
Local model checking for a value-based modal

�-calculus.

J. Rathke M. Hennessy

June 26, 1996

Abstract

We �rst present a �rst-order modal �-calculus which uses parameterised max-

imal and minimal �xpoints to describe safety and liveness properties of processes

which communicate values along ports. Then, using a class of models based on

symbolic graphs, we give a local model checking proof system for this logic. The

system is a natural extension of existing proof systems and although it is sound it

is incomplete in general.

We prove two di�erent completeness results for certain sub-logics. The �rst is

for safety properties alone, where only parameterised maximal �xpoints are used

while the second allows both kinds of �xpoints but restricts the use of parameter-

isation.

1 Introduction

Model checking refers to the veri�cation that a system, represented as a point t of some

model, satis�es some property expressed in a particular property logic. The modal

�-calculus is one, very expressive, logic which is often used to express properties of

systems; in addition to the usual boolean connectives it contains modal operators for

describing the possible actions of a system together with maximal and minimal �xpoints

for describing safety and liveness properties. In papers such as [7, 11, 12, 13] sound and

complete proof methods are developed for checking that formulae from this calculus are

satis�ed by terms from a pure process calculus, such as CCS [10], represented as points

from a �nite labelled transition system. The object of the this paper is to generalise

these methods to value-passing process calculi, which are used to describe distributed

systems which manipulate and interchange data along communication channels.

The approach we take is to generalise Winskel's tag set proof method [13] for pure

processes. We �rst give a brief outline of this method: Consider the process

P (a:a:P

which can perform the abstract action a twice and then return to its original state.

Evidently this can perform an in�nite sequence of a actions and this property can be

expressed in the modal �-calculus with the formula

�X:haiX:

1

Let us try to formally establish that P satis�es this formula, which we write as

P : �X:haiX: (1)

Because we can unwind recursive de�nitions this can be reduced to establishing

a:a:P : hai�X:haiX:

But this reduction does not lead very far; the only applicable rule now is that associated

with the modality hai which reduces this judgement to

a:P : �X:haiX:

A further unwinding and application of the modality rule will only reduce this to the

original judgement (1).

The tag set method records the points that have already been checked so that veri-

fying

P : �X:haiX

is reduced, by the (tagged) Recursive Unwinding rule, to checking the judgement

P : hai�X:[P]haiX:

The tag [P] indicates that there is no further need to check the process P against this

formula. Now by an application of the modality rule and a further application of the

tagged recursive unwinding rule we reduce our proof obligation to establishing

P : �X:[P; a:P]haiX:

We can now terminate the checking routine since P is in the tag set, i.e. P has already

been visited.

We generalise this approach to model checking by

� replacing pure process terms and their associated labelled transition systems with

value-passing process terms and their symbolic transition graphs, [5], and

� by generalising the property logic to a �rst-order modal �-calculus.

Let us �rst give an indication of the nature of this generalisation and why the various

extensions to the proof system are required. The �rst-order modal �-calculus allows the

use of boolean expressions from some unspeci�ed boolean language, which includes �rst

order quanti�cation, and, as in [6], the propositional modal operators haiF; [a]F are

generalised to the operators ha!xiF; ha?i9x:F; ha?i8x:F and [a!x]F; [a?]9x:F; [a?]8x:F

respectively, all of which bind occurrences of x in F . The use of this property language

leads naturally to judgements of the form

T : F

where T is an open process term, i.e. does not in itself represent a process; it may contain

free occurrences of data variables which need to be instantiated in order to represent a

process. For example consider the (value-passing) process

P (a?x:b!(x+ 1):P

which can input any value x on the channel a and output its successor on channel b.

The process P obviously satis�es the property

2

whenever a value is input on the channel a a larger value can subsequently

be output the channel b.

This property can be formalised by the modal formula

[a?]8xhb!yi(y > x)

and the only way to establish the judgement

P : [a?]8xhb!yi(y > x)

is to reduce it, using rules associated with the modality [a?] and universal quanti�cation,

to establishing

b!(x+ 1):P : hb!yi(y > x);

a judgement involving open process terms.

The presence of these open terms engenders further complications in the allowed

judgements. For example consider the judgement

Q : [a?]8xhb!yi(eveny)

where Q is the process de�ned by

Q(a?x: even(x) 7! b!x:Q; b!(x+ 1):Q:

Using the natural proof rule for the modality [a?] this can be reduced to the judgement

(even(x) 7! b!x:Q; b!(x+ 1):Q) : hb!yi(eveny)

which can only be reduced to the relativised judgements

on the assumption that x is even ; b!x:Q : hb!yi(eveny)

and

on the assumption that x is odd; b!(x+ 1):Q : hb!yi(eveny):

In short our model checking procedure will be expressed in terms of a proof system whose

judgements are of the form

B ` T : F

where B is a boolean expression and T is an open process term. Such a proof system has

been given in [6] for a �rst-order modal property language and in this paper we extend

it by allowing the property formulae F to be de�ned using parameterised maximal and

minimal �xpoints and by using the tag set method of [13], outlined above, to design

associated proof rules.

A typical example of a parameterised maximal �xpoint is given by

�X:ha!xi(x = z mod 2) ^X:(z + 1=z))

Here z is used as a recursion parameter and in general these formulae are interpreted as

abstractions over values; formulae are obtained by applying them to expressions denoting

values. So if A refers to this abstraction then A:(0=z) is a formula representing the

3

ability of a process to output an in�nite sequence of values along the channel a which

are alternatively even and odd.

In order to give an outline of the rules associated with these formulae consider the

process

P (a!0:a!1:P

and the judgement

true ` P : A:(0=z) (2)

The (tagged) Recursive Unwinding rule can not be applied directly here as the formula

is a recursively de�ned formula applied to a speci�c value 0. The main new rule in the

proof system is a generalisation rule which enables us to generalise a judgement about

speci�c value, such as (2), to a more general statement about arbitrary values, to which

the recursive unwinding rule can be applied:

App

B ` t : A

B[~e=~z] ` t : A:(~e=~z)

Using this rule, with B instantiated to even(z), the judgement (2) can be reduced to

establishing

even(z) ` P : A; (3)

since even(0) implies true. Here the Recursive Unwinding rule can be applied. But

because the judgements are relativised the tags will now have to consist of process terms

together with boolean expressions. Thus the judgement (3) can be reduced to the judge-

ment

even(z) ` a!1:P : ha!xi(x = z mod 2) ^ C:(z + 1=z) (4)

where C is the abstraction �X[A]ha!xi(x = z mod 2) ^X:(z + 1=z) and A is the tag set

f(even(z); P)g. Using standard rules this in turn leads to two judgements

even(z) ` a!1:P : (0 = z mod 2) and even(z) ` a!1:P : C:(z + 1=z):

The �rst is easily established as it is simply a property of the data space but the second

requires a further generalisation, a use of the rule App, in order to once more unwind

the recursively de�ned property. This time the appropriate instantiation of the boolean

B is odd(z + 1) as odd(z + 1) implies even(z) and therefore (4) can be reduced to the

judgement

odd(z) ` a!1:P : C

After another application of the Recursive Unwinding rule, followed by an application

of standard rules we obtain the two judgements

odd(z) ` P : (1 = z mod 2) and odd(z) ` P : D:(z + 1=z)

where D is the abstraction �X[B]ha!xi(x = z mod 2) ^X:(z + 1=z) and B is the tag set

f(even(z); P); (odd(z); a!1:P)g. The �rst is straightforward to establish while a �nal use

4

of generalisation reduces the latter to even(z) ` P : D. Here the deduction terminates

as (even(z); P) is in the tag set B.

The use of the rule App, and in particular the choice of the appropriate instantiation

of the Boolean B, is essential in the development of such proofs and it is easy to see that

a bad choice of instantiation will hinder the successful termination of a proof. The use

of boolean expressions in tag sets can also lead to di�culties in generating successfully

terminating proofs but their use is essential; if we only used process terms in the tag sets

the resulting proof system would be unsound. For example it would be easy to establish

the judgement

true ` P : (�Xha!xi(x = z) ^X:(z + 1=z))(0=z)

where P is the process

P (a!0:P;

and this is obviously untrue as the property states that P can output an in�nite sequence

of increasing values.

This completes our overview of the proof system. It is formally de�ned in Section 3

which also contains a soundness theorem. However in order to abstract away from

the details of a speci�c value-passing language we represent processes using terms over

symbolic transition systems, [5]. These graphs are described in Section 2 where they are

also used as models for interpreting formulae from our �rst order modal �-calculus.

We now give an overview of the remaining sections of the paper, which address com-

pleteness issues. One can not expect any general completeness theorems. For example,

checking if a!e

1

:P is equivalent to a!e

2

:P involves checking whether the data-expressions

e

1

; e

2

, which may have free occurrences of data-variables, are semantically equivalent

and for su�ciently rich data languages this would be undecidable. However our proof

rules already work modulo an arbitrary proof system, or oracle, for data-expressions,

with deductions such as

Cons

B

1

` T : F

B

2

` T : F

(B

2

j= B

1

)

where B

2

j= B

1

indicates that B

2

semantically implies B

1

. So a completeness result for

our proof method would in e�ect be a relative completeness result, relative to an oracle

for data-expressions. Also the completeness results in [13], for pure processes, is with

respect to �nite labelled transition systems rather than process terms from some process

language; the model checking procedure in [13], is complete for �nite state transition

systems. Here we investigate the extent to which (relative) completeness can be obtained

for �nite symbolic transition systems.

Our �rst result is a negative one. By using a simple example we can show that our

system is not even relative complete for minimal �xpoint formulae. Consider the process

P (c?x:c!x:P

and the formula F , which intuitively says that P can output some integer on the channel

c, having �rst input an integer:

hc?i8x((�X(hc!yiy = z) _X:(z + 1=z)):(0=z))

5

Semantically P satis�es the property F but we will show that

true ` P : F

is not derivable in our system. The argument will be quite simple: for any Q; G, if

true ` Q : G is derivable then so is true ` Q : G

n

, for some n, where G

n

is obtained by

unwinding the recursive de�nitions in G, n times. However (assuming the soundness of

our rules) true ` P : F

n

can not be derivable for any n since it is not semantically true.

The details may be seen at the end of Section 3.

For the sub-language containing only maximal �xpoints, the language of liveness

properties, we do have a completeness result. In Section 4 we show that if T is a term

over a �nite symbolic transition system which satis�es a liveness property F in every

interpretation which satis�es the boolean B then we can derive the judgement

B ` T : F:

Moreover the proof is constructive; we give an e�ective method for deriving the judge-

ment using our proof rules. Recall from the above exposition that the di�culties in

elaborating proofs with our system of rules arise because

� tags contain pairs (B;T) and so even if the symbolic transition system is �nite

there is an in�nite number of potential tags,

� suitable data expressions must be conjured up in order to use the generalisation

rule App.

Our completeness theorem

� constructs proofs in which every term from the �nite symbolic system occurs at

most once in a tag set,

� uses a general method for generating the required boolean expressions for use with

the generalisation rule App.

The latter point is tackled indirectly as for each term in a �nite symbolic transition

system T and formula F we de�ne a boolean expression (T satF) such that

� in every interpretation which satis�es the boolean expression (T satF) the process

term T satis�es the modal formula F

� there is a systematic derivation of (T satF) ` T : F using our proof rules.

In order to describe these characteristic boolean expressions (T satF) we need a very

expressive language of boolean expressions. Essentially we introduce a property variable

for each term in the symbolic transition system and the characteristic expression uses

maximal �xpoints over these variables. Thus these may be very complicated but in many

cases these �xpoints can be eliminated, or solved, to obtain propositional or �rst order

boolean expressions. This completeness result is described in detail in Section 4.

The following Section 5 contains another completeness result for a di�erent sub-

language of the property language. Here both maximal and minimal �xpoints are allowed

6

F ::= B j F _ F j F ^ F j h� iF j [�]F jhc!xiF j [c!x]F j hc?iG j [c?]G j A:(~e=~z)

G ::= 9x:F j 8x:F

A ::= X j �X[A]F j �X[A]F

Figure 1: Grammar for the logic

but abstractions which use them may only be applied to restricted parameters; param-

eters which are either recursion variables or do not use any recursion variables. Thus

A:(z + 1=z) is forbidden but formulae such as ha!xiA(x + 1=z) are allowed. The proof

of this completeness theorem also uses the method of characteristic boolean expressions

although the details are somewhat more complicated.

This sub-language of property formulae may seem overly restricted but we also give

some examples to show that it is quite expressive. In particular in Section 6 we give

an example of a process which inputs an in�nite sequence of integers and continually

outputs the greatest one received so far. This property can be expressed using restricted

parameters and we also outline a proof that the process enjoys this property.

The paper ends with a short conclusion, outlining what we have achieved, future

directions for research and related work.

2 The Logic and its Models

The present work is parameterised with respect to data domains; we do not give a precise

description of any such domains but we will demand that certain properties hold. We

assume that we have a non-empty set Val of values, a set DVar of data variables and

a language ValExp of expressions built from these. Similarly we assume a language of

boolean expressions called BoolExp which contains at least the two truth values ftt,�g

and the expression e = e

0

for each e; e

0

2 V alExp. A substitution � : DV ar ! V alExp

is a total function. We write [e=x] for the substitution

[e=x](y) =

(

e if y = x

y otherwise

We assume that substitutions behave in a reasonable manner when extended to ValExp

and BoolExp. There are two particular types of substitution that we will make use of.

Firstly, evaluations � : DV ar ! V al where the range of the substitution is contained

entirely in the value set. Secondly we will refer to a substitution, � : DV ar ! DV ar

whose range consists of variables alone, as a simple substitution. When the expression

e 2 V alExp is closed, that is, contains no occurrences of variables, then the value of the

expression is independent of evaluations and we denote it by [[e]]. Similarly we denote

the value of a closed boolean expression, b by [[b]]. Given an evaluation � and a boolean

expression b, we write � j= b if [[b�]] = tt; similarly b j= b

0

will mean � j= b implies � j= b

0

and we will use the slightly non-standard notation �[e=x] to denote the evaluation �

0

which coincides with � except at x where we have �

0

(x) = [[e�]].

We give a three-level grammar to describe the logic in Figure 1, where B ranges over

BoolExp, c ranges over a set of channel names Chan andX ranges over a set of recursion

7

variables called RVar ; note that we generally use lower case x; y; : : : to denote variables

from DV ar and upper case X;Y; : : : to denote recursion variables. F ranges over the

main syntactic category of modal formulae while G ranges over quanti�ed formulae,

which are used in conjunction with the modal operators hc!xi and [c!x]. Note that these

act as binders for the variable x as do the quanti�ers 9x and 8x. Finally A ranges

over recursion abstractions but these may only be used to de�ne modal formulae by the

construction A:(~e=~z). This denotes the application of the abstraction A to the evaluation

[~e=~z]. This binds the vector of variables ~z in A and in this situation whenever A is of

the form �X[A]F or �X[A]F we assume that the names ~z comprise all of the free data

variables present in F . These variables ~z are called the recursion parameters of A and

we use RPar to refer to the subset of DVar of all such variables. In these formulae we

say that the set A is the tag set for the variable X.

The choice to bind the recursion parameters of the abstraction A � �X[A]F , say, at

the application stage may appear rather unorthodox. For example one might expect that

A is a closed formula of functional type. In our setting the free variables of A are the

free variables of F ; that is to say that A is in fact just an open formula. We exploit the

fact that open formulae may be construed as functions from evaluations to closed terms

and thus, beyond the syntactic domain, there is no real distinction between abstractions

and open terms. This blurring of concepts enables us to give a cleaner presentation of

both the semantics of the logic and the proof system of Section 3.

In the sequel, for convenience we will restrict the use of recursion variables: we

assume that recursion variables are bound at most once in any given formula and that

the parameter variables in each recursion abstraction are distinct from any variables used

in the symbolic graphs.

2.1 Symbolic Graphs and models

The models that we employ are based on the symbolic graphs of [5]; a symbolic graph is

a directed graph in which every node n has an associated set of variables called fv(n),

intended to capture the idea of free variables of a term. We have a set of action labels,

Act = fc?x; c!e j c 2 Chan; x 2 V ar; e 2 V alExpg [f�g;

and we lift the de�nition of free and bound variables to actions by letting fv(c!e) =

fv(e); bv(c?x) = fxg, otherwise fv(�) and bv(�) are both empty. Every branch is

labelled by a pair b; � where b 2 BoolExp and � 2 Act such that if the branch so labelled

connects node n to n

0

, written n

b;�

�! n

0

, then we require that fv(b)[fv(�) � fv(n) and

fv(n

0

) � fv(n) [bv(�). We refer the reader to [5] for examples of symbolic graphs and

a description of how one obtains a symbolic graph from a value-passing process calculus.

Intuitively nodes in a symbolic graph correspond to open terms from some value-

passing process calculus and we wish to give an operational semantics to objects corre-

spoding to the closed terms of that hypothetical language. However it will be convenient

later if we have a more general representation of open terms, one which supports the

operation of substitution, or renaming of variables.

We call a pair (n; �), where n is a node of a symbolic graph and � a simple substitu-

tion, a term. Because we are considering a late semantics we will also have terms of the

form �y:(n; �[y=x]), a function from DV ar to terms. These will represent data abstrac-

tions. We simply write n

�

for the term (n; �), write (x)n

�

for the term �y:(n; �[y=x])

8

n

b;�

�! n

0

implies n

�

b�;�

�! n

0

�

n

b;c!e

�! n

0

implies n

�

b�;c!e�

�! n

0

�

n

b;c?x

�! n

0

implies n

�

b�;c?

�! (x)n

0

�

Figure 2: Symbolic operational semantics for open terms.

t

b;�

�! t

0

implies t�

�

�! t

0

� if [[b�]] = tt

t

b;c!e

�! t

0

implies t�

c!v

�! t

0

� if [[b�]] = tt and [[e�]] = v

t

b;c?

�! (x)t

0

implies t�

c?

�! (x)t

0

� if [[b�]] = tt

Figure 3: Concrete operational semantics for closed terms.

and we use t; u; : : : to range over terms. These terms are the expressions that we will be

using in the tag sets. In actual fact a tag set A will contain pairs (B; t) where B is some

boolean expression.

We de�ne pairs (t; �) to be closed terms whenever � is an evaluation and for con-

venience it is written as t�. We let p; q; : : : range over closed terms. We can give an

operational semantics to closed terms based on the edges of the symbolic graph. This is

de�ned in in Figures 3 and uses a symbolic semantics for open terms, given in Figure 2.

Given a symbolic graph G we write

T (G) = fn

�

; (x)n

�

j n 2 G; � : DV ar! DV arg

for the set of (open) terms of G and write

CT (G) = ft�; (x)t� j t 2 T (G); � : DV ar! V alg

for the set of closed terms of G.

These sets of closed terms will form the labelled transition systems which are the

models of our logic subject to the following interpretations. We use recursion environ-

ments � : RV ar ! ((DV ar ! V al) ! P(CT (G)). Interpretations are mappings from

formulae in a recursion environment under an evaluation � into sets of closed terms.

Details are listed in Figure 4. We de�ne a satisfaction relation using these semantics:

t j=

�;B

F i� t� 2 [[F]]�� for every � such that � j= B:

When we are using recursion closed formulae this relation is independent of � and we

simply write t j=

B

F . For the sub-logic without �xpoint expressions this satisfaction

relation coincides with the one proposed in [6] where it is proved that this �nite sub-

logic characterises late bisimulation equivalence. There now follows a technical Lemma

which is a generalisation of the so called Reduction Lemma of [13], the essence of the

tag set method.

9

[[B]]�� =

(

CT (G) If � j= B

; Otherwise

[[F ^ F

0

]]� = [[F]]�\ [[F

0

]]�

[[F _ F

0

]]� = [[F]]�[[[F

0

]]�

[[h� iF]]�� =

n

p j 9p

0

� p

�

�! p

0

and p

0

2 [[F]]��

o

[[[�]F]]�� =

n

p j 8p

0

� p

�

�! p

0

implies p

0

2 [[F]]��

o

[[hc!xiF]]�� =

n

p j 9p

0

; v � p

c!v

�! p

0

and p

0

2 [[F [v=x]]]��

o

[[[c!x]F]]�� =

n

p j 8p

0

; v � p

c!v

�! p

0

implies p

0

2 [[F [v=x]]]��

o

[[hc?iG]]�� =

n

p j 9(x)p

0

� p

c?

�! (x)p

0

and (x)p

0

2 [[G]]��

o

[[[c?]G]]�� =

n

p j 8(x)p

0

� p

c?

�! (x)p

0

implies (x)p

0

2 [[G]]��

o

[[9x:F]]�� = f(y)p j 9v 2 V al � ((y)p)v 2 [[F [v=x]]]��g

[[8x:F]]�� = f(y)p j 8v 2 V al � ((y)p)v 2 [[F [v=x]]]��g

[[A:(~e=~z)]]�� = ([[A]]�)�[~e=~z]

[[X]]� = �(X)

[[�X[A]F]]� = �f:(��:[[F]]�[f=X]� n �A)

[[�X[A]F]]� = �f:(��:[[F]]�[f=X]� [�A)

where �A(�) = ft� j (B; t) 2 A and � j= Bg and n; [and \ denote pointwise set

di�erence, union and intersection respectively.

Figure 4: Interpretation of logic in a model T (G).

Lemma 1 (Reduction Lemma)

Let L = V ! PT be a complete lattice and let ' : L! L be a monotone functional.

Let B � V and write f �

B

g to mean 8v 2 B:f(v) � g(v). Then for any f 2 L,

f �

B

�x:'(x) i� f �

B

'(�x:('(x) [�[B]f))

where �[B]f(v) = f(v) if v 2 B and is empty otherwise.

Proof. Straightforward generalisation of the proof in [13]. 2

It is interesting to note at this point that the corresponding theorem for least �xpoints

f �

B

�x:'(x) i� f �

B

'(�x:('(x) n �[B]f))

does not hold. To see how this fails consider the following example:

Using the sets T; V;B = fa; bg and letting �; denote the constant empty function

we de�ne �(�;) = f where f(a) = fag; f(b) = ; and �(g) = d where d(a) = d(b) = fag

whenever g 6= �;. It is easy to see that d = �x:�(x), but notice that d 6� �(�x:(�(x) n

d)) = f .

Lemma 2 If (B

0

; t) 62 A for all B

0

then

t j=

B

�X[A]F i� t j=

B

F [�X[A; (B; t)]F=X]:

Proof. Uses Lemma 1 and simple properties about substitutions. 2

10

3 The Proof System

We now present a proof system for verifying whether a formula of the logic holds at a

particular point of the model. The system is similar in style to those of [6, 4] in that the

proof rules carry side conditions which leave proof obligations of checking implication

in some language of boolean conditions and of calculating transitions in a graph. The

judgements of the proof system are sequents of the form B ` t : F where B is a boolean

expression, t is a term and F is a recursion closed formula of the logic. The proof rules

for the system are listed in Figures 5 and 6.

The former imports all of the rules from [6], the latter introduces the rules necessary

for the treatment of the �xpoint operators. These new rules are the obvious adaptions

of the unfolding rules of [13] to the current setting with the possible exception of rule

App. This rule can be understood as a combination of two simpler rules: Firstly,

B ` t : A:(~z=~z)

B[~e=~z] ` t : A:(~e=~z)

which says that the satisfaction relation is preserved by substitution. Note that the as-

sumption that t does not contain any of the recursion parameters ~z is vital for soundness

here. Secondly,

B ` t : A

B ` t : A:(~z=~z)

which is a form of �-elimination. However we do not require that ~z do not occur freely

in B as one would expect from a �-elimination rule proper. The formula A is a function

from evaluations to closed terms and the formula B speci�es the domain of evaluations

which we are interested in.

The side condition on the � rule ensures that a term t, say, appearing in a tag set

more than once, does so in disjoint boolean worlds. This may seem overly restrictive

however it is necessary for soundness. For example we could use the �-rule to deduce

tt ` t : �X[(B

0

; t)]tt

since ` t : tt is trivially derivable. However

[[�X[(B

0

; t)]tt]]�� = CT (G) n ft�

0

j �

0

j= B

0

g

which is di�erent from CT (G) provided there is some � such that � j= B

0

.

Theorem 3 (Soundness) If B ` t : F then t j=

B

F .

Proof. By induction on the length of the derivation B ` t : F . The soundness of the

crucial rule �

1

is guaranteed by Lemma 2 while that of �

0

follows in a straightforward

manner from the interpretation of tagged �xpoints. We leave the reader to verify the

soundness of the � rule and we show here the case for the application rule. Suppose

� j= B[~e=~z]. Then we know that �[~e=~z] j= B and thus by induction we have t�[~e=~z] 2

[[A]]��[~e=~z]. Now ~z 62 fv(t) so we have t� 2 [[A]]��[~e=~z] which is, by de�nition, t� 2

[[A:(~e=~z)]]��. Therefore t j=

B[~e=~z]

A:(~e=~z). 2

11

Id

B ` t : B

Cut

B

1

` t : F; : : : ; B

n

` t : F

W

1�i�n

B

i

` t : F

Cons

B

1

` t : F

B

2

` t : F

(B

2

j= B

1

) Ex

B ` t : F

9x:B ` t : F

(x 62 fv(t; F))

�

B ` t

0

: F

0

B ` t : F

(t

0

�

�

t; F

0

�

�

F) ^

B ` t : F

1

B ` t : F

2

B ` t : F

1

^ F

2

_

L

B ` t : F

1

B ` t : F

1

_ F

2

_

R

B ` t : F

2

B ` t : F

1

_ F

2

h� i

B ` t

0

: F

B ^ b ` t : h� iF

t

b;�

�! t

0

[�]

B ^ b

1

` t

1

: F; : : : ; B ^ b

n

` t

n

: F

B ` t : [�]F

where f(b

1

; t

1

); : : : ; (b

n

; t

n

)g = f(b; t

0

) j t

b;�

�! t

0

g

hc!i

B ` t

0

: F [e=x]

B ^ b ` t : hc!xiF

t

b;c!e

�! t

0

[c!]

B ^ b

1

` t

1

: F [e

1

=x]; : : : ; B ^ b

n

` t

n

: F [e

n

=x]

B ` t : [c!x]F

where f(b

1

; t

1

; e

1

); : : : ; (b

n

; t

n

; e

n

)g = f(b; t

0

; e) j t

b;c!e

�! t

0

g

hc?i

B ` (y)t

0

: G

B ^ b ` t : hc?iG

(t

b;c?

�! (y)t

0

)

[c?]

B ^ b

1

` (y

1

)t

1

: F; : : : ; B ^ b

n

` (y

n

)t

n

: G

B ` t : [c?]G

where f(b

1

; (y

n

)t

1

); : : : ; (b

n

; (y

n

)t

n

)g = f(b; (y)t

0

) j t

b;c?

�! (y)t

0

g

8

B ` t : F

B ` (x)t : 8x:F

(x 62 fv(B)) 9

B ` t : F

B ` (x)t : 9x:F

Figure 5: Local model checking rules.

Having proved the soundness of our proof system we turn to the question of com-

pleteness. Unfortunately we have to report that the system is incomplete for the full

logic. The problem lies with the least �xpoint formulae. Consider the following example:

Let V al be the set of natural numbers and let the graph G have three terms t

1

; t

2

; t

3

with branches t

1

c?x

�! t

2

and t

2

a!x

�! t

3

. The abstraction �X[;]F , where F is (ha!yiy =

12

App

B ` t : A

B[~e=~z] ` t : A:(~e=~z)

�

0

B ` t : �X[A]F

(B; t) 2 A �

1

B ` t : F [�X[A[(B; t)]F=X]

B ` t : �X[A]F

�

B ` t : F [�X[A[(B; t)]F=X]

B ` t : �X[A]F

8B

0

:(B

0

; t) 2 A implies B ^ B

0

j= �

Figure 6: Fixpoint rules.

z)_X:(z+1=z), states `there exists an output on channel a of a value at least as large as

z'. We instantiate z at 0 to get the formula which simply reads \there exists an output,

on channel a, of some value." Therefore it should be clear that

t

1

j=

tt

hc?i8x((�X[;]F):(0=z))

We now argue that tt ` t

1

: hc?i8x(�X[;]F:(0=z)) is not derivable. First consider the

sequence of formulae F

0

= � and F

n+1

= F [F

n

[e=z]=X:(e=z)]. To see that t

2

6j= F

k

[0=z]

for all k we suppose the contrary, that is t

2

j= F

k

[0=z] for some k. Hence for every �

we get that t

2

� 2 [[F

k

[0=z]]]��. Now [[F

k

[0=z]]]�� =

S

n<k

ft

2

�

0

j �

0

(x) = ng. So choose

�

0

such that �

0

(x) = k + 1 then by assumption t

2

�

0

2

S

n<k

ft�

0

j �

0

(x) = ng. This is a

contradiction. From this we can conclude that t

1

j= hc?i8xF

k

[0=z] for no k.

We now prove that if a term provably satis�es a least �xpoint then it provably satis�es

a �nite unwinding of this �xpoint. Having done this we easily see, by soundness, that

tt ` t

1

: hc?i8x(�X[;]F:(0=z)) is not derivable.

Proposition 4 If B ` t : �X[A]F , then there exists k � 0 such that B ` t : F

k

.

Proof. We prove, by induction over depth of proofs, a more general statement: Let F

0

be an open formula such that RV ar(F

0

) � fXg. Suppose B ` t : F

0

[�X[A]F=X] and let

k be the maximum number of occurrences of the �-rule, using t and X, on any branch

of this derivation. Then we have that B ` t : F

0

[F

k

0

=X] for all k

0

� k.

This is reasonably straightforward except for the following illustrative cases:

Case: Conjunction.

^

B ` t : F

1

[�X[A]F=X] B ` t : F

2

[�[A]F=X]

B ` t : (F

1

^ F

2

)[�X[A]F=X]

:

Suppose without loss of generality that the maximum number of occurrences of the �-

rule appear on the left branch. Then by induction we get B ` t : F

k

0

1

for k

0

� k. Because

we chose k to be maximum across all branches then we also know by induction that

B ` t : F

k

0

2

for all K

0

� K

2

where K � K

2

; in particular, we have this derivation for all

k

0

� k. Therefore, using rule ^ we get the result.

Case: Fixpoints. Suppose that the last rule used in the derivation of B ` t :

F

0

[�X[A]F=X] was the �-rule. There are two cases to consider. If F

0

is simply the

formula X then we have

�

B ` t : F [�X[A; (B; t)]F=X]

B ` t : �X[A]F

:

13

Induction gives B ` t : F [F

k

0

=X] for all k

0

� k � 1, but this is just B ` t : F

k

0

+1

.

Otherwise F

0

must be of the form �Y [A

0

]F

00

and we have, writing A for �X[A]F ,

�

B ` t : (F

00

[A=X])[�Y [A

0

; (B; t)]F

00

[A=X]=Y]

B ` t : �Y [A

0

]F

00

[A=X]

:

We can reorder the premis to read B ` t : (F

00

[�Y [A

0

; (B; t)]F

00

=Y])[A=X] and hence by

induction we get

B ` t : (F

00

[�Y [A

0

; (B; t)]F

00

=Y])[F

k

0

=X]:

Again, by reordering and using the �-rule on Y we get B ` t : �Y:[A

0

]F

00

[F

k

0

=X] as

required.

Case: Application.

If F

0

is a �xpoint formula then we simply apply induction and use the App rule. In

the case where F

0

isX:(~e=~z) we need a further (easy) induction to show that ifB ` t : F

k

0

then B[~e=~z] ` t : F

k

0

[~e=~z]. 2

It is clear from this that the proof system is incomplete for the full logic. Therefore in

order to obtain any kind of completeness results we must either augment the proof system

or consider sub-logics. We opt for the latter, in fact we consider two restricted versions

of the logic. In the next section we will prove completeness for the sub-logic obtained

by disallowing all �-formula | a sub-logic of safety properties. The proof involves

developing a language for expressing the boolean expressions required to establish B ` t :

F and in this sense the proof is constructive. In the Section 5 we reintroduce �-formulae

but we restrict the type of expressions that may be passed to them as parameters. A

formula F will now, until Section 5, be assumed to mean a formula without any least

�xpoint subformulae.

4 Completeness and the Sat construction

In [6] it was shown how it is possible, for �nite F , to reduce the statement t j= F to a

�rst-order formula (t satF), thereby reducing the question of a point satisfying a modal

formula down to validity of a boolean expression. We adopt the same approach here.

However, to cope with the added complexity of parameterised �xpoints we reduce the

statement t j= F to a greatest �xpoint formula over a �rst-order language. This involves

introducing �xpoints into our boolean language but what we achieve by doing so is an

e�ective procedure for �nding booleans su�cient to establish the judgements required.

If we refer back to the example proof given in the introduction then we see that the

boolean conditions equivalent to even(z) and odd(z) would be generated automatically

as solutions of suitable formulae.

We now give a presentation of the �rst-order logic with parameterised �xpoints in

which we construct our sat formulae. The logic is described by the following grammar:

Q ::= B j Q _Q j Q ^Q j B ! Q j 9x:Q j 8x:Q j Q

A

:(~e=~z)

Q

A

::=X j �X:Q

We present the semantics of this logic by �rst translating into (possibly open) terms

of a �rst-order logic with in�nite disjunction and then interpreting the translations in a

14

[[B]]� = B

[[Q

1

_ Q

2

]]� = [[Q

1

]]� _ [[Q

2

]]�

[[Q

1

^ Q

2

]]� = [[Q

1

]]� ^ [[Q

2

]]�

[[B ! Q]]� = B ! [[Q]]�

[[9x:Q]]� = 9x:[[Q]]�

[[8x:Q]]� = 8x:[[Q]]�

[[Q

A

:(~e=~z)]]� = [[Q

A

]]�[~e=~z]

[[X]]� = �(X)

[[�X:Q]]� =

_

fb j b = [[Q]]�[b=X]g

Figure 7: Interpretation of �rst-order �xpoint logic.

completely standard manner. Given a recursion environment � : RV ar ! BoolExp, we

translate formulae [[Q]]� as described in Figure 7 and de�ne � j= [[Q]]� to be the obvious

satisfaction relation. If Q has no free occurrences of recursion variables then [[Q]]� is

independent of � and we simply write [[Q]]. In such a case we will write � j= Q to mean

� j= [[Q]] and Q ` t : F to mean [[Q]] ` t : F .

The construction of the characteristic sat formulae is given in Figure 8. Although

the de�nition of sat appears to be non-well-founded in the case for �xpoints we assume

that no evaluation of sat formulae occurs inside tag sets. More precisely, consider the

tag (t sat �X[A]F; t) which is included in the tag set as we unwind a formula against

t. While the expression t sat �X[A]F is referred to in the context of being in a tag

set then we treat it as a symbol only, it is the `name' of a formula rather than the

formula itself. Including the expression t sat �X[A]F in the tag sets is rather gratuitous

as we only really need to remember that t has been encountered before. However, this

extra information eases presentation of the following Theorems signi�cantly. Given a

formula F , for each recursion variable X in F and each term t, we create a formula

�X

t

: : : All of the variables X

t

have the same arity as the variable X. To prove that

(t satF) is always well-de�ned we develop a well-founded relation � between formulae.

This will only be de�ned between to so-called tag restricted formulae. �X[A]F tag

restricted if A is empty or if A = A

0

[(B; t) with t 62 A

0

then B is t sat �X[A

0

]F and

t sat �X[A

0

]F is tag restricted. More generally, call a formula F tag restricted if each of

its abstraction subformulae are tag restricted. An immediate consequence of a formula

being tag restricted is that a term t may appear at most once in each tag set. A formula

with empty tag sets is always tag restricted. Note that in the de�nition of (t satG), when

G has the form �X[A]F , requires the calculation of (t satF [�X[A

0

]F=X]) and therefore

we will require the latter to be dominated by the former, with respect to �. Note that

here A � A

0

and this is the basis of the de�nition of�. Let Tags be the simple function

which, given a formula F and a variable X, returns the set of terms present in the tag

set of X in F . Using this then we write F � F

0

i� F is a proper subformula of F

0

or

RV ar(F) = RV ar(F

0

) and Tags(X;F) � Tags(X;F

0

) for each X.

Proposition 5 If T (G) is �nite then � is a well-founded order on tag restricted for-

mulae.

15

t satB = B

t satF

1

^ F

2

= t satF

1

^ t satF

2

t satF

1

_ F

2

= t satF

1

_ t satF

2

t sat h� iF =

W

t

b

0

;�

�!t

0

b

0

^ t

0

satF t sat [�]F =

V

t

b

0

;�

�!t

0

b

0

! t

0

satF

t sat hc!xiF =

W

t

b

0

;c!e

�! t

0

b

0

^ t

0

satF [e=x] t sat [c!x]F =

V

t

b

0

;c!e

�! t

0

b

0

! t

0

satF [e=x]

t sat hc?iG =

W

t

b

0

;c?

�!(x)t

0

b

0

^ (x)t

0

satG t sat [c?]G =

V

t

b

0

;c?

�!(x)t

0

b

0

! (x)t

0

satG

(y)t sat 8x:F = 8w:(t[w=y] satF [w=x]) (y)t sat9x:F = 9w:(t[w=y] satF [w=x])

t satA:(~e=~z) = (t satA):(~e=~z)

t sat �X[A]F =

(

bBc if (B; t) 2 A

�X

t

:(t satF [�X[A; (t sat�X[A]F; t)]F=X]) otherwise

where w = new(t;8x:F) and bBc = X

t

if B � t sat �X[A]F and bBc = B otherwise.

Figure 8: The sat construction.

Proof. Suppose otherwise, that is there is an in�nite decreasing chain

: : : F

n

� : : :� F

1

� F

0

for some tag restricted F

0

. Let d be the depth of the formula F

0

so that after every

d steps in the chain the tag set must of some recursion variable must increase. Let

N = jRV ar(F

0

)j�2

jT (G)j

�d then we have Tags(F

N

;X) = T (G) for eachX 2 RV ar(F

N

).

Furthermore Tags(F

N

0

;X) = Tags(F

N

;X) for all N

0

> N and all X. Therefore there

exists a d

0

� d such that F

N+d+1

is not a subformula of F

N+d

and Tags(F

N+d

0

;X) =

Tags(F

N+d

0

+1

;X) for each X which contradicts F

N+d

0

+1

� F

N+d

0

. 2

This means that, given a �nite graph and only �nitely many substitutions to create

terms with, we have a well-founded ordering on a class of formulae. It was shown in [5]

that careful choice of fresh variables ensured that the set of terms created by a �nite

graph could be kept �nite. Therefore we may create T (G) so that it is �nite whenever G

is by only allowing substitutions using variables from the variables of G and the �nite set

of fresh variables used for renaming. It follows that � is well-founded on tag restricted

formulae and therefore that (t satF) is well-de�ned.

As another application of the well-foundedness of � we show that the characteristic

formula construction corresponds to our semantics correctly.

Theorem 6 For �nte G and empty tag set F ,

� j= t satF i� t� 2 [[F]]��:

Proof. We prove, by well-founded induction on tag restricted formulae using �, a

stronger result that � j= [[t satF]]� i� t� 2 [[F]]�� where � is some greatest �xpoint

environment to be de�ned below.

16

Consider a recursion variable X in (tag restricted) F whose tag set contains the pair

(t sat �X[A]F

0

; t). We wish to de�ne �(X

t

) to be the greatest �xpoint of the formula

t sat �X[A]F

0

, but this formula may contain free recursion variables so our solution

would depend on an environment for these free variables. However, we can choose,

because of tag restriction, an X and t such that t sat �X[A]:F

0

is recursion closed. We

let �(X

t

) = [[t sat �X:F

0

]]. Given �(X

t

) we may now consider formula which have at

most X

t

free in them. So we choose Y and t

0

such that t

0

sat �Y [A

0

]F

00

contains at most

X

t

as a free variable and let eta(Y

t

0

) = [[t

0

sat �Y [A

0

]F

00

]][�(X

t

)=X

t

]. Continuing in this

manner we obtain �(X

t

) for all pairs X and t which occur in the tag sets of F and

observe that the collection of all such expressions forms an environment �. Moreover,

�(X

t

) = [[t sat �X[A]F]]� whenever (t sat �X[A]F; t) is contained in the tag set of X.

We can now proceed with our well-founded induction. We show a couple of the

interesting cases. Case: Application.

� j= t satA:(~e=~z)

i� � j= (t satA):(~e=~z) de�nition

i� �[~e=~z] j= t satA

i� t�[~e=~z] 2 [[A]]��[~e=~z] by induction.

i� t� 2 [[A:(~e=~z)]]��: as ~z 62 fv(t).

Case: �-�xpoint with t 2 A. Let A

0

be such that A = A

0

[(t sat �X[A

0

]F; t).

� j= [[t sat�X[A]F]]�

i� � j= [[X

t

]]�

i� � j= �(X

t

)

i� � j= [[t sat�X[A

0

]F]]�

i� t� 2 [[�X[A]F]]��.

Case: �-�xpoint with t 62 A. Let A

0

= A [(t sat �X:[A]F; t).

� j= [[t sat�X[A]F]]�

i� � j= [[�X

t

:t satF [�X[A

0

]F=X]]]� de�nition

i� � j= �(X

t

)

i� � j= [[t satF [�X[A

0

]F=X]]]� �xed point

i� t� 2 [[F [�X[A

0

]F=X]]]�� well-founded induction

i� t� 2 [[F]]�[[[�X[A

0

]F]]�=X]� Lemma 2

i� t� 2 [[�X[A]F]]��

To establish that the well-founded induction is valid we must show that

F

1

def

= F [�X[A

0

]F=X]� �X[A]F

def

= F

2

:

It is clear that F

1

is tag restricted so it su�ces to show that Tags(F

2

;X) � Tags(F

1

;X).

Now Tags(F

2

) = T [Tags(F;X) where T = ft j (B; t) 2 Ag and Tags(F

1

;X) �

T [ftg[Tags(F;X). Therefore Tags(F

2

;X) � Tags(F

1

;X) easily. To show inequality

just note that t 2 Tags(F

1

;X) and t 62 Tags(F

2

;X) by assumption. 2

Lemma 7 For �nite G and tag restricted F with � as above: [[t satF]]� ` t : F .

17

Proof. Similar to the proof in [6] though we use well-founded induction on tag restricted

formulae. The only case of interest here is that for �xpoints. If t appears in the tag set

then rule �

0

gives the result. Otherwise, by induction we know that

[[t satF [�X[A

0

]F=X]]]� ` t : F [�X[A

0

]F=X]

where A

0

= A [(t sat �X[A]F; t). But [[t satF [�X[A

0

]F=X]]]� is easily seen to be

[[t sat �X[A]F]]� so by rule �

1

we have our result. 2

Theorem 8 (Completeness) For all formula F with empty tag sets, �nite G: If t j=

B

F

then B ` t : F .

Proof. Suppose t j=

B

F . Then Theorem 6 implies that for every � j= B we have

� j= t satF , which is to say B j= t satF . The previous Lemma tells us that t satF ` t : F

is derivable so an application of Cons gives B ` t : F . 2

5 Restricted Parameters

We now consider an alternative way of restricting the logic in order to obtain a com-

pleteness result. Instead of removing least �xpoints completely we limit the usage of the

parameters fed to them. We say that a formula F has restricted parameters if for each

subformula in F of the form A:(~e=~z) we have that for each e

i

2 ~e either

� e

i

= z

i

for some z

i

2 RPar(F) so that e

i

is simply a recursion parameter, or

� var(e

i

) \ RPar(F) = ; so e

i

contains no recursion parameters at all.

Expressions such as (z + 1=z) are excluded. For the remainder of this section we

assume that F has restricted parameters.

The e�ect of this restriction is to reduce the role of parameters to that of remembering

values (or value expressions) which occur on the arcs of the underlying graphs. When

dealing with a �nite graph there will be only �nitely many value expressions passed as

parameters as a formula is unwound. Consider the following example of a formula which

demonstrates that the expressive power of our logic is not compromised excessively under

parameter restriction: The abstraction A

fib

is restricted but makes an essential use of

parameterisation:

A

fib

= �X:[c!x](x = z

1

^ [c!y](y = x+ z

2

^X:(x+ y; y=z

1

; z

2

))):

We see that the formula A

fib

:(1; 0=z

1

; z

2

) states \I can perform a �nite output stream on

channel c which follows the Fibonacci sequence."

The key result of this section then is that, under reasonable conditions, the proof

system of Section 3 is complete for �nite symbolic graphs and restricted parameter

formulae.

Theorem 9 (Completeness) For all formulae F with empty tag sets, �nite G, fv(B) �

fv(t),

t j=

B

F implies B ` t : F:

2

18

[[B

0

]]

s

�B

b

" =

(

T (G) If B

b

" j= B

0

; Otherwise

[[F ^ F

0

]]

s

�B

b

" = [[F]]

s

�B

b

" \ [[F

0

]]

s

�B

b

"

[[F _ F

0

]]

s

�B

b

" =

S

f[[F]]

s

�B

1

b

" \ [[F

0

]]

s

�B

2

b

" j B

b

" j= B

1

_ B

2

g

[[h� iF]]

s

�B

b

" =

(

t j 9fc

i

g

I

�B

b

" j=

W

I

c

i

;8i:9t

b

i

;�

�! t

0

i

with c

i

j= b

i

and t

0

i

2 [[F]]

s

�(B ^ c

i

)

b

"

)

[[[�]F]]

s

�B

b

" =

�

t j 8t

b

0

;�

�! t

0

implies t

0

2 [[F]]

s

�(B ^ b

0

)

b

"

�

[[hc!xiF]]

s

�B

b

" =

(

t j 9fc

i

g

I

:B

b

" j=

W

I

c

i

� 8i:9t

b

i

;c!e

i

�! t

0

i

with c

i

j= b

i

and t

0

i

2 [[F [e

i

=x]]]

s

�(B ^ c

i

)

b

"

)

[[[c!x]F]]

s

�B

b

" =

�

t j 8t

b

0

;c!e

�! t

0

implies t

0

2 [[F [e=x]]]

s

�(B ^ b

0

)

b

"

�

[[hc?iG]]

s

�B

b

" =

(

t j 9fc

i

g

I

:B

b

" j=

W

I

c

i

� 8i:9t

b

i

;c?

�! (y

i

)t

0

i

with c

i

j= b

i

and (y

i

)t

0

i

2 [[G]]

s

�(B ^ c

i

)

b

"

)

[[[c?]G]]

s

�B

b

" =

�

t j 8t

b

0

;c?

�! (y)t

0

implies (y)t

0

2 [[G]]

s

�(B ^ b

0

)

b

"

�

[[9x:F]]

s

�B

b

" =

(

(y)t j 9 new w; b(w) �B

b

" j= 9w:b(w)

and t[w=y] 2 [[F [w=x]]]

s

�(B ^ b(w))

b

"

)

[[8x:F]]

s

�B

b

" = f(y)t j 9 new w � t[w=y] 2 [[F [w=x]]]

s

�B

b

"g

[[A:(~e=~z)]]

s

�B

b

" = ([[A]]

s

�)B

d

["(~e)=~z]

[[X]]

s

� = �(X)

[[�X[A]F]]

s

� = �f:(�b:[[F]]

s

�[f=X]b n �A)

[[�X[A]F]]

s

� = �f:(�b:[[F]]

s

�[f=X]b [�A)

where �A(b) = ft j (b

0

; t) 2 A and b j= b

0

g and n and [denote pointwise set di�erence

and union respectively.

Figure 9: Symbolic interpretations of formulae

The remainder of this section is devoted to establishing this. We design a new semantics,

called the symbolic semantics, for the logic to get our completeness result. A symbolic

interpretation takes a recursion environment and a boolean expression, rather than an

evaluation, as an environment for the free data variables. It will be useful to maintain,

throughout the completeness proof, a very strict form for these boolean expressions. We

assume that they have the form

B ^ (~z = ~e)

where B is a boolean expression not containing any recursion parameters and ~e is a

�nite vector of data expressions not containing any recursion parameters. For notational

convenience we describe such a boolean as follows. Let " range over substitutions of the

form [~e=~z] where ~e contains no recursion parameters (note that the identity substitution

is the special case of this where the vectors are zero length). Given " = [~e=~z] and a

boolean expression B not containing recursion parameters we write

b

" for the boolean

expression ~z = ~e and B

b

" for B ^

b

". Using this strict form of boolean environment we

present the symbolic interpretation of our logic in Figure 9. The �rst thing that we ought

to check is that these symbolic semantics coincide in some way with the evaluation based

19

semantics. We write t j=

s

�;Bb"

F i� t 2 [[F]]

s

�B

b

".

Proposition 10 If F (not necessarily recursion closed) has empty tag sets then t j=

�;Bb"

F i� t j=

s

�

�

;Bb"

F (where t 2 �

�

(X)B

b

" i� � j= B

b

" implies t� 2 �(X)�).

Proof. We use structural induction on F . Some of the cases are shown below.

Case: Recursion variable.

t j=

�;Bb"

X i� t 2 �(X)� whenever � j= B

b

". This amounts to saying t 2 �

�

(X)B

b

",

which is just t j=

s

�

�

;Bb"

X.

Case: Disjunction.

The if direction is straightforward. t j=

s

�

�

;Bb"

F

1

_ F

2

implies that there exists two

booleans B

1

; B

2

such that B

b

" j= B

1

_B

2

with t j=

s

�

�

;B

i

b"

F

i

, for i = 1; 2. By induction we

get t j=

�;B

i

b"

F

i

for i = 1; 2 so whenever � j= B

b

" we know that � j= B

i

for i = 1 or i = 2,

in either case t� 2 [[F

1

_ F

2

]]��. Hence t j=

�;Bb"

F

1

_ F

2

.

Conversely, suppose that t j=

�;Bb"

F

1

_ F

2

. Let (for i = 1; 2) B

i

be de�ned by � j= B

i

i� � j= B

b

" and t� 2 [[F

i

]]��. Then B

b

" j= B

1

_ B

2

by hypothesis and induction gives

t j=

s

�

�

;b

i

b"

F

i

for i = 1; 2. Thus t j=

s

�

�

;Bb"

F

1

_ F

2

.

Case:h� i.

Suppose t� 2 [[h� iF]]�� whenever � j= B

b

". Let f(b

i

; t

0

i

)g

I

=

�

(b

0

; t

0

) j t

b

0

;�

�! t

0

�

. So we

know that whenever � j= B

b

" there exists an i 2 I such that � j= b

i

and t

0

i

� 2 [[F]]��.

De�ne c

i

so that �

0

j= c

i

i� �

0

j= (B ^ b

i

)

b

". We then know c

i

j= b

i

, B

b

" j=

W

I

c

i

and, by

induction, t

i

2 [[F]]

s

�

�

(B ^ c

i

)

b

".

Conversely suppose that t 2 [[h� iF]]

s

�

�

B

b

". By de�nition we know that there exists

fc

i

g

I

such that B

b

" j=

W

I

c

i

and for each i 2 I there is a t

b

i

;�

�! t

0

such that c

i

j= b

i

and

t

0

2 [[F]]

s

�

�

(B ^ c

i

)

b

". Let � j= B

b

", then � j= c

i

for some i. Thus � j= b

i

and we get

t�

�

�! t

0

� and, by induction, t

0

� 2 [[F]]��. Therefore t� 2 [[hF i]]��.

Case: Application.

Suppose t j=

�;Bb"

A:(~e=~z) so that whenever � j= B

b

" we know t� 2 [[A]]��[~e=~z]. Now

� j=

b

" i� �[~e=~z] j=

b

"

0

where "

0

= ["(~e)=z]. Therefore by induction we know t j=

s

�

�

;B

b

"

0

A

whence t j=

s

�

�

;Bb"

A:(~e=~z). The converse is similar. 2

We now see how fruitful the symbolic semantics are by returning to the dual version

of the Reduction Lemma, Lemma 1, which failed previously.

Lemma 11 (Reduction lemma revisited) Let M be the lattice of monotone functions

from the partial order (B;�) to (PT;�) and let ' : M ! M be monotone. Then for

any t 2 T; b 2 B,

t 2 �x:'(x)(b) i� t 2 '(�x:('(x) n �(b; t)))(b)

where �(b; t)(b

0

) =

(

ftg If b

0

� b

; otherwise.

Proof. The if direction is easy. For the only if direction we suppose that t 2 �x:'(x)(b).

Standard �xpoint theory [8] tells us that there exists an ordinal � such that t 2 '

�

(b)

where '

0

= �; (the constant empty function), '

n+1

= '('

n

) and '

=

S

�<

'

�

when

20

" . t satB = B["(~z)=~z]

" . t satF

1

^ F

2

= " . t satF

1

^ " . t satF

2

" . t satF

1

_ F

2

= " . t satF

1

_ " . t satF

2

" . t sat h� iF =

W

t

b

0

;�

�!t

0

b

0

^ " . t

0

satF

" . t sat [�]F =

V

t

b

0

;�

�!t

0

b

0

! " . t

0

satF

" . t sat hc!xiF =

W

t

b

0

;c!e

�! t

0

b

0

^ " . t

0

satF [e=x]

" . t sat [c!x]F =

V

t

b

0

;c!e

�! t

0

b

0

! " . t

0

satF [e=x]

" . t sat hc?iG =

W

t

b

0

;c?

�!(x)t

0

b

0

^ " . (x)t

0

satG

" . t sat [c?]G =

V

t

b

0

;c?

�!(x)t

0

b

0

! " . (x)t

0

satG

" . (y)t sat 8x:F = 8w:(" . t[w=y] satF [w=x])

" . (y)t sat 9x:F = 9w:(" . t[w=y] satF [w=x])

" . t satA:(~e=~z) = ["(~e)=~z] . t satA

" . t sat �X[A]F =

(

bBc if (B

b

"; t) 2 A

t satF [�X[A

0

]F=X] otherwise

" . t sat �X[A]F =

(

� if (B

b

"; t) 2 A

(t satF [�X[A

00

]F=X]) otherwise

where w = new(t; ";8x:F), and tag sets A

0

= A [((" . t sat �X:[A]F)

b

"; t) and A

00

=

A [((" . t sat �X:[A]F)

b

"; t).

Figure 10: Sat construction for symbolic semantics

is a limit ordinal. Let � be the least such ordinal. M is a lattice of monotone functions

so for all � < � and b

0

� b we have that t 62 '

�

(b

0

) and so '

�

= '

�

n �(b; t). The result

now follows from the monotonicity of '. 2

Lemma 12 t j=

s

Bb"

�X[A]F implies t j=

s

Bb"

F [�X[A[(B

b

"; t)]F=X].

Proof. Follows from previous lemma taking T to be T (G) and B to be the boolean

expressions (up to equivalence) ordered by j=

�1

. 2

The approach to proving completeness is the same as the proof of the previous section.

That is we de�ne a characteristic formula t satF which is the solution a �xpoint formula

over a �rst-order language of boolean expressions. We no longer require parameterised

�xpoint formulae as we deal with the recursion parameters using theB

b

" statements. This

requires knowing the " part of the environment when calculating (t satF). Figure 10

shows how this is done. For each variable X, each term t, and each environment ",

we have a new variable X

t"

and create a formula �X

t"

: : :. We do not require a similar

construction for least �xpoints here because, as we saw in Proposition 4, any proof

involving least �xpoints can be transformed into a proof involving �nite unwindings and

21

therefore any boolean information required to do this proof can be expressed without

least �xpoints also. Again we note that the tag sets will contain more information than

is strictly necessary to de�ne sat ; for �xpoints we only need to record the term t and

the environment " in the tag sets but for the sake of a cleaner presentation later on we

include the extra syntax.

We de�ne what it means for a formula F to be tag restricted in a similar manner to

before; �X:[A]F (or �X:[A]F) is tag restricted if either A is empty or if A = A

0

[(B

b

"; t)

with t 62 A

0

then B is " . t sat �X:[A

0

]F (or " . t sat�X:[A

0

]F) and �X[A

0

]F is also tag

restricted. A formula F is tag restricted if all of its abstraction subformulae are tag

restricted. A term t can now appear more than once in the tag set of a tag restricted

formula. However, any given term t along with a substitution " may appear at most

once.

This change will of course a�ect our ordering�. The relation� given in the previous

section is also well-founded for formulae of this sublogic; this depends on the fact that

only a �nite number of substitutions, ", are used as we unwind a formula against a �nite

graph.

Proposition 13 If T (G) is �nite then� is well-founded on parameter and tag restricted

formulae.

Proof. We suppose without loss of generality that our �xpoint formulae only use a

single recursion parameter each. Because the new notion of tag restriction allows a term

t to appear several times in each tag set, one for each di�erent ", it is su�cient, in light

of Proposition 5, to check that we only encounter �nitely many " environments as we

calculate (" . t satF). By inspecting the de�nition of (" . t satF) we notice that given

an " = [e=z] then a new "

0

is created only at the application stage, that is

" . t satA:(e

0

=z

0

) = "

0

. t satA

where "

0

= ["(e

0

)=z

0

]. Now the restriction on parameters tells us that either

� "

0

= [e=z

0

] when e

0

is simply the parameter z or

� "

0

= [e

0

=z

0

] when e

0

does not contain recursion parameters.

This observation allows us to describe a general form which the " must satisfy as we

calculate (" . t satF). We need to describe the possible data expressions which e; e

0

may

be.

We de�ne DApps inductively over the depth of formulae in Figure 11 and note that

DApps(F) is �nite for any formula F . We let

Outs(T (G)) =

�

e 2 V alExp j 9t; t

0

2 T (G):t

b;c!e

�! t

0

for some b; c

�

be the collection of the data expressions which appear on the output arcs of T (G). For

�nite T (G) we see that this set is also �nite. Let NV (T (G); F) be the �nite stack of

variables used to for creating new variables. Let BV ?(F) be the variables bound by

quanti�ers in F and let BV !(F) be the variables bound by hc!i and [c!] modalities in F .

We may assume that BV ?(F) and BV !(F) are disjoint by �-conversion and they are

clearly both �nite.

22

DApps(B) = DApps(X) = ;

DApps(F

1

^ F

2

) = DApps(F

1

_ F

2

) = DApps(F

1

) [DApps(F

2

)

DApps(h�iF) = DApps([�]F) = DApps(F)

DApps(8x:F) = DApps(9x:F) = DApps(F)

DApps(�X[A]F) = DApps(�X[A]F) = DApps(F)

DApps(A:(e=z)) =

(

DApps(A) [feg If e \RPar = ;

DApps(A) If e 2 RPar

Figure 11: De�nition of function DApps over formulae.

All environments "

0

used when calculating " . t satF can be described in the general

form

[e[~w; ~e

0

=~x; ~y]=z

0

]

where e 2 DApps(F), ~x 2 BV ?(F), ~y 2 BV !(F), ~w 2 NV (T (G); F), ~e

0

2 Outs(T (G))

and z

0

2 RPar(F). All of the above sets are �nite hence there can be �nitely many

di�erent ". 2

Proposition 14 For all formulae F with empty tag sets, �nite G

B

b

" j= " . t satF i� t j=

s

Bb"

F:

Proof. We prove by well-founded induction on tag restricted F that, with � de�ned as

in Theorem 6, we have

B

b

" j= [[" . t satF]]� i� t j=

s

Bb"

F:

. We outline a few cases here:

The cases for the �xpoints use Lemmas 2 and 12.

Case: Disjunction.

Suppose t 2 [[F

1

_ F

2

]]

s

�B

b

" so that t 2 [[F

1

]]

s

�B

1

b

" and t 2 [[F

2

]]

s

�B

2

b

" for some B

1

; B

2

such that B

b

" j= B

1

_ B

2

. By induction we know that B

1

b

" j= [[" . t satF

1

]]� and B

2

b

" j=

[[".t satF

2

]]�. Thus B

b

" j= (B

1

_B

2

)

b

" j= [[".t satF

1

_".t sat F

2

]]� � [[".t sat (F

1

_F

2

)]]�.

The converse is given immediately by induction.

Case: [c!]:

Suppose that t 2 [[[c!x]F]]

s

�B

b

". We know that whenever we have a transition t

b

0

;c!e

0

�! t

0

we have t

0

2 [[F [e

0

=x]]]

s

�(B ^ b

0

)

b

". If we assume that � j= B

b

" and � j= b

0

for some b

0

such that t

b

0

;c!e

0

�! t

0

then by induction we know that � j= [[" . t

0

satF [e

0

=x]]]� and thus

B

b

" j= [[b

0

! " . t

0

satF [e

0

=x]]]� for all such b

0

. Whence B

b

" j= [[" . t sat [c!x]F]]�.

Conversely, suppose that B

b

" j= [[".t sat [c!x]F]]�. Then (B^b

0

)

b

" j= [[".t

0

satF [e

0

=x]]]�

for each b

0

; e

0

such that t

b

0

;c!e

0

�! t

0

. This implies that t

0

2 [[F [e

0

=x]]]

s

�(B ^ b

0

)

b

" and conse-

quently t 2 [[[c!x]F]]

s

�B

b

".

Case: Application:

Firstly, let "

0

denote ["(~e)=~z] and suppose t 2 [[A:(~e=~z)]]

s

�B

b

". Then t 2 [[A]]

s

�B

b

"

0

and

by induction we know B

b

"

0

j= [["

0

. t satA]]�. Let � j= B

b

" so that �[~e=~z] j= B

b

"

0

. This gives

23

us that �[~e=~z] j= [["

0

. t satA]]� and because ~z does not appear free in [["

0

. t satA]]� we

have � j= [["

0

. t satA]]� � [[" . t satA:(~e=~z)]]�.

Conversely, B

b

" j= [[" . A:(~e=~z)]]� implies that B

b

" j= [["

0

. t satA]]�. Now, because ~z

does not appear free in [["

0

. t satA]]� we have that B

b

"

0

j= B j= [["

0

. t satA]]� and hence,

by induction, t 2 [[A:(~e=~z)]]

s

�B

b

". 2

Lemma 15 For all tag restricted formulae F , �nite G, � as above,

[[(" . t satF)]]�

b

" ` t : F:

Proof. Again we use � for well-founded induction on F . For the most part the proof

is similar to that in [6] with the following notable di�erences:

The base case for atomic propositions requires that B["(~z)=~z]^

b

" ` t : B. This follows

from Id and Cons because B["(~z)=~z] ^

b

" j= B.

The case for application goes as follows: We know by induction that [[("

0

.t satA)]]�

b

"

0

`

t : A is derivable (where "

0

= ["(~e)=~z]). Using rule App we get [[("

0

. t satA)]]�

b

"

0

[~e=~z] ` t :

A:(~e=~z). Then, as

b

" j=

b

"

0

[~e=~z], by Cons we see that [[(" . t satA:(~e=~z))]]�

b

" ` t : A:(~e=~z).

For �xpoints we simply use induction and the unfolding rules when t; " is not in the

tag set and use rule �

0

or an empty Cut otherwise. 2

Proof. (Theorem 9, Completeness)

We prove a slightly di�erent statement, that is, t j=

s

Bb"

F implies B

b

" ` t : F and

witness the theorem, via Proposition 10, as an instance of this when " is the identity.

Suppose t j=

s

Bb"

F , then by Proposition 14 we get B

b

" j= " . t satF . The previous Lemma

provides a derivation of (" . t satF)

b

" ` t : F so an application of Cons will complete the

proof. 2

6 Example

We now present an extended example of a proof that a �nite symbolic graph, compiled

from a process declaration, satis�es a property expressed in our logic. In particular,

the property is expressed using restricted parameters only and uses both minimal and

maximal �xpoint formulae. The process that we declare allows an input stream of non-

negative integers on channel i and for each input received peforms an output of the

maximum value received so far on channel o. The process may be rendered as the

parallel composition of three components: A starting process St which simply outputs

the value 0 on an internal channel k and then stops, a process M which determines the

greater of its two inputs on i and k and sends the result on another internal channel m,

and �nally a process Sp which splits the input received on channel m by sending it on

both o and k. The whole process is illustrated in Figure 12.

Using this description a syntactic version of this process Max, is easily obtained.

Max

def

= (St jM j Sp) n fk;mg

where

� St(k!0

� M (k?x:i?y:(x > y ! m!x:M;m!y:M)

+ i?y:k?x:(x > y ! m!x:M;m!y:M)

� Sp(m?x:o!x:k!x:Sp

24

i?

-

M

m

-

Sp

o!

-

kQ

Q

Q

Q

k

�

�

�

�

6

k

St

Figure 12: Flow diagram for process Max.

Given a syntactic description of a process it is a simple matter to compile it down to a

symbolic graph. This treatment can be given to Max and we see in Figure 13 that the

resulting graph is in fact �nite. We should point out that at node t

1

in this graph the �

transition leaving this node is guarded by the boolean y � 0. In light of the fact that y

is an non-negative integer we elide this guard. Also, as a companion to this � transition

is another � move with false guard y < 0. We prune this branch of the graph for the

sake of clarity.

The property that we wish to proveMax to satisfy is that for every input on channel

i there is an output on channel o of the maximum value received so far. Naturally there

are internal actions to be accounted for so we will consider weak modalities, hh�ii and

[[�]]. A term will satisy hh�iiF if it can do �nitely many � transitions followed by

an � transition to a term which satis�es F . Because we demand only �nitely many �

transitions we use least �xpoints to de�ne these modalities:

hh�iiF � (�X:h� iX:(~z=~z) _ h�iF):(~x=~z)

where ~x = fv(F). Similarly for box modalities

[[�]]F � (�X:[�]X:(~z=~z) ^ [�]F):(~x=~z):

We write the speci�cation as a greatest �xpoint formula,

F

Max

� [[i?]]8y:A:(y;0=z; z

0

)

where z is a parameter which represents the last value input, z

0

is a parameter which

represents the maximum value received so far and A is de�ned to be �X:(F

1

^ F

2

). We

use two formulae F

1

and F

2

to reect the fact that, in addition to immediately outputting

after an input, the process is able to receive (at most) the next input to be compared

before any output transition occurs. These formulae can be written.

F

1

� hho!xii[[i?]]8y

0

:F

3

and F

2

� [[i?]]8y

0

:hho!xiiF

3

where

F

3

� ([x = z

0

^ z

0

> z] _ [x = z ^ z � z

0

]) ^X:(y

0

; x=z; z

0

):

It is possible to give a proof that tt ` t

0

: F

Max

, however, purely in order to make

the proof concise, we use more speci�c formulae to replace F

1

and F

2

. We actually will

use

F

1

� hho!xii[[i?]]8y

0

:(h� i)F

3

_ F

3

)

25

�t

0

Z

Z

Z

i?y

~

�

�

?

�t

0

0

�

=�

�

�

�

�

�

�
o!y

>

J

J

J

J

J

J

�

^

�t

1

i?y

?

�t

3

Z

Z

Z

�

~ �

�

�
i?y

0

>

-

�t

0

1

�

y > y

0

; �

�t

4

J

J

J

J

J

J

o!y

^

�

�

�

i?y

0

>

�

�

�

�
�
>

�t

2

i?y

0

-

�

6

�

�

�

�

}Z

Z

Z

o!y

0

�

}Z

Z

Z

i?y

y � y

0

; �

�t

5

y

0

> y; �

-

�

�

y

0

� y; �

}Z

Z

Z

i?y

�

o!y

0

�

}Z

Z

Z

�

�

�

6

�

i?y

�

Figure 13: Symbolic graph for Max.

and

F

2

� [[i?]]8y

0

:ho!xih� iF

3

:

These formulae di�er from the former two only in their � modalities.

In the following proof B ` t; t

0

: F will be an abbreviation for the two sequents

B ` t : F and B ` t

0

: F and B

Max

will denote the boolean expression [x = z

0

^ z

0

>

z] _ [x = z ^ z � z

0

] so that F

3

� B

Max

^X:(y

0

; x=z; z

0

).

The goal tt ` t

0

: F

Max

follows from rules 8, [�]; [i?];^; � and App if we can establish

tt ` t

0

0

; t

1

: A:(y; 0=z; z

0

):

These can be obtained by using App and �

1

unfolding from

c

"

0

` t

0

0

; t

1

: (F

1

^ F

2

)[A

1

=X]

where

c

"

0

� z = y ^ z

0

= 0 and A

1

= �X[A]F

1

^ F

2

with A = (

c

"

0

; t

0

0

) (or, accordingly,

(

c

"

0

; t

1

)). These judgements can be broken up into the four judgements

c

"

0

` t

0

0

; t

1

: F

1

[A

1

=X] and

c

"

0

` t

0

0

; t

1

: F

2

[A

1

=X]

26

by using the rule ^. Taking each of these in turn we see that the former pair can be

reduced, by using � unfolding and h� i rules (twice for the t

0

0

case) and then a ho!i rule

to get

c

"

0

` t

2

: [[i?]]8y

0

(h� iF

3

_ F

3

)[A

1

=X][y=x]: (5)

Secondly we reduce the latter pair of sequents to

c

"

0

` t

3

: ho!xih� iF

3

[A

1

=X] (6)

again by using � unfoldings and [�] rules and a [i?] rule. Now both (5) and (6) can

be reduced to the single judgement

c

"

0

` t

4

: F

3

[A

1

=X][y=x] by using the appropriate

modality rules. We notice that

c

"

0

j= B

Max

[y=x] so, using rules ^, Cons and Id, our proof

obligation becomes

c

"

0

` t

4

: A

1

:(y

0

; y=z; z

0

). We strip the outer application with rule

App to get

c

"

1

` t

4

: A

1

where

c

"

1

� z = y

0

^ z

0

= y. This judgement is ready to be � unfolded to become

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X]

where A

2

= �X:[A; (

c

"

1

; t

4

)]F

1

^F

2

. At this point we do a case analysis on y and y

0

. This

is done by using the Cut rule to the two sequents

y > y

0

^

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X] (7)

and

y

0

� y ^

c

"

1

` t

4

: (F

1

^ F

2

)[A

2

=X]: (8)

We deal with (7) �rst: this judgement can be divided, using ^, and then each branch

dealt with by using the appropriate modality and � unfolding rules to obtain the sequent

y > y

0

^

c

"

1

` t

4

: F

3

[A

2

=x][y=x]. In each case we are using the � transition going back

to node t

0

1

and following the diamond of transitions to return to t

4

. To close this branch

of proof we note that y > y

0

^

c

"

1

j= B

Max

[y=x], so we can reduce the statement to

y > y

0

^

c

"

1

` t

4

: A

2

:(y

0

; y=z; z

0

) and, after using rule App, that �

0

is applicable as (

c

"

1

; t

4

)

is in the tag set of A

2

.

We must now turn our attention to establishing (8). Similarly we can divide the

judgement into two using ^ and in both cases follow the appropriate transitions down

to the lower part of the graph and through the diamond to get to

y

0

� y ^

c

"

1

` t

5

: F

3

[A

2

=X][y

0

=x]:

This judgement is reduced to y

0

� y^

c

"

1

` t

5

: A

2

:(y; y

0

=z; z

0

) by noting that y

0

� y^

c

"

1

j=

B

Max

[y

0

=x] and using the ^ and Cons rules. We then must apply rule App to get

c

"

2

` t

5

: A

2

where

c

"

2

� z = y ^ z = y

0

. Now �

0

is not yet applicable so we must unfold once more to

get

c

"

2

` t

5

: (F

1

^ F

2

)[A

3

=X]

27

where A

3

= �X[A; (

c

"

1

; t

4

); (

c

"

2

; t

5

)]F

1

^F

2

. The proof now continues in a similar manner

to before; we do a case analysis on y and y

0

to reduce to

y

0

> y ^

c

"

2

` t

5

: (F

1

^ F

2

)[A

3

=X] and y � y

0

^

c

"

2

` t

5

: (F

1

^ F

2

)[A

3

=X]:

The left branch follows the modalities back around the lower diamond of the graph and

uses the tag (

c

"

2

; t

5

) to close the proof. The right branch uses the � transition travelling

back to the upper part of the graph and uses the tag (

c

"

1

; t

4

) to close the proof and then

we are done.

7 Conclusions

In this paper we have shown how to extend the local model checking procedures of [13]

to value-passing processes. The central idea, based on that in [6], is to have an auxiliary

proof system for data-expressions and to express the model checking rules relative to this

auxiliary system. By working at the level of symbolic transition systems we can then

imitate the tag method for �xpoint formulae which was introduced in [13]; inevitably the

tags are more complicated, consisting of pairs of process terms and boolean expressions.

We hope that these model checking procedures can be implemented along the lines

of the PAM system, [9], which checks semantic equivalences between process terms. A

major research problem here is to design an e�ective and e�cient interface between aux-

iliary proof systems for checking data expressions and the main model checking routines.

Another fruitful line of research would be the investigation of the characteristic formu-

lae (T satF) which are automatically generated by the completeness theorems. These

are in general very complicated but a calculus of reductions may be found which could

systematically simplify them and in particular eliminate many of the uses of �xpoint

expressions.

On the more theoretical level it is clear that more powerful proof rules are required

for least �xpoint formulae. As our counter-example shows it is possible to use minimal

�xpoints in the property language to code up the inductive nature of the data domain

(in this case the integers). To handle these kinds of descriptions it will be necessary

to invent proof rules which incorporate induction on the data domain with the more

structural rules for �xpoints.

The completeness programme follows that of [6] in that a reduction of the statement

t j= F to a �rst-order formula t satF is given. However because of the presence of

parameterised �xpoint formulae the reduction is more complicated and the resulting

boolean expressions are also more complicated since they involve maximal and minimal

�xpoint operators. The idea of reducing satisfaction to a system of boolean equations is

not uncommon in model checking for the pure modal �-calculus; examples can be found

in [2, 3].

A similar logic was presented in [4] for describing properties of mobile processes. This

logic also featured parameterised �xpoints although the language of boolean expressions

used there was restricted to basic statements about name matching and the parameters

were just vectors of names. A model checker for this logic was de�ned and a symbolic

approach to the semantics of this logic was used to obtain a completeness result. This

model checker did not use tag sets but a recent paper by Amadio and Dam [1] provides

a generalisation of the tag set method for mobile processes. Their speci�cation logic

28

uses a very simple language of boolean expressions containing only the atoms tt and �.

Of greater interest though is the way in which their treatment of �xpoint abstractions

di�ers from the present work. In [1] �xpoints are interpreted as functions from vectors of

names (analagous to our evaluations) into sets of terms or agents but, at the level of the

proof system, abstractions are dealt with pointwise. On the other hand we, by means

of the App rule, deal with �xpoint expressions as abstractions proper. The �-unfolding

rule of [1] is given by

p : �[

~

b=~a][�X(~a)�=X]

p : (�X(~a)�)(

~

b)

where ~a and

~

b are vectors of names and all tag set information has been elided. The

�xpoint formula is unfolded at the point

~

b and this point is substituted into the unfolding.

We would do no such substitution as we have already abstracted away from the particular

point

~

b by using App. These two approaches are more or less equivalent for the �-calculus

and indeed for our restricted parameter sublogic of Section 5, because the nature of

the data domain is such that only �nitely many points will be encountered in a proof

tableaux for a �xpoint formula. However the limitations of the pointwise approach

become apparent when we consider more general languages of data expressions. The

example proof that a process P satis�es

(�X:ha!xi(x = z mod 2) ^X:(z + 1=z)):(0=z)

which we presented in the introduction would be infeasible using the pointwise approach;

we would necessarily start at the point 0, then progress by unfolding and modality rules

to checking at the point 1, similarly on to point 2 and so on. Therefore our proof

system generalises the approach in [1] and Section 5 shows that we incorporate (modulo

�-calculus technicalities) the proof system of [1] by emulating the pointwise approach

using the

b

" boolean forms.

References

[1] R. Amadio and M. Dam. Toward a modal theory of types for the �-calculus. 1996.

To appear.

[2] A. Arnold and P. Crubille. A linear algorithm to solve �xed-point equations on

transition systems. Information Processing Letters, 29:57{66, 1988.

[3] R. Cleaveland, M. Dreim�uller, and B. Ste�en. Faster model checking for the modal

mu-calculus. In CAV'92, volume 663 of Lecture Notes in Computer Science, pages

383{394. Springer-Verlag, 1993.

[4] M. Dam. Model checking mobile processes. In E. Best, editor, Proceedings CONCUR

93, Hildesheim, volume 715 of Lecture Notes in Computer Science, pages 22{36.

Springer-Verlag, 1993.

[5] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,

138:353{389, 1995.

29

[6] M. Hennessy and X. Liu. A modal logic for message passing processes. Technical

report, Computing Science Dept. University of Sussex, 1993.

[7] K.G.Larsen. Proof systems for Hennessy-Milner logic with recursion. Lecture Notes

in Computer Science, page 299, 1988.

[8] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,

27:333{353, 1983.

[9] Huimin Lin. PAM: A Process Algebra Manipulator (Version 1.0). Computer Science

Report 4/93, University of Sussex, February 1993.

[10] R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-

wood Cli�s, 1989.

[11] C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, and

T.Maibaum, editors, Handbook of Logic in Computer Science, Vol I. Oxford Uni-

versity Press, 1990.

[12] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theo-

retical Computer Science, 89:161{177, 1991.

[13] G. Winskel. A note on model checking the modal nu-calculus. Theoretical Computer

Science, 83:157{167, 1991.

30

