COMPUTER SCIENCE

A Theory of Weak Bisimulation for Core CML

William Ferreira
Matthew Hennessy
Alan Jeffrey

Computer Science
School of Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH

A Theory of Weak Bisimulation for Core CML

William Ferreira, Matthew Hennessy and Alan Jeffrey
Abstract. Concurrent ML is an extension of Standard ML of New Jersey with concurrent features similar to those of process algebra. Reppy has given it an operational semantics based on reductions of configurations, using entire programs rather than program fragments. The existing semantics are not, therefore, compositional, and do not support compositional reasoning (for example equational reasoning about program fragments).

In this paper, we present a compositional operational semantics for a fragment of CML, based on higher-order process algebra, and use this to define weak bisimulation for CML. We give some small examples of proofs about CML expressions, and show that our semantics corresponds to Reppy's up to weak first-order bisimulation.

1 Introduction

There have been various attempts to extend standard programming languages with concurrent or distributed features, [10, 16, 25]. Concurrent ML (CML) [28, 30] is a practical and elegant example. The language Standard ML is extended with two new type constructors, one for generating communication channels, and the other for delayed computations. By adding to the language a small number of constants to manipulate objects of these new types a new language is obtained which combines the functional features of ML with the communication capabilities of CCS, [20]. Thus the language has all the functional and higher-order features of ML but programs also have the ability to spawn new computation threads and these independent threads can communicate with each other by transmitting values along communication channels. It has been implemented and a formal semantics has been given for a significant subset, [5, 30]. As Reppy pointed out in [29], "Another useful direction would be to build a 'theory' of CML programs to allow reasoning about their correctness." The purpose of this paper is to provide one such theory.

In $[5,30]$ an operational semantics is given for a language called $\lambda_{c v}$. This may be viewed as a concurrent version of the call-by-value λ-calculus of Plotkin, [27] but is also contains many of the interesting features of CML. Indeed it may be viewed as an extension of a mini-CML, similar to what what we will call in this paper $\mu \mathrm{CML}$, as it contains the core elements of CML; the extension is obtained by adding new constructs, which do not appear in CML but which facilitate the description of the operational semantics. This operational semantics

[^0]is given in terms of a reduction relation between configurations, multi-sets of $\lambda_{c v}$ closed expressions or programs. Unfortunately this operational semantics is not compositional, in that the behaviour of a $\lambda_{c v}$ expression, or indeed configuration, is not determined by that of its constituents.

Here we give a compositional operational semantics in terms of a labelled transition system for μ CML programs. This not only describes the evaluation steps of programs, as in [30], but also their communication potentials, in terms of their ability to input and output values along communication channels.

We then proceed to demonstrate the usefulness of this compositional operational semantics by using it to define a version of weak observational equivalence, [20], suitable for $\mu \mathrm{CML}$. We prove that, modulo the usual problems associated with the choice operator of CCS, our chosen equivalence is preserved by all $\mu \mathrm{CML}$ contexts and therefore may be used as the basis for reasoning about CML programs. In this paper we do not investigate in detail the resulting theory but confine ourselves to pointing out some of its salient features; for example standard identities one would expect of a call-by-value λ-calculus are given and we also show that certain algebraic laws common to process algebras, [20], hold.

We now explain in more detail the contents of the remainder of the paper.
In Section 2 we describe the language μ CML, a subset of CML. It is a typed language, with base types for channel names, booleans and integers, and type constructors for pairs, functions and delayed computations; these last are called Event types. It has the standard constructs and constants associated with the base types and with pairs and functions. In addition it has a selection of the CML constructs and constants for manipulating delayed computations; spawn generates a new computation thread, sync launches a delayed computation, transmit and receive construct basic delayed computations for sending and receiving values, while wrap is used to combine delayed computations. In short we focus on much the same subset of CML as [30]; the major omission is that $\mu \mathrm{CML}$ has no facility for generating new channel names. This is for convenience only; we believe that our semantics can be extended to handle channel generation, using techniques common to the π-calculus, [21, 22, 31], but this would obscure much of our exposition.

This section then proceeds with an exposition of our operational semantics, in terms of a labelled transition system. In order to describe all possible states which can arise during the computation of a well-typed $\mu \mathrm{CML}$ program we need to extend the language. This extension is twofold. The first consists in adding the constants of event type used by Reppy in [30] to define $\lambda_{c v}$, i.e. constants to denote certain delayed computations. This extended language, which we call $\mu \mathrm{CML}^{c v}$, essentially coincides with the $\lambda_{c v}$, the language used in [30], except for the omissions cited above. However to obtain a compositional semantics we

A ineory oj weak disimuialion jor Core CNIL
,
make further extensions to $\mu \mathrm{CML}^{c v}$. We add a parallel operator $\|$, commonly used in process algebras, which allows us to use programs in place of the multisets of programs of [30]. The final addition is more subtle; we allow expressions which correspond to the synced versions of Reppy's constants. Thus the labelled transition system uses as states programs from a language which we call $\mu \mathrm{CML}^{+}$. This language is a superset of $\mu \mathrm{CML}^{c v}$, which is our version of Reppy's $\lambda_{c v}$, which in turn is a superset of $\mu \mathrm{CML}$, our mini-version of CML.

In Section 3 we discuss semantic equivalences defined on the labelled transition of Section 2. We demonstrate the inadequacies of the obvious adaptations of strong and weak bisimulation equivalence, [20], and then consider adaptations of higher-order and irreflexive bisimulations from [32]. Finally we suggest a new variation called hereditary bisimulation equivalence which overcomes some of the problems encountered with using higher-order and irreflexive bisimulations.

In SECTION 4 we show that hereditary bisimulation is preserved by all μ CML contexts. This is an application of the proof method originally suggested in [17] but the proof is further complicated by the fact that hereditary bisimulations are defined in terms of pairs of relations satisfying mutually dependent properties.
In Section 5 we briefly discuss the resulting algebraic theory of $\mu \mathrm{CML}$ expressions. This paper is intended only to lay the foundations of this theory and so here we simply indicate that our theory extends both that of call-by-value λ calculus [27] and process algebras [20].
In Section 6 we show that, up to weak bisimulation equivalence, our semantics coincides with the reduction semantics for $\lambda_{c v}$ presented in [30]. This technical result applies only to the common sub-language, namely $\mu \mathrm{CML}^{c v}$.
In Section 7 we briefly consider other approaches to the semantics of CML and related languages and we end with some suggestions for further work.

2 The Language

In this section we introduce our language $\mu \mathrm{CML}$, a subset of Concurrent ML [28, 30]. We describe the syntax, including a typing system, and an operational semantics in terms of a labelled transition system.

The type expressions for our language are given by:

$$
A::=\text { unit } \mid \text { bool } \mid \text { int } \mid \text { chan }|A * A| A \rightarrow A \mid A \text { event }
$$

Thus we have four base types, unit, chan, bool and int; the latter two are simply examples of useful base types and one could easily include more. These types are closed under three constructors, pairing, function space, and the less common event type constructor. Our language may be viewed as a typed λ-calculus augmented with the type constructor A event for constructing delayed computations
of type A.
Let Chan be a set of channel names ranged over by k, k^{\prime} etc. and let Var denote a set of variables ranged over by x, y, \ldots The expressions of $\mu \mathrm{CML}$ are given by the following abstract syntax:

$$
\begin{aligned}
& e, f, g \in \operatorname{Exp}::=v|c e| \text { if } e \text { then } e \text { else } e|(e, e)| \text { let } x=e \text { in } e \mid e e \\
& v, w \in \text { Val }::=l \mid \text { fix }(x=\mathrm{fn} y \Rightarrow e) \mid x \\
& c \in \text { Const }::=\mathrm{fst} \mid \text { snd } \mid \text { add } \mid \text { mul } \mid \text { leq } \mid \text { transmit }_{A} \mid \text { receive }_{A} \\
& \mid \text { choose } \mid \text { spawn } \mid \text { sync } \mid \text { wrap } \mid \text { never } \mid \text { always } \\
& l \in \text { Lit }::= \text { true } \mid \text { false }|k|()|0| 1 \mid \cdots
\end{aligned}
$$

The main syntactic category is that of Exp which look very much like the set of expressions for an applied call-by-value version of the λ-calculus. There are the usual pairing and branching constructors, and three forms of application; the application of one expression to another, $e e$, the application of a constant to an expression, $c e$ and let $x=e_{1}$ in e_{2} representing the application to e_{1} of the functional abstraction of e_{2} over x. There is also a syntactic category of expressions of a particular form, called $V a l$; these represent the objects to which functions may be applied and which also may be sent and received between computation threads. They are very restricted in form; either a predefined value for the base types, called Lit, or a recursively defined function, $\operatorname{fix}(x=\mathrm{fn} y \Rightarrow e)$. We will abbreviate this to fn $y \Rightarrow e$ when x does not occur in e.

Finally there are a small collection of constant functions. These consist of a representative sample of constants for manipulating objects of base type, add, mul, leq, which could easily be extended, the projection functions fst and snd, together with the set of constants for manipulating delayed computations taken directly from [30]:

- transmit and receive, for constructing delayed computations which can send and receive values,
- choose, for constructing alternatives between delayed computations,
- spawn, for spawning new computational threads,
- sync, for launching delayed computations,
- wrap, for combining delayed computations,
- never, for a delayed computation which always deadlocks, and
- always, for a delayed computation which immediately terminates with a value.
Note that there is no method for generating channel names other than using the predefined set of names Chan.

A aneory oj weak disimulauon jor core CIVIL
J
There are two constructs in the language which bind occurrences of variables, let $x=e_{1}$ in e_{2} where free occurrences of x in e_{2} are bound and $\operatorname{fix}(x=\mathrm{fn} y \Rightarrow e)$ where free occurrences of both x and y in e are bound. We will not dwell on the precise definitions of free and bound variables but simply use $f v(e)$ to denote the set of variables which have free occurrences in e. If $f v(e)=\emptyset$ then e is said to be a closed expression, which we sometimes refer to as a program. We also use the standard notation of $e[v / x]$ to denote the substitution of the value v for all free occurrences of x in e where bound names may be changed in order to avoid the capture of free variables in v.

We now examine briefly the type system for this language. The types for the constant functions of the language are given in Figure 1a; this is in agreement with the typing rules given in [30] for $\lambda_{c v}$. The constants add, mul, spawn have constant types associated with them, as have transmit $_{A}$ and receive A_{A}; but the type of the latter pair is determined by the type subscript A. The type associated with the remaining constants should be interpreted polymorphically. Thus, for example choose has the type A event $* A$ event $\rightarrow A$ event for every type A.

This assignment of types to constant functions is used to infer types for arbitrary expressions in the standard way, using a type inference system. A typing judgement $\Gamma \vdash e: A$ consists of a type assignment Γ, an expression e and a type A such that $f v(e) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. A type assignment is a sequence of the form $x_{1}: t_{1}, \ldots, x_{n}: t_{n}$, where each t_{i} is a type. Intuitively a type assignment should be read as "in the type assignment Γ the expression e has type A ". The type inference system is given in Figure 1 b and is straightforward. There are two structural rules, literals are assigned their natural types while the types of functional values are inferred using a minor modification of the standard rule for functional abstractions. The remaining constructs are also handled using standard inference rules, [12].

We now turn our attention to the operational semantics. In [30,5] a reduction semantics is given to $\lambda_{c v}$ and since $\mu \mathrm{CML}^{c v}$ is a subset of $\lambda_{c v}$, this induces a reduction semantics for $\mu \mathrm{CML}^{c v}$; this is discussed in full in Section 6. The judgements in this reduction semantics are of the form:

$$
C \xrightarrow{\tau} C^{\prime}
$$

where C, C^{\prime} are configurations which combine a closed expression with a runtime environment necessary for its evaluation. However this semantics is not compositional as the reductions of an expression can not be deduced directly from the reductions of it constituent components. Here we give a compositional operational semantics with four kinds of judgements:

- $e \xrightarrow{\tau} e^{\prime}$, representing a one step evaluation or reduction,
- $e \xrightarrow{\sqrt{ } v} e^{\prime}$, representing the production of the value v, with a side effect e^{\prime},

$$
\begin{array}{cc}
\text { fst }: A * B \rightarrow A & \text { transmit }_{A}: \text { chan } * A \rightarrow \text { unit event } \\
\text { snd }: A * B \rightarrow B & \text { receive }_{A}: \text { chan } \rightarrow A \text { event } \\
\text { add : int } * \text { int } \rightarrow \text { int } & \text { choose }: A \text { event } * A \text { event } \rightarrow A \text { event } \\
\text { mul : int } * \text { int } \rightarrow \text { int } & \text { spawn }:(\text { unit } \rightarrow \text { unit }) \rightarrow \text { unit } \\
\text { leq : int } * \text { int } \rightarrow \text { bool } & \text { wrap }: A \text { event } *(A \rightarrow B) \rightarrow B \text { event } \\
\text { sync }: A \text { event } \rightarrow A & \text { never }: \text { unit } \rightarrow A \text { event }
\end{array}
$$

always : $A \rightarrow A$ event

A ineory oj weak disimulauon jor Core Civil
of the value () has as a side effect the generation of a new computation thread for evaluating $(\mathrm{fn} y \Rightarrow f)()$.

When giving an operational semantics to a language with side-effects there are two standard approaches to retaining the information necessary to interpret them. The first, used for example in [5,30], is to define a notion of state or configuration; these contain the program being evaluated together with auxiliary state information, and the judgements of the operational semantics apply to these configurations. The second, more common in work on process algebras, [4, 20], extends the syntax of the language being interpreted to encompass configurations. We choose the latter approach and one extra construct we add to the language is an asymmetric parallel operator, $e \| f$; intuitively this corresponds to the use of multi-sets in the reduction semantics of [5,30]. As an example of the use of this extra construct the side-effect generated by the evaluation of spawn is reflected in our semantics by the inference:

$$
\operatorname{spawn}(\mathrm{fn} y \Rightarrow e) \xrightarrow{\tau}(\mathrm{fn} y \Rightarrow e)() \|()
$$

one step in the evaluation of $\operatorname{spawn}(\mathrm{fn} y \Rightarrow e)$ leads to two expressions running in parallel, one being the spawned expression $(\mathrm{fn} y \Rightarrow e)()$ and the other the default value which results from every application of spawn. More generally the evaluation of spawn e proceeds by the evaluation of the expression e until this produces a value and then an application of an inference such as the one above. This is represented by the rule:

$$
\frac{e \stackrel{\sqrt{ } v}{\longrightarrow} e^{\prime}}{\operatorname{spawn} e \xrightarrow{\tau} e^{\prime}\|v()\|()}
$$

where the well-typedness of the operational semantics will ensure that v is a function of the appropriate type, unit \rightarrow unit.

With this method of representing newly created computation threads more of the rules corresponding to β-reduction in a call-by-value λ-calculus may now be given. To evaluate an application expression $e f$ first e is evaluated to a value of functional form and then the evaluation of f is initiated. This is represented by the the rules:

$$
\frac{e \xrightarrow{\alpha} e^{\prime}}{e f \xrightarrow{\alpha} e^{\prime} f} \quad \frac{e \xrightarrow{\sqrt{ }(\mathrm{fn} y \Rightarrow g)} e^{\prime}}{e f \xrightarrow{\tau} e^{\prime} \| \text { let } y=f \text { in } g}
$$

In fact we use a slightly more complicated version of the latter rule as functions are allowed to be recursive. Continuing with the evaluation of $e f$, having evaluated e to the functional form $\mathrm{fn} y \Rightarrow g, f$ is evaluated to a value which is then substituted into g for y. This is represented by the two rules:

$$
\frac{f \stackrel{\tau}{\longrightarrow} f^{\prime}}{\operatorname{let} x=f \operatorname{in} g \xrightarrow{\tau} \operatorname{let} x=f^{\prime} \operatorname{in} g} \quad \frac{f \stackrel{\sqrt{ } v}{\longrightarrow} f^{\prime}}{\operatorname{let} x=f \operatorname{in} g \xrightarrow{\tau} f^{\prime} \| g[v / x]}
$$

$$
\begin{aligned}
& \frac{e \xrightarrow{\alpha} e^{\prime}}{c e \xrightarrow{\alpha} c e^{\prime}} \quad \frac{e \xrightarrow{\alpha} e^{\prime}}{e f \xrightarrow{\alpha} e^{\prime} f} \quad \frac{e \xrightarrow{\alpha} e^{\prime}}{(e, f) \xrightarrow{\alpha}\left(e^{\prime}, f\right)} \\
& \frac{e \stackrel{\alpha}{\longrightarrow} e^{\prime}}{\text { if } e \text { then } f \text { else } g \xrightarrow{\alpha} \text { if } e^{\prime} \text { then } f \text { else } g} \quad \xrightarrow[{\text { let } x=e \text { in } f \xrightarrow{\alpha} \text { let } x=e^{\prime} \text { in }} f]{\text { l }} \\
& \frac{e \xrightarrow{\alpha} e^{\prime}}{e\left\|f \xrightarrow{\alpha} e^{\prime}\right\| f} \quad \frac{f \xrightarrow{\alpha} f^{\prime}}{e\|f \xrightarrow{\alpha} e\| f^{\prime}} \quad \frac{f \xrightarrow{\sqrt{ }} f^{\prime}}{e\|f \xrightarrow{\sqrt{ } v} e\| f^{\prime}}
\end{aligned}
$$

Figure 2A. Operational semantics: static rules

$$
\frac{g e_{1} \xrightarrow{\alpha} e}{g e_{1} \oplus g e_{2} \xrightarrow{\alpha} e} \quad \frac{g e_{2} \xrightarrow{\alpha} e}{g e_{1} \oplus g e_{2} \xrightarrow{\alpha} e} \quad \frac{g e \xrightarrow{\alpha} e}{g e \Rightarrow v \xrightarrow{\alpha} v e}
$$

Figure 2b. Operational semantics: dynamic rules

$$
\begin{aligned}
& \frac{e \stackrel{\sqrt{ } v}{\longrightarrow} e^{\prime}}{c e \xrightarrow{\tau} e^{\prime} \| \delta(c, v)} \quad \frac{e \xrightarrow{\sqrt{ } \text { true }} e^{\prime}}{\text { if } e \text { then } f \text { else } g \xrightarrow{\tau} e^{\prime} \| f} \quad \frac{e \xrightarrow{\sqrt{ } \text { false }} e^{\prime}}{\text { if } e \text { then } f \text { else } g \xrightarrow{\tau} e^{\prime} \| g} \\
& \frac{e \xrightarrow{\sqrt{ }} e^{\prime}}{(e, f) \xrightarrow{\tau} e^{\prime} \| \text { let } x=f \text { in }\langle v, x\rangle} \quad \frac{e \stackrel{\sqrt{ } v}{\longrightarrow} e^{\prime}}{e f \xrightarrow{\tau} \operatorname{let} y=f \text { in } g[v / x]}[v=\mathrm{fix}(x=\mathrm{fn} y \Rightarrow g)] \\
& e \xrightarrow{\sqrt{ }{ }^{V}} e^{\prime} \\
& \overline{\text { let } x=e \operatorname{in} f \xrightarrow{\tau} e^{\prime} \| f[v / x]} \\
& \frac{e \xrightarrow{k!_{A}{ }^{\nu}} e^{\prime} \quad f \xrightarrow{k ?_{A} x} f^{\prime}}{e\left\|f \xrightarrow{\tau} e^{\prime}\right\| f^{\prime}[v / x]} \\
& \frac{e \xrightarrow{k ?_{A} X} e^{\prime} \quad f \xrightarrow{k!_{A} v} f^{\prime}}{e\left\|f \xrightarrow{\tau} e^{\prime}[v / x]\right\| f^{\prime}}
\end{aligned}
$$

Figure 2c. Operational semantics: silent rules

$$
\overline{v \xrightarrow{\sqrt{ } v} \Lambda} \quad \overline{k!_{A} v \xrightarrow{k!_{A} v}()} \quad \overline{k ?_{A} \xrightarrow{k ?_{A} x} x} \quad \overline{\mathbf{A} v \xrightarrow{\tau} v}
$$

Figure 2D. Operational semantics: axioms

$$
\begin{array}{rlrl}
\delta\left(\mathrm{fst}^{2},\langle v, w\rangle\right) & =v & \delta(\mathrm{snd},\langle v, w\rangle) & =w \\
\delta(\text { add },\langle m, n\rangle) & =m+n & \delta(\text { mul },\langle m, n\rangle) & =m \times n \\
\delta(\text { leq },\langle m, n\rangle) & =m \leq n & \\
\delta\left(\text { transmit }_{A},\langle k, v\rangle\right) & =\left[k!_{A} v\right] & \delta\left(\text { receive }_{A}, k\right) & =\left[k ?_{A}\right] \\
\delta\left(\text { choose },\left\langle\left[g e_{1}\right],\left[g e_{2}\right]\right\rangle\right) & =\left[g e_{1} \oplus g e_{2}\right] & \delta(\text { wrap },\langle[g e], v\rangle) & =[g e \Rightarrow \\
\delta(\text { never },()) & =[\Lambda] & \delta(\text { always }, v) & =[\mathbf{A} v] \\
\delta(\text { spawn }, v) & =v() \|() & \delta(\text { sync },[g e]) & =g e
\end{array}
$$

Figure 2E. Operational semantics:reduction of constants

The evaluation of the application expression $c f$ is similar; f is evaluated to a value and then the constant c is applied to the resulting value. This is represented by the two rules

$$
\frac{f \stackrel{\tau}{\longrightarrow} f^{\prime}}{c f \stackrel{\tau}{\longrightarrow} c f^{\prime}} \quad \frac{f \stackrel{\sqrt{ }}{\longrightarrow} f^{\prime}}{c f \xrightarrow{\tau} f^{\prime} \| \delta(c, v)}
$$

Here, borrowing the notation of [30], we use the function δ to represent the effect of applying the constant c to the value v. This effect depends on the constant in question and we have already seen one instance of this rule, for the constant spawn, which result from the fact that $\delta($ spawn,$v)=v() \|()$. The definition of δ for all constants in the language is given in Figure 2e. For the constants associated with the base types this is self-explanatory; the others will be explained below as the constant in question is considered. Note that because of the introduction of $\|$ into the language we can treat all constants uniformly, unlike [30] where spawn and sync have to considered in a special manner.

In order to implement the standard left-to-right evaluation of pairs of expressions we introduce a new value $\langle v, w\rangle$ representing a pair which has been fully evaluated. Then to evaluate (e, f) :

- first allow e to evaluate:

$$
\frac{e \stackrel{\alpha}{\longrightarrow} e^{\prime}}{(e, f) \xrightarrow{\alpha}\left(e^{\prime}, f\right)}
$$

- then when it terminates, start the evaluation of f :

$$
\frac{e \stackrel{\sqrt{ } v}{\longrightarrow} e^{\prime}}{(e, f) \xrightarrow{\tau} e^{\prime} \| \text { let } x=f \text { in }\langle v, x\rangle}
$$

These value pairs may then be used for example by being applied to functions of type $A * B$. For example the following inferences result from the definition of the function δ for the constants fst and mul:

$$
\frac{e \xrightarrow{\sqrt{ }\langle v, w\rangle} e^{\prime}}{\text { fst } e \xrightarrow{\tau} e^{\prime} \| v} \quad \frac{e \xrightarrow{\sqrt{ }\langle m, n\rangle} e^{\prime}}{\text { mul } e \xrightarrow{\tau} e^{\prime} \| m \times n} .
$$

It remains to explain how delayed computations, i.e. programs of type A event, are handled. It is important to realise that expressions of type A event represent potential rather than actual computations and this potential can only be activated by an application of the constant sync, of type A event $\rightarrow A$. Thus for example the expression receive $A_{A} k$ is of type A event and represents a delayed computation which has the potential to receive a value of type A along the channel k. The expression sync $\left(\right.$ receive $\left._{A} k\right)$ can actually receive such a value v along channel k, or more accurately can evaluate to such a value, provided some other computation thread can send the value along channel k.

The semantics of sync is handled by introducing a new constructor for values.

For certain kinds of expressions ge of type A, which we call guarded expressions, let $[g e]$ be a value of type A event; this represents a delayed computation which when launched initiates a new computation thread which evaluates the expression $g e$. Then the expression sync $[g e]$ reduces in one step to the expression $g e$. More generally the evaluation of the expression sync e proceeds as follows:

- First evaluate e until it can produce a value:

$$
\frac{e \stackrel{\tau}{\longrightarrow} e^{\prime}}{\text { synce } e \xrightarrow{\tau} \text { sync } e^{\prime}}
$$

- then launch the resulting delayed computation:

$$
\frac{e \xrightarrow{\sqrt{ }[g e]} e^{\prime}}{\text { sync } e \xrightarrow{\tau} e^{\prime} \| g e}
$$

Note that here, as always, the production of a value may have as a side-effect the generation of a new computation thread e^{\prime} and this is launched concurrently with the delayed computation $g e$. Also both of these rules are instances of more general rules already considered. The first is obtained from the rule for the evaluation of applications of the form $c e$ and the second by defining $\delta($ sync, $[g e])$ to be $g e$.

The precise syntax for guarded expressions will emerge by considering what types of values of the form $[e]$ can result from the evaluation of expressions of type event from the basic language $\mu \mathrm{CML}$. The constant receive ${ }_{A}$ is of type chan $\rightarrow A$ event and therefore the evaluation of the expression receive ${ }_{A} e$ proceeds by first evaluating e to a value of type chan until it returns a value k, and then returning a delayed computation consisting of an event which can receive any value of type A on the channel k. To represent this event we extend the syntax further by letting $k ?_{A}$ be a guarded expression for any k and A, with the associated rule:

$$
\frac{e \stackrel{\sqrt{ } k}{\longrightarrow} e^{\prime}}{\text { receive }_{A} e \xrightarrow{\tau} e^{\prime} \|\left[k ?_{A}\right]}
$$

The construct transmit ${ }_{A}$ is handled in a similar manner, using guarded expressions of the form $k!{ }_{A} v$:

$$
\frac{e \xrightarrow{\sqrt{ }\langle k, v\rangle} e^{\prime}}{\operatorname{transmit}_{A} e \xrightarrow{\tau} e^{\prime} \|\left[k!_{A} v\right]}
$$

It is these two new expressions $k{ }_{A}$ and $k!_{A} v$ which perform communication between computation threads. Formally k ! ${ }_{A} v$ is of type unit and we have the axiom:

$$
\overline{k!_{A} v \xrightarrow{k!!^{V}} \boldsymbol{Z}()}
$$

Intuitively this may be read as $k!_{A} v$ evaluates in one step to the expression () and this evaluation has as a side effect the transmission of the value v to the channel
a ineory of vreak disimulatuon jor core civi
k. The input rule is slightly more complicated. Because these communication moves are propagated through various contexts it is technically convenient to have the inference rule:

$$
\overline{k ?_{A} \xrightarrow{k!}{ }_{A}{ }_{x} x}
$$

Therefore in general input moves are of the form $e \xrightarrow{k ?_{A} x} f$ where $\vdash e: B$ and $x: A \vdash f: B$. Communication can now be modelled as in CCS and CSP by the simultaneous occurrence of input and output actions:

$$
\frac{e \xrightarrow{k ?_{A} x} e^{\prime} \quad f \xrightarrow{k!_{A} v} f^{\prime}}{e\left\|f \xrightarrow{\tau} e^{\prime}[v / x]\right\| f^{\prime}}
$$

There remain four constructs for delayed computations to be explained. The first, never of type unit $\rightarrow A$ event, is handled by the introduction of the guarded expression Λ, representing a deadlocked evaluation, together with the inference rule:

$$
\frac{e \xrightarrow{\sqrt{ }(} e^{\prime}}{\text { never } e \xrightarrow{\tau} e^{\prime} \|[\Lambda]}
$$

obtained, once more, by defining δ (never, ()) to be $[\Lambda]$.
The constant wrap is of type A event $*(A \rightarrow B) \rightarrow B$ event. The evaluation of wrape proceeds in the standard way by evaluating e until it produces a value, which must be of the form $\langle[g e], v\rangle$, where $g e$ is a guarded expression of type A and v has type $A \rightarrow B$. Then the evaluation of wrape continues by the construction of the new delayed computation $[g e \Rightarrow v]$. Bearing in mind the fact that the production of values can generate new computation threads, this is formally represented by the inference rule:

$$
\frac{e \stackrel{\sqrt{ }\langle[g e], v\rangle}{\longrightarrow} e^{\prime}}{\text { wrape } e \xrightarrow{\tau} e^{\prime} \|[g e \Rightarrow v]}
$$

The guarded expression $g e \Rightarrow v$ is a wrapper which applies v to the result of evaluating $g e$:

$$
\frac{g e \xrightarrow{\alpha} e}{g e \Rightarrow v \xrightarrow{\alpha} v e}
$$

The always construct, of type $A \rightarrow A$ event, evaluates its argument to a value v, and then returns trivial delayed computation; this computation, when activated, immediately evaluates to the value v. In order to represent these trivial computations we introduce a new constructor for guarded expressions, \mathbf{A} and the semantics of always is then captured by the rule:

$$
\frac{e \xrightarrow{\sqrt{ } \downarrow} e^{\prime}}{\text { always } e \xrightarrow{\tau} e^{\prime} \|[\mathbf{A v}]}
$$

Since $\mathbf{A} v$ immediately evaluates to the constant v we have:

$$
\overline{\mathbf{A} v \xrightarrow{\tau} v}
$$

The choice construct choose e is a choice between delayed computations as choose has the type A event $* A$ event $\rightarrow A$ event. To interpret it we introduce a new choice constructor $g e_{1} \oplus g e_{2}$ where $g e_{1}$ and $g e_{2}$ are guarded expressions of the same type. Then choose e proceeds by evaluating e until it can produce a value, which must be of the form $\left\langle\left[g e_{1}\right],\left[g e_{2}\right]\right\rangle$, and the evaluation continues by constructing the delayed computation $\left[g e_{1} \oplus g e_{2}\right]$. This is represented by the rule:

$$
\frac{e \xrightarrow[\text { choose } e]{ } \stackrel{\left.\mathcal{V}\left[g e_{1}\right],\left[g e_{2}\right]\right\rangle}{\longrightarrow} e^{\prime} \|\left[g e_{1} \oplus g e_{2}\right]}{\text { en }}
$$

The notation \oplus, introduced in [30], is unfortunate, as it is used in [14] to represent the internal choice between processes whereas here it represents external choice: we have the following auxiliary rules, which are the same as CCS summation:

$$
\frac{g e_{1} \xrightarrow{\alpha} e}{g e_{1} \oplus g e_{2} \xrightarrow{\alpha} e} \quad \frac{g e_{2} \xrightarrow{\alpha} e}{g e_{1} \oplus g e_{2} \xrightarrow{\alpha} e}
$$

This ends our informal description of the operational semantics of $\mu \mathrm{CML}$. We now summarise, giving the precise definitions of the new syntax. For the purposes of comparison with the reduction semantics of $\lambda_{c v}$, [30], it is convenient to view the extension to $\mu \mathrm{CML}$ in two stages. The first is obtained by adding the new syntactic category of guarded expressions, and two new constructors for values:

$$
\begin{aligned}
& v \in \operatorname{Val}::=\cdots|\langle v, v\rangle|[g e] \\
& g e \in \operatorname{GExp}:: \\
&=v!_{A} v|v ?| g e \Rightarrow v|g e \oplus g e| \Lambda \mid \mathbf{A} v
\end{aligned}
$$

The resulting language we call $\mu \mathrm{CML}^{c \nu}$, as it corresponds very closely to Reppy's $\lambda_{c v}$. A precise comparison is given in Section 6. The final language, $\mu \mathrm{CML}^{+}$, is obtained by extending $\mu \mathrm{CML}^{c v}$ with:

$$
e \in \operatorname{Exp}::=\cdots|g e| e \| e
$$

and type judgements for all the extra constructs is given in Figure 3.
The operational semantics is given as a set of transition relations over closed expressions from $\mu \mathrm{CML}^{+}$. These transition relations have as labels Label:

$$
a::=v!_{A} v\left|v ?_{A} x \quad \alpha::=a\right| \tau \quad l::=\alpha \mid \sqrt{ } v
$$

which are typed with judgements $\vdash l: A$ in Figure 4, and are defined to be the least relations satisfying the rules in Figure 2. The rules are divided into three parts. The first gives the set of context rules, showing when moves may be propagated through certain contexts; the second give the reduction rules while the third contains the axioms.

$$
\begin{gathered}
\frac{\Gamma \vdash v: A}{} \frac{\Gamma \vdash w: B}{\Gamma \vdash\langle v, w\rangle: A * B} \quad \frac{\Gamma \vdash g e: A}{\Gamma \vdash[g e]: A \text { event }} \\
\frac{\Gamma \vdash v: \text { chan }}{\Gamma \vdash v!_{A} w: \text { unit }} \quad \frac{\Gamma \vdash v: \text { chan }}{\Gamma \vdash v ?_{A}: A} \quad \frac{\Gamma \vdash g e: A \quad \Gamma \vdash v: A \rightarrow B}{\Gamma \vdash g e \Rightarrow v: B} \\
\frac{\Gamma \vdash g e_{1}: A \quad \Gamma \vdash g e_{2}: A}{\Gamma \vdash g e_{1} \oplus g e_{2}: A} \quad \frac{\Gamma \vdash \Lambda: A}{\Gamma \vdash \Lambda} \quad \frac{\Gamma \vdash v: A}{\Gamma \vdash \mathbf{A} v: A} \\
\frac{\Gamma \vdash e: A}{\Gamma \vdash e \| f: B}
\end{gathered}
$$

Figure 3. Type rules for extra $\mu \mathrm{CML}^{+}$constructs

$$
\overline{\Gamma \vdash \tau: A} \quad \frac{\Gamma \vdash v: \operatorname{chan} \quad \Gamma \vdash w: B}{\Gamma \vdash v!_{B} w: A} \quad \frac{\Gamma \vdash v: \operatorname{chan}}{\Gamma \vdash v ?_{B} x: A} \quad \frac{\Gamma \vdash v: A}{\Gamma \vdash \sqrt{ } v: A}
$$

Figure 4. Type rules for labels
It is worth pointing out that the context rules are asymmetric for the propagation of value production though the context $\|$; in $e \| f$ only the computation thread f can produce a value. This is in agreement with the reduction semantics of [30] where in a given state represented by a multi-set of expressions only one distinguished expression is allowed to produce a value. Also in the rule for application, the evaluation of $e f$ is somewhat more complicated than previously stated; values of functional type all involve the fix point operator and these fix points are automatically unfolded at the point of application.

We end this section with a Subject Reduction Theorem for our semantics:
THEOREM 2.1. For every closed expression e in $\mu C M L^{+}$

- if $e \xrightarrow{l} e^{\prime}$ and $\vdash e: A$ then $\vdash l: A$,
- if $e \xrightarrow{\tau} e^{\prime}$ and $\vdash e: A$ then $\vdash e^{\prime}: A$,
- if $e \xrightarrow{{ }^{\vee}} e^{\prime}$ and $\vdash e: A$ then $\vdash e^{\prime}: A$,
- if $e \xrightarrow{k^{?}{ }_{B} x} e^{\prime}$ and $\vdash e: A$ then $x: B \vdash e^{\prime}: A$, and
- if $e \xrightarrow{k!_{B} D} e^{\prime}$ and $\vdash e: A$ then $\vdash e^{\prime}: A$.

Proof. By rule induction on the inferences.

3 Weak Bisimulation Equivalence

In this section we demonstrate the usefulness of our operational semantics by providing $\mu \mathrm{CML}^{+}$with an appropriate version of bisimulation equivalence. We discuss a range of possible bisimulation based equivalences and eventually pro-
pose a new variation called hereditary bisimulation equivalence, which we feel is most suited to $\mu \mathrm{CML}^{+}$.

We first show how to adapt the notion of strong bisimulation equivalence to $\mu \mathrm{CML}^{+}$. Since our language is typed it is more convenient to define the equivalence in terms of type-indexed families of relations. Moreover since the operational semantics uses actions of the form $e \xrightarrow{k ?_{B} x} f$ where f may be an open expression we need to consider relations over open expressions. Let an open type-indexed relation \mathcal{R} be a family of relations $\mathcal{R}_{\Gamma, A}$ such that if $e \mathcal{R}_{\Gamma, A} f$ then $\Gamma \vdash e: A$ and $\Gamma \vdash f: A$. We will often elide the subscripts from relations, for example writing $e \mathcal{R} f$ for $e \mathcal{R}_{\Gamma, A} f$ when context makes the type obvious. Let a closed type-indexed relation \mathcal{R} be an open type-indexed relation where Γ is everywhere the empty context, and can therefore be elided. For any closed typeindexed relation \mathcal{R}, let its open extension \mathcal{R}° be defined as:

$$
e \mathcal{R}_{\vec{x}: \vec{A}, B}^{\circ} f \text { iff } e[\vec{v} / \vec{x}] \mathcal{R}_{B} f[\vec{v} / \vec{x}] \text { for all } \vdash \vec{v}: \vec{A} .
$$

A closed type-indexed relation \mathcal{R} is structure preserving iff:

- if $v \mathcal{R}_{A} w$ and A is a base type then $v=w$,
- if $\left\langle v_{1}, v_{2}\right\rangle \mathcal{R}_{A_{1} * A_{2}}\left\langle w_{1}, w_{2}\right\rangle$ then $v_{i} \mathcal{R}_{A_{i}} w_{i}$,
- if $\left[g e_{1}\right] \mathcal{R}_{A \text { event }}\left[g e_{2}\right]$ then $g e_{1} \mathcal{R}_{A} g e_{2}$, and
- if $v \mathcal{R}_{A \rightarrow B} v^{\prime}$ then for all $\vdash w: A$ we have $v w \mathcal{R}_{B} v^{\prime} w$.

With this notation we can now define strong bisimulations over $\mu \mathrm{CML}^{+}$expressions. A closed type-indexed relation \mathcal{R} is a first-order strong simulation iff it is structure-preserving and the following diagram can be completed:

Note the use of the open extension \mathcal{R}°. This means, for example, that if $e_{1} \mathcal{R} e_{2}$ we require that the move $e_{1} \xrightarrow{k ?{ }_{B} X} f_{1}$ be matched by a move $e_{2} \xrightarrow{k ? ?_{B} X} f_{2}$ where f_{2} is such that for all values v of the appropriate type $f_{1}[v / x] \mathcal{R} f_{2}[v / x]$. Thus in the terminology of [22] our definition corresponds to the late version of bisimulation.
\mathcal{R} is a first-order strong bisimulation iff \mathcal{R} and \mathcal{R}^{-1} are first-order strong simulations. Let \sim^{1} be the largest first-order strong bisimulation.
PROPOSITION 3.1. \sim^{1} is an equivalence.
Proof. Use diagram chases to show that if \mathcal{R} is a first-order strong simulation then so are I and $\mathcal{R} \mathcal{R}$. The result follows.
a ineory oj weak Disimulalion jor Core CIVI
13
Unfortunately, \sim^{1} is not a congruence for $\mu \mathrm{CML}^{+}$, since we have:

$$
\operatorname{add}(1,2) \sim^{1} \operatorname{add}(2,1)
$$

however, sending the thunked expressions on channel k we get:

$$
k!(\mathrm{fn} x \Rightarrow \operatorname{add}(1,2)) \not \chi^{1} k!(\mathrm{fn} x \Rightarrow \operatorname{add}(2,1))
$$

since the definition of strong bisimulation demands that the actions performed by expressions match up to syntactic identity. This counter-example can also be reproduced using only μ CML contexts:

$$
\operatorname{sync}(\operatorname{transmit}(k, \mathrm{fn} x \Rightarrow \operatorname{add}(1,2))) \chi^{1} \operatorname{sync}(\operatorname{transmit}(k, \mathrm{fn} x \Rightarrow \operatorname{add}(2,1)))
$$

since the lhs can perform the move:

$$
\operatorname{sync}(\operatorname{transmit}(k, \mathrm{fn} x \Rightarrow \operatorname{add}(1,2))) \xrightarrow{k!(\mathrm{fn} x \Rightarrow \operatorname{add}(1,2))}()
$$

but this can only be matched by the rhs up to strong bisimulation:

$$
\operatorname{sync}(\operatorname{transmit}(k, \mathrm{fn} x \Rightarrow \operatorname{add}(2,1))) \xrightarrow{k!(\mathrm{fn} x \Rightarrow \operatorname{add}(2,1))}()
$$

In fact, it is easy to verify that the only first-order strong bisimulation which is a congruence for $\mu \mathrm{CML}$ is the identity relation.

To find a satisfactory treatment of bisimulation for $\mu \mathrm{CML}$, we need to look to higher-order bisimulation, where the structure of the labels is accounted for. To this end, given a closed type-indexed relation \mathcal{R}, define its extension to labels \mathcal{R}^{l} as:

$$
\overline{\tau \mathcal{R}_{A}^{l} \tau} \quad \frac{v \mathcal{R}_{A} w}{\sqrt{ } v \mathcal{R}_{A}^{l} \sqrt{ } w} \quad \frac{v \mathcal{R}_{B} w}{k ?_{B} x \mathcal{R}_{A}^{l} k ?_{B} x} \quad \frac{k!_{B} v \mathcal{R}_{A}^{l} k!_{B} w}{}
$$

Then \mathcal{R} is a higher-order strong simulation iff it is structure-preserving and the following diagram can be completed:

Let \sim^{h} be the largest higher-order strong bisimulation.
PROPOSITION 3.2. \sim^{h} is a congruence.
Proof. Use a similar technique to the proof of Proposition 3.1 to show that \sim^{h} is an equivalence. To show that \sim^{h} is a congruence, define \mathcal{R} as:

$$
\mathcal{R}=\left\{(C[e], C[f]) \mid e \sim^{h} f\right\}
$$

and then show by induction on C that \mathcal{R} is a simulation. The result follows.

For many purposes, strong bisimulation is too fine an equivalence as it is sensitive to the number of reductions performed by expressions. This means it will not even validate elementary properties of β-reduction such as $\operatorname{Id} 0=0$ where Id denotes the identity function ($\mathrm{fn} x \Rightarrow x$). We require the looser weak bisimulation which allows τ-actions to be ignored.

This in turn requires some more notation. Let $\stackrel{\varepsilon}{\Longrightarrow}$ be the reflexive transitive closure of $\xrightarrow{\tau}$, and let \xrightarrow{l} be $\xrightarrow{\varepsilon} \xrightarrow{l}$ (i.e. any sequence of silent action followed by an l action). Note that we are not allowing silent actions after the l action. Let $\stackrel{\hat{l}}{\Longrightarrow}$ be $\stackrel{\varepsilon}{\Longrightarrow}$ if $l=\tau$ and \xlongequal{l} otherwise. Then \mathcal{R} is a first-order weak simulation iff it is structure-preserving and the following diagram can be completed:
e_{1}
l

l
e_{1}^{\prime}
$R \quad e_{2}$
as
e_{1}
l
l

e^{\prime}
R

Let \approx^{1} be the largest first-order strong bisimulation.
PROPOSITION 3.3. \approx^{1} is an equivalence.
Proof. Similar to the proof of Proposition 3.1.
Unfortunately, \approx^{1} is not a congruence, for the same reason as \sim^{1}, and so we can attempt the same fix. \mathcal{R} is a higher-order weak simulation iff it is structurepreserving and the following diagram can be completed:
$l_{1}{ }_{\square}$
$R \quad e_{2}$
as

Let \approx^{h} be the largest higher-order weak bisimulation.
PROPOSITION 3.4. \approx^{h} is an equivalence.
Proof. Similar to the proof of Proposition 3.1.
However, \approx^{h} is not a congruence, for the usual reason that weak bisimulation equivalence \approx is not a congruence for CCS summation. Recall from [20] that Nil $\approx \tau$. Nil but $k!0+$ Nil $\not \approx k!0+\tau$.Nil. We can duplicate this counter-example in $\mu \mathrm{CML}^{+}$since the CCS operator + corresponds to the $\mu \mathrm{CML}^{+}$operator \oplus and Nil corresponds to Λ. However \oplus may only be applied to guarded expressions and therefore we need a guarded expression which behaves like $\tau . N i l$; the required
a ineory oj weak disimuialion jor Core CNIL
11
expression is $\mathbf{A}[\Lambda] \Rightarrow$ sync. Thus:

$$
\Lambda \approx^{h} \mathbf{A}[\Lambda] \Rightarrow \text { sync }
$$

since the rhs has only one reduction:

$$
\begin{gathered}
\mathbf{A}[\Lambda] \Rightarrow \operatorname{sync} \\
\quad \xrightarrow{\tau} \operatorname{sync}[\Lambda] \\
\quad \stackrel{\tau}{\longrightarrow} \Lambda
\end{gathered}
$$

but:
because:

$$
\Lambda \oplus k!0 \not \nsim^{h}(\mathbf{A}[\Lambda] \Rightarrow \text { sync }) \oplus k!0
$$

$$
\begin{aligned}
& (\mathbf{A}[\Lambda] \Rightarrow \operatorname{sync}) \oplus k!0 \\
& \quad \xrightarrow{\tau} \operatorname{sync}[\Lambda] \\
& \quad \xrightarrow{\tau} \Lambda
\end{aligned}
$$

This counter-example can also be replicated using the restricted syntax of $\mu \mathrm{CML}$. We have:

$$
\text { never }() \approx^{h} \text { wrap }(\operatorname{always}(\text { never }()), \text { sync })
$$

since the lhs has only one reduction:

$$
\operatorname{never}() \xrightarrow{\sqrt{ }[\Lambda]} \Lambda
$$

and the rhs can match this with:

$$
\operatorname{wrap}(\text { always }(\text { never }()), \text { sync }) \xrightarrow{\sqrt{ }[\mathbf{A}[\Lambda] \Rightarrow \operatorname{sync}]} \Lambda
$$

and we have seen:

$$
\Lambda \approx^{h} \mathbf{A}[\Lambda] \Rightarrow \text { sync }
$$

However:

$$
\begin{aligned}
& \operatorname{sync}(\operatorname{choose}(\text { never }(), \operatorname{transmit}(k, 0))) \\
& \not \chi^{h} \operatorname{sync}(\operatorname{choose}(\operatorname{wrap}(\operatorname{always}(\operatorname{never}()), \operatorname{sync}), \operatorname{transmit}(k, 0)))
\end{aligned}
$$

since the lhs has only one reduction:

$$
\begin{aligned}
& \operatorname{sync}(\text { choose }(\text { never }(), \text { transmit }(k, 0))) \\
& \quad \tau \\
& \quad \Lambda \oplus k!0
\end{aligned}
$$

whereas the rhs has the reduction:

$$
\begin{aligned}
& \text { sync }(\text { choose }(\text { wrap }(\text { always }(\text { never }()), \text { sync }), \text { transmit }(k, 0))) \\
& \quad \xlongequal{\tau}(\mathbf{A}[\Lambda] \Rightarrow \text { sync }) \oplus k!0
\end{aligned}
$$

A first attempt to rectify this is to adapt Milner's observational equivalence for $\mu \mathrm{CML}$, and to define $=^{h}$ as the smallest symmetric relation such that the following diagram can be completed:

Proposition 3.5. $=^{h}$ is an equivalence.
Proof. Similar to the proof of Proposition 3.1.
This attempt fails, however, since it only looks at the first move of a process, and not at the first moves of any processes in its transitions. Thus, the above $\mu \mathrm{CML}$ counter-example for \approx^{h} being a congruence also applies to $=^{h}$. This failure was first noted by Thomsen [32] for CHOCS.

Thomsen's solution to this problem is to require that τ-moves can always be matched by at least one τ-move, which produces his definition of an irreflexive simulation as a structure-preserving relation where the following diagram can be completed:
e_{1}
l_{1}
R e
as

Let \approx^{i} be the largest irreflexive bisimulation.
Proposition 3.6. \approx^{i} is a congruence.
Proof. The proof that \approx^{i} is an equivalence is similar to the proof of Proposition 3.1. The proof that it is a congruence is similar to the proof of Theorem 4.7 in the next section.

However this relation is rather too strong for many purposes, for example $\operatorname{add}(1,2) \not \nsim i^{i} \operatorname{add}(1, \operatorname{add}(1,1))$ since the rhs can perform more τ-moves than the lhs. This is similar to the problem in CHOCS where a. $\tau . P \not \nsim^{i} a . P$.

In order to find an appropriate definition of bisimulation for $\mu \mathrm{CML}$, we observe that $\mu \mathrm{CML}$ only allows \oplus to be used on guarded expressions, and not on arbitrary expressions. We can thus ignore the initial τ-moves of all expressions except for guarded expressions. For this reason, we have to provide two equivalences: one on terms where we are not interested in initial τ-moves, and one on terms where we are.

A pair of closed type-indexed relations $\mathcal{R}=\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ form a hereditary simulation (we call \mathcal{R}^{n} an insensitive simulation and \mathcal{R}^{s} a sensitive simulation) iff \mathcal{R}^{s} is structure-preserving and we can complete the following diagrams:
$e_{1} \boldsymbol{R}^{n} \quad e_{2}$
as

and:

Let $\left(\approx^{n}, \approx^{s}\right)$ be the largest hereditary bisimulation.
In the operational semantics of expressions from $\mu \mathrm{CML}$ guarded expressions are introduced as components to Labels and never as residuals. This explains why in the definition of \approx^{n} labels are compared with respect to the sensitive relation \approx^{s} whereas the the insensitive relation is used for the residuals. For example, if $g e_{1} \approx^{n} g e_{2}$ then we have:

$$
\left(\mathrm{fn} x \Rightarrow g e_{1}\right) \approx^{n}\left(\mathrm{fn} x \Rightarrow g e_{2}\right)
$$

since once either side is applied to an argument, their first action will be a τ-step. On the other hand:

$$
\left[g e_{1}\right] \not \not^{n}\left[g e_{2}\right]
$$

THEOREM 3.7. \approx^{s} is a congruence for $\mu C M L^{+}$, and \approx^{n} is a congruence for $\mu C M L$.
Proof. The proof that \approx^{s} and \approx^{n} are equivalences is similar to the proof of Proposition 3.1. The proof that they form congruences is the subject of the next section.

Proposition 3.8. The equivalences on $\mu \mathrm{CML}^{+}$have the following strict in-
clusions:

Proof. For each inclusion, show that the first bisimulation satisfies the condition required to be the second form of bisimulation. To show that the inclusions are strict, we use the following examples:

$$
\begin{aligned}
(\mathrm{fn} x \Rightarrow \operatorname{add}(1,2)) & \sim^{h} \not \chi^{1}(\mathrm{fn} x \Rightarrow \operatorname{add}(2,1)) \\
1 & \approx^{1} \not \chi^{1} \text { let } x=1 \text { in } x \\
\operatorname{choose}(\text { receive } k, \operatorname{tau}(\text { receive } k)) & \approx^{i} \not \chi^{h} \operatorname{tau}(\text { receive } k) \\
\operatorname{add}(1,2) & \approx^{s} \not \chi^{i} \operatorname{add}(1, \operatorname{add}(1,1)) \\
1 & \approx^{n} \not \chi^{s} \text { let } x=1 \text { in } x \\
\operatorname{never}() & \approx^{h} \not \nsim^{n} \text { tau }(\text { never }()) \\
1 & \approx^{h} \not \neq^{h} \text { let } x=1 \text { in } x
\end{aligned}
$$

where:

$$
\operatorname{tau}=\mathrm{fn} x \Rightarrow \operatorname{wrap}(\text { always } x, \text { sync })
$$

(Note that this settles an open question [32] of Thomsen's as to whether \approx^{i} is the largest congruence contained in \approx^{h}.)
It is the operator \oplus which differentiates between the two equivalences \approx^{n} and \approx^{h}. However in order to demonstrate the difference we need to be able to apply \oplus to guarded expressions which can spontaneously evolve, i.e. perform τ-moves. The only $\mu \mathrm{CML}^{+}$constructor for guarded expressions which allows this is \mathbf{A}, and in turn occurrences of this can only be generated by the $\mu \mathrm{CML}$ constructor always. Therefore:
Proposition 3.9. For the subset of $\mu \mathrm{CML}^{+}$without always and \mathbf{A}, \approx^{n} is the same as \approx^{h}, and \approx^{s} is the same as $=^{h}$.

Proof. From Proposition $3.8 \approx^{n} \subseteq \approx^{h}$.

A ineory oj weak distmuiaion jor Core CNIL
21
For the subset of $\mu \mathrm{CML}^{+}$without always and \mathbf{A}, define \mathcal{R} as:

$$
\left\{(v, w) \mid v \approx^{h} w\right\} \cup\left\{\left(g e_{1}, g e_{2}\right) \mid g e_{1} \approx^{h} g e_{2}\right\} \cup\left\{\left(v_{1} w, v_{2} w\right) \mid v_{1} \approx^{h} v_{2}\right\}
$$

Then since no event without \mathbf{A} can perform a τ-move, and since the only initial moves of $v_{i} w$ are β-reductions, we can show that $\left(\approx^{h}, \mathcal{R}\right)$ form an hereditary bisimulation, and so $\approx^{h} \subseteq \approx^{n}$. From this it is routine to show that $\approx^{s}==^{h} . \quad \square$
Unfortunately we have not been able to show that \approx^{n} is the largest $\mu \mathrm{CML}$ congruence contained in weak higher-order bisimulation equivalence. However we do have the following characterisation:

THEOREM 3.10. \approx^{n} is the largest higher-order weak bisimulation which respects $\mu C M L$ contexts.
PROOF. By definition, \approx^{n} is a higher-order weak bisimulation, and we have shown that it respects $\mu \mathrm{CML}$ contexts. All that remains is to show that it is the largest such.

Let \mathcal{R} be a higher-order weak bisimulation which respects $\mu \mathrm{CML}$ contexts. Then define:

$$
\begin{aligned}
& \left.\left.\mathcal{R}^{n}=\mathcal{R} \cup\left\{v_{1} w, e_{2}\right) \mid v_{1} \mathcal{R} v_{2}, v_{2} w \xrightarrow{\tau} e_{2}\right\} \cup\left\{e_{1}, v_{2} w\right) \mid v_{1} \mathcal{R} v_{2}, v_{1} w \xrightarrow{\tau} e_{1}\right\} \\
& \mathcal{R}^{s}=\{(v, w) \mid v \mathcal{R} w\} \cup\left\{\left(g e_{1}, g e_{2}\right) \mid\left[g e_{1}\right] \mathcal{R}\left[g e_{2}\right]\right\} \cup\left\{\left(v_{1} w, v_{2} w\right) \mid v_{1} \mathcal{R} v_{2}\right\}
\end{aligned}
$$

We will now show that $\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ forms a hereditary simulation, from which we can deduce $R \subseteq R^{n} \subseteq \approx^{n}$.

First, we note that \mathcal{R}^{s} is structure preserving, and that $\mathcal{R}^{s l}=\mathcal{R}^{l}$.
Then we show that we can complete the required diagrams for $\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ to be a hereditary simulation. The only tricky case is if:

in which case, by the definition of $\mathcal{R}^{s},\left[g e_{1}\right] \mathcal{R}\left[g e_{2}\right]$, and since \mathcal{R} respects $\mu \mathrm{CML}$ contexts we have (for fresh k):

\angle
viuum гerreıra, ivaunew пепnessy ana нan sejfrey
and since \mathcal{R} is a higher-order weak bisimulation, we have:

which can be completed as:

but since $e_{1} \stackrel{k^{2} x}{\Longrightarrow}$ and $l_{1} \neq k ? x$, we have $e_{2} \stackrel{k \nmid x}{\Longrightarrow}$ and $l_{2} \neq k ? x$, and so:

The other cases are simpler, and so $\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ is a hereditary bisimulation. Thus $\mathcal{R} \subseteq \mathcal{R}^{n} \subseteq \approx^{n}$, and so \approx^{n} is the largest higher-order weak bisimulation which respects $\mu \mathrm{CML}$ contexts.

4 Bisimulation as a congruence

To serve as the basis of a useful semantic theory of $\mu \mathrm{CML}$, bisimulation should be preserved by all of the constructs of the language. In this section we will show that \approx^{s} is a congruence for $\mu \mathrm{CML}^{+}$, and that \approx^{n} is a congruence for $\mu \mathrm{CML}$.

Unfortunately, this proof is not straightforward, due to the higher-order nature of hereditary bisimulation. The problem is not unique to $\mu \mathrm{CML}$, and it occurs in many higher-order languages, for example Gordon's [11] operational semantics for the typed λ-calculus, Howe's [17] treatment of the lazy λ-calculus, and Thomsen's [32] Calculus of Higher-Order Communicating Systems (CHOCS).

The difficulty is in finding the right form of induction to use, when all of the standard inductions (for example on structure of terms, on number of τ-moves, on structure of proof) fail. For example, the proof of congruence for CHOCS [32, Prop. 6.6] adapts Milner's technique [20, Theorem 8, p. 155] but uses a non-wellfounded induction. It seems that any inductive proof that weak bisimulation is a

н aneory oj weak disimulauon jor Core CIVIL
$\angle 0$
congruence for higher-order languages requires an induction on both syntax and proof structure. The usual methods of performing nested induction fail in this case, and so another method of performing simultaneous induction is required. Fortunately this is achieved by a technique developed for the lazy λ-calculus by Howe [17].

We shall apply Howe's technique to show that \approx^{s} is a congruence for $\mu \mathrm{CML}^{+}$, and that \approx^{n} is a congruence for $\mu \mathrm{CML}^{+}$without $[g e]$ and $g e_{1} \oplus g e_{2}$. This particular application is made complicated by the fact that we have to deal a pair of relations, $\left(\approx^{n}, \approx^{s}\right)$ which are defined in terms of each other. So although we follow the general proof method used in [17] and the notation of [11], the various technical definitions about relations which follow will apply to pairs of relations of the form $\mathcal{R}=\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ with $\mathcal{R}^{s} \subseteq \mathcal{R}^{n}$. We will continue to apply the usual operations associated with relations, such as composition, under the assumption that such operations are applied pointwise.

Define a context to be given by the grammar:

$$
\begin{aligned}
& C::=\cdot_{i}|e| c C \mid \text { if } C \text { then } C \text { else } C|(C, C)| \text { let } x=C \text { in } C \\
&|C C| \text { fix }(x=\mathrm{fn} y \Rightarrow C) \mid\langle C, C\rangle \\
&|[C]| C!_{A} C\left|C ?_{A}\right| C \Rightarrow C|C \oplus C| \mathbf{A C | C \| C}
\end{aligned}
$$

Let $C[\vec{e}]$ be the term given by replacing each 'hole' $\cdot i$ by the term e_{i} (unlike substitution, we allow for capture of free variables). An equivalence \mathcal{R} is an congruence iff $e_{i} \mathcal{R} f_{i}$ implies $C[\vec{e}] \mathcal{R} C[\vec{f}]$.

Define a uneventful context to be one which does not use $[C]$ or $C \oplus C$, that is one given by the grammar:

$$
\begin{gathered}
C_{n}::={ }_{i}|e| c C_{n} \mid \text { if } C_{n} \text { then } C_{n} \text { else } C_{n}\left|\left(C_{n}, C_{n}\right)\right| \text { let } x=C_{n} \text { in } C_{n} \\
\left|C_{n} C_{n}\right| \operatorname{fix}\left(x=\mathrm{fn} y \Rightarrow C_{n}\right) \mid\left\langle C_{n}, C_{n}\right\rangle \\
\left|C_{n}!_{A} C_{n}\right| C_{n} ?_{A}\left|C_{n} \Rightarrow C_{n}\right| \mathbf{A} C_{n} \mid C_{n} \| C_{n}
\end{gathered}
$$

An equivalence \mathcal{R} is an uneventful congruence iff $e_{i} \mathcal{R} f_{i}$ implies $C_{n}[\vec{e}] \mathcal{R} C_{n}[\vec{f}]$. Note that any $\mu \mathrm{CML}$ context is an uneventful context, and so any uneventful congruence is a congruence for $\mu \mathrm{CML}$. So we concentrate on showing that \approx^{s} is a congruence, and \approx^{n} is an uneventful congruence.

Define the one-level deep contexts with the grammar:

$$
\begin{aligned}
& D::=x|l| c \cdot{ }_{1} \mid \text { if } \cdot{ }_{1} \text { then } \cdot{ }_{2} \text { else } \cdot{ }_{3}\left|\left(\cdot{ }_{1}, \cdot \cdot_{2}\right)\right| \text { let } x=\cdot{ }_{1} \text { in } \cdot{ }_{2} \\
& \left|\cdot \cdot_{1} \cdot 2\right| \operatorname{fix}\left(x=\mathrm{fn} y \Rightarrow \cdot \cdot_{1}\right) \mid\left\langle\cdot{ }_{1}, \cdot{ }_{2}\right\rangle \\
& \left|\left[\cdot{ }_{1}\right]\right| \cdot{ }_{1}!_{A} \cdot 2\left|\cdot{ }_{1} ?_{A}\right| \cdot{ }_{1} \Rightarrow \cdot{ }_{2}\left|\cdot{ }_{1} \oplus \cdot{ }_{2}\right| \mathbf{A} \cdot{ }_{1}\left|\cdot{ }_{1}\right| \mid \cdot \cdot_{2}
\end{aligned}
$$

Let D_{n} range over uneventful one-level deep contexts.
For any pair of relations $\mathcal{R}=\left(\mathcal{R}^{n}, \mathcal{R}^{s}\right)$ with $\mathcal{R}^{s} \subseteq \mathcal{R}^{n}$, let its compatible
$\angle 4$
refinement, $\widehat{\mathcal{R}}$ be defined:

$$
\begin{aligned}
\widehat{\mathcal{R}}^{n}= & \left\{\left(D_{n}[\vec{e}], D_{n}[\vec{f}]\right) \mid e_{i} \mathcal{R}^{n} f_{i}\right\} \cup \widehat{\mathcal{R}}^{s} \\
\widehat{\mathcal{R}}^{s}= & \left\{(D[\vec{e}], D[\vec{f}]) \mid e_{i} \mathcal{R}^{s} f_{i}\right\} \\
& \cup\left\{(\operatorname{fix}(x=\mathrm{fn} y \Rightarrow e), \operatorname{fix}(x=\mathrm{fn} y \Rightarrow f)) \mid e \mathcal{R}^{n} f\right\}
\end{aligned}
$$

This definition is rather different from Howe's and Gordon's definition of $\widehat{\mathcal{R}}=$ $\left\{(D[\vec{e}], D[\vec{f}]) \mid e_{i} \mathcal{R} f_{i}\right\}$. The differences are that:

- \approx^{n} is not a congruence, it is only an uneventful congruence, so we only close $\widehat{\mathcal{R}}^{n}$ under uneventful one-level deep contexts rather than arbitrary one-level deep contexts,
- we want to maintain the invariant that for all pairs of relations we consider, $\mathcal{R}^{s} \subseteq \mathcal{R}^{n}$, hence we include $\widehat{\mathcal{R}}^{s}$ in the definition of $\widehat{\mathcal{R}}^{n}$, and
- if two insensitive bisimilar expressions are thunked, the resulting expressions are sensitive bisimilar; for this reason the proof of Theorem 4.7 requires $\mathrm{fix}(x=\mathrm{fn} y \Rightarrow e) \widehat{\mathcal{R}}^{s} \mathrm{fix}(x=\mathrm{fn} y \Rightarrow f)$ when $e \mathcal{R}^{n} f$.
PROPOSITION 4.1. If \mathcal{R} is an equivalence and $\widehat{\mathcal{R}} \subseteq \mathcal{R}$, then \mathcal{R}^{s} is a congruence and \mathcal{R}^{n} is an uneventful congruence.

Proof. A variant of the proof in [11, 17]. Show by induction on C that if $e_{i} \mathcal{R}^{s} f_{i}$ then $C[\vec{e}] \mathcal{R}^{s} C[\vec{f}]$. Either $C=\cdot_{i}$, in which case the result is immediate, or $C=D[\vec{C}]$ and by induction $C_{i}[\vec{e}] \mathcal{R}^{s} C_{i}[\vec{f}]$, so by definition $C[\vec{e}]=D[\vec{C}[\vec{e}]] \widehat{\mathcal{R}}$ $D[\vec{C}[\vec{f}]]=C[\vec{f}]$. It follows that \mathcal{R}^{s} is a congruence. The proof that \mathcal{R}^{n} is an uneventful congruence is similar.

For any \mathcal{R}, its compatible closure, \mathcal{R}^{\bullet}, is given by:

$$
\frac{e \widehat{\mathcal{R}^{\bullet}} e^{\prime} \mathcal{R}^{\circ} e^{\prime \prime}}{e \mathcal{R} \cdot e^{\prime \prime}}
$$

Note that $\mathcal{R}^{\bullet s} \subseteq \mathcal{R}^{\bullet n}$.
This definition of \mathbb{R}^{\bullet} is specifically designed to facilitate simultaneous inductive proof on syntax (since the definition involves one-level deep contexts) and on reductions (since the definition involves inductive use of \mathcal{R}°). This form of induction is precisely what is required to show the desired congruence results.

Its relevant properties are summed up in the following proposition.
Proposition 4.2. If \mathcal{R}° is a preorder then \mathcal{R}^{\bullet} is the smallest relation satisfying:

1. $\mathcal{R}^{\bullet} \mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet}$,
2. $\widehat{R}^{\bullet} \subseteq \mathcal{R}^{\bullet}$, and
3. $\mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet}$.

Proof. A variant of the proof in [11].
First we show that \mathcal{R}^{\bullet} is reflexive, by showing by structural induction on e that $e \mathcal{R}^{\bullet s} e$. Find $D[\vec{e}]$ such that $e=D[\vec{e}]$, so by induction $e_{i} \mathcal{R}^{\bullet s} e_{i}$, so by definition of $\widehat{\mathcal{R}}, e=D[\vec{e}] \widehat{\mathcal{R}}^{s} D[\vec{e}] \mathcal{R}^{S \circ} D[\vec{e}]=e$.

Then we show the required properties:

1. $\mathcal{R}^{\bullet} \mathcal{R}^{\circ} \subseteq \widehat{\mathcal{R}^{\bullet}} \mathcal{R}^{\circ} \mathcal{R}^{\circ} \subseteq \widehat{\mathcal{R}^{\bullet}} \mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet}$.
2. $\widehat{R}^{\bullet} \subseteq \widehat{R}^{\bullet} \mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet}$.
3. $\mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet} \mathcal{R}^{\circ} \subseteq \mathcal{R}^{\bullet}$.

To see that \mathcal{R}^{\bullet} is the smallest relation satisfying these properties we show that if \mathcal{S} satisfies these properties, then $\widehat{\mathcal{S}}^{\circ} \subseteq \mathcal{S} \mathcal{R}^{\circ} \subseteq \mathcal{S}$, and so $\mathcal{R}^{\bullet} \subseteq \mathcal{S}$.
Since $\widehat{\mathcal{R}^{\bullet}} \subseteq \mathcal{R}^{\bullet}$, we know from Proposition 4.1 that if \mathcal{R}^{\bullet} is an equivalence then \mathcal{R}^{s} is a congruence and \mathcal{R}^{n} is an uneventful congruence. However, we can show a stronger result than that, which is that \mathcal{R}^{\bullet} is closed under substitution of closed values:
Proposition 4.3. If \mathcal{R} is a preorder then for any $v \mathcal{R}^{\bullet s} w$:

1. if e $\mathcal{R}^{\bullet s} f$ then $e[v / x] \mathcal{R}^{\bullet s} f[w / x]$, and
2. if $e \mathcal{R}^{\bullet n} f$ then $e[v / x] \mathcal{R}^{\bullet n} f[w / x]$.

Proof. A variant of the proof in $[11,17]$. We shall prove the first part, and the second is similar.

We proceed by induction on e.

- If $e=x$ then $x \mathcal{R}^{s \circ} f$, so $e[v / x]=v \mathcal{R}^{\bullet s} w \mathcal{R}^{s \circ} f[w / x]$ so by Proposition 4.2 $e[v / x] \mathcal{R}^{\bullet s} f[w / x]$.
- If $e=\mathrm{fix}\left(y=\mathrm{fn} z \Rightarrow e_{1}\right)$ then we can find a g_{1} such that $e_{1} \mathcal{R}^{\bullet n} g_{1}$ and fix $(y=$ fn $\left.z \Rightarrow g_{1}\right) \mathcal{R}^{s \circ} f$, so by induction $e_{1}[v / x] \mathcal{R}^{\bullet n} g_{1}[w / x]$, so $e[v / x]=$ fix $(y=$ $\left.\mathrm{fn} z \Rightarrow e_{1}[v / x]\right) \widehat{\mathcal{R}}^{s} \mathrm{fix}\left(y=\mathrm{fn} z \Rightarrow g_{1}[w / x]\right) \mathcal{R}^{s \circ} f[w / x]$, so by definition of $\mathcal{R}^{\bullet}, e[v / x] \mathcal{R}^{\bullet s} f[w / x]$.
- Otherwise, we have $e=D[\vec{e}]$ and $D[\vec{e}][v / x]=D[\vec{e}[v / x]]$, so we can find \vec{g} such that $\vec{e} \mathcal{R}^{\bullet s} \vec{g}$ and $D[\vec{g}] \mathcal{R}^{s \circ} f$, so by induction $e_{i}[v / x] \mathcal{R}^{\bullet s} f_{i}[w / x]$, hence $e[v / x]=D[\vec{e}][v / x]=D[\vec{e}[v / x]] \widehat{\mathcal{R}}^{s} D[\vec{f}[w / x]]=D[\vec{f}][w / x] \mathcal{R}^{s \circ} f[w / x]$, so by definition of $\mathcal{R}^{\bullet}, e[v / x] \mathcal{R}^{\bullet s} f[w / x]$.

Our proof strategy is to show that \approx° and \approx^{\bullet} coincide. Since $\approx^{\circ} \subseteq \approx^{\bullet}$, this amounts to showing that $\approx^{\bullet} \subseteq \approx^{\circ}$, which we do by proving that \approx^{\bullet}, when restricted to programs, is a hereditary simulation.

PROPOSITION 4.4. When restricted to closed expressions of $\mu C M L^{+}, \approx^{\bullet}$ is a hereditary simulation.

Proof. We have to show that $\approx^{\bullet s}$ is structure-preserving, and that the diagrams for a hereditary simulation can be completed.

Showing that $\approx{ }^{\bullet s}$ is structure preserving is a routine structural induction. If:

then we proceed by induction on e to show that we can complete the diagram as:

where $l_{1} \approx{ }^{\bullet s l} l_{2}$, and similarly for $\approx{ }^{\bullet s}$. We shall show three of the more interesting cases, the others are similar but more routine:

- if we have:

where $e_{i} \approx{ }^{\bullet n} g_{i}$ and $e_{1} \xrightarrow{\sqrt{ } v} e_{1}^{\prime}$, then by induction $g_{1} \xrightarrow{\sqrt{ }} g_{1}^{\prime}, v \approx \bullet s w$ and $e_{1}^{\prime} \approx^{\bullet n} g_{1}^{\prime}$, so using Proposition 4.3, we have:

- if we have:

 $g_{1}^{\prime}, v \approx^{\bullet s} w$, up to α-conversion $w=\mathrm{fix}\left(x=\mathrm{fn} y \Rightarrow g_{3}\right)$, and $e_{1}^{\prime} \approx^{\bullet n} g_{1}^{\prime}$. Then by the definition of \approx^{\bullet}, we can find an $v^{\prime}=\operatorname{fix}\left(x=\mathrm{fn} y \Rightarrow h_{3}\right)$ such that $e_{3} \approx^{\bullet n} h_{3}$ and $v^{\prime} \approx^{s} w$, so by Proposition 4.3, $e_{3}[v / x] \approx^{\bullet n} h_{3}\left[v^{\prime} / x\right] \approx^{n \circ} v^{\prime} y \approx^{n \circ}$ $w y \approx^{n \circ} g_{3}[w / x]$, and so:

- if we have:

where $e_{1} \approx^{\bullet n} g_{1}$ then let $v=\mathrm{fix}\left(x=\mathrm{fn} y \Rightarrow g_{1}\right)$, so:

Thus \approx^{\bullet} is a hereditary simulation.
We now have that \approx^{\bullet} is a simulation, and we would like to show that it is a bisimulation, for which it suffices to show that \approx^{\bullet} is symmetric. Unfortunately, this is not easy to prove directly, and so we use a result of Howe's [18] (pointed out to the authors by Andrew Pitts) which allows us to show that $\approx^{\bullet *}$ is symmetric.
$\angle 0$

viluam rerreira, viaunew пепnessy ana Aıan sejfrey

Proposition 4.5. If \mathcal{R} is an equivalence then $\mathcal{R}^{\bullet *}$ is symmetric.
Proof. A variant of the proof in [18].
It suffices to show that if $e \mathcal{R}^{\bullet s} f$ then $f \mathcal{R}^{\bullet s^{*}} e$, and that if $e \mathcal{R}^{\bullet n} f$ then $f \mathcal{R}^{\bullet n *} e$, which we show by induction on e. If $e \mathcal{R}^{\bullet s} f$, then either:
$\bullet e=D[\vec{e}] \widehat{\mathcal{R}}^{\bullet s} D[\vec{f}] \mathcal{R}^{s \circ} f$ and $e_{i} \mathcal{R}^{\bullet s} f_{i}$, so by induction $f_{i} \mathcal{R}^{\bullet s *} e_{i}$, so $f \widehat{\mathcal{R}}^{s}$ $D[\vec{f}] D \widehat{\mathcal{R}}^{s *}[\vec{e}]=e$, or

- $e=\mathrm{fix}\left(x=\mathrm{fn} y \Rightarrow e^{\prime}\right) \widehat{\mathcal{R}}^{\bullet} \mathrm{fix}\left(x=\mathrm{fn} y \Rightarrow f^{\prime}\right) \mathcal{R}^{\text {s॰ }} f$ and $e^{\prime} \mathcal{R}^{\bullet n} f^{\prime}$, so by induction $f^{\prime} \mathcal{R}^{\bullet n *} e^{\prime}$, so $f \widehat{\mathcal{R}}^{s} \operatorname{fix}\left(x=\mathrm{fn} y \Rightarrow f^{\prime}\right) \mathcal{R}^{\bullet s^{*}} \mathrm{fix}\left(x=\mathrm{fn} y \Rightarrow e^{\prime}\right)=e$.

The proof for \mathcal{R}^{n} is similar.
We can use this result to show that $\approx^{\bullet *}$ is a bisimulation.
PROPOSITION 4.6. When restricted to closed expressions of $\mu C M L^{+}, \approx^{\bullet *}$ is a hereditary bisimulation.

Proof. By Proposition 4.4, \approx^{\bullet} is a hereditary simulation, and so $\approx^{\bullet *}$ is a hereditary simulation. By Proposition $4.5, \approx^{\bullet}$ is symmetric, and so \approx^{\bullet} is a hereditary bisimulation

This gives us the result we set out to prove
THEOREM 4.7. \approx^{s} is a congruence, and \approx^{n} is an uneventful congruence.
Proof. From Proposition $4.6, \approx^{\bullet}$ is a hereditary bisimulation, so $\approx^{\bullet} \subseteq \approx^{\circ}$, and by Proposition $4.2 \approx^{\circ} \subseteq \approx^{\bullet}$, so \approx^{\bullet} and \approx° are the same relation. Since $\widehat{\approx^{\bullet}} \subseteq \approx^{\bullet}$, we have the desired result by Proposition 4.1.

5 Properties of Weak Bisimulation

In this section, we show some results about program equivalence up to hereditary weak bisimulation. Some of these equivalences are easy to show, but some are trickier, and require properties about the transition systems generated by $\mu \mathrm{CML}^{+}$ Although much remains to be done on elaborating the algebraic theory of $\mu \mathrm{CML}$ programs we hope that the results in this section indicate that this equivalence can form the basis of a useful theory which generalises those associated with process algebras and functional programming.

We have given an operational semantics to μ CML by extending it with new constructs, most of which correspond to constructs found in standard process algebras. These include a choice operator \oplus, a parallel operator $\|$ and suitable versions of input and output prefixing, [20]. The prefixes in $\mu \mathrm{CML}^{c v}$ have a
a ineory of weak disimulalion jor Core Civi
slightly unusual syntax-their equivalents in CCS are given as:

CCS prefix	$\mu C M L^{c v}$ equivalent
$k ? x . P$	$k ? \Rightarrow \mathrm{fn} x \Rightarrow P$
$k!v . P$	$k!v \Rightarrow \mathrm{fn} x \Rightarrow P$
$\tau . P$	$\mathbf{A}() \Rightarrow \mathrm{fn} x \Rightarrow P$

We now examine the extent to which \oplus and $\|$ act like choice and parallel operators from a process algebras

We can find bisimulations for the following (and hence they are sensitive bisimilar):

$$
\begin{aligned}
\Lambda \| e & \sim^{1} e \\
\left(e_{1} \| e_{2}\right) \| e_{3} & \sim^{1} e_{1} \|\left(e_{2} \| e_{3}\right) \\
\left(e_{1} \| e_{2}\right) \| e_{3} & \sim^{1}\left(e_{2} \| e_{1}\right) \| e_{3}
\end{aligned}
$$

Thus \|| satisfies many of the standard laws associated with a parallel operator in a process algebra. However it is not in general symmetric because of its interaction with the production of values:

$$
v \| e \sim^{1} e
$$

For example:

$$
1\left\|\Lambda \sim^{1} \Lambda \quad \Lambda\right\| 1 \sim^{1} 1
$$

This means that we can view the parallel composition of processes as being of the form:

$$
\left(\| e_{i}\right) \| f
$$

where the order of the e_{i} is unimportant. Note that it is important which is the right-most expression in a parallel composition, since it is the main thread of computation, and so can return a value, which none of the other expressions can.

The choice operator of $\mu \mathrm{CML}^{+}$also satisfies the expected laws from process algebras, those of a commutative monoid, although it can only be applied to guarded expressions:

$$
\begin{aligned}
\Lambda \oplus g e & \sim^{1} g e \\
\left(g e_{1} \oplus g e_{2}\right) \oplus g e_{3} & \sim^{1} g e_{1} \oplus\left(g e_{2} \oplus g e_{3}\right) \\
g e_{1} \oplus g e_{2} & \sim^{1} g e_{2} \oplus g e_{1}
\end{aligned}
$$

This means that we can view the sum of guarded expressions as being of the form:
where the order of the $g e_{i}$ is unimportant.
In fact guarded expressions can be viewed in a manner quite similar to the sum forms used in the development of the algebraic theory of CCS, [20]. We can find bisimulations for the following (and hence they are sensitive bisimilar):

$$
\begin{aligned}
\left(g e_{1} \oplus g e_{2}\right) \Rightarrow v & \sim^{1}\left(g e_{1} \Rightarrow v\right) \oplus\left(g e_{2} \Rightarrow v\right) \\
g e \Rightarrow \mathrm{fn} x \Rightarrow x & \approx^{s} g e \\
\mathbf{A} v & \approx^{s} \mathbf{A}() \Rightarrow \mathrm{fn} x \Rightarrow v
\end{aligned}
$$

From this, we can show, by structural induction on that all guarded expressions are of a given form:

$$
g e \approx^{s} \bigoplus_{i} g e_{i} \Rightarrow v_{i}
$$

where each $g e_{i}$ is either $k_{i}!v_{i}, k_{i}$? or $\mathbf{A}()$. From this and:

$$
c v \approx^{1} \delta(c, v)
$$

we can show that all values $\vdash v: A$ event are of the form:

$$
v \approx^{n} \operatorname{choose}\left[\operatorname{wrap}\left(e_{1}, v_{1}\right), \ldots, \operatorname{wrap}\left(e_{n}, v_{n}\right)\right]
$$

where e_{n} is either transmit $\left(k_{i}, v_{i}\right)$, receive k_{i}, or always () .
We could continue in this manner emulating the algebraic theory of CCS, for example with expansion theorems for guarded expressions or values of event type. However we leave this for future work.

We now turn our attention to $\mu \mathrm{CML}$ viewed as a functional language. One would not expect β-reduction in its full generality in a language with side-effects such as $\mu \mathrm{CML}$ but we do obtain an appropriate call-by-value version:

$$
(\mathrm{fn} y \Rightarrow e) v \approx^{1} e[v / y]
$$

We also have expected laws such as:

$$
\begin{gathered}
\operatorname{fst}(e, v) \approx^{1} e \\
\operatorname{snd}(v, e) \approx^{1} e \\
(\operatorname{fix}(x=\mathrm{fn} y \Rightarrow e)) v \approx^{1} e[\mathrm{fix}(x=\mathrm{fn} y \Rightarrow e) / x][v / y] \\
\operatorname{let} x=v \operatorname{in} e \approx^{1} e[v / x] \\
\text { let } y=(\text { let } x=e \operatorname{in} f) \operatorname{in} g \approx^{1} \text { let } x=e \text { in }(\text { let } y=f \text { in } g) \quad \text { where } x \notin f v(g)
\end{gathered}
$$

The last two equations are of particular interest, since they are exactly the left unit and associativity axioms of Moggi's [23] monadic metalanguage. The right unit equation:

$$
\text { let } x=e \text { in } x \approx^{n} e
$$

is not so simple to show, and indeed if e were an arbitrary labelled transition
system then it would not be true, as can be seen by:

$\not *^{n}$

Λ
(This is the same example which makes SKIP not act as a right unit for ; in CSP [15] and exit not act as a right unit for \gg in LOTOS [1].) Fortunately, we can show that our operational semantics for $\mu \mathrm{CML}$ satisfies four properties which allow us to show the right unit equation.

A labelled transition system is single-valued iff:

It is value deterministic iff:

It is forward commutative iff:

3
viluam rerreira, viaunew пеппеssy ana ныаи נejرrey
It is backward commutative iff:

Note in particular that LOTOS and CSP do not satisfy forward commutativity, which is why their sequential composition operators do not have a right unit. However, μ CML does satisfy these conditions.
Proposition 5.1. μ CML satisfies single-valuedness, value determinacy, forward commutativity and backward commutativity.

Proof. A routine induction on syntax.
The important property which such lts's satisfy is the following, where we assume the existence of the operator $\|$.
Proposition 5.2. In any single-valued, value deterministic, forward commutative, backward commutative lts, if $e \xrightarrow{\sqrt{ } \nu} e^{\prime}$ then $e \approx^{1} e^{\prime} \| v$.

Proof. Use the properties of the lts to establish that the following is a first-order weak bisimulation:

$$
\left\{\left(e, e^{\prime} \| v\right) \mid e \xrightarrow{\sqrt{ } v} e^{\prime}\right\} \cup\left\{\left(e^{\prime}, e^{\prime} \| \Lambda\right) \mid e \xrightarrow{\sqrt{ } v} e^{\prime}\right\}
$$

The result follows.
As a corollary to this proposition, it is routine to show that the following is a first-order weak bisimulation:

$$
\{(e, \text { let } x=e \text { in } x)\} \cup \approx^{1}
$$

So we have the right unit equation we were looking for:

$$
e \approx^{1} \text { let } x=e \text { in } x
$$

These equations enable us to define a categorical model for μ CML where:

- objects are types,
- morphisms between A and B are typed expressions with one free variable $x: A \vdash e: B$, viewed up to weak bisimulation,
- the identity morphism is $x: A \vdash x: A$, and
- composition is $(x: A \vdash e: B) ;(y: B \vdash f: C)=(x: A \vdash$ let $y=e$ in $f: C)$.

A a neory of vreak disimulatuon jor core civi
The equations for weak bisimulation discussed above show that morphism composition is associative and has the identity as both a left unit and right unit. Thus $\mu \mathrm{CML}$ forms a category.

Again we leave the investigation of the properties of this category to future work but we should point out that so far we have been unable to cast it as an instance of general categorical framework of [23].

6 Comparing $\mu \mathbf{C M L}^{+}$and $\lambda_{c v}$

In section 2 we presented the operational semantics of a subset of CML, as a labelled transition system, in order that we might investigate its behavioural properties. In this section we shall make formal connection between this semantics and the reduction semantics for $\lambda_{c v}$ presented in [30]. We have not considered $\lambda_{c v}$ in its entirety and so the comparison will be confined to the common subset, namely $\mu \mathrm{CML}^{c \nu}$. We first reproduce, as faithfully as possible, the reduction semantics of Reppy as it applies to $\mu \mathrm{CML}$. From this reduction semantics we then derive a labelled transition system for μ CML expressions and our main theorem states that this labelled transition system (up to first-order weak bisimulation) is the same as ours. In fact the more technical results we derive connecting the two semantics would support a much closer relationship but expressing it would involve developing yet another bisimulation based equivalence.

Before presenting the operational semantics and our main theorem we clarify the differences between $\lambda_{c v}$ and $\mu \mathrm{CML}^{c v}$:

- We do not consider the $\lambda_{c v}$ constructs guard and wrapAbort. We conjecture that the operational semantics of $\mu \mathrm{CML}$ would need to be considerably altered to cope with translating these constructs.
- We omit the $\lambda_{c v}$ construct chan x ine since we cannot encode unique channel name generation in $\mu \mathrm{CML}$. It should not be difficult to add unique channel name generation to $\mu \mathrm{CML}$ using operational rules à la π-calculus, although this would require using a bisimulation similar to Sangiorgi's [31] context bisimulation for the higher-order π-calculus.
- We have added recursive function types to $\mu \mathrm{CML}^{c v}$ because in [30] recursion is encoded using process creation and unique channel name generation.
- In $\lambda_{c v}$, constant functions such as wrap are values, where in μ CML they have to be coded as ($\mathrm{fn} x \Rightarrow$ wrap x). This restriction has no effect on the expressive power of $\mu \mathrm{CML}$, and makes it simpler to reason about the operational semantics, since any value of type $A \rightarrow B$ must be of the form $\operatorname{fix}(x=\mathrm{fn} y \Rightarrow e)$.

We now present Reppy's reduction semantics for $\mu \mathrm{CML}^{c v}$. In [30] this is represented by a transition relation between multi-sets of $\mu \mathrm{CML}^{c v}$, or more generally
$\lambda_{c v}$ expressions. Instead of multi-sets we use configurations of $\mu \mathrm{CML}^{c v}$ expressions given by the grammar:

$$
C \in \operatorname{Conf}::=e|C \| C| \Lambda
$$

Note that configurations are restricted forms of $\mu \mathrm{CML}^{+}$expressions. This will facilitate the comparison between the two semantics since it can be carried out for configurations rather than $\mu \mathrm{CML}$ expressions.

The semantics of [30] is expressed as a reduction relation \Longrightarrow between configurations and reductions have four independent sources. The first involves a sequential reduction within an individual $\mu \mathrm{CML}$ expression and this in turn is defined using another reduction relation \longmapsto; the second is the spawning of new computation threads which results in an increase in the number of components of the configuration; the third is communication between two expressions and the last is required to handle the always construct. We need notation for each of these and we consider them in turn.

The operational rules for sequential reduction are defined in context in the style of Wright and Felleisen [33], and the contexts that permit reduction are given by the following grammar:

$$
E::=[\cdot]|E e| v E|c E|(E, e)|(v, E)| \text { let } x=E \text { in } e \mid \text { if } E \text { then } e \text { else } e
$$

The relation \longmapsto is defined to be the least relation satisfying the following rules:

$$
\begin{aligned}
E[c v] & \longmapsto E[\delta(c v)] & (c \notin\{\text { spawn, sync }\}) & \\
& \begin{array}{c}
\text { const } \\
E[(\mathrm{fix}(x=\mathrm{fn} y \Rightarrow e)) v]
\end{array} & \longmapsto E[e[\mathrm{fix}(x=\mathrm{fn} y \Rightarrow e) / x][v / y]] & \\
E[\operatorname{let} x=v \text { in } e] & \longmapsto E[e[v / x]] & & \frac{\text { beta }}{\text { let }} \\
E[(v, w)] & \longmapsto E[\langle v, w\rangle] & & \underline{\text { pair }}
\end{aligned}
$$

Here each rule corresponds to a basic computation step in a sequential call-byvalue language. We should point out that the last rule does not appear in [30], it is implicit in Reppy's statement "the syntactic class of the term $\left(v_{1}, v_{2}\right)$ is either Exp or Val; this ambiguity is resolved in favour of Val." We have made the grammar unambiguous, and have added an explicit reduction rule for resolving ambiguity.

Note that the definition of \longmapsto is not compositional: the reductions of an expression are not defined in terms of the reductions of its sub-expressions. The following Lemma will be useful in later proofs and shows that we can recover compositionality.

Lemma 6.1. If $e \longmapsto e^{\prime}$ then $E[e] \longmapsto E\left[e^{\prime}\right]$.
PROOF. By examination of the proof of the transition $e \longmapsto e^{\prime}$.
To capture reductions which involve communication it is necessary to define a notion of when two guarded expressions may give rise to a communication. For

Figure 5a. The rules for matching events

Figure 5b. The rules for immediate evaluation of events
any k the relation:

$$
g e \stackrel{k}{\bowtie} g e^{\prime} \text { with }\left(e, e^{\prime}\right)
$$

read as " $g e$ matches $g e^{\prime}$ on k with result $\left(e, e^{\prime}\right)$ " is defined to be the least relation satisfying the rules in Figure 5a. Intuitively this means that two concurrent threads e_{1}, e_{2} of the form $e_{1}=E_{1}[\operatorname{sync}[g e]], e_{2}=E_{2}\left[\operatorname{sync}\left[g e^{\prime}\right]\right]$ may communicate in one step on the channel k with $E_{1}[e]$ and $E_{2}\left[e^{\prime}\right]$ being the result of this communication.

To handle reductions caused by always we need to formalise when guarded expressions such as $\mathbf{A} v$ can immediately return values. This is given by Reppy's relation $g e \triangleright e$, is defined in Figure 5b.

We can now formally present the reduction relation \Longrightarrow between configurations. It is defined to be the least relation satisfying the rules:

$$
\begin{gather*}
\frac{e_{i} \longmapsto e_{i}^{\prime}}{\left(e_{1}\|\cdots\| e_{i}\|\cdots\| e_{n}\right) \Longrightarrow\left(e_{1}\|\cdots\| e_{i}\|\cdots\| e_{n}\right)} \\
\frac{\left(e_{1}\|\cdots\| E[\operatorname{spawn} v]\|\cdots\| e_{n}\right) \Longrightarrow\left(e_{1}\|\cdots\| v()\|E[()]\| \cdots \| e_{n}\right)}{g e \bowtie g e^{\prime} \text { with }\left(e, e^{\prime}\right)} \\
\frac{\left.g e e^{\prime}\right)}{\left(e_{1}\|\cdots\| E[\operatorname{sync}[g e]]\|\cdots\| E^{\prime}\left[\operatorname{sync}\left[g e^{\prime}\right]\right]\|\cdots\| e_{n}\right)} \\
\Longrightarrow\left(e_{1}\|\cdots\| E[e]\|\cdots\| E^{\prime}\left[e^{\prime}\right]\|\cdots\| e_{n}\right) \\
\left(e_{1}\|\cdots\| E[\operatorname{sync}[g e]]\|\cdots\| e_{n}\right) \Longrightarrow\left(e_{1}\|\cdots\| E[e]\|\cdots\| e_{n}\right) \tag{eval}
\end{gather*}
$$

This completes our exposition of Reppy's semantics as it applies to $\mu \mathrm{CML}^{c v}$, which for convenience we call the $\mu \mathrm{CML}^{c v}$ semantics. We refer to that in Sec-
tion 2 as the $\mu \mathrm{CML}^{+}$semantics and we now compare them. In order to do this, we extract a labelled transition system from the $\mu \mathrm{CML}^{c v}$ semantics by defining:

$$
\begin{aligned}
& C \stackrel{\tau}{\longrightarrow} C^{\prime} \text { iff } C \Longrightarrow C^{\prime} \\
& C \xrightarrow{\sqrt{ } v} C^{\prime} \text { iff } C=C^{\prime \prime} \| v \text { and } C^{\prime}=C^{\prime \prime} \| \Lambda \text { (up to } \| \text { associativity and } \Lambda \text { left unit) } \\
& C \xrightarrow{k!!} C^{\prime} \text { iff } C\left\|k ? \Longrightarrow C^{\prime}\right\| v \\
& C \xrightarrow{\text { k? 2 }} C^{\prime} \text { iff } C\left\|k!x \Longrightarrow C^{\prime}\right\|()
\end{aligned}
$$

We will then show that this labelled transition system is weakly bisimilar to the $\mu \mathrm{CML}^{+}$lts:
THEOREM 6.2. The $\mu C M L^{c v}$ semantics of a configuration is weakly bisimilar to its $\mu C M L^{+}$semantics.

The remainder of this section is devoted to proving this result. Although the style of presentation of these two semantics are very different the resulting relations are very similar and there are essentially only two sources for the differences. The first is that certain reductions in $\mu \mathrm{CML}^{c v}$, when modelled in the $\mu \mathrm{CML}^{+}$semantics, require in addition some 'housekeeping' reductions. A typical example is the reduction:

$$
(\mathrm{fn} x \Rightarrow e) v \longmapsto e[v / x]
$$

In $\mu \mathrm{CML}^{+}$this requires two reductions:

$$
(\mathrm{fn} x \Rightarrow e) v \xrightarrow{\tau} \text { let } x=v \text { in } e \xrightarrow{\tau} e[v / x]
$$

This problem is handled by identifying the set of 'housekeeping' reductions, such as the second reduction above, within the $\mu \mathrm{CML}^{+}$semantics. These turn out to be very simple and we can work with 'housekeeping normal forms' in which no further housekeeping reductions can be made.

The second divergence between the semantics concerns the treatment of spawn; expressions in $\mu \mathrm{CML}^{+}$may spawn new processes which give rise to parallel processes occurring as sub-terms of the expression. For example, the reductions of (spawn v, e) in $\mu \mathrm{CML}^{+}$and $\mu \mathrm{CML}^{c v}$ are:

$$
\begin{aligned}
& (\operatorname{spawn} v, e) \xrightarrow{\tau}(\Lambda\|v()\|(), e) \\
& (\text { spawn } v, e) \stackrel{\tau}{\longmapsto} v() \|((), e)
\end{aligned}
$$

This difference is handled by working with the $\mu \mathrm{CML}^{c v}$ semantics up to a syntactically defined equivalence; this equivalence is contained in strong bisimulation equivalence and it also preserves housekeeping reductions.

We now explain in some more detail these technical developments; most of the associated proofs are relegated to an Appendix. House-keeping reductions are ones derived using the rules:

$$
\begin{aligned}
\frac{e \xrightarrow{\sqrt{ }[g e)} e^{\prime}}{\text { synce } \stackrel{\tau}{\longrightarrow} e^{\prime} \| g e} & \frac{e \xrightarrow{\sqrt{ } v} e^{\prime}}{(e, f) \xrightarrow{\tau} e^{\prime} \| \operatorname{let} x=f \text { in }\langle v, x\rangle} \\
& \frac{e \xrightarrow{\sqrt{ } V} e^{\prime}}{e f \xrightarrow{\tau} e^{\prime} \| \operatorname{let} y=f \text { in } g[v / x]}[v=\mathrm{fix}(x=\mathrm{fn} y \Rightarrow g)]
\end{aligned}
$$

We shall write $e \stackrel{\tau_{H}}{ } e^{\prime}$ whenever $e \xrightarrow{\tau} e^{\prime}$ is a housekeeping reduction.
It is routine to verify that the housekeeping moves are 'semantically unimportant', as is captured by the next proposition:
Proposition 6.3. If $e \xrightarrow{\tau_{H}} e^{\prime}$ then $e \approx^{1} e^{\prime}$.
Proof. Construct a weak bisimulation for each case
Moreover, we can show a confluence result for the $\mu \mathrm{CML}^{+}$semantics about housekeeping moves:

Proof. First show by induction on $g e$ that $g e \xrightarrow{\tau_{\mu}}$. Then prove by induction on e, using forward commutativity, that if $e \xrightarrow{\tau_{H}} e^{\prime}$ and $e \xrightarrow{l} e^{\prime \prime}$ are distinct reductions then we can find $e^{\prime \prime \prime}$ such that $e^{l} \xrightarrow{l} e^{\prime \prime \prime}$ and $e^{\prime \prime} \xrightarrow{\tau_{H}} e^{\prime \prime \prime}$. The result follows.
Call a term 'tidy' if it has no housekeeping reductions. Then we can show that every $\mu \mathrm{CML}^{+}$term has a unique tidy normal form.

Proposition 6.5. For any $\mu C M L^{+}$term e there is a unique tidy e^{\prime} such that $e \xrightarrow{\tau_{H}}{ }^{*} e^{\prime}$.
Proof. Show by induction on e that there is some tidy e^{\prime} such that $e \xrightarrow[\tau_{H} *]{ } e^{\prime}$. From Proposition 6.4, this e^{\prime} is unique.
We now turn our attention to the syntactic equivalence used to handle the different treatments of spawn. In order to define the equivalence \equiv it is convenient to introduce reduction contexts for $\mu \mathrm{CML}^{+}$, equivalent to those for $\mu \mathrm{CML}^{c v}$:
$E^{+}::=[\cdot]\left|E^{+} e\right| c E^{+}\left|\left(E^{+}, e\right)\right|$ let $x=E^{+}$in $e \mid$ if E^{+}then e else $e\left|E^{+}\|e \mid e\| E^{+}\right.$
In the Appendix we show that these satisfy the natural properties one would expect of reduction contexts. Let \equiv be the smallest equivalence given by equivalence given by:

$$
\overline{E^{+}[\Lambda \| e] \equiv E^{+}[e]} \quad \overline{E_{1}^{+}\left[E_{2}^{+}[e \| f]\right] \equiv E_{1}^{+}\left[e \| E_{2}^{+}[f]\right]}
$$

The equivalence \equiv is a strong first-order bisimulation which respects housekeeping, that is a relation \mathcal{R} where we can complete the diagram:
$\left.\tau_{H}\right|_{i} ^{e_{1}}$
as

and similarly for \mathcal{R}^{-1}.
PROPOSITION 6.6. \equiv is a strong first-order bisimulation which respects housekeeping.

Proof. See the Appendix
We can also show a very strong correspondence between reductions of $\mu \mathrm{CML}^{c \nu}$ configurations, and their tidy normal forms.
Proposition 6.7. If $C \xrightarrow{\tau_{H}} * e$ and e is tidy, then the following diagrams can be completed:

as

and:

as

Proof. See the Appendix.
With these technical results we can now prove the main result showing the correspondence between the two semantics:
THEOREM 6.8. The $\mu C M L^{c v}$ semantics of a configuration is weakly bisimilar to its $\mu C M L^{+}$semantics.
Proof. Intuitively we know, from Proposition 6.3, that $\mu \mathrm{CML}^{+}$expressions are semantically equivalent to their tidy forms, and Proposition 6.7 can be used

А a neory oj veak disimulaton jor core civi
כ
to transform $\mu \mathrm{CML}^{c v}$ moves from an expression into $\mu \mathrm{CML}^{+}$moves of its tidy form up to \equiv, and vice-versa. Formally we show that $\xrightarrow{\tau_{H} *} \equiv \stackrel{\tau_{H}}{\stackrel{\tau_{H}}{ }}$ is a weak bisimulation by completing the diagram:

by using Proposition 6.5 to find e_{1} 's tidy form e_{2}, and then using Propositions 6.4, 6.6 and 6.7 to show:

and by completing the diagram:

by using Proposition 6.5 to find e_{1} 's tidy form e_{3} and then using Propositions

40
6.4, 6.6 and 6.7 to show:

The result follows.

7 Conclusions

In this paper we have defined a compositional operational semantics for a core subset of CML, called μ CML, and used it to develop at least the beginnings of an algebraic theory of CML programs based on an appropriate version of weak bisimulation equivalence. The operational semantics required an extension of the language to $\mu \mathrm{CML}^{+}$although it is worth pointing out that all of the added constructs can be defined in the core language $\mu \mathrm{CML}$ up to weak bisimulation equivalence:

Much research remains to be done. The algebraic theory of $\mu \mathrm{CML}$, started in Section 5, needs to be developed to the extent that it can be used to characterise the semantic equivalence \approx^{n}. More generally both the operational semantics and the semantic equivalence should be extended to incorporate more of the features of CML. Of particular interest is the generation of new channel names. We believe that our operational semantics can be adapted to handle new channel generation but the semantic equivalence would need to be changed to an appropriate adaptation of context bisimulation equivalence, [31].

As pointed out in Section 3 our semantic equivalence, \approx^{n}, is based on the late version of bisimulations, [22]. This fits in quite well with the functional nature of CML but nevertheless it would be of interest to consider other variations. One can easily define an early version of \approx^{n} or versions where silent moves are allowed to occur after a matching \xrightarrow{l} move. However we have been unable to adapt Howe's method to show that these equivalences are preserved by μ CML contexts.

In Section 3, we were forced to develop the theory of hereditary bisimulations because of the usual problems of τ actions resolving choice. In the sublanguage without always and \mathbf{A}, we showed that weak bisimulation coincided with insensitive hereditary bisimulation, and so has a simpler and more elegant theory. This
a a neory oj veak disimulaton jor core civi
41
theory has been investigated by the first author [8]. In this theory, it is possible to use CSP rather than CCS summation, and so weak bisimulation is respected by all contexts. As a side-effect of this, it is possible to remove the syntactic restriction that [ge] can only be applied to guarded expressions. The third author has shown [19] that the resulting semantics can be presented in terms of Moggi's [23] monadic type system.

There has already been a considerable amount of research into the foundations of CML and related languages. Much of this is concerned with developing more detailed type systems, where types contain information on the behaviour of expressions as they evolve, [24]. Here we confine our remarks to work directly concerned with the development of semantic theories. We have already given a detailed comparison with the operational semantics given in [29, 30]. This semantics has been used in [5] to study an implementation of ML reference types using process generation. If we extend our approach to include channel generation then we could hope to give an algebraic treatment of their results. In $[6,7]$ there are a number of different semantics given to languages related to CML. A denotational semantics is given using the concept of "dynamic types" but it has not yet been related to any operationally based equivalence. An operational semantics is also given for a language called $F P I$. This contains many CML features but the author notes that accommodating any spawn or fork operator would be difficult. In $[13,3]$ the spawn operator is studied within the context of process algebras. The former gives a two-level operational semantics for a simple "pure" process algebra with fork and uses this to develop a semantic equivalence based on strong bisimulation; an axiomatisation is also given using an auxiliary operator called forked. The latter shows how the various algebraic theories of $A C P$ can be adapted to support the addition of a spawn operator. This contains an lts based operational semantics for $A C P+$ spawn and their treatment of spawn has been used in [9] to give an operational semantics of a language which can be considered to be an untyped version of $\mu \mathrm{CML}$. However bisimulation based equivalences are not developed in [9]; instead a testing equivalence is defined [14] and a fully-abstract denotational semantics based on Acceptance Trees is given.

Other languages which contain much in common with CML include CHOCS [32], FACILE [10], PICT [26], ACTORS [2] and HO [31]. Most of these are endowed with an operational semantics some of which are similar in spirit to ours. However we feel that our treatment of spawn and delayed computations is novel and hope that it can be used to good effect with other languages. Many of these languages also have associated with them bisimulation based semantic equivalences. Section 3 may be viewed as an extension of the research in [32] and the new equivalence \approx^{n} can easily be adopted to languages such as CHOCS and FACILE. We have also already indicated that when we extend $\mu \mathrm{CML}$ to in-
$4 \angle$
vuluam rerreira, ivaunew пепnessy ana нan נejfrey
clude channel generation it will be necessary to adopt the context bisimulation equivalence, originally developed in [31]. In short although semantic theories are being developed independently for these languages many of the techniques developed will find more general application.

Appendix

This section is devoted to the proof of Proposition 6.6 and Proposition 6.7. But first we need some auxiliary results. The following three Propositions state elementary properties of the reduction contexts for $\mu \mathrm{CML}^{+}$, introduced in Section 6 and we omit the proofs; they all use structural induction on contexts:
Proposition A.1. If $e \xrightarrow{\alpha} e^{\prime}$ then $E^{+}[e] \xrightarrow{\alpha} E^{+}\left[e^{\prime}\right]$.
Proposition A.2. If $E_{1}^{+}[e] \xrightarrow{l} f$ then either:

- $f=E_{2}^{+}[e]$ and for all $g, E_{1}^{+}[g] \xrightarrow{l} E_{2}^{+}[g]$, or
- $f=E_{2}^{+}\left[e^{\prime}\right], e \xrightarrow{l^{\prime}} e^{\prime}$, and for all $g \xrightarrow{l^{\prime}} g^{\prime}, E_{1}^{+}[g] \xrightarrow{l} E_{2}^{+}\left[g^{\prime}\right]$.

Proposition A.3. For any E there is an E^{+}such that for all $e, E[e] \xrightarrow{\tau_{H}} * E^{+}[e]$.
With these we can now prove Proposition 6.6:
Proposition A.4. \equiv is a strong first-order bisimulation which respects housekeeping.
PROOF. First observe that an alternative definition of \equiv is as the smallest equivalence given by:

$$
\begin{array}{ccc}
\overline{\Lambda \| e \equiv e} \quad \overline{(e \| f)\|g \equiv e\|(f \| g)} & \overline{e\|(f \| g) \equiv f\|(e \| g)} \\
\overline{(e \| f) g \equiv e \|(f g)} & \overline{c(e \| f) \equiv e \|(c f)} & \overline{(e \| f, g) \equiv e \|(f, g)}
\end{array}
$$

$$
\begin{gathered}
\overline{\text { let } x=e \| f \text { in } g \equiv e \| \text { let } x=f \text { in } g \quad} \quad \overline{\text { if } e \| f \text { then } g \text { else } h \equiv e \| \text { if } f \text { then } g \text { else } h} \\
\frac{e \equiv f}{E[e] \equiv E[f]}
\end{gathered}
$$

Then show by induction on the proof of this alternative that \equiv satisfies the required properties to be a first-order strong bisimulation which preserves housekeeping.
The next result shows that the auxilarly predicates used in the reduction semantics of $\mu \mathrm{CML}^{c v}, \Longrightarrow$, have their exact counterparts in the $\mu \mathrm{CML}^{+}$semantics:
Proposition A.5.

1. ge $\xrightarrow{k!v} e$ iff $g e \stackrel{k}{\bowtie} k$? with (e, v),
2. $g e \xrightarrow{k ? x} e$ iff $g e \stackrel{k}{\bowtie} k!x$ with $(e,())$,
3. $g e \xrightarrow{\tau} e$ iff $g e \triangleright e$, and
4. if $g e_{1} \stackrel{k}{\bowtie} g e_{2}$ with $\left(e_{1}, e_{2}\right)$ then $g e_{i} \xrightarrow{k!v} e_{i}$ and $g e_{j} \xrightarrow{k ? v} e_{j}$.

Proof. A routine structural induction.
We these results we can now give the proof of Proposition 6.7, which for convenience we restate:
a ineory oj weak Disimulalion jor Core CVIL
40
Proposition A.6. If $C \xrightarrow{\tau_{H}} * e$ and e is tidy, then the following diagrams can be completed:

and:

Proof. The first diagram is completed by case analysis of $C \stackrel{l}{\longmapsto} C^{\prime}$. We shall prove some of the cases, as the others are similar.

- If $C \stackrel{\tau}{\longmapsto} C^{\prime}$ from the const rule, then $C=E_{1}^{+}\left[E_{2}[c v]\right]$ and $C^{\prime}=E_{1}^{+}\left[E_{2}[c v]\right.$. Then by Propositions A. 1 and A.3:

- If $C \xrightarrow{\stackrel{ }{ } \nu} C^{\prime}$ then $C=C^{\prime \prime} \| v$ and $C^{\prime}=C^{\prime \prime} \| \Lambda$, so:

- If $C \xrightarrow{\text { k!v }} C^{\prime}$ then (from the definition of $C \xrightarrow{k!v} C^{\prime}$ and the comm rule) $C=E_{1}^{+}\left[E_{2}[\operatorname{sync}[g e]]\right], C=$ $E_{1}^{+}\left[E_{2}[e]\right]$, and $g e \stackrel{k}{\bowtie} k$? with (e, v), so by Proposition A.5, ge $\xrightarrow{k!v} e$, and so by Propositions A. 1 and A.3:

The second diagram is completed by induction on C. We shall prove some of the cases, as the others are similar.

If $C=E[f], E$ is a one-level deep reduction context for both $\mu \mathrm{CML}^{+}$and $\mu \mathrm{CML}^{c v}, e=E[g]$, $f \xrightarrow{\tau_{H}} * g, e^{\prime}=E\left[g^{\prime}\right]$ and $g \xrightarrow{\alpha} g^{\prime}$ then by induction $f \stackrel{l}{\longrightarrow} C^{\prime} \xrightarrow{\tau_{H}} * f^{\prime} \equiv g^{\prime}$ and we can show by

44

induction on E that $E[g] \stackrel{l}{\longleftrightarrow} \equiv E[C]$ so by Propositions 6.6:

Otherwise:

- If $C=c f$ then $f \xrightarrow{\tau_{H}} * g, g$ is tidy and $c g \xrightarrow{\tau_{H}} * e$, so either:
- $c=$ sync, $e=g^{\prime} \| g e, g \xrightarrow{\sqrt{ }[g e]} g^{\prime}$, and $f \xrightarrow{\tau_{H} *} g$, so by induction and the definition of ${ }^{\sqrt{ } \vee}$, $f=g=[g e]$ and $g^{\prime}=\Lambda$, so $e^{\prime}=\Lambda \| g^{\prime \prime}$ and $g e \xrightarrow{\alpha} g^{\prime \prime}$, so by Proposition A.5, sync $[g e] \longmapsto g^{\prime \prime}$, and so:

- $c=$ spawn, $e=\operatorname{spawn} g, e^{\prime}=g^{\prime}\|v()\|()$ and $g \xrightarrow{\sqrt{ } v} g^{\prime}$, so by induction and the definition of $\stackrel{\downarrow v}{\longrightarrow}, f=g=v$ and $g^{\prime}=\Lambda$, and so:

- or $e^{\prime}=g^{\prime} \| \delta(c, v)$ and $g \xrightarrow{\sqrt{ } v} g^{\prime}$, so by induction and the definition of $\stackrel{\sqrt{ } v}{\longrightarrow}, f=g=v$ and $g^{\prime}=\Lambda$, and so:

- If $C=f_{1} f_{2}$ then $f_{1} \xrightarrow{\tau_{H}} * g_{1} \xrightarrow{\sqrt{ } v} g_{1}^{\prime}$ where $v=\operatorname{fix}\left(x=\mathrm{fn} y \Rightarrow g_{3}\right), f_{2} \xrightarrow{\tau_{H}}{ }^{*} g_{2}, e=g_{1}^{\prime} \|$ let $y=$ g_{2} in $g_{3}[v / x]$, so by induction and the definition of $\stackrel{\rightharpoonup v}{\longrightarrow}, f_{1}=g_{1}=v$ and $g_{1}^{\prime}=\Lambda$, and so either:
- $e^{\prime}=g_{1}^{\prime} \|$ let $y=g_{2}^{\prime}$ in $g_{3}[v / x]$ and $g_{2} \xrightarrow{\alpha} g_{2}^{\prime}$ so by induction (up to associativity of $\|$ and Λ being a left unit), $f_{2} \stackrel{\alpha}{\longrightarrow} C^{\prime}\left\|f_{2}^{\prime} \xrightarrow{\tau_{H}^{* \circ}} f_{3}\right\| f_{2}^{\prime \prime} \equiv g_{2}^{\prime}$, and so:

- or $e^{\prime}=g_{1}^{\prime}\left\|g_{2}^{\prime}\right\| g_{3}[v / x][w / y]$ and $g_{2} \xrightarrow{\sqrt{ } w} g_{2}^{\prime}$, so by induction and the definition of $\stackrel{\sqrt{ } v}{ }$, $f_{2}=g_{2}=w$ and $g_{2}^{\prime}=\Lambda$, and so:

The result follows

References

[1] ISO 8807. LOTOS-A formal description technique based on the temporal ordering of observational behaviour, 1989.
[2] G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation. J. Functional Programming, 1994.
[3] J. C. M. Baeten and F. W. Vaandrager. An algebra for process creation. Acta Informatica, 29(4):303-334, 1992
[4] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction. Theoret. Comput. Sci., 37:77-121, 1985
[5] Dave Berry, Robin Milner, and David N. Turner. A semantics for ML concurrency primitives. In Proc. POPL 92, 1992.
[6] Dominique Bolignano and Mourad Debabi. A semantic theory for concurrent ML. In Proc. TACS '94, 1994.
[7] M. Debabi. Integration de Paradigmes de Programmation Paralle, Fonctionnelle et Imperative. Ph.D thesis, Universite D'Orsay, 1994.
[8] William Ferreira. Semantic Theories for Concurrent ML. D.Phil thesis, COGS, Sussex Univ., 1995. In preparation.
[9] William Ferreira and Matthew Hennessy. Towards a semantic theory of CML. Technical report 95:02, COGS, Sussex Univ., 1995
10] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concurrent and functional programming. In Proc. Tapsoft 89, volume 352 of LNCS, pages 184-209. SpringerVerlag, 1989.
[11] Andrew Gordon. Bisimilarity as a theory of functional programming. In Proc. MFPS 95, number 1 in Electronic Notes in Comp. Sci. Springer-Verlag, 1995.
[12] Carl Gunter. Semantics of Programming Languages. MIT Press, 1992.
[13] K. Havelund. The Fork Calculus: Towards a Logic for Concurrent ML. Ph.D thesis, École Normale Superieur, Paris, 1994.
[14] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
15] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[16] Sören Holmström. PFL: A functional language for parallel programming. In Proc. Declarative Programming Workshop, pages 114-139, 1983.
[17] Douglas Howe. Equality in lazy computation systems. In Proc. LICS 89, pages 198-203, 1989.
[18] Douglas Howe. Proving congruence of simulation orderings in functional languages. Unpublished manuscript, 1992.
[19] Alan Jeffrey. A fully abstract semantics for a concurrent functional language with monadic types. In Proc. LICS 95, pages 255-264, 1995.
[20] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[21] Robin Milner. The polyadic π-calculus: a tutorial. In Proc. International Summer School on Logic and Algebra of Specification, Marktoberdorf, 1991.
[22] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile proceses. Inform. and Comput., 100(1):1-77, 1992.
[23] Eugenio Moggi. Notions of computation and monad. Inform. and Comput., 93:55-92, 1991.
[24] F. Nielson and H. R. Nielson. From CML to process algebras. Report DAIMI FN-19, Dept. Comp. Sci., Aarhus University, 1993.
[25] Sivaswami Nikhil. Id Reference Manual. MIT Lab. for Comp. Sci., 1990.
[26] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-calculus. Technical report in preparation; available electronically from http://www.cl.cam.ac.uk/users/bcp1000/ftp/index.html, 1995.
[27] Gordon Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoret. Comput. Sci., 1:125-159, 1975.
[28] John Reppy. A higher-order concurrent langauge. In Proc. SIGPLAN 91, pages 294-305, 1991.
[29] John Reppy. An operational semantics of first-class synchronous operations. Technical report TR 91-1232, Dept. Comp. Sci., Cornell Univ., 1991.
[30] John Reppy. Higher-Order Concurrency. Ph.D thesis, Cornell Univ., 1992.
[31] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms. Ph.D thesis, LFCS, Edinburgh Univ., 1992.
[32] Bent Thomsen. A theory of higher order communicating systems. Inform. and Comput., 116(1):38-57, 1995
[33] A. Wright and M. Felleisen. A syntactic approach to type soundness. Technical report TR91160, Dept. of Comp. Sci., Rice Univ., 1991.

[^0]: Copyright © 1995 William Ferreira, Matthew Hennessy and Alan Jeffrey.
 This work is carried out in the context of EC BRA 7166 CONCUR 2.
 William Ferreira was funded by a CASE studentship from British Telecom

