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Abstract

Coinduction is often seen as a way of implement-

ing in�nite objects [7, 4]. Since real numbers

are typical in�nite objects, it may not come as a

surprise that calculus, when presented in a suit-

able way, is permeated by coinductive reasoning.

What is surprising is that mathematical tech-

niques, recently developed in the context of com-

puter science, seem to be shedding a new light on

some basic methods of calculus.

We introduce a coinductive formalization of el-

ementary calculus that can be used as a tool for

symbolic computation, and geared towards com-

puter algebra and theorem proving. So far, we

have covered ordinary di�erential and di�erence

equations, Taylor series, Laplace transform and

the basics of operator calculus.

Introduction

Our point of departure is the observation that

the algebraic structure of streams, given by the

equations

head(a :: �) = a (1)

tail(a :: �) = � (2)

head(�) :: tail(�) = � (3)

captures much of calculus. Given an analytic

function f , de�ne

head(f) = f(0)

tail(f) = f

0
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a :: f =

�

x 7! a+

Z

x

0

f

�

Equation (3) now expresses the so-called Fun-

damental Theorem of Calculus, whereas equa-

tions (2) and (1) normalize the integral with re-

spect to the subintegral function and the interval

of integration.
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Reapplying equation (3) yields the Taylor

(Maclaurin) expansion

f = f(0) :: f

0

= f(0) :: f

0

(0) :: f

00

.

.

.

= f(0) :: f

0

(0) :: � � � :: f

(n)

(0) :: � � �

Unfolding the above de�nition of ::, which a-

mounts to iterated integration, one �nally gets

f(x) = f(0) + f

0

(0)x+ � � �+ f

(n)

(0)x

n

=n! + � � �

The idea of in�nitely applying (3) is formally cap-

tured by the notion of a stream (co)algebra. The

set of in�nite sequences forms a �nal stream coal-

gebra. Taylor expansions are then obtained using

the unique homomorphism from the stream coal-

gebra of analytic functions.

From another point of view, a :: f is the unique

solution of the di�erential equation g

0

= f with

the initial value g(0) = a. The above derivation

of Taylor series now leads to the usual power se-

ries method for solving di�erential equations [2,

ch. 4]. For example, the equation f

(4)

= f , with

initial values f(0) = 0, f

0

(0) = 1, f

00

(0) = 0 and

f

000

(0) = �1, becomes f = 0 :: 1 :: 0 :: �1 :: f .

Solving it amounts to running a corecursive pro-

gram, which outputs the stream of Taylor coe�-

cients (corresponding, in this case, to f = sin).

1

This example may be suggested by Hoare's notation �

0

and �

0

, respectively for the head and the tail of a trace [5].
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Following these ideas, we introduce in sections

1 and 2 a formal setting for studying and imple-

menting analytic structures by coalgebraic meth-

ods. Section 3 proceeds from our stream algebras

of Taylor coe�cients to derive an abstract charac-

terisation of a di�erent analytic method: Laplace

transform. We show that it also arises, like Tay-

lor series, as a coalgebra homomorphism induced

by speci�c stream operations. We compute them

and derive the corresponding integral expressions.

As a byproduct of the coalgebraic treatment, we

obtain a simple characterisation of the Laplace

duals of analytic functions.

1 Stream algebras

Our main tool are the �xpoints of functors in the

form �� (�) : Set ! Set.

De�nition 1.1 Let � be a set. A �-stream al-

gebra is a set A together with an isomorphism

�� A

c

�

=

++

A

hh;ti

ll

With c(a; �) written in the in�x form a :: �, this

isomorphism exactly corresponds to equations (1{

3).

The stream homomorphisms are required to

preserve all three operations. (In fact, it su�ces

to require the preservation of c alone, or of h and

t.)

1.1 In�nite lists

The basic example of a stream algebra is, of

course, the set A = �

!

of in�nite lists of ele-

ments from �. If � 2 A is a list [�

0

; �

1

; �

2

; : : :],

the operations will take it to

h = head : �

!

�! �

� 7�! �

0

t = tail : �

!

�! �

!

� 7�! [�

1

; �

2

; : : :]

c = cons : �� �

!

�! �

!

ha; �i 7�! [a; �

0

; �

1

; : : :]

(4)

With the pair hhead; taili as the structure map,

�

!

is the �nal coalgebra for the functor �� (�) :

Set ! Set. The initial algebra is empty. The �-

nality of �

!

means that every �-coalgebra hk; si :

A �! �� A induces a unique function

�

ks

: A �! �

!

x 7�! [k(x); ks(x); ks

2

(x); : : :]

making the diagram

A

�

ks

��

�

�

�

�

�

�

hk;si

//

��A

���

ks

��

�

�

�

�

�

�

�

!

hhead;taili

//

�� �

!

commute. Most of the time, we shall be con-

structing ��-colagebras and studying e�ects of

the induced homomorphisms � .

1.2 Sequences

Now suppose � is a group, say Z, the integers.

Besides the described list operations, the set A =

Z

!

supports various sequence operations, e.g.

h : Z

!

�! Z

� 7�! O� = �

0

t : Z

!

�! Z

� 7�! ��

c : Z�Z

!

�! Z

!

ha; �i 7�! a+��
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where

�� = [�

1

� �

0

; �

2

� �

1

; �

3

� �

2

; : : :];

a+ �� = [a; a+ �

0

; a + �

0

+ �

1

; : : :]

Essentially employing the commutativity of Z,

one �nds that this stream algebra structure on

Z

!

is actually isomorphic with (4), via

Z

!

�

�

=

��

hO;�i

//

Z�Z

!

Z��

�

=

��

Z

!

e�

TT

hhead;taili

//

Z�Z

!

Z�e�

SS

The n-th entries of the sequences �(�), resp.

e�(�), are de�ned:

�(�)

n

=

n

X

i=0

�

�n

i

�

�

i

e�(�)

n

=

n

X

i=0

�

n

i

�

�

i

Note that � is actually the discrete Taylor trans-

formation, because �(�)

n

= (�

n

�)

0

. The de-

scribed isomorphism thus switches between a se-

quence of numbers and the sequence of its �nite

di�erences of �nite orders, evaluated at 0.

2

1.3 Analytic functions

Passing from integers Zto reals R, and from the

di�erence operator � to the derivative D, we get

the stream algebra from the introduction, on the

set A of functions analytic at 0.

h : A �! R

f 7�! Of = f(0)

t : A �! A

f 7�! Df = f

0

c : R� A �! A

ha; fi 7�! a+

R

x

0

f

2

On the other hand, extended toR

!

, � and e� can also be

understood, along the lines of formula (9), as multiplying

with the functions e

�x

and e

x

respectively.

As pointed out before, the essentials of calculus

can be presented in terms of this algebra. Ele-

mentary functions arise as solutions of equations,

e.g.

exp = 1 :: exp

sin = 0 :: 1 :: 0 :: �1 :: sin

ch = 1 :: 0 :: ch

In general, all initial value problems induce

stream equations: e.g.

y

00

= y � 5 sinx+ x

2

(5)

y(0) = 0; y

0

(0) = 3

corresponds to

y = 0 :: 3 :: (y � 5 sinx+ x

2

) (6)

The point that we wish to make is that stan-

dard analytic methods of solving problems like

(5) conspicuously often boil down to stream alge-

bra manipulations with equations like (6). The

upshot is that the procedures apparently based

on the intuitions of continuum, and on resulting

deply in�nitistic concepts, hardly computational,

can actually be formalized in terms of the familiar

list operations, provided that circular and in�nite

lists | i.e. streams, are allowed.

So how do we deal with (6)?

2 Solving equations

2.1 Lifting the structure

In order to lift the real numbers into A , we �rst

de�ne

b

0 2 A to be the unique solution of the

equation

b

0 = 0 ::

b

0

Each real number a 2 R can now be represented

in A by the induced constant function ba = a ::

b

0.

Since the mapping

d

(�) : R �! A is injective,

identifying ba and a should not cause confusion.
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The variable x can now be de�ned as 0 :: 1, x

2

is 0 :: 0 :: 2, x

3

is 0 :: 0 :: 0 :: 6 etc. Of course, x is

just a way the identity function is usually denoted

in calculus. Explaining x

n

, however, requires a

de�niton of the multiplication of functions.

In general, the addition and the multiplication

on A are determined by the systems

h(f + g) = h(f) + h(g)

t(f + g) = t(f) + t(g)

and

h(f � g) = h(f) � h(g)

t(f � g) = t(f) � g + f � t(g)

Axioms of stream algebra (1{3) imply that these

systems are respectively equivalent to

(a :: f) + (b :: g) = (a+ b) :: (f + g) (7)

and

(a :: f) � (b :: g) =

(a � b) ::

�

f � (b :: g) + (a :: f) � g

�

(8)

Note that these de�nitions are inductive only for

the inductively de�ned f and g, i.e. those that are

derived from the constants in a �nite number of

steps, not involving �xpoints. Such functions are,

of course | the polynomials. For functions like

exp, de�ned using �xpoints, the above de�nitions

are circular | and resolved by �xpoints again:

exp+ exp = (1 :: exp) + (1 :: exp) =

= (1 + 1) :: (exp+ exp) =

= 2 :: (exp+ exp)

But how do we know that there is a �xpoint?

How do we know whether an equation like y =

0 :: 3 :: (y� 5 sinx+x

2

) has a solution, and when

it is unique? A general answer to such questions

is provided in [10].

2.2 Using Taylor series

To see things in a familiar setting, note that the

Taylor representation again induces an isomor-

phism:

A

T

�

=

��

hO;Di

//

R� A

R�T

�

=

��

R

<!

e

T

SS

hhead;taili

//

R�R

<!

R�

e

T

SS

where R

<!

is the set of sequences of Taylor coef-

�cients, i.e. of � 2 R

!

such that

P

1

i=0

�

i

i!

x

i

< 1

for some x > 0. The Taylor representation is, of

course

Tffg = [f(0); f

0

(0); f

00

(0); : : :]

e

Tf�g =

1

X

i=0

�

i

i!

x

i

Transferred along T, the stream algebra equations

become the usual power series manipulations: the

coe�cients of the unknown function are deter-

mined recursively.

E.g., the T-image of the equation y = 0 ::

3 :: (y � 5 sinx + x

2

) will have Tfyg =

[y

0

; y

1

; y

2

; : : :] on the left-hand side; whereas the

right-hand side will be the sum of the same Tfyg,

with Tf�5 sing = [0;�5; 0; 5; : : :] and Tfx

2

g =

[0; 0; 2; 0; : : :], all of that pre�xed with 0 and 3.

The equation thus becomes:

[y

0

; y

1

; y

2

; y

3

; y

4

; y

5

; y

6

; : : :] =

[0; 3; y

0

; y

1

� 5; y

2

+ 2; y

3

+ 5; y

4

; : : :]

In this simple case, the coe�cients can be ex-

tracted explicitly, and even eliminated by recog-

nizing the elementary functions behind them

y = [0; 0; 0; 0; 2; 0; 2; 0; : : :] + [0; 3; 0;�2; 0; 3; 0;�2; : : :]

= 2ch x� x

2

� 2 +

1

2

(sh x+ 5 sin x)
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In general, every �rst order initial value problem

involving only analytic functions can be solved in

this fashion [2, thms. 4.4{4.5], as well as many im-

portant higher order linear di�erential equations

[3, ch. 10]. The recurrence relations on the coe�-

cients tend to be tedious, though, and extracting

the actual recursive formulas for them is not al-

ways feasible.

Other analytic methods are captured by dif-

ferent stream algebras and stream algebra homo-

morphisms between them.

3 Laplace transform

3.1 Rings of streams

Now consider the algebra

head : R

!

�! R

� 7�! �

0

tail

N

: R

!

�! R

!

� 7�! [�

1

; 2�

2

; 3�

3

; : : :]

cons

N

: R�R

!

�! R

!

ha; �i 7�! [a; �

0

;

�

1

2

;

�

2

3

; : : :]

This is yet another version of the stream algebra

of in�nite lists of numbers, isomorphic with the

\original" via

R

!

g

�

=

��

hhead;tail

N

i

//

R�R

!

R�g

��

R

!

eg

TT

hhead;taili

//

R�R

!

R�eg

SS

where

g(�)

n

= n!�

n

e
g(�)

n

=

�

n

n!

Clearly, every sequence � induces tail

�

(�) =

[�

0

�

1

; �

1

�

2

; �

2

�

3

; : : :], and a stream algebra, pro-

vided that all �

i

6= 0. The importance of the al-

gebra induced by � = N is that the composite

G =

e

T � g assigns to a sequence � its generating

function

Gf�g =

1

X

i=0

�

i

x

i

Interpreted in terms of G, the operation tail

N

again corresponds to the derivation D, and cons

N

to the integration.

Transferred along T, the product of analytic

functions f and g, with ' = Tffg and 
 = Tfgg,

induces the operation ' � 
 = Tff � gg with the

entries

(' � 
)

n

=

n

X

i=0

�

n

i

�

'

i




n�i

(9)

Transferring, on the other hand, along

e

G =
e
g �

T,with � =

e

Gffg and � =

e

Gfgg, we get � � � =

e

Gff � gg, with

(� � �)

n

=

n

X

i=0

�

i

�

n�i

(10)

Both � and � make R

!

into a commutative

monoid, even a ring, as they obviously distribute

over the (componentwise) +. The isomorphism g

switches between the two ring structures, and in

particular satis�es

gf� � �g = gf�g � gf�g

On the other hand, for x = [0; 1; 0; 0; : : :] and

any � holds

x � � = [0; �

0

; �

1

; �

2

; : : :] (11)

But if � is a sequence of Taylor coe�cients, pre�x-

ing by 0 corresponds to the integration! Integral

can thus be presented as multiplication in a ring

T

�

Z

x

0

f

�

= x � Tffg

It is not hard to see that this ring has no zero

divisors, so that it can be extended into a �eld
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of fractions. The calculus of integrals and deriva-

tives becomes algebra over this �eld.

This is, of course, the basic idea of operator

calculus [8]. Indeed, � as in (10) is a discrete con-

volution, and g reduces it to the multiplication,

just like Laplace transform does with the contin-

uous convolution.

But g does not correspond precisely to Laplace

transform. An algebraic treatment of di�erential

equations can be built upon it, but the induced

formulas are di�erent from those encountered in

the Laplace tables.

We shall now proceed to modify g in order to

capture the actual Laplace transform.

Lifting g from coe�cients to functions in the

same way as we shall do in a moment, the reader

will �nd that g actually corresponds to what is

sometimes called Heavyside transform: it maps f

to the coe�cients of s

R

1

0

e

�st

f(t)dt.

3.2 Laplace transform of Taylor coe�-

cients

The crucial point about Laplace transform is that

it is not an isomorphism, but a proper embedding

of the convolution ring of real analytic functions

into an ideal [6, 12] within the multiplicative ring

of analytic (or better holomorphic) functions. We

�rst spell this out on Taylor coe�cients, and em-

bed R

!

into

R

!

0

= f� 2 R

!

j �

0

= 0g

The embedding is realized using the following

stream algebra:

� : R

!

�! R

� 7�! �

1

# : R

!

�! R

!

� 7�! [�

0

; �

2

;

�

3

2

;

�

4

3

: : :]

& : R�R

!

�! R

!

ha; �i 7�! [�

0

; a; �

1

; 2�

2

; 3�

3

; : : :]

Since hhead; taili : R

!

�! R� R

!

is the �nal

R�-coalgebra, there is a unique homomorphism

e

`.

R

!

e

`

��

��

h�;#i

//

R�R

!

R�

e

`

��

��

R

!

JJ

`

r

TT

hhead;taili

//

R�R

!

KK

R�`

r

SS

The sections `

r

of

e

` are indexed by the real num-

bers r:

e

`(�)

n

=

�

n+1

n!

(12)

`

r

(�)

n

=

�

r if n = 0

n!�

n�1

if n > 0

(13)

Laplace transform corresponds to ` = `

0

. Its im-

age R

!

0

, with �, # and & restricted to it, is thus

isomorphic to R

!

, as an R�-coalgebra. The iso-

morphism ` moreover preserves the ring opera-

tions

`f�+ �g = `f�g+ `f�g (14)

`f� � �g = `f�g � `f�g (15)

and the zero [0; 0; : : :], but the unit [1; 0; 0 : : :] lies

outside R

!

0

, just as all constants [a; 0; 0; : : :], for

a 6= 0. In the �eld of fractions over R

!

0

, each

a 2 R is represented by

`fag

`f1g

, which ensures that

the extension of ` to this �eld is R-linear.

As `f1g = [0; 1; 0; : : :] is, on the other hand, the

integrator x from (11), we have `fag = ax for all

a 2 R. The `-image of the equation f = f(0) +

R

f

0

is thus `ffg = xf(0) + x`ff

0

g. Multiplied

with s =

1

x

, it yields the basic formula of operator

calculus

`ff

0

g = s`ffg � f(0)

Together with (14{15), this formula determines

the Laplace duals of a bulk of elementary func-

tions. The algebra induced by ` thus looks ex-

actly like the algebra induced by Laplace trans-

form. Indeed, we shall now show that ` exactly

mimicks Laplace transform on Taylor coe�cients.
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3.3 Laplace transform of analytic func-

tions

Recall that Laplace transform L takes a real lo-

cally integrable function f(x) and returns a func-

tion depending on a complex variable s

Lffg =

Z

1

0

e

�st

f(t)dt (16)

It is well-known that Lffg is analytic, for <(s)

su�ciently large, whenever the integral in (16) is

absolutely (and therefore uniformly) convergent.

The other way around, every function analytic

for large <(s) turns out to be the Laplace dual

Lffg of some real function f , unique up to a set

of measure zero [13].

A consequence of the present analysis is that

restricting L to the real analytic functions leads

to a simpler, perhaps even more instructive cor-

respondence. It could be stated entirely within

the framework of real analysis, but probably not

really understood.

De�nition 3.1 Let f be a complex function an-

alytic (holomorphic) at 1: in other words, for

su�ciently large z, there is a Laurent expansion

f(z) =

P

1

i=0

�

i

z

i

.

We say that a function f is coanalytic if all of

its coe�cients �

0

; �

1

; : : : are real. The set of co-

analytic (Holomorphic) functions will be denoted

H.

Examples of coanalytic functions are exp

�

1

z

2

�

,

1

z

3

+z

, and similar.

Lemma 3.2 f(z) is a coanalytic function if and

only if the real function f

�

1

x

�

is analytic at 0.

Coversely, every real function g(x) gives rise to a

coanalytic function g

�

1

z

�

.

There is thus a one-to-one correspondence be-

tween H and A . Extending it along the Taylor

representation yields the bijection

1

T

: H ! R

<!

,

assigning to each coanalytic function f(z) the

Taylor coe�cients of f

�

1

x

�

. Its inverse is

e

1

T

f�g =

1

X

i=0

�

i

i!s

i

Now we can �nally prove that ` indeed captures

L.

Proposition 3.3 Let � = Tffg and � =

1

T

fgg.

Then

Lffg = g () `f�g = �

Proof. Using the equation Lfx

i

g =

i!

s

i+1

and

the fact that L is linear and continuous, i.e.

L

�

P

1

0

�

i

x

i

	

=

P

1

0

�

i

Lfx

i

g, we get

Lffg = L

(

1

X

i=0

�

i

i!

x

i

)

=

=

1

X

i=0

�

i

i!

L

�

x

i

	

=

=

1

X

i=0

�

i

i!

�

i!

s

i+1

=

=

1

X

n=1

�

n�1

s

n

It follows that

Lffg =

1

X

n=0

�

n

n!s

n

() �

n

=

�

0 if n = 0

n!�

n�1

if n > 0

�

The obvious consequence is that for every f

analytic at 0 holds

Lffg =

e

1

T

� ` � Tffg (17)

Laplace transform thus couples analytic and co-

analytic functions. More precisely, it maps ana-

lytic functions A into coanalytic functions H

1

that

vanish at 1, because ` maps their Taylor expan-

sionsR

<!

into the Taylor expansionsR

<!

0

of func-

tions that vanish at 0. We have thus proved
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Corollary 3.4 A real function f is analytic at 0

if and only if its Laplace dual Lffg is a coanalytic

function vanishing at 1. Laplace transform is a

bijection L : A �! H

1

.

But it is not a mere bijection: as a morphism

it is completely determined by its preservation

properties:

Corollary 3.5 Laplace transform L : A �! H

1

is the only continuous linear operator satisfying

Lfx

n

g =

n!

s

n+1

Proof. Since (17) implies that ` =

1

T

� L �

e

T, one

shows, exactly as in the proof of proposition 3.3,

that the assumptions about L pin down ` = `

0

to

formula (13). But the other way around, because

of its linear continuity, L is also uniquely deter-

mined by `. �

3.4 Laplace transform abstractly

The �nal point to be made is that the coanalitic

ideal H

1

is a stream algebra and that both L and

e

L are induced by that structure, as coalgebra ho-

momorphisms.

H

1

e

L

�

=

��

hH;T i

//

R� H

1

R�

e

L

�

=

��

A

L

SS

hO;Di

//

R� A

R�L

SS

This, of course, follows a priori from the estab-

lished isomorphisms: L is just the lifting of `

along T and

1

T

. The structure of H

1

will thus

be the lifting of the structure h�; #; &i, which in-

duces `.

For simplicity, we �rst lift the �, # and & along

T to A

0

, the ideal of functions analytic and van-

ishing at 0.

� : A

0

�! R

f 7�! f

0

(0)

� : A

0

�! A

0

f 7�!

R

x

0

1

t

(f

0

(t)� f

0

(0))dt

� : R� A

0

�! A

0

ha; gi 7�! x(a+ g(x)) +

R

x

0

g(t)dt

The proof that this is a stream algebra is routine,

but essentially depends on the properties of the

functions from A

0

.

The desired structure of H

1

is induced along

the isomorphism A

0

�

=

H

1

from lemma 3.2, sub-

stituting

1

s

for x, and making use of the properties

of the functions involved.

H : H

1

�! R

F 7�! � lim

s!1

s

2

F

0

(s)

T : H

1

�! H

1

F 7�!

R

1

s

(H(F )� �F

0

(�))d�

C : R� H

1

�! H

1

ha;Gi 7�!

a+G(s)

s

�

R

1

s

G(�)d�

�

2

Checking that this structure corresponds, along

1

T

and T, to h�; #; &i, and then using the fact that

this structure determines `, while ` determines L,

yields a \clean" proof of

Theorem 3.6 L and

e

L are completely deter-

mined by the commutativity of the last diagram.

In other words, Laplace transform and its inverse

are the unique stream homomorphisms between

the analytic functions, and the coanalytic func-

tions vanishing at 1, with corresponding struc-

tures described above.

4 Conclusion

In essence, calculus is coinductive programming.

It consists mostly of using �nal �xpoints and

constructing various transforms between them.

When applying standard methods for solving dif-

ferential equations, we are actually using coinduc-

tion even without knowing it!
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Of course, real analysts probably do not need

to know this. Our point is, however, that the com-

putational contents of their in�nitistic reasoning,

in its standard forms, can usually be reduced to

coinduction | and implemented as such.

In the present paper, we have provided some

initial evidence for these claims. The examples

described are, of course, very basic, but we be-

lieve that they are typical. Many other funda-

mental structures from di�erential and integral

calculus are readily seen to give rise to similar

�nal coalgebras. With some work, our stream al-

gebras are extending in many directions: beyond

analytic functions, and beyond functions, beyond

Riemann integral and ordinary derivative, beyond

real numbers, beyond deterministic analysis.

The upshot is, at least, a uni�ed framework

for presenting and implementating important an-

alytic tools. But the conceptual value of an e�ec-

tive presentation is hard to estimate. So far, it

is clear that Laplace transform implemented on

streams is considerably easier to work with, and

reason about, than in its original integral form

3

.

Moreover, some frequently observed analogies

| e.g. between di�erential and di�erence equa-

tions, and their operators [3], or between Taylor

series and Laplace transform [13, ch. VII] | seem

to be acquiring formal grounds in coinduction.

We see that they are not precise correspondences:

the coalgebras capturing Taylor and Laplace are

quite di�erent | but they are both coalgebras of

the same kind. Hence the structural coincidence.

Attribution. The fact that analytic functions

form a stream algebra, and that this can be used

to explain Taylor series was discovered by Mart��n

Escard�o in 1992. He has also aware of the role of

equation (7) in solving initial value problems.

3

With no loss of generality, since the restriction to an-

alytic functions can be avoided; and in fact, with a gain

of generality, since ` can be implemented over any �eld

instead of R.
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