
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

A Theory of Weak Bisimulation for

Core CML

William Ferreira

Matthew Hennessy

Alan Jeffrey

Report 05/95 September 1995

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

A Theory of Weak Bisimulation for Core CML

WILLIAM FERREIRA, MATTHEW HENNESSY and ALAN JEFFREY

ABSTRACT. Concurrent ML is an extension of Standard ML of New Jersey with concurrent fea-

tures similar to those of process algebra. Reppy has given it an operational semantics based on

reductions of configurations, using entire programs rather than program fragments. The existing se-

mantics are not, therefore, compositional, and do not support compositional reasoning (for example

equational reasoning about program fragments).

In this paper, we present a compositional operational semantics for a fragment of CML, based on

higher-order process algebra, and use this to define weak bisimulation for CML. We give some small

examples of proofs about CML expressions, and show that our semantics corresponds to Reppy’s up

to weak first-order bisimulation.

1 Introduction

There have been various attempts to extend standard programming languages

with concurrent or distributed features, [10, 16, 25]. Concurrent ML (CML)

[28, 30] is a practical and elegant example. The language Standard ML is ex-

tended with two new type constructors, one for generating communication chan-

nels, and the other for delayed computations. By adding to the language a small

number of constants to manipulate objects of these new types a new language

is obtained which combines the functional features of ML with the communi-

cation capabilities of CCS, [20]. Thus the language has all the functional and

higher-order features of ML but programs also have the ability to spawn new

computation threads and these independent threads can communicate with each

other by transmitting values along communication channels. It has been imple-

mented and a formal semantics has been given for a significant subset, [5, 30]. As

Reppy pointed out in [29], “Another useful direction would be to build a ‘theory’

of CML programs to allow reasoning about their correctness.” The purpose of

this paper is to provide one such theory.

In [5, 30] an operational semantics is given for a language called λcv. This

may be viewed as a concurrent version of the call-by-value λ-calculus of Plotkin,

[27] but is also contains many of the interesting features of CML. Indeed it

may be viewed as an extension of a mini-CML, similar to what what we will

call in this paper µCML, as it contains the core elements of CML; the extension

is obtained by adding new constructs, which do not appear in CML but which

facilitate the description of the operational semantics. This operational semantics
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is given in terms of a reduction relation between configurations, multi-sets of λcv

closed expressions or programs. Unfortunately this operational semantics is not

compositional, in that the behaviour of a λcv expression, or indeed configuration,

is not determined by that of its constituents.

Here we give a compositional operational semantics in terms of a labelled

transition system for µCML programs. This not only describes the evaluation

steps of programs, as in [30], but also their communication potentials, in terms

of their ability to input and output values along communication channels.

We then proceed to demonstrate the usefulness of this compositional oper-

ational semantics by using it to define a version of weak observational equiv-

alence, [20], suitable for µCML. We prove that, modulo the usual problems

associated with the choice operator of CCS, our chosen equivalence is preserved

by all µCML contexts and therefore may be used as the basis for reasoning about

CML programs. In this paper we do not investigate in detail the resulting theory

but confine ourselves to pointing out some of its salient features; for example

standard identities one would expect of a call-by-value λ-calculus are given and

we also show that certain algebraic laws common to process algebras, [20], hold.

We now explain in more detail the contents of the remainder of the paper.

IN SECTION 2 we describe the language µCML, a subset of CML. It is a typed

language, with base types for channel names, booleans and integers, and type

constructors for pairs, functions and delayed computations; these last are called

Event types. It has the standard constructs and constants associated with the base

types and with pairs and functions. In addition it has a selection of the CML

constructs and constants for manipulating delayed computations; spawn gener-

ates a new computation thread, sync launches a delayed computation, transmit

and receive construct basic delayed computations for sending and receiving val-

ues, while wrap is used to combine delayed computations. In short we focus on

much the same subset of CML as [30]; the major omission is that µCML has

no facility for generating new channel names. This is for convenience only; we

believe that our semantics can be extended to handle channel generation, using

techniques common to the π-calculus, [21, 22, 31], but this would obscure much

of our exposition.

This section then proceeds with an exposition of our operational semantics,

in terms of a labelled transition system. In order to describe all possible states

which can arise during the computation of a well-typed µCML program we need

to extend the language. This extension is twofold. The first consists in adding

the constants of event type used by Reppy in [30] to define λcv, i.e. constants

to denote certain delayed computations. This extended language, which we call

µCMLcv, essentially coincides with the λcv, the language used in [30], except

for the omissions cited above. However to obtain a compositional semantics we
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make further extensions to µCMLcv. We add a parallel operator ‖, commonly

used in process algebras, which allows us to use programs in place of the mul-

tisets of programs of [30]. The final addition is more subtle; we allow expres-

sions which correspond to the synced versions of Reppy’s constants. Thus the

labelled transition system uses as states programs from a language which we call

µCML+. This language is a superset of µCMLcv, which is our version of Reppy’s

λcv, which in turn is a superset of µCML, our mini-version of CML.

IN SECTION 3 we discuss semantic equivalences defined on the labelled transi-

tion of Section 2. We demonstrate the inadequacies of the obvious adaptations of

strong and weak bisimulation equivalence, [20], and then consider adaptations of

higher-order and irreflexive bisimulations from [32]. Finally we suggest a new

variation called hereditary bisimulation equivalence which overcomes some of

the problems encountered with using higher-order and irreflexive bisimulations.

IN SECTION 4 we show that hereditary bisimulation is preserved by all µCML

contexts. This is an application of the proof method originally suggested in [17]

but the proof is further complicated by the fact that hereditary bisimulations are

defined in terms of pairs of relations satisfying mutually dependent properties.

IN SECTION 5 we briefly discuss the resulting algebraic theory of µCML ex-

pressions. This paper is intended only to lay the foundations of this theory and

so here we simply indicate that our theory extends both that of call-by-value λ-

calculus [27] and process algebras [20].

IN SECTION 6 we show that, up to weak bisimulation equivalence, our se-

mantics coincides with the reduction semantics for λcv presented in [30]. This

technical result applies only to the common sub-language, namely µCMLcv.

IN SECTION 7 we briefly consider other approaches to the semantics of CML

and related languages and we end with some suggestions for further work.

2 The Language

In this section we introduce our language µCML, a subset of Concurrent

ML [28, 30]. We describe the syntax, including a typing system, and an oper-

ational semantics in terms of a labelled transition system.

The type expressions for our language are given by:

A ::= unit | bool | int | chan | A∗A | A→A | Aevent
Thus we have four base types, unit, chan, bool and int; the latter two are simply

examples of useful base types and one could easily include more. These types

are closed under three constructors, pairing, function space, and the less common

event type constructor. Our language may be viewed as a typed λ-calculus aug-

mented with the type constructor Aevent for constructing delayed computations
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of type A.

Let Chan be a set of channel names ranged over by k,k′ etc. and let Var

denote a set of variables ranged over by x,y, . . . The expressions of µCML are

given by the following abstract syntax:

e, f ,g∈ Exp ::= v | ce | if e theneelsee | (e,e) | letx= e ine | ee

v,w ∈Val ::= l | fix(x = fn y⇒e) | x
c ∈Const ::= fst | snd | add |mul | leq | transmitA | receiveA

| choose | spawn | sync | wrap | never | always
l ∈ Lit ::= true | false | k | () | 0 | 1 | · · ·

The main syntactic category is that of Exp which look very much like the set

of expressions for an applied call-by-value version of the λ-calculus. There are

the usual pairing and branching constructors, and three forms of application; the

application of one expression to another, ee, the application of a constant to an

expression, ce and letx = e1 ine2 representing the application to e1 of the func-

tional abstraction of e2 over x. There is also a syntactic category of expressions

of a particular form, called Val; these represent the objects to which functions

may be applied and which also may be sent and received between computation

threads. They are very restricted in form; either a predefined value for the base

types, called Lit , or a recursively defined function, fix(x = fn y⇒ e). We will

abbreviate this to fn y⇒e when x does not occur in e.

Finally there are a small collection of constant functions. These consist

of a representative sample of constants for manipulating objects of base type,

add,mul, leq, which could easily be extended, the projection functions fst and

snd, together with the set of constants for manipulating delayed computations

taken directly from [30]:

• transmit and receive, for constructing delayed computations which can send

and receive values,

• choose, for constructing alternatives between delayed computations,

• spawn, for spawning new computational threads,

• sync, for launching delayed computations,

• wrap, for combining delayed computations,

• never, for a delayed computation which always deadlocks, and

• always, for a delayed computation which immediately terminates with a

value.

Note that there is no method for generating channel names other than using the

predefined set of names Chan.
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There are two constructs in the language which bind occurrences of variables,

letx = e1 ine2 where free occurrences of x in e2 are bound and fix(x = fn y⇒e)
where free occurrences of both x and y in e are bound. We will not dwell on the

precise definitions of free and bound variables but simply use f v(e) to denote the

set of variables which have free occurrences in e. If f v(e) = /0 then e is said to

be a closed expression, which we sometimes refer to as a program. We also use

the standard notation of e[v/x] to denote the substitution of the value v for all free

occurrences of x in e where bound names may be changed in order to avoid the

capture of free variables in v.

We now examine briefly the type system for this language. The types for the

constant functions of the language are given in Figure 1a; this is in agreement

with the typing rules given in [30] for λcv. The constants add,mul, spawn have

constant types associated with them, as have transmitA and receiveA; but the

type of the latter pair is determined by the type subscript A. The type associated

with the remaining constants should be interpreted polymorphically. Thus, for

example choose has the type Aevent∗Aevent→Aevent for every type A.

This assignment of types to constant functions is used to infer types for ar-

bitrary expressions in the standard way, using a type inference system. A typing

judgement Γ ⊢ e : A consists of a type assignment Γ, an expression e and a type

A such that f v(e) ⊆ {x1, . . .,xn}. A type assignment is a sequence of the form

x1 : t1, . . .,xn : tn, where each ti is a type. Intuitively a type assignment should be

read as “in the type assignment Γ the expression e has type A”. The type infer-

ence system is given in Figure 1b and is straightforward. There are two structural

rules, literals are assigned their natural types while the types of functional val-

ues are inferred using a minor modification of the standard rule for functional

abstractions. The remaining constructs are also handled using standard inference

rules, [12].

We now turn our attention to the operational semantics. In [30, 5] a reduc-

tion semantics is given to λcv and since µCMLcv is a subset of λcv, this induces

a reduction semantics for µCMLcv; this is discussed in full in Section 6. The

judgements in this reduction semantics are of the form:

C
τ−→C′

where C,C′ are configurations which combine a closed expression with a run-

time environment necessary for its evaluation. However this semantics is not

compositional as the reductions of an expression can not be deduced directly

from the reductions of it constituent components. Here we give a compositional

operational semantics with four kinds of judgements:

• e
τ−→ e′, representing a one step evaluation or reduction,

• e
√

v−→ e′, representing the production of the value v, with a side effect e′,
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fst : A∗B→A transmitA : chan∗A→unitevent
snd : A∗B→B receiveA : chan→Aevent

add : int∗ int→ int choose : Aevent∗Aevent→Aevent

mul : int∗ int→ int spawn : (unit→unit)→unit
leq : int∗ int→bool wrap : Aevent∗ (A→B)→Bevent

sync : Aevent→A never : unit→Aevent

always : A→Aevent

FIGURE 1A. Type rules for µCML constant functions

Γ ⊢ true : bool Γ ⊢ false : bool Γ ⊢ k : chan

Γ ⊢ () : unit Γ ⊢ n : int Γ,x : A ⊢ x : A

Γ,x : A→B,y : A ⊢ e : B

Γ ⊢ fix(x = fn y⇒e) : A→B

Γ ⊢ y : B

Γ,x : A ⊢ y : B
[x 6= y]

Γ ⊢ e : A

Γ ⊢ ce : B
[c : A→B]

Γ ⊢ e : A→B Γ ⊢ f : A

Γ ⊢ e f : B

Γ ⊢ e : A Γ ⊢ f : B

Γ ⊢ (e, f ) : A∗B

Γ ⊢ e : bool Γ ⊢ f : A Γ ⊢ g : A

Γ ⊢ if e then f elseg : A

Γ ⊢ e : A Γ,x : A ⊢ f : B

Γ ⊢ letx= e in f : B

FIGURE 1B. Type rules for µCML expressions.

• e
k?x−→ e′, representing the potential to input a value x along the channel k, and

• e
k!v−→ e′, representing the output of the value v along the channel k.

These are formally defined in Figure 2, but we first give an informal overview.

In order to define these relations we introduce extra syntactic constructs. These

are introduced as required in the overview but at the end of the section we give a

formal definition of the extended language.

The rules for one step evaluation or reduction have much in common with

those for a standard call-by-value λ-calculus. But in addition a closed expres-

sion e of type A should evaluate to a value of type A and it is this production of

values which is the subject of the second kind of judgement. However µCML is

a language with side-effects and in particular the production of values can have

side-effects and therefore instead of the simple judgement e
√
−→ v we require the

more complicated e
√

v−→ e′ where e′ represents the side-effect of the production

of v. One example of the side-effects occurs in the evaluation of the spawn con-

struct. Intuitively the closed expression spawne always produces the trivial value

() but if e is a function such as fn y⇒ f of type unit→unit then the production
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of the value () has as a side effect the generation of a new computation thread for

evaluating (fn y⇒ f )().
When giving an operational semantics to a language with side-effects there

are two standard approaches to retaining the information necessary to interpret

them. The first, used for example in [5, 30], is to define a notion of state or

configuration; these contain the program being evaluated together with auxiliary

state information, and the judgements of the operational semantics apply to these

configurations. The second, more common in work on process algebras, [4, 20],

extends the syntax of the language being interpreted to encompass configurations.

We choose the latter approach and one extra construct we add to the language is

an asymmetric parallel operator, e ‖ f ; intuitively this corresponds to the use of

multi-sets in the reduction semantics of [5, 30]. As an example of the use of this

extra construct the side-effect generated by the evaluation of spawn is reflected

in our semantics by the inference:

spawn(fn y⇒e) τ−→ (fn y⇒e)()‖ ();
one step in the evaluation of spawn(fn y⇒e) leads to two expressions running in

parallel, one being the spawned expression (fn y⇒e)() and the other the default

value which results from every application of spawn. More generally the evalua-

tion of spawne proceeds by the evaluation of the expression e until this produces

a value and then an application of an inference such as the one above. This is

represented by the rule:

e
√

v−→ e′

spawne
τ−→ e′ ‖ v ()‖ ()

where the well-typedness of the operational semantics will ensure that v is a func-

tion of the appropriate type, unit→unit.
With this method of representing newly created computation threads more of

the rules corresponding to β-reduction in a call-by-value λ-calculus may now be

given. To evaluate an application expression e f first e is evaluated to a value of

functional form and then the evaluation of f is initiated. This is represented by

the the rules:

e
α−→ e′

e f α−→ e′ f

e
√
(fn y⇒g)−−−−−−→ e′

e f τ−→ e′ ‖ lety = f ing

In fact we use a slightly more complicated version of the latter rule as functions

are allowed to be recursive. Continuing with the evaluation of e f , having eval-

uated e to the functional form fn y⇒ g, f is evaluated to a value which is then

substituted into g for y. This is represented by the two rules:

f
τ−→ f ′

letx= f ing
τ−→ letx= f ′ ing

f
√

v−→ f ′

letx= f ing
τ−→ f ′ ‖g[v/x]
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e
α−→ e′

ce
α−→ ce′

e
α−→ e′

e f
α−→ e′ f

e
α−→ e′

(e, f ) α−→ (e′, f )
e

α−→ e′

if e then f elseg
α−→ if e′ then f elseg

e
α−→ e′

letx= e in f
α−→ letx= e′ in f

e
α−→ e′

e‖ f
α−→ e′ ‖ f

f
α−→ f ′

e‖ f
α−→ e‖ f ′

f
√

v−→ f ′

e‖ f
√

v−→ e‖ f ′

FIGURE 2A. Operational semantics: static rules

ge1
α−→ e

ge1⊕ge2
α−→ e

ge2
α−→ e

ge1⊕ge2
α−→ e

ge α−→ e

ge⇒v
α−→ ve

FIGURE 2B. Operational semantics: dynamic rules

e
√

v−→ e′

ce
τ−→ e′ ‖δ(c,v)

e
√
true−−−→ e′

if e then f elseg
τ−→ e′ ‖ f

e
√
false−−−→ e′

if e then f elseg
τ−→ e′ ‖g

e
√

v−→ e′

(e, f ) τ−→ e′ ‖ letx= f in 〈v,x〉
e
√

v−→ e′

e f
τ−→ lety= f ing[v/x]

[v= fix(x = fn y⇒g)]

e
√

v−→ e′

letx= e in f
τ−→ e′ ‖ f [v/x]

e
k!Av−−→ e′ f

k?Ax−−→ f ′

e‖ f
τ−→ e′ ‖ f ′[v/x]

e
k?Ax−−→ e′ f

k!Av−−→ f ′

e‖ f
τ−→ e′[v/x]‖ f ′

FIGURE 2C. Operational semantics: silent rules

v
√

v−→Λ k!Av k!Av−−→ () k?A
k?Ax−−→ x Av τ−→ v

FIGURE 2D. Operational semantics: axioms

δ(fst, 〈v,w〉) = v δ(snd, 〈v,w〉) = w

δ(add, 〈m,n〉) = m+n δ(mul, 〈m,n〉) = m×n

δ(leq, 〈m,n〉) = m≤ n

δ(transmitA, 〈k,v〉) = [k!Av] δ(receiveA,k) = [k?A]
δ(choose, 〈[ge1], [ge2]〉) = [ge1⊕ge2] δ(wrap, 〈[ge],v〉) = [ge⇒v]

δ(never, ()) = [Λ] δ(always,v) = [Av]
δ(spawn,v) = v()‖ () δ(sync, [ge]) = ge

FIGURE 2E. Operational semantics:reduction of constants
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The evaluation of the application expression c f is similar; f is evaluated to a

value and then the constant c is applied to the resulting value. This is represented

by the two rules

f
τ−→ f ′

c f
τ−→ c f ′

f
√

v−→ f ′

c f
τ−→ f ′ ‖δ(c,v)

Here, borrowing the notation of [30], we use the function δ to represent the effect

of applying the constant c to the value v. This effect depends on the constant

in question and we have already seen one instance of this rule, for the constant

spawn, which result from the fact that δ(spawn,v) = v()‖ (). The definition of δ
for all constants in the language is given in Figure 2e. For the constants associated

with the base types this is self-explanatory; the others will be explained below as

the constant in question is considered. Note that because of the introduction of ‖
into the language we can treat all constants uniformly, unlike [30] where spawn

and sync have to considered in a special manner.

In order to implement the standard left-to-right evaluation of pairs of expres-

sions we introduce a new value 〈v,w〉 representing a pair which has been fully

evaluated. Then to evaluate (e, f ):

• first allow e to evaluate:
e

α−→ e′

(e, f ) α−→ (e′, f )
• then when it terminates, start the evaluation of f :

e
√

v−→ e′

(e, f ) τ−→ e′ ‖ letx = f in〈v,x〉
These value pairs may then be used for example by being applied to functions of

type A∗B. For example the following inferences result from the definition of the

function δ for the constants fst and mul:

e
√〈v,w〉−−−→ e′

fste
τ−→ e′ ‖ v

e
√〈m,n〉−−−−→ e′

mule
τ−→ e′ ‖m×n

.

It remains to explain how delayed computations, i.e. programs of type

Aevent, are handled. It is important to realise that expressions of type Aevent

represent potential rather than actual computations and this potential can only

be activated by an application of the constant sync, of type Aevent→A. Thus

for example the expression receiveA k is of type Aevent and represents a delayed

computation which has the potential to receive a value of type A along the chan-

nel k. The expression sync(receiveA k) can actually receive such a value v along

channel k, or more accurately can evaluate to such a value, provided some other

computation thread can send the value along channel k.

The semantics of sync is handled by introducing a new constructor for values.
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For certain kinds of expressions ge of type A, which we call guarded expressions,

let [ge] be a value of type Aevent; this represents a delayed computation which

when launched initiates a new computation thread which evaluates the expression

ge. Then the expression sync [ge] reduces in one step to the expression ge. More

generally the evaluation of the expression synce proceeds as follows:

• First evaluate e until it can produce a value:

e
τ−→ e′

synce
τ−→ synce′

• then launch the resulting delayed computation:

e
√
[ge]−−→ e′

synce
τ−→ e′ ‖ge

Note that here, as always, the production of a value may have as a side-effect

the generation of a new computation thread e′ and this is launched concurrently

with the delayed computation ge. Also both of these rules are instances of more

general rules already considered. The first is obtained from the rule for the eval-

uation of applications of the form ce and the second by defining δ(sync, [ge]) to

be ge.

The precise syntax for guarded expressions will emerge by considering what

types of values of the form [e] can result from the evaluation of expressions of

type event from the basic language µCML. The constant receiveA is of type

chan→Aevent and therefore the evaluation of the expression receiveA e proceeds

by first evaluating e to a value of type chan until it returns a value k, and then

returning a delayed computation consisting of an event which can receive any

value of type A on the channel k. To represent this event we extend the syntax

further by letting k?A be a guarded expression for any k and A, with the associated

rule:
e
√

k−→ e′

receiveA e
τ−→ e′ ‖ [k?A]

The construct transmitA is handled in a similar manner, using guarded expres-

sions of the form k!Av:

e
√〈k,v〉−−−→ e′

transmitA e τ−→ e′ ‖ [k!Av]

It is these two new expressions k?A and k!Av which perform communication be-

tween computation threads. Formally k!Av is of type unit and we have the axiom:

k!Av
k!Av−−→ ()

Intuitively this may be read as k!Av evaluates in one step to the expression () and

this evaluation has as a side effect the transmission of the value v to the channel
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k. The input rule is slightly more complicated. Because these communication

moves are propagated through various contexts it is technically convenient to

have the inference rule:

k?A
k?Ax−−→ x

Therefore in general input moves are of the form e
k?Ax−−→ f where ⊢ e : B and

x : A ⊢ f : B. Communication can now be modelled as in CCS and CSP by the

simultaneous occurrence of input and output actions:

e
k?Ax−−→ e′ f

k!Av−−→ f ′

e‖ f
τ−→ e′[v/x]‖ f ′

There remain four constructs for delayed computations to be explained. The

first, never of type unit→Aevent, is handled by the introduction of the guarded

expression Λ, representing a deadlocked evaluation, together with the inference

rule:

e
√
()−−→ e′

nevere
τ−→ e′ ‖ [Λ]

obtained, once more, by defining δ(never, ()) to be [Λ].
The constant wrap is of type Aevent∗ (A→B)→Bevent. The evaluation of

wrape proceeds in the standard way by evaluating e until it produces a value,

which must be of the form 〈[ge],v〉, where ge is a guarded expression of type

A and v has type A→B. Then the evaluation of wrape continues by the con-

struction of the new delayed computation [ge⇒v]. Bearing in mind the fact that

the production of values can generate new computation threads, this is formally

represented by the inference rule:

e
√〈[ge],v〉−−−−→ e′

wrape
τ−→ e′ ‖ [ge⇒v]

The guarded expression ge⇒ v is a wrapper which applies v to the result of

evaluating ge:
ge

α−→ e

ge⇒v
α−→ ve

The always construct, of type A→Aevent, evaluates its argument to a value v,

and then returns trivial delayed computation; this computation, when activated,

immediately evaluates to the value v. In order to represent these trivial com-

putations we introduce a new constructor for guarded expressions, A and the

semantics of always is then captured by the rule:

e
√

v−→ e′

always e
τ−→ e′ ‖ [Av]
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Since Av immediately evaluates to the constant v we have:

Av
τ−→ v

The choice construct choosee is a choice between delayed computations as

choose has the type Aevent ∗Aevent→Aevent. To interpret it we introduce a

new choice constructor ge1⊕ge2 where ge1 and ge2 are guarded expressions of

the same type. Then choosee proceeds by evaluating e until it can produce a

value, which must be of the form 〈[ge1], [ge2]〉, and the evaluation continues by

constructing the delayed computation [ge1⊕ge2]. This is represented by the rule:

e
√〈[ge1],[ge2]〉−−−−−−−→ e′

choosee
τ−→ e′ ‖ [ge1⊕ge2]

The notation⊕, introduced in [30], is unfortunate, as it is used in [14] to represent

the internal choice between processes whereas here it represents external choice:

we have the following auxiliary rules , which are the same as CCS summation:

ge1
α−→ e

ge1⊕ge2
α−→ e

ge2
α−→ e

ge1⊕ge2
α−→ e

This ends our informal description of the operational semantics of µCML. We

now summarise, giving the precise definitions of the new syntax. For the purposes

of comparison with the reduction semantics of λcv, [30], it is convenient to view

the extension to µCML in two stages. The first is obtained by adding the new

syntactic category of guarded expressions, and two new constructors for values:

v ∈Val ::= · · · | 〈v,v〉 | [ge]

ge ∈GExp ::= v!Av | v? | ge⇒v | ge⊕ge | Λ | Av

The resulting language we call µCMLcv, as it corresponds very closely to Reppy’s

λcv. A precise comparison is given in Section 6. The final language, µCML+, is

obtained by extending µCMLcv with:

e ∈ Exp ::= · · · | ge | e‖ e

and type judgements for all the extra constructs is given in Figure 3.

The operational semantics is given as a set of transition relations over closed

expressions from µCML+. These transition relations have as labels Label:

a ::= v!Av | v?Ax α ::= a | τ l ::= α | √v

which are typed with judgements ⊢ l : A in Figure 4, and are defined to be the

least relations satisfying the rules in Figure 2. The rules are divided into three

parts. The first gives the set of context rules, showing when moves may be prop-

agated through certain contexts; the second give the reduction rules while the

third contains the axioms.
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Γ ⊢ v : A Γ ⊢ w : B

Γ ⊢ 〈v,w〉 : A∗B

Γ ⊢ ge : A

Γ ⊢ [ge] : Aevent

Γ ⊢ v : chan Γ ⊢ w : A

Γ ⊢ v!Aw : unit

Γ ⊢ v : chan

Γ ⊢ v?A : A

Γ ⊢ ge : A Γ ⊢ v : A→B

Γ ⊢ ge⇒v : B

Γ ⊢ ge1 : A Γ ⊢ ge2 : A

Γ ⊢ ge1⊕ge2 : A Γ ⊢ Λ : A

Γ ⊢ v : A

Γ ⊢Av : A

Γ ⊢ e : A Γ ⊢ f : B

Γ ⊢ e‖ f : B

FIGURE 3. Type rules for extra µCML+ constructs

Γ ⊢ τ : A

Γ ⊢ v : chan Γ ⊢ w : B

Γ ⊢ v!Bw : A

Γ ⊢ v : chan

Γ ⊢ v?Bx : A

Γ ⊢ v : A

Γ ⊢ √v : A

FIGURE 4. Type rules for labels

It is worth pointing out that the context rules are asymmetric for the propa-

gation of value production though the context ‖; in e ‖ f only the computation

thread f can produce a value. This is in agreement with the reduction seman-

tics of [30] where in a given state represented by a multi-set of expressions only

one distinguished expression is allowed to produce a value. Also in the rule for

application, the evaluation of e f is somewhat more complicated than previously

stated; values of functional type all involve the fix point operator and these fix

points are automatically unfolded at the point of application.

We end this section with a Subject Reduction Theorem for our semantics:

THEOREM 2.1. For every closed expression e in µCML+

• if e
l−→ e′ and ⊢ e : A then ⊢ l : A,

• if e τ−→ e′ and ⊢ e : A then ⊢ e′ : A,

• if e
√

v−→ e′ and ⊢ e : A then ⊢ e′ : A,

• if e
k?Bx−−→ e′ and ⊢ e : A then x : B ⊢ e′ : A, and

• if e
k!Bv−−→ e′ and ⊢ e : A then ⊢ e′ : A.

PROOF. By rule induction on the inferences. 2

3 Weak Bisimulation Equivalence

In this section we demonstrate the usefulness of our operational semantics by

providing µCML+ with an appropriate version of bisimulation equivalence. We

discuss a range of possible bisimulation based equivalences and eventually pro-
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pose a new variation called hereditary bisimulation equivalence, which we feel

is most suited to µCML+.

We first show how to adapt the notion of strong bisimulation equivalence to

µCML+. Since our language is typed it is more convenient to define the equiv-

alence in terms of type-indexed families of relations. Moreover since the op-

erational semantics uses actions of the form e
k?Bx−−→ f where f may be an open

expression we need to consider relations over open expressions. Let an open

type-indexed relation R be a family of relations R Γ,A such that if e R Γ,A f then

Γ ⊢ e : A and Γ ⊢ f : A. We will often elide the subscripts from relations, for

example writing e R f for e R Γ,A f when context makes the type obvious. Let

a closed type-indexed relation R be an open type-indexed relation where Γ is

everywhere the empty context, and can therefore be elided. For any closed type-

indexed relation R , let its open extension R ◦ be defined as:

e R ◦
~x:~A,B

f iff e[~v/~x] R B f [~v/~x] for all ⊢~v : ~A.

A closed type-indexed relation R is structure preserving iff:

• if v R A w and A is a base type then v= w,

• if 〈v1,v2〉 R A1∗A2
〈w1,w2〉 then vi R Ai

wi,

• if [ge1] R Aevent [ge2] then ge1 R A ge2, and

• if v R A→B v′ then for all ⊢ w : A we have vw R B v′w.

With this notation we can now define strong bisimulations over µCML+ expres-

sions. A closed type-indexed relation R is a first-order strong simulation iff it is

structure-preserving and the following diagram can be completed:

e1 R e2 e1 R e2

as

e1

l

?

e1

l

?

R ◦ e2

l

?

Note the use of the open extension R ◦. This means, for example, that if e1 R e2

we require that the move e1
k?Bx−−→ f1 be matched by a move e2

k?Bx−−→ f2 where f2

is such that for all values v of the appropriate type f1[v/x]R f2[v/x]. Thus in the

terminology of [22] our definition corresponds to the late version of bisimulation.

R is a first-order strong bisimulation iff R and R −1 are first-order strong

simulations. Let ∼1 be the largest first-order strong bisimulation.

PROPOSITION 3.1. ∼1 is an equivalence.

PROOF. Use diagram chases to show that if R is a first-order strong simulation

then so are I and R R . The result follows. 2
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Unfortunately, ∼1 is not a congruence for µCML+, since we have:

add(1,2)∼1 add(2,1)

however, sending the thunked expressions on channel k we get:

k!(fn x⇒add(1,2)) 6∼1 k!(fn x⇒add(2,1))
since the definition of strong bisimulation demands that the actions performed

by expressions match up to syntactic identity. This counter-example can also be

reproduced using only µCML contexts:

sync(transmit(k, fn x⇒add(1,2))) 6∼1 sync(transmit(k, fn x⇒add(2,1)))
since the lhs can perform the move:

sync(transmit(k, fn x⇒add(1,2))) k!(fn x⇒add(1,2))==========⇒ ()
but this can only be matched by the rhs up to strong bisimulation:

sync(transmit(k, fn x⇒add(2,1))) k!(fn x⇒add(2,1))==========⇒ ()
In fact, it is easy to verify that the only first-order strong bisimulation which is a

congruence for µCML is the identity relation.

To find a satisfactory treatment of bisimulation for µCML, we need to look to

higher-order bisimulation, where the structure of the labels is accounted for. To

this end, given a closed type-indexed relation R , define its extension to labels R l

as:

τ R l
A τ

v R A w
√

v R l
A
√

w k?Bx R l
A k?Bx

v R B w

k!Bv R l
A k!Bw

Then R is a higher-order strong simulation iff it is structure-preserving and the

following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e′1

l1

?

e′1

l1

?

R ◦ e′2

l2

?

Let ∼h be the largest higher-order strong bisimulation.

PROPOSITION 3.2. ∼h is a congruence.

PROOF. Use a similar technique to the proof of Proposition 3.1 to show that ∼h

is an equivalence. To show that ∼h is a congruence, define R as:

R = {(C[e],C[ f ]) | e∼h f}
and then show by induction on C that R is a simulation. The result follows. 2
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For many purposes, strong bisimulation is too fine an equivalence as it is sensitive

to the number of reductions performed by expressions. This means it will not

even validate elementary properties of β-reduction such as Id 0 = 0 where Id

denotes the identity function (fn x⇒x). We require the looser weak bisimulation

which allows τ-actions to be ignored.

This in turn requires some more notation. Let
ε=⇒ be the reflexive transitive

closure of τ−→, and let l=⇒ be ε=⇒ l−→ (i.e. any sequence of silent action followed

by an l action). Note that we are not allowing silent actions after the l action. Let
l̂=⇒ be

ε=⇒ if l = τ and
l=⇒ otherwise. Then R is a first-order weak simulation

iff it is structure-preserving and the following diagram can be completed:

e1 R e2 e1 R e2

as

e′1

l

?

e′1

l

?

R ◦ e′2

l̂

�

wwwwwwww

Let ≈1 be the largest first-order strong bisimulation.

PROPOSITION 3.3. ≈1 is an equivalence.

PROOF. Similar to the proof of Proposition 3.1. 2

Unfortunately, ≈1 is not a congruence, for the same reason as ∼1, and so we

can attempt the same fix. R is a higher-order weak simulation iff it is structure-

preserving and the following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e′1

l1

?

e′1

l1

?

R ◦ e′2

l̂2
�

wwwwwwww

Let ≈h be the largest higher-order weak bisimulation.

PROPOSITION 3.4. ≈h is an equivalence.

PROOF. Similar to the proof of Proposition 3.1. 2

However, ≈h is not a congruence, for the usual reason that weak bisimulation

equivalence ≈ is not a congruence for CCS summation. Recall from [20] that

Nil ≈ τ.Nil but k!0+Nil 6≈ k!0+τ.Nil. We can duplicate this counter-example in

µCML+ since the CCS operator+ corresponds to the µCML+ operator⊕ and Nil

corresponds to Λ. However ⊕ may only be applied to guarded expressions and

therefore we need a guarded expression which behaves like τ.Nil; the required
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expression is A[Λ]⇒ sync. Thus:

Λ ≈h A[Λ]⇒ sync
since the rhs has only one reduction:

A[Λ]⇒ sync
τ−→ sync[Λ]
τ−→ Λ

but:

Λ⊕ k!0 6≈h (A[Λ]⇒ sync)⊕ k!0

because:

(A[Λ]⇒ sync)⊕ k!0
τ−→ sync[Λ]
τ−→ Λ

This counter-example can also be replicated using the restricted syntax of µCML.

We have:

never()≈h wrap(always(never()), sync)

since the lhs has only one reduction:

never()
√
[Λ]==⇒Λ

and the rhs can match this with:

wrap(always(never()), sync)
√
[A[Λ]⇒sync]========⇒Λ

and we have seen:

Λ≈h A[Λ]⇒ sync .
However:

sync(choose(never(), transmit(k,0)))

6≈h sync(choose(wrap(always(never()), sync), transmit(k,0)))

since the lhs has only one reduction:

sync(choose(never(), transmit(k,0)))
τ=⇒ Λ⊕ k!0

whereas the rhs has the reduction:

sync(choose(wrap(always(never()), sync), transmit(k,0)))
τ=⇒ (A[Λ]⇒ sync)⊕ k!0

A first attempt to rectify this is to adapt Milner’s observational equivalence for

µCML, and to define =h as the smallest symmetric relation such that the follow-

ing diagram can be completed:
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e1 =h e2 e1 =h e2

as where l1 ≈hl
l2

e′1

l1

?

e′1

l1

?

≈h e′2

l2
�

wwwwwwww

PROPOSITION 3.5. =h is an equivalence.

PROOF. Similar to the proof of Proposition 3.1. 2

This attempt fails, however, since it only looks at the first move of a process, and

not at the first moves of any processes in its transitions. Thus, the above µCML

counter-example for ≈h being a congruence also applies to =h. This failure was

first noted by Thomsen [32] for CHOCS.

Thomsen’s solution to this problem is to require that τ-moves can always be

matched by at least one τ-move, which produces his definition of an irreflexive

simulation as a structure-preserving relation where the following diagram can be

completed:

e1 R e2 e1 R e2

as where l1 R l l2

e′1

l1

?

e′1

l1

?

R e′2

l2
�

wwwwwwww

Let ≈i be the largest irreflexive bisimulation.

PROPOSITION 3.6. ≈i is a congruence.

PROOF. The proof that ≈i is an equivalence is similar to the proof of Proposi-

tion 3.1. The proof that it is a congruence is similar to the proof of Theorem 4.7

in the next section. 2

However this relation is rather too strong for many purposes, for example

add(1,2) 6≈i add(1,add(1,1)) since the rhs can perform more τ-moves than the

lhs. This is similar to the problem in CHOCS where a.τ.P 6≈i a.P.

In order to find an appropriate definition of bisimulation for µCML, we ob-

serve that µCML only allows ⊕ to be used on guarded expressions, and not on

arbitrary expressions. We can thus ignore the initial τ-moves of all expressions

except for guarded expressions. For this reason, we have to provide two equiva-

lences: one on terms where we are not interested in initial τ-moves, and one on

terms where we are.
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A pair of closed type-indexed relations R = (R n,R s) form a hereditary sim-

ulation (we call R n an insensitive simulation and R s a sensitive simulation) iff

R s is structure-preserving and we can complete the following diagrams:

e1 R n e2 e1 R n e2

as where l1 R sl l2

e′1

l1

?

e′1

l1

?

R n◦ e′2

l̂2
�

wwwwwwww

and:

e1 R s e2 e1 R s e2

as where l1 R sl l2

e′1

l1

?

e′1

l1

?

R n◦ e′2

l2
�

wwwwwwww

Let (≈n,≈s) be the largest hereditary bisimulation.

In the operational semantics of expressions from µCML guarded expressions

are introduced as components to Labels and never as residuals. This explains why

in the definition of ≈n labels are compared with respect to the sensitive relation

≈s whereas the the insensitive relation is used for the residuals. For example, if

ge1 ≈n ge2 then we have:

(fn x⇒ge1)≈n (fn x⇒ge2)

since once either side is applied to an argument, their first action will be a τ-step.

On the other hand:

[ge1] 6≈n [ge2]

THEOREM 3.7. ≈s is a congruence for µCML+, and ≈n is a congruence for

µCML.

PROOF. The proof that ≈s and ≈n are equivalences is similar to the proof of

Proposition 3.1. The proof that they form congruences is the subject of the next

section. 2

PROPOSITION 3.8. The equivalences on µCML+ have the following strict in-
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clusions:

∼1 ⊂

- ≈1

∼h

?

∩

⊂

- ≈i ⊂

- ≈s ⊂

- ≈n

?

∩

=h

?

∩

⊂

- ≈h

?

∩

PROOF. For each inclusion, show that the first bisimulation satisfies the condition

required to be the second form of bisimulation. To show that the inclusions are

strict, we use the following examples:

(fn x⇒add(1,2)) ∼h 6∼1 (fn x⇒add(2,1))
1 ≈1 6∼1 letx= 1 inx

choose(receivek, tau(receivek)) ≈i 6∼h tau(receivek)

add(1,2) ≈s 6≈i add(1,add(1,1))

1 ≈n 6≈s letx= 1 inx

never() ≈h 6≈n tau(never())

1 ≈h 6=h letx= 1 inx

where:

tau = fn x⇒wrap(always x, sync)
(Note that this settles an open question [32] of Thomsen’s as to whether≈i is the

largest congruence contained in ≈h.) 2

It is the operator⊕which differentiates between the two equivalences≈n and≈h.

However in order to demonstrate the difference we need to be able to apply⊕ to

guarded expressions which can spontaneously evolve, i.e. perform τ-moves. The

only µCML+ constructor for guarded expressions which allows this is A, and in

turn occurrences of this can only be generated by the µCML constructor always.

Therefore:

PROPOSITION 3.9. For the subset of µCML+ without always and A, ≈n is the

same as ≈h, and ≈s is the same as =h.

PROOF. From Proposition 3.8≈n ⊆≈h.
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For the subset of µCML+ without always and A, define R as:

{(v,w) | v≈h w}∪{(ge1,ge2) | ge1 ≈h ge2}∪{(v1 w,v2 w) | v1 ≈h v2}
Then since no event without A can perform a τ-move, and since the only initial

moves of vi w are β-reductions, we can show that (≈h,R ) form an hereditary

bisimulation, and so ≈h ⊆≈n. From this it is routine to show that ≈s ==h. 2

Unfortunately we have not been able to show that ≈n is the largest µCML con-

gruence contained in weak higher-order bisimulation equivalence. However we

do have the following characterisation:

THEOREM 3.10. ≈n is the largest higher-order weak bisimulation which re-

spects µCML contexts.

PROOF. By definition, ≈n is a higher-order weak bisimulation, and we have

shown that it respects µCML contexts. All that remains is to show that it is the

largest such.

Let R be a higher-order weak bisimulation which respects µCML contexts.

Then define:

R n = R ∪{v1 w,e2) | v1 R v2,v2 w
τ−→ e2}∪{e1,v2 w) | v1 R v2,v1 w

τ−→ e1}
R s = {(v,w) | v R w}∪{(ge1,ge2) | [ge1] R [ge2]}∪{(v1 w,v2 w) | v1 R v2}

We will now show that (R n,R s) forms a hereditary simulation, from which we

can deduce R ⊆ R n ⊆≈n.

First, we note that R s is structure preserving, and that R sl =R l .

Then we show that we can complete the required diagrams for (R n,R s) to

be a hereditary simulation. The only tricky case is if:

ge1 R s ge2

e1

l1

?

in which case, by the definition of R s, [ge1]R [ge2], and since R respects µCML

contexts we have (for fresh k):

choose([ge1], receivek)R choose([ge2], receivek)

Λ

√
[ge1⊕ k?]

�

wwwwwwww

R Λ

√
[ge2⊕ k?]

�

wwwwwwww
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and since R is a higher-order weak bisimulation, we have:

ge1⊕ k? R ge2⊕ k?

e1

l1

?

which can be completed as:

ge1⊕ k? R ge2⊕ k?

where l1 R l l2

e1

l1

?

R e2

l̂2

�

wwwwwwwww

but since e1
k?x=6=⇒ and l1 6= k?x, we have e2

k?x=6=⇒ and l2 6= k?x, and so:

ge1 R s ge2

where l1 R sl l2

e1

l1

?

R e2

l2

�

wwwwwwwww

The other cases are simpler, and so (R n,R s) is a hereditary bisimulation. Thus

R ⊆ R n ⊆ ≈n, and so ≈n is the largest higher-order weak bisimulation which

respects µCML contexts. 2

4 Bisimulation as a congruence

To serve as the basis of a useful semantic theory of µCML, bisimulation should

be preserved by all of the constructs of the language. In this section we will show

that ≈s is a congruence for µCML+, and that ≈n is a congruence for µCML.

Unfortunately, this proof is not straightforward, due to the higher-order na-

ture of hereditary bisimulation. The problem is not unique to µCML, and it occurs

in many higher-order languages, for example Gordon’s [11] operational seman-

tics for the typed λ-calculus, Howe’s [17] treatment of the lazy λ-calculus, and

Thomsen’s [32] Calculus of Higher-Order Communicating Systems (CHOCS).

The difficulty is in finding the right form of induction to use, when all of the

standard inductions (for example on structure of terms, on number of τ-moves,

on structure of proof) fail. For example, the proof of congruence for CHOCS [32,

Prop. 6.6] adapts Milner’s technique [20, Theorem 8, p. 155] but uses a non-well-

founded induction. It seems that any inductive proof that weak bisimulation is a
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congruence for higher-order languages requires an induction on both syntax and

proof structure. The usual methods of performing nested induction fail in this

case, and so another method of performing simultaneous induction is required.

Fortunately this is achieved by a technique developed for the lazy λ-calculus by

Howe [17].

We shall apply Howe’s technique to show that ≈s is a congruence for

µCML+, and that ≈n is a congruence for µCML+ without [ge] and ge1⊕ ge2.

This particular application is made complicated by the fact that we have to deal a

pair of relations, (≈n,≈s) which are defined in terms of each other. So although

we follow the general proof method used in [17] and the notation of [11], the

various technical definitions about relations which follow will apply to pairs of

relations of the form R = (R n,R s) with R s ⊆ R n. We will continue to apply

the usual operations associated with relations, such as composition, under the

assumption that such operations are applied pointwise.

Define a context to be given by the grammar:

C ::= ·i | e | cC | ifC thenC elseC | (C,C) | letx =C inC

|CC | fix(x= fn y⇒C) | 〈C,C〉
| [C] |C!AC |C?A |C⇒C |C⊕C | AC |C ‖C

Let C[~e] be the term given by replacing each ‘hole’ ·i by the term ei (unlike

substitution, we allow for capture of free variables). An equivalence R is an

congruence iff ei R fi implies C[~e] R C[~f ].
Define a uneventful context to be one which does not use [C] or C⊕C, that is

one given by the grammar:

Cn ::= ·i | e | cCn | ifCn thenCn elseCn | (Cn,Cn) | letx=Cn inCn

|Cn Cn | fix(x = fn y⇒Cn) | 〈Cn,Cn〉
|Cn!ACn |Cn?A |Cn⇒Cn | ACn |Cn ‖Cn

An equivalence R is an uneventful congruence iff ei R fi implies Cn[~e] R Cn[~f ].
Note that any µCML context is an uneventful context, and so any uneventful

congruence is a congruence for µCML. So we concentrate on showing that ≈s is

a congruence, and ≈n is an uneventful congruence.

Define the one-level deep contexts with the grammar:

D ::= x | l | c ·1 | if ·1 then ·2 else ·3 | (·1, ·2) | letx= ·1 in ·2
| ·1 ·2 | fix(x= fn y⇒·1) | 〈·1, ·2〉
| [·1] | ·1!A·2 | ·1?A | ·1⇒·2 | ·1⊕·2 | A·1 | ·1 ‖ ·2

Let Dn range over uneventful one-level deep contexts.

For any pair of relations R = (R n,R s) with R s ⊆ R n, let its compatible



24 William Ferreira, Matthew Hennessy and Alan Jeffrey

refinement, R̂ be defined:

R̂
n
= {(Dn[~e],Dn[~f ]) | ei R n fi}∪ R̂

s

R̂
s
= {(D[~e],D[~f ]) | ei R s fi}

∪{(fix(x= fn y⇒e),fix(x = fn y⇒ f )) | e R n f}
This definition is rather different from Howe’s and Gordon’s definition of R̂ =
{(D[~e],D[~f ]) | ei R fi}. The differences are that:

• ≈n is not a congruence, it is only an uneventful congruence, so we only close

R̂
n

under uneventful one-level deep contexts rather than arbitrary one-level

deep contexts,

• we want to maintain the invariant that for all pairs of relations we consider,

R s ⊆ R n, hence we include R̂
s

in the definition of R̂
n
, and

• if two insensitive bisimilar expressions are thunked, the resulting expressions

are sensitive bisimilar; for this reason the proof of Theorem 4.7 requires

fix(x = fn y⇒e) R̂
s
fix(x = fn y⇒ f ) when e R n f .

PROPOSITION 4.1. If R is an equivalence and R̂ ⊆R , then R s is a congruence

and R n is an uneventful congruence.

PROOF. A variant of the proof in [11, 17]. Show by induction on C that if

ei R s fi then C[~e] R s C[~f ]. Either C = ·i, in which case the result is immediate,

or C = D[~C] and by induction Ci[~e] R
s Ci[~f ], so by definition C[~e] =D[~C[~e]] R̂

s

D[~C[~f ]] = C[~f ]. It follows that R s is a congruence. The proof that R n is an

uneventful congruence is similar. 2

For any R , its compatible closure, R •, is given by:

e R̂ • e′ R ◦ e′′

e R • e′′

Note that R •s ⊆ R •n.

This definition of R • is specifically designed to facilitate simultaneous in-

ductive proof on syntax (since the definition involves one-level deep contexts)

and on reductions (since the definition involves inductive use of R ◦). This form

of induction is precisely what is required to show the desired congruence results.

Its relevant properties are summed up in the following proposition.

PROPOSITION 4.2. If R ◦ is a preorder then R • is the smallest relation satisfy-

ing:

1. R •R ◦ ⊆ R •,

2. R̂ • ⊆ R •, and
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3. R ◦ ⊆ R •.

PROOF. A variant of the proof in [11].

First we show that R • is reflexive, by showing by structural induction on

e that e R •s e. Find D[~e] such that e = D[~e], so by induction ei R •s ei, so by

definition of R̂ , e=D[~e] R̂ •
s

D[~e] R s◦ D[~e] = e.

Then we show the required properties:

1. R •R ◦ ⊆ R̂ •R ◦R ◦ ⊆ R̂ •R ◦ ⊆ R •.

2. R̂ • ⊆ R̂ •R ◦ ⊆ R •.

3. R ◦ ⊆ R •R ◦ ⊆ R •.

To see that R • is the smallest relation satisfying these properties we show that if

S satisfies these properties, then ŜR ◦ ⊆ SR ◦ ⊆ S, and so R • ⊆ S. 2

Since R̂ • ⊆ R •, we know from Proposition 4.1 that if R • is an equivalence then

R s is a congruence and R n is an uneventful congruence. However, we can show

a stronger result than that, which is that R • is closed under substitution of closed

values:

PROPOSITION 4.3. If R is a preorder then for any v R •s w:

1. if e R •s f then e[v/x] R •s f [w/x], and

2. if e R •n f then e[v/x]R •n f [w/x].

PROOF. A variant of the proof in [11, 17]. We shall prove the first part, and the

second is similar.

We proceed by induction on e.

• If e = x then x R s◦ f , so e[v/x] = v R •s w R s◦ f [w/x] so by Proposition 4.2

e[v/x] R •s f [w/x].

• If e= fix(y= fn z⇒e1) then we can find a g1 such that e1 R •n g1 and fix(y=
fn z⇒ g1) R s◦ f , so by induction e1[v/x] R

•n g1[w/x], so e[v/x] = fix(y =

fn z⇒ e1[v/x]) R̂ •
s
fix(y = fn z⇒ g1[w/x]) R s◦ f [w/x], so by definition of

R •, e[v/x]R •s f [w/x].

• Otherwise, we have e = D[~e] and D[~e][v/x] = D[~e[v/x]], so we can find ~g
such that~e R •s ~g and D[~g] R s◦ f , so by induction ei[v/x]R

•s fi[w/x], hence

e[v/x] =D[~e][v/x]=D[~e[v/x]] R̂ •
s

D[~f [w/x]] =D[~f ][w/x]R s◦ f [w/x], so by

definition of R •, e[v/x]R •s f [w/x]. 2

Our proof strategy is to show that ≈◦ and ≈• coincide. Since ≈◦ ⊆ ≈•, this

amounts to showing that ≈• ⊆ ≈◦, which we do by proving that ≈•, when re-

stricted to programs, is a hereditary simulation.
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PROPOSITION 4.4. When restricted to closed expressions of µCML+, ≈• is a

hereditary simulation.

PROOF. We have to show that ≈•s is structure-preserving, and that the diagrams

for a hereditary simulation can be completed.

Showing that ≈•s is structure preserving is a routine structural induction.

If:

e ≈•n f

e′

l1

?

then we proceed by induction on e to show that we can complete the diagram as:

e ≈•n f

e′

l1

?

≈•n f ′

l̂2
�

wwwwwwww

where l1 ≈•sl l2, and similarly for≈•s. We shall show three of the more interest-

ing cases, the others are similar but more routine:

• if we have:

e ====== letx = e1 ine2≈̂•
n
letx= g1 ing2≈n f

e′

τ

?

======= e′1 ‖ e2[v/x]

τ

?

where ei ≈•n gi and e1

√
v−→ e′1, then by induction g1

√
w=⇒ g′1, v ≈•s w and

e′1 ≈•n g′1, so using Proposition 4.3, we have:

e ====== letx = e1 ine2≈̂•
n
letx= g1 ing2≈n f

e′

τ

?

======= e′1 ‖ e2[v/x]

τ

?

≈•n g′1 ‖g2[w/x]

τ
�

wwwwwwww

≈n f ′

ε
�

wwwwwwww
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• if we have:

e ============= e1 e2 ≈̂•n
g1 g2 ≈n f

e′

τ

?

====== e′1 ‖ lety= e2 ine3[v/x]

τ

?

where ei≈•n gi, e1

√
v−→ e′1, and v= fix(x= fn y⇒e3) then by induction g1

√
w=⇒

g′1, v≈•s w, up to α-conversion w= fix(x = fn y⇒g3), and e′1 ≈•n g′1. Then

by the definition of ≈•, we can find an v′ = fix(x = fn y⇒ h3) such that

e3≈•n h3 and v′≈s w, so by Proposition 4.3, e3[v/x]≈•n h3[v
′/x]≈n◦ v′ y≈n◦

wy ≈n◦ g3[w/x], and so:

e ============= e1 e2 ≈̂•n
g1 g2 ≈n f

e′

τ

?

====== e′1 ‖ lety= e2 ine3[v/x]

τ

?

≈•ng′1 ‖ lety = g2 ing3[w/x]

τ
�

wwwwwwww

≈n f ′

ε
�

wwwwwwww

• if we have:

e ====== fix(x = fn y⇒e1)≈̂•
n
fix(x = fn y⇒g1)≈n f

e′

√
e

?

============ Λ

√
e

?

where e1 ≈•n g1 then let v= fix(x= fn y⇒g1), so:

e ====== fix(x = fn y⇒e1)≈̂•
n
fix(x = fn y⇒g1)≈n f

e′

√
e

?

============ Λ

√
e

?

≈•n Λ

√
v

�

wwwwwwww

≈n f ′

√
w

�

wwwwwwww

and e≈•s v ≈s w.

Thus ≈• is a hereditary simulation. 2

We now have that≈• is a simulation, and we would like to show that it is a bisim-

ulation, for which it suffices to show that ≈• is symmetric. Unfortunately, this is

not easy to prove directly, and so we use a result of Howe’s [18] (pointed out to

the authors by Andrew Pitts) which allows us to show that ≈•∗ is symmetric.
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PROPOSITION 4.5. If R is an equivalence then R •∗ is symmetric.

PROOF. A variant of the proof in [18].

It suffices to show that if e R •s f then f R •s∗ e, and that if e R •n f then

f R •n∗ e, which we show by induction on e. If e R •s f , then either:

• e = D[~e] R̂ •
s

D[~f ] R s◦ f and ei R •s fi, so by induction fi R •s∗ ei, so f R̂
s

D[~f ]D R̂
s∗
[~e] = e, or

• e = fix(x = fn y⇒ e′) R̂ •
s
fix(x = fn y⇒ f ′) R s◦ f and e′ R •n f ′, so by

induction f ′ R •n∗ e′, so f R̂
s
fix(x= fn y⇒ f ′) R •s∗ fix(x= fn y⇒e′) = e.

The proof for R n is similar. 2

We can use this result to show that ≈•∗ is a bisimulation.

PROPOSITION 4.6. When restricted to closed expressions of µCML+, ≈•∗ is a

hereditary bisimulation.

PROOF. By Proposition 4.4,≈• is a hereditary simulation, and so≈•∗ is a hered-

itary simulation. By Proposition 4.5, ≈• is symmetric, and so ≈• is a hereditary

bisimulation. 2

This gives us the result we set out to prove.

THEOREM 4.7. ≈s is a congruence, and ≈n is an uneventful congruence.

PROOF. From Proposition 4.6, ≈• is a hereditary bisimulation, so ≈• ⊆≈◦, and

by Proposition 4.2≈◦⊆≈•, so≈• and≈◦ are the same relation. Since ≈̂• ⊆≈•,
we have the desired result by Proposition 4.1. 2

5 Properties of Weak Bisimulation

In this section, we show some results about program equivalence up to hereditary

weak bisimulation. Some of these equivalences are easy to show, but some are

trickier, and require properties about the transition systems generated by µCML+.

Although much remains to be done on elaborating the algebraic theory of µCML

programs we hope that the results in this section indicate that this equivalence can

form the basis of a useful theory which generalises those associated with process

algebras and functional programming.

We have given an operational semantics to µCML by extending it with new

constructs, most of which correspond to constructs found in standard process

algebras. These include a choice operator ⊕, a parallel operator ‖ and suitable

versions of input and output prefixing, [20]. The prefixes in µCMLcv have a
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slightly unusual syntax—their equivalents in CCS are given as:

CCS prefix µCMLcv equivalent

k?x.P k?⇒ fn x⇒P

k!v.P k!v⇒ fn x⇒P

τ.P A()⇒ fn x⇒P

We now examine the extent to which ⊕ and ‖ act like choice and parallel opera-

tors from a process algebras

We can find bisimulations for the following (and hence they are sensitive

bisimilar):

Λ‖ e ∼1 e

(e1 ‖ e2)‖ e3 ∼1 e1 ‖ (e2 ‖ e3)

(e1 ‖ e2)‖ e3 ∼1 (e2 ‖ e1)‖ e3

Thus ‖ satisfies many of the standard laws associated with a parallel operator in a

process algebra. However it is not in general symmetric because of its interaction

with the production of values:

v‖ e ∼1 e

For example:

1‖Λ ∼1 Λ Λ‖1∼1 1

This means that we can view the parallel composition of processes as being of

the form:

(
∥∥
i

ei)‖ f

where the order of the ei is unimportant. Note that it is important which is the

right-most expression in a parallel composition, since it is the main thread of

computation, and so can return a value, which none of the other expressions can.

The choice operator of µCML+ also satisfies the expected laws from process

algebras, those of a commutative monoid, although it can only be applied to

guarded expressions:

Λ⊕ge ∼1 ge

(ge1⊕ge2)⊕ge3 ∼1 ge1⊕ (ge2⊕ge3)

ge1⊕ge2 ∼1 ge2⊕ge1

This means that we can view the sum of guarded expressions as being of the

form: ⊕

i

gei
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where the order of the gei is unimportant.

In fact guarded expressions can be viewed in a manner quite similar to the

sum forms used in the development of the algebraic theory of CCS, [20]. We can

find bisimulations for the following (and hence they are sensitive bisimilar):

(ge1⊕ge2)⇒v ∼1 (ge1⇒v)⊕ (ge2⇒v)

ge⇒ fn x⇒x ≈s ge

Av ≈s A()⇒ fn x⇒v

From this, we can show, by structural induction on that all guarded expressions

are of a given form:

ge≈s
⊕

i

gei⇒vi

where each gei is either ki!vi, ki? or A(). From this and:

cv≈1 δ(c,v)

we can show that all values ⊢ v : Aevent are of the form:

v≈n choose[wrap(e1,v1), . . .,wrap(en,vn)]

where en is either transmit(ki,vi), receiveki, or always().
We could continue in this manner emulating the algebraic theory of CCS,

for example with expansion theorems for guarded expressions or values of event

type. However we leave this for future work.

We now turn our attention to µCML viewed as a functional language. One

would not expect β-reduction in its full generality in a language with side-effects

such as µCML but we do obtain an appropriate call-by-value version:

(fn y⇒e)v ≈1 e[v/y]

We also have expected laws such as:

fst(e,v) ≈1 e

snd(v,e) ≈1 e

(fix(x = fn y⇒e))v ≈1 e[fix(x= fn y⇒e)/x][v/y]

letx= v ine ≈1 e[v/x]

lety= (let x= e in f ) ing ≈1 letx= e in(lety= f ing) where x 6∈ f v(g)

The last two equations are of particular interest, since they are exactly the left

unit and associativity axioms of Moggi’s [23] monadic metalanguage. The right

unit equation:

letx= e inx≈n e

is not so simple to show, and indeed if e were an arbitrary labelled transition
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system then it would not be true, as can be seen by:

e 6≈n letx= e inx

	�

�

�

�

k!()

@

@

@

@

√
v

R 	�

�

�

�

k!()

@

@

@

@

τ

R
Λ Λ Λ Λ‖ v

Λ

√
v

?

(This is the same example which makes SKIP not act as a right unit for ; in

CSP [15] and exit not act as a right unit for ≫ in LOTOS [1].) Fortunately, we

can show that our operational semantics for µCML satisfies four properties which

allow us to show the right unit equation.

A labelled transition system is single-valued iff:

if e
√

v−→ e′ then e′
√

w−6−→

It is value deterministic iff:

if

e

√
v

- e′

e′′

√
w

?

then v= w and e′ = e′′

It is forward commutative iff:

if

e

√
v

- e′

e′′

α

?

then

e

√
v

- e′

e′′

α

?

√
v◦

- e′′′

α

?
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It is backward commutative iff:

if

e

√
v

- e′

e′′′

α

?

then

e

√
v

- e′

e′′

α

? √
v◦

- e′′′

α

?

Note in particular that LOTOS and CSP do not satisfy forward commutativity,

which is why their sequential composition operators do not have a right unit.

However, µCML does satisfy these conditions.

PROPOSITION 5.1. µCML satisfies single-valuedness, value determinacy, for-

ward commutativity and backward commutativity.

PROOF. A routine induction on syntax. 2

The important property which such lts’s satisfy is the following, where we assume

the existence of the operator ‖.
PROPOSITION 5.2. In any single-valued, value deterministic, forward commu-

tative, backward commutative lts, if e
√

v−→ e′ then e≈1 e′ ‖ v.

PROOF. Use the properties of the lts to establish that the following is a first-order

weak bisimulation:

{(e,e′ ‖ v) | e
√

v−→ e′}∪{(e′,e′ ‖Λ) | e
√

v−→ e′}
The result follows. 2

As a corollary to this proposition, it is routine to show that the following is a

first-order weak bisimulation:

{(e, letx = e inx)}∪≈1

So we have the right unit equation we were looking for:

e ≈1 letx = e inx

These equations enable us to define a categorical model for µCML where:

• objects are types,

• morphisms between A and B are typed expressions with one free variable

x : A ⊢ e : B, viewed up to weak bisimulation,

• the identity morphism is x : A ⊢ x : A, and

• composition is (x : A ⊢ e : B); (y : B ⊢ f : C) = (x : A ⊢ lety= e in f : C).

A Theory of Weak Bisimulation for Core CML 33

The equations for weak bisimulation discussed above show that morphism com-

position is associative and has the identity as both a left unit and right unit. Thus

µCML forms a category.

Again we leave the investigation of the properties of this category to future

work but we should point out that so far we have been unable to cast it as an

instance of general categorical framework of [23].

6 Comparing µCML+ and λcv

In section 2 we presented the operational semantics of a subset of CML, as a la-

belled transition system, in order that we might investigate its behavioural prop-

erties. In this section we shall make formal connection between this semantics

and the reduction semantics for λcv presented in [30]. We have not considered

λcv in its entirety and so the comparison will be confined to the common subset,

namely µCMLcv. We first reproduce, as faithfully as possible, the reduction se-

mantics of Reppy as it applies to µCML. From this reduction semantics we then

derive a labelled transition system for µCML expressions and our main theorem

states that this labelled transition system (up to first-order weak bisimulation) is

the same as ours. In fact the more technical results we derive connecting the

two semantics would support a much closer relationship but expressing it would

involve developing yet another bisimulation based equivalence.

Before presenting the operational semantics and our main theorem we clarify

the differences between λcv and µCMLcv:

• We do not consider the λcv constructs guard and wrapAbort. We conjec-

ture that the operational semantics of µCML would need to be considerably

altered to cope with translating these constructs.

• We omit the λcv construct chanxine since we cannot encode unique channel

name generation in µCML. It should not be difficult to add unique channel

name generation to µCML using operational rules à la π-calculus, although

this would require using a bisimulation similar to Sangiorgi’s [31] context

bisimulation for the higher-order π-calculus.

• We have added recursive function types to µCMLcv because in [30] recursion

is encoded using process creation and unique channel name generation.

• In λcv, constant functions such as wrap are values, where in µCML they have

to be coded as (fn x⇒wrap x). This restriction has no effect on the expressive

power of µCML, and makes it simpler to reason about the operational seman-

tics, since any value of type A→B must be of the form fix(x= fn y⇒e).

We now present Reppy’s reduction semantics for µCMLcv. In [30] this is repre-

sented by a transition relation between multi-sets of µCMLcv, or more generally
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λcv expressions. Instead of multi-sets we use configurations of µCMLcv expres-

sions given by the grammar:

C ∈Con f ::= e |C ‖C | Λ
Note that configurations are restricted forms of µCML+ expressions. This will

facilitate the comparison between the two semantics since it can be carried out

for configurations rather than µCML expressions.

The semantics of [30] is expressed as a reduction relation =⇒ between con-

figurations and reductions have four independent sources. The first involves a

sequential reduction within an individual µCML expression and this in turn is

defined using another reduction relation 7−→; the second is the spawning of new

computation threads which results in an increase in the number of components of

the configuration; the third is communication between two expressions and the

last is required to handle the always construct. We need notation for each of these

and we consider them in turn.

The operational rules for sequential reduction are defined in context in the

style of Wright and Felleisen [33], and the contexts that permit reduction are

given by the following grammar:

E ::= [·] | E e | vE | cE | (E,e) | (v,E) | letx = E ine | if E theneelsee

The relation 7−→ is defined to be the least relation satisfying the following rules:

E[cv] 7−→ E[δ(cv)] (c 6∈ {spawn, sync}) const

E[(fix(x = fn y⇒e))v] 7−→ E[e[fix(x = fn y⇒e)/x][v/y]] beta

E[letx= v ine] 7−→ E[e[v/x]] let

E[(v,w)] 7−→ E[〈v,w〉] pair

Here each rule corresponds to a basic computation step in a sequential call-by-

value language. We should point out that the last rule does not appear in [30], it is

implicit in Reppy’s statement “the syntactic class of the term (v1,v2) is either Exp

or Val; this ambiguity is resolved in favour of Val.” We have made the grammar

unambiguous, and have added an explicit reduction rule for resolving ambiguity.

Note that the definition of 7−→ is not compositional: the reductions of an

expression are not defined in terms of the reductions of its sub-expressions. The

following Lemma will be useful in later proofs and shows that we can recover

compositionality.

LEMMA 6.1. If e 7−→ e′ then E[e] 7−→ E[e′].

PROOF. By examination of the proof of the transition e 7−→ e′. 2

To capture reductions which involve communication it is necessary to define a

notion of when two guarded expressions may give rise to a communication. For
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k!v
k
⊲⊳ k? with ((),v)

ge
k
⊲⊳ ge′ with (e,e′)

ge
k
⊲⊳ ge′⇒v with (e,ve′)

ge
k
⊲⊳ ge′ with (e,e′)

ge
k
⊲⊳ ge′⊕ge′′ with (e,e′)

ge
k
⊲⊳ ge′′ with (e,e′′)

ge
k
⊲⊳ ge′⊕ge′′ with (e,e′′)

ge
k
⊲⊳ ge′ with (e,e′)

ge′
k
⊲⊳ ge with (e′,e)

FIGURE 5A. The rules for matching events

Av� v

ge� e

ge⇒v� ve

ge� e

ge⊕ge′� e

ge′� e′

ge⊕ge′� e′

FIGURE 5B. The rules for immediate evaluation of events

any k the relation:

ge
k
⊲⊳ ge′ with (e,e′)

read as “ge matches ge′ on k with result (e,e′)” is defined to be the least rela-

tion satisfying the rules in Figure 5a. Intuitively this means that two concurrent

threads e1,e2 of the form e1 = E1[sync[ge]],e2 = E2[sync[ge′]] may communi-

cate in one step on the channel k with E1[e] and E2[e
′] being the result of this

communication.

To handle reductions caused by always we need to formalise when guarded

expressions such as Av can immediately return values. This is given by Reppy’s

relation ge� e, is defined in Figure 5b.

We can now formally present the reduction relation =⇒ between configura-

tions. It is defined to be the least relation satisfying the rules:

ei 7−→ e′i
(e1 ‖ · · ·‖ ei ‖ · · ·‖ en) =⇒ (e1 ‖ · · ·‖ ei ‖ · · ·‖ en)

seq

(e1 ‖ · · ·‖E[spawnv]‖ · · ·‖ en) =⇒ (e1 ‖ · · ·‖ v()‖E[()]‖ · · · ‖ en)
spawn

ge
k
⊲⊳ ge′ with (e,e′)

(e1 ‖ · · · ‖E[sync[ge]]‖ · · ·‖E ′[sync[ge′]]‖ · · ·‖ en)
=⇒ (e1 ‖ · · ·‖E[e]‖ · · ·‖E ′[e′]‖ · · ·‖ en)

comm

ge� e

(e1 ‖ · · · ‖E[sync[ge]]‖ · · ·‖ en) =⇒ (e1 ‖ · · ·‖E[e]‖ · · ·‖ en)
eval

This completes our exposition of Reppy’s semantics as it applies to µCMLcv,

which for convenience we call the µCMLcv semantics. We refer to that in Sec-
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tion 2 as the µCML+ semantics and we now compare them. In order to do this,

we extract a labelled transition system from the µCMLcv semantics by defining:

C
τ7−→C′ iff C =⇒C′

C
√

v7−→C′ iff C =C′′ ‖ v and C′ =C′′ ‖Λ (up to ‖ associativity and Λ left unit)

C
k!v7−→C′ iff C ‖ k?=⇒C′ ‖ v

C
k?x7−→C′ iff C ‖ k!x=⇒C′ ‖ ()

We will then show that this labelled transition system is weakly bisimilar to the

µCML+ lts:

THEOREM 6.2. The µCMLcv semantics of a configuration is weakly bisimilar to

its µCML+ semantics.

The remainder of this section is devoted to proving this result. Although the style

of presentation of these two semantics are very different the resulting relations

are very similar and there are essentially only two sources for the differences.

The first is that certain reductions in µCMLcv, when modelled in the µCML+ se-

mantics, require in addition some ‘housekeeping’ reductions. A typical example

is the reduction:

(fn x⇒e)v 7−→ e[v/x].

In µCML+ this requires two reductions:

(fn x⇒e)v τ−→ letx = v ine
τ−→ e[v/x]

This problem is handled by identifying the set of ‘housekeeping’ reductions, such

as the second reduction above, within the µCML+ semantics . These turn out to

be very simple and we can work with ‘housekeeping normal forms’ in which no

further housekeeping reductions can be made.

The second divergence between the semantics concerns the treatment of

spawn; expressions in µCML+ may spawn new processes which give rise to

parallel processes occurring as sub-terms of the expression. For example, the

reductions of (spawnv,e) in µCML+ and µCMLcv are:

(spawnv,e) τ−→ (Λ‖ v ()‖ (),e)
(spawnv,e) τ7−→ v ()‖ ((),e)

This difference is handled by working with the µCMLcv semantics up to a syntac-

tically defined equivalence; this equivalence is contained in strong bisimulation

equivalence and it also preserves housekeeping reductions.

We now explain in some more detail these technical developments; most of

the associated proofs are relegated to an Appendix. House-keeping reductions

are ones derived using the rules:
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e
√
[ge]−−→ e′

synce
τ−→ e′ ‖ge

e
√

v−→ e′

(e, f ) τ−→ e′ ‖ letx= f in 〈v,x〉
e
√

v−→ e′

e f
τ−→ e′ ‖ lety= f ing[v/x]

[v= fix(x = fn y⇒g)]

We shall write e τH−→ e′ whenever e τ−→ e′ is a housekeeping reduction.

It is routine to verify that the housekeeping moves are ‘semantically unim-

portant’, as is captured by the next proposition:

PROPOSITION 6.3. If e
τH−→ e′ then e≈1 e′.

PROOF. Construct a weak bisimulation for each case. 2

Moreover, we can show a confluence result for the µCML+ semantics about

housekeeping moves:

PROPOSITION 6.4. If

e
τ∗H

- e′

e′′

l

?

then

e
τ∗H

- e′

e′′

l

? τ∗◦H

- e′′′

l̂

?

PROOF. First show by induction on ge that ge
τH−6−→. Then prove by induction on e,

using forward commutativity, that if e
τH−→ e′ and e

l−→ e′′ are distinct reductions

then we can find e′′′ such that e′ l−→ e′′′ and e′′ τH−→ e′′′. The result follows. 2

Call a term ‘tidy’ if it has no housekeeping reductions. Then we can show that

every µCML+ term has a unique tidy normal form.

PROPOSITION 6.5. For any µCML+ term e there is a unique tidy e′ such that

e
τH−→∗ e′.

PROOF. Show by induction on e that there is some tidy e′ such that e
τH−→∗ e′.

From Proposition 6.4, this e′ is unique. 2

We now turn our attention to the syntactic equivalence used to handle the different

treatments of spawn. In order to define the equivalence ≡ it is convenient to

introduce reduction contexts for µCML+, equivalent to those for µCMLcv:

E+ ::= [·] |E+ e | cE+ | (E+,e) | letx= E+ ine | if E+ theneelsee |E+ ‖e | e‖E+

In the Appendix we show that these satisfy the natural properties one would ex-

pect of reduction contexts. Let ≡ be the smallest equivalence given by equiva-

lence given by:

E+[Λ‖ e]≡ E+[e] E+1 [E
+
2 [e‖ f ]]≡ E+1 [e‖E+2 [ f ]]
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The equivalence ≡ is a strong first-order bisimulation which respects house-

keeping, that is a relation R where we can complete the diagram:

e1 R e2 e1 R e2

as

e′1

τH

?

e′1

τH

?

R e′2

τH

?

and similarly for R −1.

PROPOSITION 6.6. ≡ is a strong first-order bisimulation which respects house-

keeping.

PROOF. See the Appendix. 2

We can also show a very strong correspondence between reductions of

µCMLcv configurations, and their tidy normal forms.

PROPOSITION 6.7. If C
τH−→∗ e and e is tidy, then the following diagrams can

be completed:

C
τ∗H

- e C
τ∗H

- e

as

C′

l

?

C′

l

? τ∗◦H

- ≡e′

l

?

and:

C
τ∗H

- e C
τ∗H

- e

as

e′

l

?

C′

l

? τ∗◦H

- ≡e′

l

?

PROOF. See the Appendix. 2

With these technical results we can now prove the main result showing the

correspondence between the two semantics:

THEOREM 6.8. The µCMLcv semantics of a configuration is weakly bisimilar to

its µCML+ semantics.

PROOF. Intuitively we know, from Proposition 6.3, that µCML+ expressions

are semantically equivalent to their tidy forms, and Proposition 6.7 can be used
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to transform µCMLcv moves from an expression into µCML+ moves of its tidy

form up to ≡, and vice-versa. Formally we show that
τH−→∗≡ τH←−∗ is a weak

bisimulation by completing the diagram:

C1

τ∗H

- e1 ≡≡≡≡≡≡≡≡≡ f1

�

τ∗H g1

C2

l

?

by using Proposition 6.5 to find e1’s tidy form e2, and then using Propositions 6.4,

6.6 and 6.7 to show:

C1

τ∗H

- e1 ≡≡≡≡≡≡≡≡≡ f1
�

τ∗H g1

C2

l

?

e2

τ∗H

?

≡≡≡≡≡≡≡≡≡ f2

τ∗H

?

�

τ∗H f2

τ∗H

?

e4

τ∗◦H

?

≡≡≡≡≡≡≡≡≡ e3

l

?

≡≡≡≡≡≡≡≡≡ f3

l

?

�

τ∗◦H
f3

l

?

and by completing the diagram:

C1

τ∗H

- e1 ≡≡≡≡≡≡≡≡≡ f1

�

τ∗H
g1

g2

l

?

by using Proposition 6.5 to find e1’s tidy form e3 and then using Propositions
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6.4, 6.6 and 6.7 to show:

C1

τ∗H

- e1 ≡≡≡≡≡≡≡≡≡ f1

�

τ∗H g1

	�

�

�

�

τ∗H

e3 e2

l̂

?

≡≡≡≡≡≡≡≡≡ f2

l̂

?

�

τ∗◦H g2

l

?

@

@

@

@

l̂

R

C2

l̂

? τ∗H

- e5 ≡≡≡≡≡≡≡≡≡ e4

τ∗◦H

?

≡≡≡≡≡≡≡≡≡ f4

τ∗◦H

?

The result follows. 2

7 Conclusions

In this paper we have defined a compositional operational semantics for a core

subset of CML, called µCML, and used it to develop at least the beginnings of

an algebraic theory of CML programs based on an appropriate version of weak

bisimulation equivalence. The operational semantics required an extension of

the language to µCML+ although it is worth pointing out that all of the added

constructs can be defined in the core language µCML up to weak bisimulation

equivalence:

Much research remains to be done. The algebraic theory of µCML, started in

Section 5, needs to be developed to the extent that it can be used to characterise

the semantic equivalence≈n. More generally both the operational semantics and

the semantic equivalence should be extended to incorporate more of the features

of CML. Of particular interest is the generation of new channel names. We

believe that our operational semantics can be adapted to handle new channel gen-

eration but the semantic equivalence would need to be changed to an appropriate

adaptation of context bisimulation equivalence, [31].

As pointed out in Section 3 our semantic equivalence,≈n, is based on the late

version of bisimulations, [22]. This fits in quite well with the functional nature of

CML but nevertheless it would be of interest to consider other variations. One can

easily define an early version of≈n or versions where silent moves are allowed to

occur after a matching
l−→move. However we have been unable to adapt Howe’s

method to show that these equivalences are preserved by µCML contexts.

In Section 3, we were forced to develop the theory of hereditary bisimulations

because of the usual problems of τ actions resolving choice. In the sublanguage

without always and A, we showed that weak bisimulation coincided with insensi-

tive hereditary bisimulation, and so has a simpler and more elegant theory. This

A Theory of Weak Bisimulation for Core CML 41

theory has been investigated by the first author [8]. In this theory, it is possible to

use CSP rather than CCS summation, and so weak bisimulation is respected by

all contexts. As a side-effect of this, it is possible to remove the syntactic restric-

tion that [ge] can only be applied to guarded expressions. The third author has

shown [19] that the resulting semantics can be presented in terms of Moggi’s [23]

monadic type system.

There has already been a considerable amount of research into the founda-

tions of CML and related languages. Much of this is concerned with developing

more detailed type systems, where types contain information on the behaviour of

expressions as they evolve, [24]. Here we confine our remarks to work directly

concerned with the development of semantic theories. We have already given a

detailed comparison with the operational semantics given in [29, 30]. This se-

mantics has been used in [5] to study an implementation of ML reference types

using process generation. If we extend our approach to include channel genera-

tion then we could hope to give an algebraic treatment of their results. In [6, 7]

there are a number of different semantics given to languages related to CML.

A denotational semantics is given using the concept of “dynamic types” but it

has not yet been related to any operationally based equivalence. An operational

semantics is also given for a language called FPI. This contains many CML fea-

tures but the author notes that accommodating any spawn or fork operator would

be difficult. In [13, 3] the spawn operator is studied within the context of pro-

cess algebras. The former gives a two-level operational semantics for a simple

“pure” process algebra with fork and uses this to develop a semantic equivalence

based on strong bisimulation; an axiomatisation is also given using an auxiliary

operator called forked. The latter shows how the various algebraic theories of

ACP can be adapted to support the addition of a spawn operator. This contains an

lts based operational semantics for ACP + spawn and their treatment of spawn

has been used in [9] to give an operational semantics of a language which can

be considered to be an untyped version of µCML. However bisimulation based

equivalences are not developed in [9]; instead a testing equivalence is defined

[14] and a fully-abstract denotational semantics based on Acceptance Trees is

given.

Other languages which contain much in common with CML include CHOCS

[32], FACILE [10], PICT [26], ACTORS [2] and HOπ [31]. Most of these are

endowed with an operational semantics some of which are similar in spirit to

ours. However we feel that our treatment of spawn and delayed computations is

novel and hope that it can be used to good effect with other languages. Many

of these languages also have associated with them bisimulation based semantic

equivalences. Section 3 may be viewed as an extension of the research in [32]

and the new equivalence ≈n can easily be adopted to languages such as CHOCS

and FACILE. We have also already indicated that when we extend µCML to in-
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clude channel generation it will be necessary to adopt the context bisimulation

equivalence, originally developed in [31]. In short although semantic theories

are being developed independently for these languages many of the techniques

developed will find more general application.

Appendix

This section is devoted to the proof of Proposition 6.6 and Proposition 6.7. But first we need some

auxiliary results. The following three Propositions state elementary properties of the reduction con-

texts for µCML+, introduced in Section 6 and we omit the proofs; they all use structural induction on

contexts:

PROPOSITION A.1. If e
α−→ e′ then E+[e] α−→ E+[e′].

PROPOSITION A.2. If E+
1
[e] l−→ f then either:

• f = E+
2
[e] and for all g, E+

1
[g] l−→ E+

2
[g], or

• f = E+
2
[e′], e l′−→ e′, and for all g l′−→ g′, E+

1
[g] l−→ E+

2
[g′].

PROPOSITION A.3. For any E there is an E+ such that for all e, E[e] τH−→∗ E+[e].

With these we can now prove Proposition 6.6:

PROPOSITION A.4. ≡ is a strong first-order bisimulation which respects housekeeping.

PROOF. First observe that an alternative definition of ≡ is as the smallest equivalence given by:

Λ‖ e≡ e (e‖ f )‖g≡ e‖ ( f ‖g) e‖ ( f ‖g)≡ f ‖ (e‖g)

(e‖ f )g≡ e‖ ( f g) c(e‖ f )≡ e‖ (c f ) (e‖ f ,g)≡ e‖ ( f ,g)

letx = e‖ f ing≡ e‖ letx= f ing if e‖ f thengelseh ≡ e‖ if f thengelseh

e≡ f

E[e]≡ E[ f ]

Then show by induction on the proof of this alternative that ≡ satisfies the required properties to

be a first-order strong bisimulation which preserves housekeeping. 2

The next result shows that the auxilarly predicates used in the reduction semantics of µCMLcv, =⇒,

have their exact counterparts in the µCML+ semantics:

PROPOSITION A.5.

1. ge
k!v−→ e iff ge

k
⊲⊳ k? with (e,v),

2. ge
k?x−→ e iff ge

k
⊲⊳ k!x with (e,()),

3. ge
τ−→ e iff ge� e, and

4. if ge1

k
⊲⊳ ge2 with (e1,e2) then gei

k!v−→ ei and ge j
k?v−→ e j .

PROOF. A routine structural induction. 2

We these results we can now give the proof of Proposition 6.7, which for convenience we restate:
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PROPOSITION A.6. If C τH−→∗ e and e is tidy, then the following diagrams can be completed:

C
τ∗H

- e C
τ∗H

- e

as

C′

l

?

C′

l

? τ∗◦H

- ≡e′

l

?

and:

C
τ∗H

- e C
τ∗H

- e

as

e′

l

?

C′

l

? τ∗◦H

- ≡e′

l

?

PROOF. The first diagram is completed by case analysis of C
l7−→C′. We shall prove some of the

cases, as the others are similar.

• If C τ7−→C′ from the const rule, then C = E+
1
[E2[cv]] and C′ = E+

1
[E2[cv]. Then by Proposi-

tions A.1 and A.3:

C ======= E+1 [E2[cv]]
τ∗H

- E+1 [E
+
2 [cv]] =========== e

C′

τ

?

===== E+1 [E2[δ(c,v)]]

τ
? τ∗H

- E+1 [E
+
2 [δ(cv)]] ≡≡ E+1 [E

+
2 [Λ‖ δ(cv)]]

τ

?

• If C
√

v7−→C′ then C =C′′ ‖ v and C′ =C′′ ‖Λ, so:

C ======= C′′ ‖ v
τ∗H

- e′′ ‖ v ======= e

C′

√
v

?

====== C′′ ‖Λ

√
v

? τ∗H

- e′′ ‖Λ ≡≡≡≡≡ e′′ ‖Λ

√
v

?

• If C
k!v7−→C′ then (from the definition of C

k!v7−→C′ and the comm rule) C= E+
1
[E2[sync[ge]]], C =

E+1 [E2[e]], and ge
k
⊲⊳ k? with (e,v), so by Proposition A.5, ge

k!v−→ e, and so by Propositions A.1

and A.3:

C ===== E+1 [E2[sync[ge]]]
τ∗H

- E+1 [E
+
2 [ge]] ====== e

C′

k!v

?

======== E+1 [E2[e]]

k!v

? τ∗H

- E+1 [E
+
2 [e]] ≡≡≡ E+1 [E

+
2 [e]]

k!v

?

The second diagram is completed by induction on C. We shall prove some of the cases, as the others

are similar.

If C = E[ f ], E is a one-level deep reduction context for both µCML+ and µCMLcv , e = E[g],
f

τH−→∗ g, e′ = E[g′ ] and g
α−→ g′ then by induction f

l7−→ C′ τH−→∗ f ′ ≡ g′ and we can show by
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induction on E that E[g] l7−→≡ E[C] so by Propositions 6.6:

C ======= E[ f ]
τ∗H

- E[g] ======== e

C′′

α

?

≡≡≡≡≡≡≡ E[ f ′ ]

@

@

@

τ∗◦H

R

@

@

@

τ∗◦H

R

f ′′ ≡≡≡≡≡≡≡ E[g′]

α

?

======= e′

α

?

Otherwise:

• If C = c f then f
τH−→∗ g, g is tidy and cg

τH−→∗ e, so either:

– c = sync, e = g′ ‖ge, g
√
[ge]−−−→ g′, and f

τH−→∗ g, so by induction and the definition of
√

v7−→,

f = g= [ge] and g′ =Λ, so e′=Λ‖g′′ and ge
α−→ g′′, so by Proposition A.5, sync[ge] α7−→g′′,

and so:

C ====== sync[ge]
τ∗H

- Λ‖ge ======= e

g′′

α

? τ∗◦H

- g′′ ≡≡≡≡≡≡ Λ‖g′′

α

?

======= e′

α

?

– c = spawn, e = spawng, e′ = g′ ‖ v()‖ () and g
√

v−→ g′, so by induction and the definition

of
√

v7−→, f = g = v and g′ =Λ, and so:

C ====== spawnv
τ∗H

- spawng ======= e

v()‖ ()

τ

? τ∗◦H

- v()‖ () ≡≡≡ Λ‖ v()‖ ()

τ

?

===== e′

τ

?

– or e′ = g′ ‖ δ(c,v) and g
√

v−→ g′, so by induction and the definition of
√

v7−→, f = g = v and

g′ = Λ, and so:

C ======== cv
τ∗H

- spawng ====== e

δ(c,v)

τ

? τ∗◦H

- δ(c,v) ≡≡≡ Λ‖ δ(c,v)

τ

?

===== e′

τ

?

• If C = f1 f2 then f1
τH−→∗ g1

√
v−→ g′1 where v = fix(x = fn y⇒g3), f2

τH−→∗ g2, e = g′1 ‖ lety =
g2 ing3[v/x], so by induction and the definition of

√
v7−→, f1 = g1 = v and g′1 = Λ, and so either:
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– e′ = g′1 ‖ lety = g′2 ing3[v/x] and g2
α−→ g′2 so by induction (up to associativity of ‖ and Λ

being a left unit), f2
α7−→C′ ‖ f ′2

τH−→∗◦ f3 ‖ f ′′2 ≡ g′2, and so:

C ============== v f2
τ∗H

- Λ‖ lety = g2 ing3[v/x] ====== e

C′ ‖ v f ′2

α

? τ∗◦H

- f3 ‖ lety = f ′′2 ing3[v/x] ≡≡ Λ‖ lety = g′2 ing3[v/x]

α

?

===== e′

α

?

– or e′ = g′1 ‖ g′2 ‖ g3[v/x][w/y] and g2

√
w−→ g′2, so by induction and the definition of

√
v7−→,

f2 = g2 = w and g′2 =Λ, and so:

C =========== vw
τ∗H

- Λ‖ lety= w ing3[v/x] ====== e

g3[v/x][w/y]

τ

? τ∗H

- g3[v/x][w/y] ≡≡≡ Λ‖Λ‖g3[v/x][w/y]

τ
?

====== e′

τ

?

The result follows. 2
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