P]]

l̂

=)Q as a similar reasoning

found in the proofs in [6]. A more important fact on the relationship between.e

and . follows.

FACT 5.3. Let P1;2 be subsystems. Then P1 .

e P2 6) P1 . P2.

PROOF. By Proposition 4.3 and Proposition 6.1 (ii) (see Section 6.2).

However, as expected, we have:
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PROPOSITION 5.4. Assume P1 and P1 are subsystems and P1 . P2. Then there

is a fully abstract standard mapping from P1 into P2. Hence we have P1 .

e P2.

PROOF. Here we write “(1,2,3)” to denote (1,2,3) in Definition 5.1. First by

P1 . P2 and P+

2 = P2, for all P1 2 P1, there exists P2 2 P2 such that P1 � P2. Let

us define [P1]�

def

= fP2 j P1 � P2 ^ Pi 2 Pi (i = 1;2)g. We define [[ ]] : P1 ! P2

as

� [[0]]

def

= 0,

� If P1 2 P1 is an input/output prefixed term (including a form of messages),

then [[P1]]

def

= P2 2 [P1]� for some P2.

� [[P1 jQ1]]

def

= [[P1]] j [[Q1]], [[(νa)P1]]

def

= (νa)[[P1]], and [[!P1]]

def

=![[P1]].

Then [[ ]] is a total function from P1 to P2, and satisfies (1) because� is closed un-

der any injective renaming. Immediately we know [[ ]] satisfies P1 �Q1 , [[P1]]�

[[Q1]] because of [[P1]]� P1. Then (2) automatically hold.

Finally we have to check [[ ]] satisfies (3). We divide (a) into two cases (note

��� and [[ ]] is fully abstract).

(i) the case�!!

def

=�: P� P0

) [[P]]� P� [[P0

]]� P0, hence [[P]]� [[P0

]]. Then

this satisfies [[P]]�!!0

[[P]]� [[P0

]].

(ii) the case �!!

def

=�! is by definition of �.

(b) is also divided into two cases.

(i) the case �!!

def

=�: [[P]] � P0

) P0

�!!

0

[[P]] � P0, hence P0

� [[P]] with

P�!!0 P.

(ii) the case �!!

def

=�! by definition of bisimulation again.

Notice by Fact 5.3, we have: P1 � P2 6) P1 �

e P2. Thus we can not

know when and under what condition the negative result based on generation

can be extended to that based on standard embedding. The rest of this section

investigates these points.

5.2 The Negative Results (1): Message Preserving

Before proving the non-existence result, we need the following lemma about

names. We note this is generally satisfied on any renaming closed homomor-

phism [18, 17].

LEMMA 5.5. (name decreasing, Proposition 2.12 in [18]) Let F : P1 ! P2

be a map closed under injective renaming. If Q is in its image, then fn(Q) =

T

Q=F (P0

)

fn(P0

). In particular if [[ ]] satisfies (1) in Definition 5.1, then we have

fn(P)� fn([[P]]).
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The following non-existence result is derived based on the properties of concur-

rent combinators in Sections 3,4 using the above lemmas.

PROPOSITION 5.6. Suppose Pπ � P is a subsystem of Pfull and P0 is any proper

subsystem studied in Sections 3 and 4. Then there is no standard mapping [[ ]] :

P! P0 which satisfies either:

(a) (message-preserving) [[ab]]� ab, or

(b) (transition-preserving) (a,b) in Proposition 5.2.

PROOF. It is enough to show there is no encoding of c into P

nc with each c 2

fbr;bl ;sg, and d into PAf. Below “(1)”, “(2)” and “(3)” denote the conditions in

Definition 5.1. We have four cases.

Case d(abc): Assume there is a mapping [[d(abc)]]2 PAf. Then with e fresh and

a;b;c distinct, d(abc) jm(ae)�!m(be) jm(ce) implies

[[d(abc) jm(ae)]]

def

= [[d(abc)]] jae�!+ P0

� [[m(be) jm(ce)]]� be jce

by (1,3) and Proposition 2.1 (note�!+ is obtained by [[d(abc) jm(ae)]] 6� be jce

because [[d(abc) jm(ae)]] +
al

by (2)). Hence P0 has two output transitions:

P0

be

=)

ce

=), which implies [[d(abc)]] jae �!! (ν f̃ )(be jce jP1) by Lemma 3.4

(ii) (note e occurs more than twice). But by Lemma 5.5, we have e 62 [[d(abc)]],

hence ]h[[d(abc)]] jae; ei = 1. Then since ([[d(abc)]] jae) 2 PAf, for any Q s.t.

[[d(abc)]] jm(ae) �!! Q, we have ]hQ; ei � 1 by Lemma 3.4 (i), which is a

contradiction.

Case br: Assume there exists [[br(ab)]] 2 P

nbr
. Then with a;b;c;e distinct,

[[br(ab) jm(ae) jm(bc)]] +e" by (2), hence [[br(ab)]] jae jbc +e" . But this con-

tradicts to Lemma 3.6 (i) because e 62 fs

"

([[br(ab)]]) � fn([[br(ab)]]) by Lemma

5.5.

Case bl: The same as above.

Case s: Assume there is a mapping [[s(abc)]] 2 P

ns. Then with e fresh and a 6= b,

[[s(abc)]] should satisfy: we have

� :s(abc) +b#) :[[s(abc)]] +b# by (2),

� s(abc) jm(ae)+b#) [[s(abc) jm(ae)]]

def

= [[s(abc)]] j [[m(ae)]]� [[s(abc)]] jae+b# ,

by (1,2) and (a), and

� :s(abc) jm(ae) jm(bc)+

el
) :[[s(abc)]] jae jbc+

el

by the similar reasoning

as above.

Hence [[s(abc)]] itself is a synchroniser, which contradicts Lemma 3.12 since

[[s(abc)]] 2 P

ns by the assumption.
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For (b), we prove the only case of s. Others are similar. With e fresh

and a 6= b, :[[s(abc)]] +b# and [[s(abc)]]

ae

=) P � [[fw(bc)]], hence P +b# and

:P +el by Proposition 2.1 (ii). Note if R
ae

=) R0, then R jae �!+ R0, hence

([[s(abc)]] jae) �! P1 �! P2 �! :::�! Pn
def

= P with :Pi +el

for all 1 � i � n

by (b) in 5.2. Similarly for all Q s.t. [[s(abc)]] jae jbe0 �!! Q, we have :Q +el ,

which contradicts Lemma 3.12 again.

The condition [[ab]]� ab above means that we do not change the basic mean-

ing of behaviour by translations and is indeed satisfied in the known fully abstract

translations of π-calculus into the asynchronous π-calculus [22, 25, 26, 40] (see

also Section 6.2 for more discussion).

5.3 The Negative Result (2) without m or without d

In the following, we show there does exist no standard encodings from the whole

asynchronous π-calculus into subsystems without messages or without duplica-

tors. The first negative result is easy as follows.

FACT 5.7. There is no mapping [[ ]] : P ! P0

� P

nm which satisfies (1,2) in

Definition 5.1.

PROOF. Because any P 2 P

nm and a, P +a" is impossible while we should have

[[m(ab)]] +a" by (2) in Definition 5.1.

The second negative result requires the following lemma, which suggests it is

simpler to analyse output transitions in the asynchronous communication rather

than in the synchronous one.

LEMMA 5.8. (the number of outputs) Set ]
"

hP; ai as the number of outputs at

a from P, i.e. ]
"

hP; ai = n if:

P
def

= P0
l1

=) P1
l2

=) P2
l2

=) �� �Pn�1
ln

=) Pn

with li = aei or li = a(ei) for some ei for all 1� i� n�1. We denote max(]
"

hP; ai)

for the maximum number of ]
"

hP; ai. Then we have:

(i) If ]
"

hP; ai= n� ω, then P�!! (ν c̃)(∏n aei jR) for some ei and R with

a 62 fc̃g where ∏n Qi is an abbreviation for ∏n Qi
def

= Q1 jQ2 j � � � jQn (if

n = 0, ∏0 Qi
def

= 0).

(ii) Suppose max(]
"

hP; ai) =ω. Then for all R and P0 such that P jR�!!P0,

we have P0

+a" .

(iii) Suppose :P +b# for any b. Then we have: P� Q implies

max(]
"

hP; ai) = max(]
"

hQ; ai) for all a.

(iv) 1� max(]
"

h[[aei]]; ai) � ω.
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PROOF. (i) is similar to Lemma 3.4 (ii). (ii) is straightforward by induction of

R. For (iii), suppose P� Q and max(]
"

hP; ai) = n � ω for some a. Then by (i),

we have: P�!! (ν c̃)(∏n aei jP

0

)

def

= R for some c̃ and P0 with :P0

+

al

. Then we

have:

(R j∏n k(a)) � (ν c̃)(∏n(aei jk(a)) jP

0

) �! (ν c̃)(∏n�1(aei jk(a)) jP
0

) �!

n�1

(ν c̃)P0 with :(ν c̃)P0

+

al

. Now by P � Q, there exists Q0 such that Q �!

! Q0

� R, and (Q0

j∏n k(a)) � (R j∏n k(a)). Hence there exist Q00 such that

(Q0

j∏n k(a))�!!Q00 with:Q00

+al . Thus Q0

�!! (ν c̃0)(∏n aei jT) with:T +al ,

which proves max(]
"

hQ; ai) = n. The case max(]
"

hP; ai) = ω is direct from (ii).

For (iv), 1 � max(]
"

h[[aei]]; ai) is obvious because [[ae]] +a" . By (3) in Defi-

nition 5.1, we have [[m(ae)]] j [[k(a)]] �!! P0

� [[0]], hence :P0

+a" . But by (ii)

it is impossible if we assume max(]
"

h[[m(aei)]]; ai) = ω.

Now we prove that without d(abc) we can not construct any standard encod-

ings of π-calculus by the dependency studied in Section 4.2 together with (iii) of

the above lemma.

THEOREM 5.9. (the negative result without d) There is no standard encoding

from Pπ to any subsystem of P

nd. Hence P

nd �

e Pπ.

PROOF. It is enough to show there is no standard encoding of d into P

nd. Sup-

pose [[d(abc)]], [[m(ae)]] 2 P

nd and max(]
"

h[[m(ae)]]; ai) = n. Note n � ω by

Lemma 5.8 (iii). Then we have:

[[d(abc)]] j [[m(ae)]] �!! [[d(abc)]] j (ν c̃)(∏n aei jP) (Lemma 5.8 (i))

�!! P0

� ([[m(be)]] j [[m(ce)]]) (Def. 5.1 (3))

�!! (ν c̃0)(∏n(bei jcei) jR) (Lemma 5.8 (iii))

Now suppose bei needs none of ∏n aei, i.e. any ae j is not needed for bei. Then

a needed pair for bei should be included in P or [[d(abc)]]. Hence we have

[[d(abc)]]+b" or P+b" (hence [[m(ae)]]+b" ), which does not satisfy (2) of Def.5.1.

So one of ∏n aei is needed for bei. Similarly for cei. Hence all n massages at a

are needed for n messages at b, and at the same time all of them are needed for n

messages at c. But this contradicts Lemma 4.6.

Finally we believe the following conjecture.

CONJECTURE 5.10.

(1) (synchronisation) There is no standard encoding from Pπ to any subsystem

of P

ns, hence P

ns �

e Pπ.
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(2) (sharing of names) There is no standard encoding from Pπ to any subsystem

of PAf, hence PAf �

e Pπ.12

(3) (full abstraction) There is no fully abstract standard encoding (up to �)

from Pπ into any proper subsystem P� C.

(1) and (2) would make sure that the synchronisation in the asynchronous π-

calculus is indeed a minimum one and sharing of names is inevitable to con-

struct various communication structures, e.g. polyadic name-passing. Together

with (1) in Proposition 5.6, (3) would be proved by showing that if a standard

encoding from the asynchronous π-calculus is not message-preserving, then it

is not fully abstract up to �. This would be extended to a more general state-

ment: there is no fully abstract standard encoding from polyadic into monadic

name-passing.13

REMARK 5.11. (synchronisation) First we replace �!! in Definition 5.1 (3)

with �! and call this encoding one-step standard encoding. Note all known

encodings [22, 25, 6, 40, 32, 34] are one-step standard. Recently I have proved

that in the system which satisfies the following commutative law (which roughly

corresponds the essential π-calculus discussed in 4.14), we cannot construct any

one-step standard encoding of the whole π-calculus.

P1
ab

=) P2
cd

=) P3 with fa;bg\fc;dg= /0 ) 9P0

2: P1
cd

=) P0

2
ab

=) P3:

We notice that πc-calculus does not satisfy this commutative law. We leave the

proof, which uses a quite different technique from one in this paper to a coming

exposition.

5.4 Standard Encodings based on Other Equivalences

In this subsection, we show all main (negative) results in this section can be

preserved even if we replace the synchronous bisimilarity with the asynchronous

bisimilarity�a or reduction-based semantics =s and =a.

DEFINITION 5.12.

� [[ ]] is a-standard encoding if it is defined by replacing+

al

in (2) in Definition

5.1 with +a" and� in (3) in Definition 5.1 with the asynchronous bisimilarity

�a, and write .e
a, �e

a and 'e
a for a-standard relations.

� [[ ]] is sound standard encoding if it is defined by replacing� in (3) in Defini-

tion 5.1 with the synchronous maximum sound equality =s. Similarly sound

a-standard encoding is defined by replacing +

al

in (2) with +a" and � in (3)

12One may also have a conjecture: P

nbr

�

e Pπ. But we have P

nbr

'

e Pπ as shown in Proposition 6.1

(ii).
13This open question was posed to the author by D. Sangiorgi.
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with the asynchronous maximum sound equality =a. We write .e
s , �e

s and

'

e
s for sound standard relations and .e

sa, �e
sa and 'e

sa for sound a-standard

relations.

Note that .e

�.

e
a�.

e
sa and .e

�.

e
s�.

e
sa, but .e

a and .e
s are incompatible. The

characterisation related with Proposition 5.2 follows.

PROPOSITION 5.13. (relationship with Definition 2.2)

(i) Let us assume [[ ]] is a-standard. Then we have the same results as (i) and

(ii) in Proposition 5.2 by replacing� with �a and
l

�! with
l

�!a.

(ii) Suppose [[ ]] is (asynchronous) sound standard. Then we have the same

result as (i) in Proposition 5.2 by replacing � with =s and =a, respec-

tively. Moreover if the relation R
def

= fhP; Qi j [[P]] =a [[Q]]g is congru-

ent,14 it is adequate (up to =s and =a, respectively).

PROPOSITION 5.14. Let Pπ � P be a subsystem of Pfull.

(i) (message preserving) Assume P0 is any proper subsystem studied in Sec-

tions 3 and 4. Then there is neither a-standard, sound standard, nor sound

a-standard mapping [[ ]] : P! P0 which satisfies [[ab]]�a ab, [[ab]] =s ab,

and [[ab]] =a ab, respectively.

(ii) Assume P0

2 Pccnm or P0

2 Pccnd. Then there is neither a-standard,

sound standard, nor sound a-standard mapping.

PROOF. We only have to show the case of the sound a-standard encoding. Note

we can use neither the input convergence predicate nor observation of values of

messages.

(i) For the case d(abc), we consider [[d(abc) jm(ae) j sw(b) jsw(c)]] (e fresh)

instead of [[d(abc) jm(ae)]] in the proof of Proposition 5.6. Then use the similar

reasoning as in the proof of Proposition 3.23. The case br(ab) is the same as the

proof of Proposition 5.6 and the case bl(ab) is similar with Proposition 3.20. For

the case s(abc), we prove that there is no sound a-standard mapping of sm(abc)

into Pccns by similar reasoning as in the proof of Proposition 5.6.

(ii) The former is obvious. For the latter, we note that the proofs of Lemma

5.8 and Theorem 5.9 are only concerned with the number of subject of messages.

Hence we are done.

14More precisely, it is enough that this relation is closed under structural rules and substitutions (cf.

[59]).
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6 Discussion

6.1 Summary of the Results

This paper proposed the basic formal framework for representability, generation

and minimal basis, and investigated that computational elements found in 5 com-

binators [25, 26] are essential to express the asynchronous monadic π-calculus

without summation or match operators. 5 combinators can generate the whole

behaviour of the calculus, and any of them should not be missing for the full

expressiveness. This minimality result clarifies basic nature of our combinators.

We also studied several interesting proper subsystems of the asynchronous π-

calculus which are separated by combinators. All main results hold based on

any of synchronous and asynchronous bisimilarities and synchronous and asyn-

chronous reduction-based equalities. Figure 1 summarises this separation result

on (a) systems of combinators and (b) the asynchronous π-calculi, which are in

one-one correspondence via a fully abstract mapping. In (b) in Figure 1, names

in box depict the embeddable calculi by (congruent) adequate encodings.

6.2 Related Work

In this subsection, we summarise known results about encodings among the full

π-family based on the formulation in Section 5. Then we have the following

relationship.

PROPOSITION 6.1.

(i) Pcc '

e Pπ '

e
a Pπ+ where Pπ+ is the asynchronous π-calculus with input

guarded summations.

(ii) Pπ'

e Ppolπs and Pl '

e Pπ, hence Pccnbl '

e
a Ppolπs+ where Ppolπs is polyadic

synchronous π-calculus without match or summation and Ppolπs+ is Ppolπs

plus input guarded summations.

(iii) Let us suppose P1 � P2 and both are subsystems without match oper-

ators. Assume P2 has mixed summation operators, while P1 does not.

Then P1 �

e P2.

PROOF. (i) is by Theorem 2.5 and Nestmann and Pierce [40], respectively.

(ii) is by Honda and Tokoro [22], Boreale [6] and (i), respectively. (iii) is by

Palamidessi [44].

The result in (i) is stronger than (ii) because existent encodings are fully abstract

(up to congruence), while in (ii), we have only adequate encodings from the right

calculus to the left one. Palamidessi’s result [44] is more general than (iii) above

because we do not need the condition (3) in Definition 5.1. See Introduction in

[41] for the detailed relationship about adequacy and full abstraction between

existent encodings.
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FIGURE 1. Concurrent Combinators and the Asynchronous π-Calculus
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Local π-calculus

Two remarks are due for Proposition 5.6 (1) concerning with local π-calculus.

First, in [6], Boreale recently established an interesting result which shows

power of the local asynchronous (polyadic) π-calculus: there is an encoding from

(polyadic) π-calculus to polyadic local (asynchronous) π-calculus which satisfies

the stronger property than (3) in Definition 5.1 and which is fully abstract up to

the weak barbed bisimilarity. But this result does not contradict Conjecture 5.10

(3) since:

(1) It is not fully abstract up to barbed congruence (hence not up to � either).

See Appendix E for a counterexample. Note as discussed in 3.2 in [52] and

Sec 6 in [24], barbed bisimulation itself is weak as a canonical equality,

e.g bx:0 is equated to bx:av in it.

(2) Even under the barbed bisimilarity, we do not know whether there is a

fully abstract encoding from the asynchronous π-calculus into monadic

πl-calculus because he uses the power of polyadic name passing (hence

Pl '

e Pπ is only adequately related).

(3) It is not message-preserving, while all fully abstract encodings in (i) in

Proposition 6.1 are all message-preserving.

Related with (1), in the long version of [6], he showed that his encoding is closed

under translation contexts, i.e. we only consider the world of translations as the

whole environment. The similar approach was also suggested in 6.6.1 in [52].

The basic idea of this kind technique is related with the study of types of mo-

bile processes, cf. [59]; in order to get the full abstraction embedding from a

high-level communication into a low-level one, we may need to restrict the en-

vironment in the low-level one.

Secondly, Merro and Sangiorgi recently proved another interesting result: an

encoding based on the second Boreale’s encoding in [6] from local π-calculus

to a variant of local π-calculus where all objects of messages are distinct and

bound by name hiding15 is fully abstract up to the asynchronous weak barbed

congruence [32]. This encoding uses the link agent in [53] to translate messages

with free object names, so it is not message-preserving. But again this does

not contradict Conjecture 5.10 (3) because we consider encodings of the whole

(i.e. non-local asynchronous) π-calculus. Their result reveals that not only the

link agent is enough to describe all local communication behaviour as shown

in [53, 27], but also it becomes another key agent to understand a difference

between non-local and local worlds.

15This variant is not included in the syntax of πI-calculus [53], but it is considered as an asyn-

chronous version of πI-calculus by changing a(x):P in πI-calculus by (νx)(ax jP) where x does not

occur as free objects in P.
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Expressiveness based on Combinators

The framework of measuring expressive power which is most closely related

with our idea, generation and essentiality, was formalised by Parrow in [45]

in the context of non-value name passing calculi. First he proposed a simple

general algebraic language for describing a fixed number of processing units with

disjoint parallel and linking operators. Then he showed (1) every term which has

a finite state behaviour is generated by three units and each of them is essential

(he used the term “independent”), and (2) various kinds of operators in non-

value passing process calculi are examined by introducing the idea of definable

operators. The significant differences between his minimality result and ours

are (1) we analysed expressiveness of π-calculus (i.e. name-passing), including

both finite and infinite state behaviours, and (2) we use the concrete combinators

while he used labelled transition based analysis to show the essentiality. The

interesting further research is to extend our proof technique to the transition-

relation based analysis as his, and examine not only the power of terms but also

that of operators (i.e. parallel composition and name hiding). A related line of

study has been done in [18] on the nameless processes from the more general

viewpoint.

Parrow recently showed a combination of a few kinds of trios, which are

polyadic synchronous π-terms in the form T = α1:α2:α3:0 where αi denotes in-

put, output or τ prefix, can represent the synchronous polyadic π-calculus with-

out match or summation operator up to weak bisimilarity [46]. More precisely,

he showed there is a mapping which satisfies P � [[P]] and is translated into

the normal form called a concert of trios (ν c̃)((!)T1 j (!)T2 j � � � j (!)Tn) and two

messages up to the strong bisimilarity. Interestingly we can observe that all our 5

combinators are trios; hence his study and our strong minimality theorem showed

that three times synchronisation made by prefixes is indeed essential to realise

the causality of name-passing interaction of π-calculus. On the other hand, since

his mapping is not homomorphic as ours, it may be difficult to apply directly his

trios and mapping to examine the existence/non-existence of general homomor-

phic encodings which is in a weaker condition than P � [[P]] (i.e. like standard

encodings) as shown in Section 5 in our paper.

Raja and Shymasundar also studied Quine combinators for the asynchronous

π-calculus [50]. Since their combinators are not a proper subset of π-calculus

like ours, the ideas of basis and generation may not be directly applicable to

this system. However to check essentiality of each combinator of [50] would

also be interesting for understanding the basic machinery of name-passing from

a different angle.

6.3 Open Issues

In the following, we list some of naturally arising open issues.
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� As we discussed in Section 5 and the above, much still remains to be done on

the study of existence or non-existence result of adequate and fully abstract

encodings. For example, Boreale’s result on local π-calculus [6] lets us know

a possibility to construct various kinds of standard encodings. This also sug-

gests that there is some difficulty to solve the negative result about encod-

ings. Based on this observation, the most interesting but difficult open prob-

lem may be Conjecture 5.10 (1). This would reveal that the asynchronous

π-calculus may be considered as a “basic π-calculus” containing sufficient

power for interactive computation in a minimal tractable syntax.

� Related with this, our result in Section 4 tells us that all computable functions

can be expressed in the local π-calculus. More interestingly, the encoding

of neither call-by-value nor lazy λ-calculus in [34] works in πAf-calculus

although it includes infinite behaviour like !ax:bx, cf. footnote 7. What is

a minimal basis to realise universal computation power in π-calculus? Is it

absolutely needed to increment the number of names during reduction and

synchronise at the input prefix to represent sequential computation? Such an

investigation is another important topic because it relates a basic question in

functional computing to expressiveness of concurrent computing.

� In Definition 2.2, we use “!” operator for generation (i-2-e). But by the

result in [26], from a basis of at most 19 combinators we can generate the

asynchronous π-calculus with replication without using replication as an op-

erator. We also remark that the binding nature of restriction is representable

using “naming action” [36], or “processes for connection” [18, 19]. It may be

interesting to check the essentiality of these agents to understand what com-

putational elements are essential to express “copies” and “name restriction”

in mobile processes.

� Gay and Lafont independently found the systems of combinators of untyped

interaction nets and the later also proved essentiality of each combinator by

graphical analysis. In interaction nets, the idea of named ports is not ex-

plicitly present, not because it has been abstracted away but because arbi-

trary connection among agents is not used. Since they do not develop al-

gebraic structures underlying their construction, the direct comparison with

their combinators and ours is difficult. Recently Fernandéz and Mackie [31]

proposed a formal way to translate typed interaction nets to term rewriting

systems. Though we do not yet know a system of combinators for typed

interaction nets yet, if it is discovered, by using their translation and [58]

we may be able to understand exactly what subclass of communication in

π-calculus is related with (typed) interaction nets based on the measuring

framework proposed in this paper.
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� We examined the expressiveness of the asynchronous monadic π-calculi us-

ing concurrent combinators, which gave us basic understanding on the com-

putational elements of name-passing. A similar analysis may be more dif-

ficult in the setting of polyadic name-passing even if we do have its combi-

natory representation. For example, take a polyadic π-term a(xy):b(z):y[z].

This process is regarded as a general synchroniser because the first value x

is thrown away. At the same time, the second value y is used as an output

subject. Such phenomena lead to difficulty in the analysis and decompo-

sition of prefixes. On the other hand, in the polyadic synchronous setting,

there is a system of combinators for π-calculus in action structures [36, 19],

and for a match/summation-less Fusion calculus [47] (see [28]). Measuring

expressiveness in such a calculus following the line of this paper would be

possible and interesting for examination of the expressiveness in the world

of synchronous name-passing.

� Finally match and mismatch operators are also significant from both practi-

cal and theoretical viewpoints [3, 24, 48, 43], while practical failure models

[2, 51, 11] are recently studied by introducing additional operators. A sys-

tematic inquiry about the separation results on such operators would increase

theoretical understanding on computation in the family of π-calculi.
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A Reduction, Synchronous and Asynchronous Transition Relations and

the Sound Equality

A.1 Reduction

We consider terms modulo the structural congruence following [34, 5]: � is the

smallest congruence relation over π-terms generated by the following rules.

(i) P� Q if P�α Q

(ii) P jQ � Q jP (P jQ) jR � P j (Q jR) P j0 � P !P � P j !P

(iii) (νaa)P � (νa)P (νab)P � (νba)P (νa)0 � 0 (νa)P jQ � (νa)(P jQ)

if a 62 fn(Q)
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DEFINITION A.1. (reduction) The one-step reduction relation�! is generated

by the following rule.

(COM) ax:P j av �! Pfv=xg

(PAR) P �! Q ) P j R �! Q j R:

(RES) P �! Q ) (νa)P �! (νa)Q:

(STR) P � P0 P0

�! Q0 Q � Q0

) P �! Q:

The multi-step reduction relation,�!!, is defined by �!!

def
= �!

�

[ �.

A.2 Bisimilarities

The set of labels, ranged over by l; l0; ::, is given by:

l = τ j ab j ab j a(b)

where “(b)” in “a(b)” is the bound occurrence of the label. We write bn(l) and

fn(l) for the sets of bound and free names in l. A label l is relevant to P if

bn(l)\ fn(P) = /0.

DEFINITION A.2. The (synchronous early) transition relation, denoted by
l

�!,
is the smallest relation inferred by the following rules.

(alh):
P0

�αP P
l

�! Q Q�αQ0

P0

l
�! Q0

(ins): ax:P
ab

�! Pfb=xg (out): ab
ab

�! 0

(com):
P

xy
�! P0 Q

xy

�!Q0

P jQ
τ

�! P0

jQ0

(close):
P

x(y)

�! P0 Q
xy

�!Q0

P jQ
τ

�! (νy)(P0

jQ0

)

(y 62 fn(Q))

(rep):
P j !P

l

�! P0

!P
l

�! P0

(par): P
l

�!P0

R jP
l

�!R jP0

(bn(l)\ fn(R) = /0)

(res): P
l

�!P0

(νa)P
l

�! (νa)P0

(a 62 fn(l)[bn(l)) (open): P
ab

�!P0

(νb)P
a(b)

�! P0

(a 6= b)

We omit the symmetric cases for (com), (close), (rep) and (par). Then =)

stands for the reflexive and transitive closure of
τ

�!, and
l̂

=) stands for =)

if l = τ, else for =)

l

�!=). The weak bisimilarity is defined in the standard

way: A weak bisimulation is any symmetric relation R such that, if P R Q,

whenever P
l

�! P0 with l relevant to Q, there exists Q0 such that Q
l̂

=) Q0

and P0 R Q0. By the standard argument, there exists the maximum bisimulation

which is the union of all the bisimulations. The maximum weak bisimulation is

called bisimilarity written�.

DEFINITION A.3. (asynchronous bisimilarity) The (asynchronous early) tran-

sition relation, denoted by
l

�!a, is the smallest relation inferred by the following
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(ina, τ) and (alh,out,rep,par,res,open) in Definition A.2 replacing
l

�! with
l

�!a.

(ina) 0
ab

�!a ab (τ):
P

τ

�! P0

P
τ

�!a P0

Then
l

=)a and the asynchronous weak bisimulation are defined similarly. We

denotes �a for the asynchronous weak bisimilarity.

A.3 Sound Equalities

Equality over the asynchronous π-calculus has been studied extensively in [16,

24, 10]. Here we defined a construction which is naturally applicable to many

process calculus without introducing labelled transition relations [24, 3].

DEFINITION A.4. (sound equality) We say a congruence �
=

is synchronous

(resp. asynchronous) sound if it includes �, is reduction closed, i.e. P �
=

Q

and P �!! P0 implies there exists Q0 such that Q �!! Q0 with P0

�
=

Q0, and,

moreover, �
=

respects +

al

, i.e. if P �
=

Q and P +

al

(resp. P +

al

) then Q +

al

(resp. Q +a" ).

The first condition tells us that we are essentially working with the terms modulo

�. According to this and the last condition, a sound congruence is automatically

non-trivial (i.e. neither universal nor empty). Moreover we can easily verify that

the congruent closure of a family of sound congruences is again sound. Then,

by taking the congruent closure of the whole family of sound congruences, we

immediately know there is maximum synchronous (resp. asynchronous) sound

congruence within the family of all synchronous (resp. asynchronous) sound

congruences. We denote this maximum sound equality =s (resp. =a).16

B Proof for Proposition 2.7

First we extend the definition of pointedness defined in [25] to incorporate with

the infinite copy !P. P 2 Pcc is a#-pointed, iff P satisfies the following condition:

(1) an

#

(P) = fag and an

"

(P) = /0

(2) 8c(a+ ṽ): (P jc(a+ ṽ)) �! Q1 ^ (P jc(a+ṽ)) �! Q2 ) Q1 � Q2.

(3) P 6�!.

a"-pointed is defined with changing " by # and + by� respectively. Pointedness

of a term tells us that there is only one interacting name in a given term. We write

P

hali

etc. to denote a al-pointed term P. Note a�x:P is a#-pointed. We define

β-reduction/equality!β/=β as in Definition 3.5 in [25].

16These equalities coincide with barbed congruences with action predicate +
al

and +a" , respectively

[10].
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DEFINITION B.1. The one-step β-reduction,!β, is defined by the rule:

(COMβ) (νc)(P

hc#i jQhc"i) !β (νc)R

if P

hc#i jQhc"i �! R, together with (PAR), (RES) and (STR) in Definition A.1.

!!β
def

=!

�

β [ �, while =β is the symmetric closure of !!β.

This β-reduction/equality satisfies the following properties.

PROPOSITION B.2.

(i) (non-interference) Suppose P !!β Q1 and P
l

�! Q2 with Q1 6� Q2.

Then there exists Q0 s.t. Q1
l

�! Q0 and Q2 !!β Q0.

(ii) =β is a weak bisimulation, hence P =β Q implies P� Q.

(iii) Let us define R0
def

=�, and given Ri�1 (i � 1), we define Ri as the max-

imum relation such that, for all P Ri Q and l with i � 1 and l relevant to

Q,

whenever P
l

�!P0 then, for some Q0, Q
l̂

=)Q0 with P0

!!β Ri�1 �Q0

whenever Q
l

�!Q0 then, for some P0, P
l̂

=) P0 with P0

!!β Ri�1 �Q0

Then R
def

= [i�0Ri �� , indeed Ri =� for all i.

PROOF. (i) is proved as in Lemma 3.6 in [25]. For (ii), take R = fhP; Qi j P!β

Qg[� and show it is a bisimulation. (iii) is by exploiting R 0

def

= [i�0(!!β Ri �)

is a weak bisimulation. Case i = 0 is obvious. Assume i � 1 and P !!β

P0 Ri Q0 � Q. Then P
l

�! P0 implies P0
l

�! P0

0 with P0

!!β P0

0 by (i). By

P0 Ri Q0, we have Q0
l̂

=) Q0

0 with P0

0 !!β Ri�1 � Q0

0. Since Q
l̂

=) Q0

� Q0

0,

we have P0

!!β P0 !!β Ri�1 � Q0

0 � Q0. For the symmetric case, suppose

Q
l

�! Q0. Then we have Q0
l

�! Q0

0 � Q0. Hence P0
l̂

=) P0

0 with P0

0 Ri�1 Q0

0.

Since P !!β P0
l̂

=) P0

0 implies P
l̂

=) P0

� P0

0, we have P0

!!β Ri�1 � Q0, as

required.

Now we are ready to prove Proposition 2.7 (i).

We only have to consider the input case because a�x:P is a#-pointed. Rules

(II,III,VII,VIII,IX) are clear because a�x:P� ax:P. Rules (V,VI,X–XIII) are also

mechanically checked.
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For the rule (II), we use a relation R of (iii) in Proposition B.2. Suppose

ax:(P1 jP2)

ab

�! (P1fb=xgjP2fb=xg). Then

a�x:(P1 jP2)

ab

�!� (νc1c2)(m(c1b) jc�1x:P1 jm(c2b) jc�2x:P2)

def

= R

Since cib jcix:Pi
τ

�! Pifb=xg, by inductive hypothesis, m(cib) jc

�

i x:Pi
τ

�! P0

i

with P0

i � Pifb=xg with i = 1;2. Then R !2
β (νc1c2)(P

0

1 jP

0

2) � (P0

1 jP

0

2)

def

= R0.

By Proposition 2.1 (i) and Proposition B.2 (iii), we have R0R (P1fb=xgjP2fb=xg).

Hence a�x:(P1 jP2) � ax:(P1 jP2), as required. For the rule (IV), set

!c�x:(P jm(cx))

def

= R. Then:

a�x:!P
av

�! (νc)(m(cv) jR)

def

= (νc)(m(cv) jc�x:(P jm(cx)) jR)

def

= (νcc1c2)(m(cv) jd(cc1c2) jc

�

1x:P j fw(c2c) jR)

!

3
β� Pfv=xgj (νc)(m(cv) jR)

by inductive hypothesis on P. By (iii) in Proposition B.2, we can check !Pfv=xg�

(νc)(m(cv) j !cx:(Pjm(cx))). By Proposition 2.1 (i), we know R� !cx:(Pjm(cx)),

hence done with using (iii) in B.2 again.

C Essentiality of the Message Synchroniser

In this appendix, we prove the following lemma.

Proposition 3.22 (i) (main lemma) Pccns has no general message synchroniser

(up to �a).

PROOF. Suppose P 2 Pccns is a general message synchroniser at a to b. Since

b 62 an

"

(P0

) for all P0 s.t. P�!! P0, there are only three ways for b to be created

as a new active output subject (note the case fw(db) amounts to d(abc)):

(a) d(dbc) jm(d f ) �!m(b f ) jm(c f ) for some d and f .

(b) br(d0 f ) jm(d0b) jm(d f ) �! fw(db) jm(d f ) �!m(b f )

for some d0, d and f .

(c) bl(d0b) jm(d0d) jm(d f ) �! fw(db) jm(d f ) �!m(b f )

for some d0, d and f .

Now assume

P0
def

= P jm(ae)

τ

�! P0

1 jm(ae) � � �

τ

�! P0

i jm(ae)

τ

�! Pi+1 � � �

τ

�! Pn

with b 62 an

"

(Pi) (1 � i � n� 1) and b 2 an

"

(Pn). By the above argument, we

note:

(1) either (a) hd(dbc); m(d f )i is needed for for m(b f ) in Pn, or
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(b) hbr(d0 f ); m(d0d)i or hbl(d0b); m(d0d)i in Pi (i� n�2) is needed for

fw(db), and hfw(db); m(d f )i is needed for m(b f ) in Pn.

(2) either (a) hc(a�ṽ); m(ae)i

def

= hd(abc); m(ae)i is directly needed for m(b f )

in Pn or (b) hc(a� ṽ); m(ae)i in P0

i jm(ae) is needed for fw(db) or m(d f )

in Pn�1 with i < n�1.

Case (a): i = n�1. We have P jm(ae) jsw(b) � P0

0 jd(abc) jm(ae) j sw(b) �!

(P0

0 jm(be) jm(ce) j sw(b)) �! (P0

0 jm(ce) j (νc0)m(ec0)) +e" , which is a contra-

diction.

Case (b) 1� i < n�1: There are three cases. (i) Suppose c(a�ṽ)� d(aa21a22)

for some a21;a22. As in the proof of Lemma 3.12, this case finally amounts to the

following two cases (remember e is just forwarded, and if finally m(ai je) meets

d(ai jbc), then this is a contradiction by Case (a) above). Assume k < n�1.

(1) Case bl(ak jg) is needed for some g: then (bl(ak jg) jm(ak je))�! fw(eg),

by the definition of needed redex, fw(eg) and m(ev) for some v should

be needed for m(d0d) or fw(db) or m(d f ) again. Thus there exists Q

such that (P jm(ae)) �!! (ν c̃)(Q j fw(eg) jm(ev)) which contradicts our

assumption :(P jm(ae)) +e" .

(2) Case br(ak jg) is needed for some g: it is just the same as the proof in

Lemma 3.12.

Cases c(a� ṽ) � br(ag) and c(a�ṽ) � bl(ag) for some g are just the same with

the above cases (b-1) and (b-2), respectively.

D Proof for Proposition 4.13

First the labelled transition relation for πc-calculus is defined by replacing (alp)

to the following (str) rule and deleting (rep) rule.

(str):
P�P0 P0

l

�!Q0 Q0

�Q

P0

l

�! Q0

We define two functions, [[ ]]c : Pπc ! Pc, and [[ ]]πc : Pc ! Pπc in the following

(we write [[ ]] for either [[ ]]c or [[ ]]πc ).

[[ab]]c
def

= m(ab) [[ax:Q]]c
def

= a?x:[[Q]]c

[[m(ab)]]πc

def

= ab [[d(abc)]]πc

def

= ax:(bx jcx) [[fw(ab)]]πc

def

= ax:bx

[[bc
r(ab)]]πc

def

= ax:by:xy [[bl(ab)]]πc

def

= ax:xy:by [[k(a)]]πc

def

= ax:0

[[P jQ]]

def

= [[P]] j [[Q]] [[(νa)P]]

def

= (νa)[[P]] [[0]]

def

= 0

Then we have:

LEMMA D.1. For all P;Q2 Pc, we have:
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(i) (a) a?x:(P jQ) � a?x:P jQ with x 62 fn(Q) and (b) a?x:b?y:P � a?x:b?y:P

with x 6= b; y 6= a

(ii) a?x:P jm(av)�!� Pfv=xg.

(iii) P� Q ) a?x:P� a?x:Q.

PROOF. (i) is by induction on P. For (a), we first prove a?x:P � k(a) jP with

a 62 fn(P). (b) is done with (a). (ii) is proved by rule induction on a?x:P. For

(iii), we only have to think the input case. Suppose P1 � P2. Then by (ii) above,

a?x:Pi
av

�! P0

i � Pifv=xg, but by Proposition 2.1 (i), we have P1fv=xg� P2fv=xg,

hence P0

1 � P0

2, as desired.

This proposition is important.

PROPOSITION D.2. .

(i) fn(P) = fn([[P]]), fs
l

(P) = fs

l

([[P]]), and an

l

(P) = an

l

([[P]])

(ii) For any substitution σ, [[Pσ]]�α [[P]]σ.

(iii) P� Q ) [[P]]πc � [[Q]]πc and P� Q ) [[P]]c � [[Q]]c

(iv) (a) P
l

�! Q ) [[P]]πc

l

�!c [[Q]]πc

(b) [[P]]πc

l

�!c R ) R� [[Q]]πc with P
l

�! Q.

(v) (a) P
l

�!c Q ) 9Q0

:(Q� Q0

^ [[P]]c
l

�!� [[Q0

]]c)

(b) [[P]]c
l

�! R ) 9Q: (R� [[Q]]c with P
l

�!c Q).

PROOF. (i,ii,iv) are mechanical. The first cause of (iii) is evident. For the second

cause, we use Proposition D.1 (ii). (v) is done by D.1 (iii).

Now we can prove P +

al

, [[P]]+

al

by (i) and τ-case in (iv,v) above. Then

Proposition 4.13 (ii) is proved similarly with Theorem 5.7 in [25]. To prove (iii),

we extend the proof of Lemma 3.12.

DEFINITION D.3. Let a 6= b. A right binder at a then at b is a term P s.t. (1)

:P+b# , (2) (P jm(ae))+b# , (3) :(P jm(ae))+

el

and (4) (P jm(ae) jm(bc))+e"

where e is fresh in (2),(3) and (4).

Note bc
r(ab) satisfies (2) (3) and (4), but does not do (1).

LEMMA D.4. Let a 6= b. Pc has no right binder at a then b.

PROOF. Suppose that P 2 Pc has a right binder at a then b. Then the condition

(1) and (2) imply that either (a) or (b) in the proof of Lemma 3.12 should hold.

But br(db) is not included as a subterm of P, because if br( f f 0) 2 Pc, then f

and f 0 are not free by the form of bc
r(hh0). So there is only the case (a) and

i < n�1. Suppose that c(a� ṽ)� d(aa1a2). Then by the same reasoning, m(ae)
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is duplicated with preserving e as a value during the interaction with a chain

of d (or fw), and either bl(ai jg) or bl(ai jg) is needed for m(db), which also

contradicts (3) as same as the proof in Lemma 3.12. The case c(a� ṽ) � bl(ag)

is also similar.

E A Counter Example on πl-calculus

We here show that an encoding from the asynchronous π-calculus to polyadic πl-

calculus fj jg defined in Table 2 in [6] is not fully abstract up to barbed congru-

ence (hence it is not up to� either). We write�b for a barbed congruence. A fol-

lowing counter example also works to show non-full abstraction from polyadic

into monadic name passing, cf. [59]. We write a(x̃):P for polyadic input and ahṽi

for polyadic output. Let’s consider the following the asynchronous π-terms.

x(y):0 jx(w):0 �b x(y):x(w):0

Hence we have:

ax:(x(y):0jx(w):0) �b ax:x(y):x(w):0

Then the translations are defined as:

� fja(x):(x(y):0jx(w):0)jg
def

= a(x;z):(νhh0)(zhhi jh(x;y):0jzhh0i jh0(x;y):0).

� fja(x):x(y):x(w):0jg
def

= a(x;z):(νh)(zhhi jh(x;y):((νh0)(zhh0i jh0(x;y):0))

Next let us consider the following context in πl .

C[ ]

def

= ahx;zi jz(y):z(y0):c j [ ] (with c fresh)

C[fja(x):(x(y):0jx(w):0)jg] has a visible action at c, while C[fja(x):x(y):x(w):0jg]

has no action at c because zhh0i is under prefix “h(x;y)”. Hence we have:

fja(x):(x(y):0jx(w):0)jg 6�b fja(x):x(y):x(w):0jg.


