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Introduction

This report contains two papers which use categorical methods

to present accounts of concurrency{theoretic material. In both cases the

aim has been to uncover essential underlying structure by giving a suitably

universal characterisation of it.

The �rst paper, A Functorial Semantics for Observed Concur-

rency, is joint work with Axel Poign�e (GMD St. Augustin), and was done

during this author's Royal Society Fellowship at the GMD. It presents

a unifying account of concurrency theories based on the idea of observ-

ing systems over time. This material �rst appeared in [1], and the paper

appearing here is a slightly modi�ed version of op. cit.

The second paper presented here, Process Synchronisation as

Glueing, is joint work with Stefano Kasangian (Venice) and Anna Labella

(Rome), gives a model of processes with multiway synchronisation �a la

CSP. This account is parametric, being based on glued forests of trees,

and thus can be instantiated as a variety of interleaving or `true concur-

rency' models depending on how the forest is read as a transition system

(or, more generally, behavioural structure). A satisfactory account of pro-

cess synchronisation is given as a glueing construction over forests, and

other process combinators are universally characterised. The paper pre-

sented here concentrates on showing how the glueing construction works

at a relatively concrete level: a more comprehensive discussion, treating

additionally notions of behaviour and equivalence, and giving further de-

tails on the modelling of the process combinators, will appear in a later

paper.

On a more personal note, to conclude, it is my hope that the

use of categories will continue to grow in concurrency theory. One feels a

certain hostility to their use in some quarters, akin one supposes to the

hostility most new and challenging mathematical tools face: only time

will tell if this is a luddite reaction as one often supposes or a reasoned

criticism.

David Murphy,

Brighton,

Easter 1994.

[1] D. Murphy and A. Poign�e, A Functorial Semantics for Observed Con-

currency, in the Proceedings of Mathematical Foundations of Com-

puter Science (MFCS) 1992, Springer-Verlag LNCS 629.



A Functorial Semantics for Observed Concurrency

David Murphy and Axel Poign�e

28th April, 1994

Abstract

This paper presents a meta-model of observation in concur-

rency theory; it allows us to unify notions of observation in

many di�erent behavioural settings. We treat traces, pro-

cess trees and event structures, and show how observations

of them �t into a common framework. Behaviour and obser-

vation will both be modeled as categories and linked using

the notions of `functor' and `adjunction'.

Timing will be our chief example of observation;

we present a timed traces model, and show how it general-

ises to timed process trees (branching time) and timed `true

concurrency.' Our general framework sees timing as a way

of embedding observations into time. Stable categories of

embeddings are then natural metamodels of timed observa-

tion.

I always console myself with the thought that whatever can be

known of me is by de�nition not me, is hetronomous to my au-

thentic being, since the subject cannot be captured in an objective

representation.

Terry Eagleton

x1. Introduction

Concurrency theory is now a large area; there are many con-

currency theories, and many notions of `concurrent system.' This paper

is a contribution towards unifying this chaos; we provide a meta-model

of concurrency. In particular, the notion of `behaviour',|what a system
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does,|is separated from `observation',|what can be seen of it. These two

notions are formulated as categories and linked using adjunctions, giving

a model that specialises to several well{known concurrency theories.

The rest of the paper is structured thus; in the rest of this sec-

tion we provide some background. Then, as a motivating example, we

present the essentials of a timed traces model. The elementary mechanics

of the meta-model are then presented. We next show how to tweak the

parameters of our meta-model to get timed process trees and timed true

concurrency versions. Finally we re�ne the meta-model and show that the

category of all models enjoys good logical properties.

x1.1. The Conceptual Framework

The notions of observation and behaviour have always been cent-

ral to concurrency theory, and are inextricably intertwined. Various ideas

of behaviour have been proposed: traces, which record information about

the sequence of events a system might display to an observer; branch-

ing time models, which also capture information about the states which

can display di�erent behaviour on di�erent executions; and so{called `true

concurrency' models which also record information about the distribution

of states or happenings: these are all important examples. Surveys of

various models are given by Pnueli

[

22

]

, the �rst author

[

20

]

and, for the

timed case, Je�rey

[

13

]

.

The aim of this paper is to make the connection between be-

haviour and observation more precise and more abstract. Central to the

notion of observation is a concept of time: we need to know at least when

one observation happens after another, so we shall concentrate on observ-

ers who note when as well as what happens. Our elementary observations,

then, will be of the form `an event e happens at time t', for a suitably ab-

stract idea of time. We shall explain the way the nature of the behaviour

observed gives structure to these elementary observations. This structur-

ing often gives rise to a canonical observer; one with the least structure

necessary to see anything that might happen. Various `worst case' pro-

cesses, for which all of this observer's power is necessary, are found to be

already well{known for other reasons.

This work requires a rather broader understanding of the notion

of `time' than is conventional. Time gives structure to observations (a

point �rst explicitly made by Russell, but which has its roots in the think-

ing of Leibnitz: see

[

1

]

and

[

26

]

), and so must be the same kind of object

as an (extended) observation. Thus branching time observations give rise

to branching time, `true' concurrency to many `strands' of time and so

3



on. Worst case processes correspond to observing `all the time' and hence

de�ne the structure of time appropriate to that kind of observation.

Our main result is to de�ne various observers and to show that

they are canonical with respect to certain types of behaviour; traces,

branching time and true concurrency. This makes the relationship between

behaviour and observation somewhat clearer. We then give a general

framework of which all of our examples are instances and which provides

pleasing general structure.

x2. A Timed Traces Model

A basic notion of behaviour given in Hoare's

[

12

]

is that of a trace:

the behaviour of (an execution of) a concurrent system is represented by

a sequence of actions:

De�nition 1. Given a set of possible actions a process P might engage

in, A, the set of traces of P , tr(P ), is a subset of the set of all possible

sequences of actions tr(P ) � A

�

.

Each occurrence of an action a in a given trace s can be identi�ed

uniquely by its position in the trace, so we can assume as given a set of

unique or L{labeled occurrences of actions, E = L�A. This set of events,

with typical members e; f, will be more convenient to work with than A.

x2.1. Timing

In this section we will extend the traces model to timed traces;

our treatment is a little idiosyncratic, because we want to emphasise some

points that will be important later. A more standard presentation is

[

9

]

,

where a good introduction can be found.

We will suppose as usual that points of time are reals and that

things start at t � 0. Then, a timed trace of P is a trace s 2 tr(P )

together with a function � : E ! R

+

that assigns a nonegative real to an

(assumed atomic) event.

De�nition 2. A trace timing is a function � which is

Consistent. Write 6

s

for the sequence order of the trace s, so that

e 6

s

f if e comes before f in s. Then, given e; f 2 E, if e <

s

f, f

should happen after e, so for consistency we should have � (e) <

� (f): whenever something happens, time passes.

Complete. Everything should happen at some time, and if we look for

all time then we should see everything. This means that there is

4



a function � : R

+

! E that tells us the last thing that happened

at r 2 R

+

satisfying

�(r) = e =) � (e) � r ^ (1)

� (e) � � (f) � r =) e = f (2)

The connection between � and � is thus

�(� (e)) = e (3)

� (�(r)) � r (4)

Notice that we do not allow events to be simultaneous, since

� is a function, not a relation. If we wanted to have events happening

simultaneously, we could adopt the trick of dealing with sequences of sets

of actions rather than sequences of actions.

x2.2. A more abstract setting

Any model of observation must answer the question `What is

the connection between the behaviour and the possible observations of a

process ?' To answer this we must say how to formalise `behaviour' and

`observation'. This formalism will be provisional; in section 4 we will re�ne

the meta-model.

De�nition 3. The behaviour of a concurrent system P will be modeled as

a category P (which structure we present in due course).

Notice �rst that our notion of behaviour is very general, as many models

of behaviour can be described as categories:

Traces. For a trace s = (E;6

s

), we get a skeletal category S, the

objects being occurrences of events, and with an arrow from e to

f i� e 6

s

f.

Branching time models. For a poset, M = (E;6

m

) we get a skeletal

category M, the objects again being occurrences of events and

the arrows are similarly generated by 6

m

.

True concurrency models. Symmetric monoidal categories or variants

thereof have a close connection with both Petri nets (elaborated

by Meseguer and Montanari amongst others

[

19

]

) and linear logic

(discussed by, for example, Engberg and Winskel

[

11

]

). These

categories, however, concentrate on the structure of nets, rather

than their behaviour. Hence we will have cause to introduce new

categories for true concurrency models.

5



Our observations are just the times things happen, so we will be interested

in the usual time domains R

+

;Q

+

and N

+

. These can be made into

categories in various ways, depending on the precise notion of `before' we

want to model with the arrows of the category. (In general we think of

there being an arrow t! t

0

if t is before t

0

.) The connection between time

and behaviour can then be captured by an adjointness:

De�nition 4. A canonical T{timing of a behaviour B is a functor f

�

:

T! B and a full and faithful functor f

!

: B! T left{adjoint to f

�

.

The requirement that f

!

be full and faithful arises because time

can have no more structure than that given to it by observation.

x2.3. Timed traces in the meta-model

Our timed trace model is described in this way by taking B as

the category S derived from a trace s, and by taking T as the category

whose objects are the reals and where there is one arrow from r to s i�

r � s. This category will be written R

+

.

Proposition 5. Any timing � : E ! R

+

of a trace s = (E;6

s

) gives rise

to a functor f

!

: S! R

+

de�ned by f

!

(e) = � (e) on objects.

The associated last thing function � gives rise to a functor f

�

:

R

+

! S de�ned by f

�

(r) = �(r). This is a core
ection right{adjoint to

f

!

.

Proof. Functoriality follows from the de�nitions. Adjointness for presets

reduces to

f

�

= f

�

f

!

f

�

f

!

= f

!

f

�

f

!

id 6

s

f

�

f

!

f

!

f

�

� id

which follow from (3,4). For f

�

to be a core
ection, f

!

must be full and

faithful; the former is obvious since everything is skeletal, and the latter

reduces to e 6= f =) � (e) 6= � (f) which again holds.

�

�

Faithfulness is the condition that things which are trace{ordered can't be simultaneous.

For the consistency condition, we wrote e <

s

f =) � (e) < � (f) rather than the more

obvious de�nition e 6

s

f =) � (e) � � (f) to ensure that this holds.

This property, of a partial order6

s

factoring into a strict partial order <

s

plus equality

is quite common in concurrency theory. In future we will without comment write <

?

for the strict version of any given partial order �

?

.
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Thus a real timing of a trace s is precisely a canonical R

+

timing

of the behaviourS, justifying the previous de�nition somewhat. It is clear

that de�nitions of integer{timed and rational{timed trace models follow

just by writing N or Q for R.

x2.4. Embedding

Our requirement that f

!

is a full and faithful functor left{adjoint

to f

�

is chosen because we want to think of f

!

as embedding behaviour into

time. This will be a common theme; a T{timing of B will be a way of

telling what happened when; an embedding of B into T. Thus our real

interest is the power observers must have, { what structure T must have, {

in order to be able to de�ne this embedding. The last proposition merely

amounts to saying that one observer with a clock is enough to `see' an

execution in the traces model.

x3. An abstract view of other theories

Many other models of concurrency �t into the setting outlined

above. Here we consider branching time (represented by process trees);

pure concurrency (essentially Shields' cubical automata); and true con-

currency (Winskel's event structures).

x3.1. Branching time

An obvious elaboration of behaviour beyond a trace model is

branching time. Here we represent a process by a tree, with the branches

indicating possible executions, and the branching structure recording non-

determinism. Observationally, this corresponds to an observer who, each

time a choice is presented, makes separate copies of himself to explore

each alternative. This naturally gives rise to a branching structure|hence

`branching time'.

De�nition 6. A branching time behaviour is a tree (E;6

m

) with count-

able underlying set E. Each process tree M = (E;6

m

) gives rise to cat-

egory M as indicated in section 2.2. (The tree e

%

&

f

g

indicates that the

traces he; fi and he; gi are possible, but not he; f; gi: the event e causes f

or g but not both.)

In order to be able to time a branching time process, the ob-

server must be able to branch. A suitable category to time branching

time processes therefore is the Baire tree:

7



De�nition 7. The Baire tree, B = (B;�

b

), is constructed thus; take a

single point and add a countable number of points, constructing a tree

1 branch high. Repeat the construction for each leaf, giving a tree 2

branches high, as below. (An arrow from p to q indicates p �

b

q.)

q

q

H

H

H

H

H

HY

q

@

@

@I

q

�

�

�

�

�

�*

: : :

q

J

J

JJ

q

B

B

BB

q

�

�

��

: : :

q

J

J

JJ

q

B

B

BB

q

�

�

��

: : :

q

J

J

JJ

q

B

B

BB

q

�

�

��

: : :

To construct the whole tree, repeat the procedure a countably in�nite

number of times, leaving a structure where each branch starting from

the root is countably in�nitely long and each point displays countable

nondeterminism.

Proposition 8. Any branching time behaviourM can be embedded in the

Baire tree.

Our interest in the Baire tree is now clear; it is the one needed to

time (certain) branching time processes. Without countable nondetermin-

ism and �nite causes, we might not be able to embed M into B.

These properties (which constrain the allowed branching and

`length' of behaviours) are instance of a more general property of real-

isability:

De�nition 9. A (real{timed) process is realisable i� it satis�es all of the

following conditions.

(i) in any �nite interval of time it can only display a �nite number of

events (i.e. no Zeno machines),

(ii) at any state only a countable number of states are possible next and

(iii) no event depends on more than a �nite number of previous events

(i.e. �nite causes). In particular this means that no action happens

more than a �nite number of times, and the set E is thus countable.

A process which violates condition (i) is a Zeno machine; these are dis-

cussed by Joseph in

[

14

]

. Conditions (ii) and (iii) are known respectively

as `countable nondeterminism' and `�nite causes'. The di�culties associ-

ated with doing away with (ii) are discussed by Bergstra and Klop

[

2

]

, (iii)

being treated by Best and Fernandez

[

4

]

. For the remainder of the paper

we will con�ne our attention to realisable processes.
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De�nition 10. A abstract timing of a branching time behaviour M is a

function � : E ! B satisfying

Consistency. e <

m

f =) � (e) <

b

� (f).

Completeness. There is a `last thing' function � : B ! E satisfying

�(r) = e =) � (e) �

b

r ^

� (e) �

b

� (f) �

b

r =) e = f

Proposition 11. The connection between � and � is as before:

�(� (e)) = e and � (�(p)) �

b

p

Moreover, if e is not the last action of a branch, then we can `extend' our

knowledge at � (e), seeing more sometime later

e <

m

f =) 9p 2 B : � (e) <

b

p ^ �(p) = f

Thus earlier observations are subobjects of later ones.

Proposition 12. Any timing � : E ! B of a branching time process M

gives rise to a functor f

!

:M! B de�ned by

f

!

(e) = � (e)

The associated last thing function � gives rise to a functor f

�

: B ! M

de�ned by

f

�

(p) = �(p)

This functor is a core
ection right{adjoint to f

!

.

The `worst case' process, for which f

�

as well as f

!

is full and

faithful, is the Chaos of CSP,

�x : u

a2A

a! x

which clearly gives a process tree isomorphic to B. (Thus the CSP re�ne-

ment ordering v given in

[

5

]

is derivable from the inclusion ordering on

subtrees of B.)

We may be interested in real{timing a branching time behaviour,

i.e. in ignoring the natural structure of observations and just attaching a

real to each node of M in a way that respects �

b

. To do this, we need

merely supply a functor from M to R

+

. This factors as a composite

9



f

!

:M! B (a canonical timing) followed by U : B! R

+

(forgetting the

branching structure):

M

f

!

�!

 �

f

�

B

U

�! R

+

Clearly U cannot in general enjoy any universal properties, as there are

no canonical linearisations of trees.

x3.2. Pure concurrency

The results of our model for purely concurrent processes (ones

with no nondeterminism) are quite suprising. We begin with a notion of

such processes closely related to the cubical automata of Shields

[

23

]

.

De�nition 13. A purely concurrent process is a poset Q = (E;6

q

; 0) with

a least element. Each such gives rise to category Q in the usual way. (The

poset e

%

&

f

g

indicates that the traces he; f; gi and he; g; fi are possible.

The event e causes or must happen before f and g; the events that enable

a given one are just those in its down-closure.)

To time such a purely concurrent process we need to have an

observer everywhere that a distributed transition might happen. We will

take the Petri net view and assume that a single observer can see every

occurrence of the same action since that action always happens at a given

transition of the net, and the observer need merely wait there. Thus the

timing space of interest is (R

+

)

L

for some set of locations L, and in the

Petri net world we can identify L with the set of possible transitions A.

It is reasonable to assume that L is countable, so we need only deal with

countable powers of R

+

.

What order �

a

should we give to this space ? Two possibilities are obvious;

Local Time. r

a

�

a

s

b

() r � s ^ a = b. That is, two times

are only related if they are possible timing of occurrences of the

same action.

Global Time. r

a

�

a

s

b

() r � s. That is, times are related by

the usual order of < on R

+

; observers have synchronised clocks.

To see which order su�ces, we need a notion of timing a purely concurrent

process:

De�nition 14. A purely concurrent process timing is a function � : E !

(R

+

)

jLj

satisfying

10



Consistent. This is causal ordering implies temporal ordering as usual

(l; a) <

q

(m; b) =) � (l; a) <

a

� (m; b) (5)

Complete. This is the existence of a last thing function � : (R

+

)

jLj

!

E satisfying

y

�(r

a

) = (l; a) =) � (l; a) �

a

r

a

^ � (l; a) �

a

� (m; b) �

a

r

a

(6)

=) l = m & a = b (7)

Unfortunately things break down here:

Proposition 15. The equations (5) and (6), which make � and � respect-

ively functorial cannot in general both be satis�ed by either the local time

version of �

a

or the global time version.

z

Proof. If we take local time, then given (l; a) 6

q

(m; b) with a 6= b we

can't have � (l; a) �

a

� (m; b). Conversely, if we take global time, we can

have r

a

and s

b

with r < s hence r

a

�

a

s

b

but there need be no connection

between �(r

a

) and �(s

b

).

In other words, neither local nor global time leads to canonical

observers for purely concurrent processes (and hence for any extension

of them incorporating nondeterminism.) There are some special cases in

which we can get the desired result;

No causality. Here there is no connection between di�erent actions,

and we can setup the expected adjunction. The `worst case'

process here is

jj

a2A

(�x : a! x)

Linear time. If e 6

q

f or e 6

q

f for all e; f 2 E then local time is

just global time and again the adjunction goes through. This

is just the phenomena familiar from Lamport's

[

17

]

of global

time forbidding (true) concurrency; there is no canonical way of

linearising a poset that isn't already linear.

y

This de�nition hides the somewhat unjusti�ed assumption that if � (l;a) = r

a

and

� (m;b) = r

b

then l = m and a = b, in other words, there are no simultaneous

happenings.

z

Thomason, in

[

24

]

, has noted a similar problem in assigning durations to events, so

moving to nonatomic events will not help.
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If the observers know the structure of causality before hand, of course,

there is a canonical observer, but this can hardly be regarded as in the

spirit of pure observation:

Proposition 16 (Observing Causality). For a purely concurrent process

Q = (E;6

q

; 0), we can de�ne timing and last thing functions that give

rise to adjoint functors f

!

: Q! (R

+

)

jLj

, f

�

: (R

+

)

jLj

! Q with f

!

faithful

if (R

+

)

jLj

carries an ordering given by the causality of Q:

r

a

�

a

s

b

() �(r

a

) 6

q

�(s

b

)

We can interpret this result observationally; consider a set of observers,

one for each action, as in the Petri net example after de�nition 13. If

these observers can see causality|a perfectly reasonable assumption, for

instance, in an ethernet, if they come equipped with network analysers|

then they are collectively canonical. It is reassuring to note that Mattern's

algorithm

[

18

]

for assigning virtual time to a purely concurrent process

ensures precisely that it carries the ordering �

a

de�ned above.

x3.3. True concurrency

Suppose we have an event structure

[

27

]

X and its associated

domain of con�gurations F(X). The following is standard: see below for

the appropriate order{theoretic terminology.

Proposition 17. If X is a prime event structure, then (F(X);�) is a dI-

domain. If X is con
ict{free, then (F(X);�) is also a frame.

This observation gives us key to one structure with which to time true

concurrency. Consider a prime event structure X based on a set of

events E. The poset (2

�n(E)

;�) (of �nite subsets of E ordered by in-

clusion) is a frame. Since we want to deal only with realisable structures,

F

N

= (2

�n(N )

;�) seems a possible candidate for structuring observers of

con�gurations. The next proposition shows that we could de�ne timed

con�gurations using this structure and they would �t into the pattern.

Proposition 18. Suppose X is a prime event structure. Then there is

an adjunction f

�

` f

!

between the con�gurations F(X) and F

N

, with

f

!

: F(X) ,! F

N

.

The observational content of this proposition is that observers of con�g-

urations can safely structure themselves using just the inclusion order of

�nite sets of events; the worst an event structure can do is display all its

events at once, giving in the con�guration structure (2

�n(E)

;�) which, for

countably in�nite E, is isomorphic to F

N

.
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x4. The Structure of All Observations

We now go on to discover structure beyond the adjunctions of

the last sections. First, some standard de�nitions from order theory:

De�nition 19 (Order{theoretic structures). A poset (D;v) with a least

element ? is said to be complete if every directed subset has a least upper

bound. A monotone function between posets is continuous if it preserves

lubs of directed sets.

A point x 2 D is said to be isolated if, for every directed subset

M � D such that x v

F

M , there is a y 2 M such that x v y. The

collection of isolated elements of a complete poset D is written I

D

, and D

is said to be algebraic if, for every x 2M , the set M = fx

0

2 I

D

jx

0

v xg

is directed and has lub x. Complete algebraic posets are often called

domains.

If a subset M � D is bounded, then we write M ". A domain

is said to be bounded complete i� every directed subset has a lub. Notice

that in a bounded complete domain, binary glbs (written u) exist.

A point x 2 D is said to be very �nite if there are only �nitely

many points y such that y v x.

A bounded complete domainD where every isolated point is very

�nite and where following the distribution law holds

fy; zg" =) x u (y t z) = (x u y) t (x u z)

is said to be a dI-domain. This de�nition is due to Berry, a good refer-

ence (which also touches on the connection with event structures) being

Coquand et al.

[

8

]

.

A frame is a poset with all lubs and binary glbs, satisfying the

stronger distributive law

x u

G

M =

G

fx u y j y 2Mg

Notice in particular that frames have a top element.

A function f : D ! E is stable i� it is continuous and preserves

glbs of bounded pairs.

x4.1. Moving on

These de�nitions can be used to give deeper insight into the

meta{model of the last few sections. Recall de�nition 4;

A canonical T{timing of a behaviour B is a functor f

�

: T! B

and a full and faithful functor f

!

: B! T left{adjoint to f

�

.

13



There are many categories T which it is di�cult to interpret as a model of

time, so we can pro�tably re�ne this de�nition. Behaviours are embedded

into time, so we will look for a general category of observation in which

observations are objects, an arrow f : t! t

0

indicates that the observation

t can be extended to t

0

. Here we can identify a time with the worst possible

observation we could have made up to it; the behaviours observable up to

some time t form the subobjects sub(t) of that time.

De�nition 20. A category is an observation category i�

(i) it is essentially small. That is, its family of objects quotiented by iso-

morphism forms a set. It is very di�cult to think of an observational

setting where this is not true, so this is not a severe restriction.

(ii) all morphisms are monos. That is, a map from one observation to

another is just an inclusion. This emphasises the fact that time has

an arrow, and this is points in the directions of the arrows of the

category: latter observations arise only as extensions of earlier ones.

(iii) it has all �ltered colimits. That is, given any family of comparable

observations, i.e. a connected diagram in C, there is a unique smallest

observation including all those in the family i.e. a colimit for the

diagram.

(iv) for each object, t, sub(t) forms a complete dI-domain. This is the

most inscrutable condition; it requires that subobservations of a given

observation have glbs, lubs of directed sets, and is, in a technical sense,

�nitary.

Loosely speaking, this means that given any set of observations, we

can say the least subobservation they have in common, and, if they

are all part of one observation, we can say what that observation is.

Further details on the connection between (dI{)domains and obser-

vation can be found in Vickers' book

[

25

]

.

(v) each arrow f : t! t

0

induces a rigid embedding/projection pair

sub(t)

f

!

�!

 �

f

�

sub(t

0

) (8)

(so in particular f

�

f

!

= id, as in the examples.)

Recall that we want to think of the subobjects of a given object as

the subobservations possible of it. The condition given is then that

if we have a time later than now, we can extend our observations to

those possible in the future, and we can cut down future observa-

14



tions to those possible now. Moreover, these two functions form an

embedding/projection pair.

The fact that (f

�

; f

!

) is a rigid embedding/projection pair means that

there are no gaps in the image of f

!

; this is reasonable if translated

into primitive terms: if e � �(r) then there is a r

0

� r such that

e = �(r

0

).

x4.2. Objects of time

In most of the cases of timed observation we have seen, there is

a worst possible behaviour 
 which is isomorphic to the structure of time.

Any behaviour, then, is a subbehaviour of this one, and the timing and

last thing functions � and � give rise to the adjunction (8) above with

t

0

= 
, giving the connection with our previous de�nition of canonical

timing. In such cases, 
 is clearly a weakly terminal object. We do not

require the existence of such an object in all observation categories, since

there are some situations where there is no canonical observer and thus

no worst case observation.

x4.3. Properties of observation categories

The conditions (i{v) for a category C to be an observation cat-

egory su�ce to prove several technical propositions that will be of use in

determining the structure of all observations. In what follows assume C is

an observation category.

Proposition 21. C has all pullbacks. This means that given an observa-

tion which extends two others, we can always �nd a greatest observation

which can be extended into each of the two. It also means f

�

can be

de�ned by pulling back along f .

Proposition 22. For any object t of C, sub(t) has directed lubs.

Proposition 23. The functors f

�

and f

!

preserve directed lubs.

The notion of observation category turns out to be already well-known

under another name; our observation categories are exactly Coquand's

stable categories of embeddings.

Proposition 24. An observation category is a stable category of embed-

dings. Moreover, all such categories arise this way.

This proposition means that we can lift results straight from

[

7

]

and use them in our setting. Furthermore, op. cit. gives other character-

15



isations of stable categories of embeddings, which throw some light into

the independence of our conditions.

The in�nite objects in stable categories of embeddings arise only

as �ltered colimits of the �nite ones. This means that we can see any

observation category as a suitable completion of a category of �nite ob-

servations:

De�nition 25. A category of events is a small one where all arrows are

monos and where each slice is a �nite distributive lattice.

Proposition 26. Any observation category arises as the ind-completion of

some category of events.

We have seen that pullbacks and �ltered colimits are important properties

of observation categories. This motivates

De�nition 27. A functor is called stable if it preserves pullbacks, and con-

tinuous if it preserves �ltered colimits. (These being the obvious general-

isations of the associated concepts for maps between ordered structures.)

Proposition 28. The category of stable and continuous functors between

two observation categories C and D with cartesian natural transformations

as morphisms, SC[C;D], is an observation category.

This last proposition gives us the key to the structure of the category of all

observation categories, and hence to a possible meta-logic of observation;

Proposition 29. The category of observation categories with stable and

continuous functors as morphisms is a cartesian-closed category.

x4.4. Instances of the situation

We are now in a position to show that our various models of

timed observation give rise to observation categories.

Proposition 30. All our examples of timing behaviours: timed traces;

timed process trees; and timed prime event structures: give rise to stable

categories of embeddings.

Proof. [Sketch.] We will tackle each case separately:

Traces. We will sketch this in some detail, and rely on more gen-

eral arguments for the remaining cases. We have to show that

the category of traces Tr (that is the category whose objects

are countable sets E endowed with a total order 6

s

and whose

16



morphisms are set maps which are also embeddings) is an obser-

vation category. This boils down to showing that: {

1. Tr is essentially small. This follows since there is one isomorph-

ism class for each n 2 N, all traces of the same length being

isomorphic. No trace is longer than countable long, hence Tr is

indeed essentially small.

2. All the maps in Tr are monos. This is obvious.

3. Tr has �ltered colimits. This follows since 
 = (N;�) is weakly

terminal, and sub(
) has directed sups. Tr thus inherits its

�ltered colimits from sub(N).

4. For any trace t, sub(t) is a complete dI-domain. The only case

that requires thought is sub(t) for t countable, the lattice oth-

erwise being �nite and plainly a dI-domain. For the countable

case, the isolated elements are the subtraces of �nite length, with

t itself being the only non-isolated element. Hence the lattice is

a domain and all isolated points are very �nite.

All directed sets have least upper bounds, inherited from N. Glbs

are constructed as inSet, with the order inherited from the upper

bound; the distributive law then holds.

5. Given a map f : t! t

0

, the stable embedding/projection pair (8)

exists. Construct f

�

by pulling back along f , and f

!

by compos-

ition with f . Adjointness is automatic; we are left with showing

that f

�

is continuous. But this follows since an !-chain in the

image of f only arises as an !-chain in the preimage.

Branching time. The proof of the case for traces was rather tedi-

ous; fortunately we can use proposition 26 to simplify the argu-

ment. Notice that the category of �nite trees with embeddings

as morphisms is a category of events. It is then routine that the

category of countable trees is its ind-completion with the Baire

tree as a weak terminator and hence is an observation category.

Event structures. Coquand et al. prove that the con�guration struc-

ture of a prime event structure is a dI-domain, and that all dI-

domains arise this way

[

8

]

. It is then known that the category of

dI-domains and stable embedding/projection pairs is a category

of embeddings

[

7

]

.
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x4.5. Gross structure

We have seen that the `right' functors between categories of em-

beddings are stable and continuous ones. In this subsection we give two

uses for such functors, showing how they may be used to exploit some of

the gross structure in categories of embeddings.

Our framework can be used to prove general theorems which

specialise to individual concurrency theories. For instance, the follow-

ing proposition concerning recursively de�ned objects is almost trivial for

categories of embeddings, but rather tedious to prove for individually for

traces, branching time, event structures, : : :

Proposition 31. Suppose we have a functor F 2 SC[C;C]. Then the dia-

gram

? ,! F (?) ,! F

2

(?) ,! : : :

is �ltered, and hence has a colimit in C which the least �xed point of F .

We have seen that a weakly terminal object in an observation category

plays the rôle of time, its structure being that of a canonical observer.

It should, then, be possible to interpret one model in another by giving

some F 2 SC[C;D] which preserves the weakly-terminal object. It is also

reasonable to require that F is strict (preserves the initial object) and

faithful as an example demonstrates:

Example 32. Consider the categories N and B that are the categories of

embeddings representing traces and branching time respectively. To give

an interpretation of linear time in branching time, it su�ces to give a

functor F 2 SC[N;B] which preserves the weakly terminal object. Our

interpretation functors, then, assign �nite trees to �nite traces. Strict-

ness is the property that empty observations map to empty observations,

and faithfulness that increased information in one model gives increased

information in the other.

The fact that SC[C;D] is itself an observation category gives structure to

these interpretation functors: we can talk of the meet and directed join of

two interpretations, for instance.

18



x5. Concluding Remarks

We have shown that various notions of behaviour give rise to

canonical observers who can see the `worst' behaviour in that class. Real

timing information can then be recovered by forgetting the structure of

such observers. The structure of all possible observations of a given type

has also been discussed, and shown for the cases of interest to form a

stable category of embeddings. These categories congregate in a cartesian

closed category, giving some insight into the general logic of observation.

Further work

In this paper we have seen several examples and a general model.

On one hand the examples �t into the model. On the other, the axioms

of the model seem intuitively reasonable for observations. However, it is

possible that we can further restrict the model without losing the ability

to handle the examples. Further work includes:

� Throughout this paper we have concentrated on presheaves rather

than sheaves. That is, we have not used the fact that di�erent obser-

vations can be de�ned over di�erent intervals of time and then glued

together to form a larger observation. This is partly to keep the tech-

nical complexity of the paper manageable, and partly because sheaves

sometimes occur automatically; all presheaves of traces, for instance,

are sheaves. It would be interesting to consider the sheaf condition in

general, though; this might give some insight into behaviours recurs-

ively de�ned over time. Topologically, sheafhood relates to issues of

compactness which also deserve investigation.

� A standard way of recovering branching time information is to model

a single observation as a domain, then combine information about dif-

ferent runs using powerdomains. This is really a monadic technique,

so it would be pro�table to investigate whether we can adapt it to

our situation, rather than coding the branching structure of observers

explicitly.

� Our approach is based on the notion of observing a set of events. For

this reason, it is hard to see how an observation category that did

not have a forgetful functor to Set might arise; we should thus check

that restricting ourselves to concrete observation categories does not

signi�cantly change our results.

� In this paper we have only dealt with posets rather than pomsets,

and have generally ignored the issue of equivalences over behaviours:

both of these are fairly serious omissions and should be recti�ed.
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Related work

There are several other approaches to �nding a meta-model of

timed concurrency that are related to the one presented here:

� It is possible to make more of the arithmetic operations on R

+

than

we do. Koymans

[

16

]

uses this structure to de�ne a temporal logic

based on the reals.

� This approach can be taken further using the concept of enrichment;

Pratt's group in

[

6

]

gives several categories based on the reals with a

monoidal structure. These are then used to enrich behavioural cat-

egories. Such techniques are comprehensively displayed in Kasangian

and Labella's

[

15

]

.

� Another starting point is idea that we can associate a set of predic-

ates with a state of a system|the things we know to be true of the

behaviour by that point. This means that an observation is a func-

tor F : B

op

! Set, and all possible observations live in the topos

[B

op

;Set]. Such a sheaf{theoretic viewpoint is taken by Ehrich et

al. in

[

10

]

, (where the model of timed observation forms an observa-

tion category) and used by Phoa and the �rst author to discuss the

logic of observation in these situations

[

21

]

.

� It is wise to admit that there are concurrency-theoretic models that

seem not to be related at all to the one presented here; the `concur-

rency as chemistry' metaphor of the chemical abstract machine

[

3

]

,

for instance, is very far from our paradigm.
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Process Synchronisation as Glueing

Stefano Kasangian Anna Labella David Murphy

28th April, 1994

Abstract

Process algebras based on the notion of concurrent processes

cooperating on common actions are commonplace in the lit-

erature. Here we give a categorical model of such a notion

of interprocess synchronisation, and indicate how it can be

extended to a model of full process algebra. Our main tool is

the notion of bimodule over an enriched category: this turns

out to be precisely the machinery needed to glue the be-

haviours of processes together and thus describe synchron-

isation. Maximal (CSP{style) synchronisation can then be

given a universal characterisation.

1. Introduction

This paper presents a new model of process synchronisation. In-

tuitively, the behaviour of a system of processes which cooperate by syn-

chronising on common actions can be understood as the behaviours of the

sequential subprocesses glued together on synchronisations. This intuition

is made precise, allowing us to give a semantics to the parallel composi-

tion of process algebras like CSP with this form of multiway cooperative

synchronisation discipline

[

3, 5, 7, 19, 20

]

and more generally to provide a

new categorical semantics for synchronising processes.

Our methods are categorical: an enriched category, whose objects

include labelled trees, is introduced and shown to have enough structure to

model many process algebraic combinators. This category is new, and of

independent interest. A bimodule construction is then introduced which

allows us to glue trees together to form the behaviour of a concurrent,

cooperating system. A characteristic feature of CSP is compulsory syn-

chronisation: parallel processes are forced to cooperate. This notion of

maximal glueing is characterised as a right adjoint.



Space constraints force us to assume a basic familiarity with pro-

cess algebra and labelled tree semantics. All the enriched category theory

we use is de�ned: further insight, and more general results, can be found

in the standard references

[

2, 12, 21

]

. Space also forces us to focus on pro-

cess synchronisation here: a full account of process algebra semantics in

our enriched setting, including the change-of-base machinery necessary to

deal with hiding, all proofs, and much more detail on the process{theoretic

implications of our account, can be found in

[

10

]

: cf.

[

24

]

.

We conclude these introductory remarks by giving an example of

the objects under consideration. Consider the process a : (b : 0+c : 0) jj b : 0.

This will be modelled by the forest shown in �gure 1, where the

shaded area represents a glueing between the two synchronising bs. The

reader may like to think of plastic sheeting (representing the communica-

tion) stretching between the glued branches.

6

�

�

�

��

@

@

@

@I

a

c b

6

b

Figure 1: A b{synchronisation represented as a glueing.

2. Trees as Enriched Categories

We will model a labelled tree as a set of runs together with

information as to where runs agree with each other. Thus the upper tree

in �gure 2, modelling the process

P = a : (b : 0 + c : 0)

will be described by giving two runs, x and y say, representing the complete

computations ab and ac, together with the information that these runs

agree on the initial a.

The agreement data, then, distinguishes the upper tree from the

lower since in the latter, the agreement between x and y is empty. This

second tree, of course, represents the process Q = (a : b : 0) + (a : c : 0),

which is often distinguished from P

[

16

]

.
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Figure 2: Two trees illustrating the rôle of agreement data.

We begin by giving a structure to capture the computations tak-

ing place along runs; a run will be labelled by what is, essentially, a word.

Our de�nition, though, will make the later de�nition of agreement and

glueing easier.

De�nition 1. Consider as given an alphabet A of actions, and let A

�

denote the set of words on A as usual, with � being the empty word.

De�ne AN as the set N � (A [ f�g), let a range over A [ f�g and say that

a set S � AN is

(i) consistent if the following all hold:

(a) for any n 2 N, there exists at most one (n; a) 2 S;

(b) if (n; �) 2 S then n = 0;

(c) if (0; a) 2 S then a = �.

(ii) pre�x closed if it is consistent and there is a (necessarily unique)

m 2 N such that

(a) n > m implies that (n; a) =2 S for any a, and

(b) n � m implies that there exists an a such that (n; a) 2 S.

In this case we call m the length of S, written jSj = m.

Example 2. A word s 2 A

�

gives rise to a pre�x closed set S � AN and

vice versa, via the bijection a

1

a

2

: : : a

m

$ f(0; �); (1; a

1

); : : : ; (m; a

m

)g.
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The sets f(1; a); (3; b)g and f(1; a)g are consistent but not pre�x

closed, while f(2; a); (2; b)g and f(1; a); (3; �)g are not even consistent.

We will use pre�x closed subsets of AN to label the computations

along branches of a tree: agreements require a di�erent structure:

De�nition 3. Let ANN = N � N � (A [ f�g). A subset f � AN N is called

(i) consistent if

(a) (n;m; a) 2 f and (n;m

0

; a

0

) 2 f implies m = m

0

and a = a

0

.

(b) (n;m; a) 2 f and (n

0

;m; a

0

) 2 f implies n = n

0

and a = a

0

.

(c) (n;m; a) 2 f and (n

0

;m

0

; a

0

) 2 f implies n < n

0

i� m < m

0

.

(d) (n;m; �) 2 f implies n = m = 0.

(e) (0;m; a) 2 f or (n; 0; a) 2 f implies n = m = 0 and a = �.

(ii) pre�x closed if it is consistent and there is an m 2 N such that f =

f(n; n; a

n

) j n � mg.

Example 4. The tree representing a:(b + c) can be speci�ed by giving a

set fx; yg of runs, a function " assigning the following computations (=

pre�x closed subset of AN ) to runs "(x) = f(0; �); (1; a); (2; b)g, "(y) =

f(0; �); (1; a); (2; c)g, and a function � assigning the agreement (= consist-

ent subset of ANN ) f(0; 0; �); (1; 1; a)g to x and y.

An alternative characterisation of consistent subsets of ANN will

be useful: it is straightforward to prove

Lemma 5. A consistent set f = f(n

1

;m

1

; a

1

); : : : ; (n

i

;m

i

; a

i

)g is equival-

ent to a strict monotone partial bijection N ! N, given by f(n

1

;m

1

); : : : ;

(n

i

;m

i

)g, together with a partial labeling N ! (A[f�g) de�ned wherever

the bijection is and labeling only 0 with �.

Proposition 6. The structure AN with

(i) objects pre�x closed subsets of AN ,

(ii) arrows f : S ! T consistent subsets of ANN such that �(f) � S,

�

0

(f) � T where

�f(n

1

;m

1

; a

1

); : : : ; (n

l

;m

l

; a

l

)g = f(n

1

; a

1

); : : : ; (n

l

; a

l

)g and

�

0

f(n

1

;m

1

; a

1

); : : : ; (n

l

;m

l

; a

l

)g = f(m

1

; a

1

); : : : ; (m

l

; a

l

)g,

(iii) 2-cells inclusions

is a semilattice{enriched category (i.e. each Hom is a semilattice) where

composition is given by intersection.
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We will model trees as (a certain kind of) category enriched over

AN . Rather than give the general de�nition

[

12, 22

]

of a category enriched

over a 2{category, we specialised at once to the case in hand.

De�nition 7. A category X enriched over AN (or an AN -category) consists

of a triple (X; "; �) where

(i) X is a �nite set (of runs);

(ii) " : X ! ob(AN ) is a function (the extent function, assigning a com-

putation to each run);

(iii) � : X � X ! arr(AN ) is a function (the agreement function, which

says to what extent two runs agree).

We require that

(a) runs agree along some subset of their extents:

�(x; y) 2 Hom["(x); "(y)]

(b) a run agrees with itself along all its length:

�(x; x) = id

"(x)

(c) the agreement between x and z is no less than the composition of

that between x and y and that between y and z (for any y):

�(y; z) � �(x; y) � �(x; z)

An AN{category X = (X; "; �) is called

(iv) symmetric i� �(x; y) is canonically isomorphic with �(y; x)) (via the


ip condition: (n;m; a) 2 Hom[S; T ] i� (m;n; a) 2 Hom[T; S]).

(v) skeletal i� id

"(x)

= id

"(y)

= �(x; y) implies x = y.

If X is a skeletal symmetric AN{category, we often just say that it is an

ss AN{cat.

Proposition 8. Finite A{labelled trees correspond to ss AN{categories

where the agreement �(x; y) is a pre�x closed set for any x and y and

vice versa.

This proposition justi�es us using the name trees for ss AN{

categories with �(x; y) always pre�x closed. Further details of the use of

these categories are given in references

[

9, 11, 18

]

. In the next section, we

present a construction that allows us to glue trees together: we conclude

here by giving examples of AN{categories that are not trees.
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Example 9. Consider the AN{category (fx; x

0

g; "; �) where

"(x) = "(x

0

) = f(0; �); (1; a); (2; b)g

and �(x; x

0

) = f(2; 2; b)g. This is clearly not a tree, as the two `branches'

start separately and then join. (An even more pathological example is

obtained by setting �(x; x

0

) = f(0; 0; �); (2; 2; b)g.)

Example 10. An AN{category which consists of a forest of two trees

rather than a single tree is given by the following data: (fx; x

0

g; "; �)

where "(x) = "(x

0

) = f(0; �); (1; a)g, and �(x; x

0

) = ;.

3. Glueing

In this section we discuss how to glue branches of trees together.

Essentially to glue two trees, (X; "; �) and (Y; �; �), we give a function


 : X�Y ! arr(AN ), such that 
(x; y) is a consistent (but not necessarily

pre�x{closed) set assigning a glueing to x and y. Thus a glued forest will

consist of a collection of trees together with some glueing data connecting

branches in di�erent trees. We discuss some examples before giving the

general construction.

Notation 11. We will use X , Y etc. for AN{categories in general and trees

in particular; the sense will be clear from context. Typically X will have

components (X; "; �): Y, (Y; �; �), etc. Glueings will be represented by 
.

Example 12. Consider the process a : (b : 0+c : 0) jj b : d : 0. It is natural to

assign the forest in �gure 3 to this process, that is the trees X = (X; "; �)

and Y = (Y; �; �) where

"(x) = f(0; �); (1; a); (2; c); g

"(x

0

) = f(0; �); (1; a); (2; b)g

�(x; x

0

) = f(0; 0; �); (1; 1; a)g

�(y) = f(0; �); (1; b); (2; d)g

together with the glueing 
(x

0

; y) = f(2; 1; b)g, 
(x; y) = ;. We see that

this glueing between di�erent trees is a consistent but not pre�x closed

set.

Example 13. This example demonstrates multiple synchronisation.

Consider

(a : b : 0) jj (a : (b : 0 + c : 0)) jj (a : c : 0)
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0
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Figure 3: An example glueing.

A reasonable forest to associate with this process is shown below: here we

have runs x, y; y

0

, z (in three di�erent trees) with

"(x) = �(y) = f(0; �); (1; a); (2; b)g

�(y

0

) = �(z) = f(0; �); (1; a); (2; c)g


(x; y) = f(1; 1; a); (2; 2; b)g


(x; y

0

) = 
(x; z) = f(1; 1; a)g

�(y; y

0

) = f(0; 0; �); (1; 1; a)g


(y; z) = f(1; 1; a)g


(y

0

; z) = f(1; 1; a); (2; 2; c)g

6

6

6

@

@

@

@I

�

�

�

��

6

6

a

b

a

b c

a

c

x y y

0

z

Discussion 14. This example demonstrates several important points:

(i) We indicate that y and y

0

are runs on the same tree, i.e. are not

distributed, by �(y; y

0

) 3 (0; 0; �). The need to be able to do this

explains why we keep (0; �) in every extent, and impose conditions

(d) and (e) of de�nition 3.

(ii) The conditions (a{c) of de�nition 3, in contrast, serve to ban im-

possible synchronisations: (a) and (b) forbid an action from syn-

chronising with two di�erent ones in the same run, i.e. they forbid
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the causally impossible glueing 
(x; y) = f(1; 1; a); (2; 1; a)g in the

righthand forest of �gure 4.

6

6

6

6

6

6

a

c

b

b

d

a

x y

6

6

6

a

a

a

x

y

Figure 4: Two undesirable glueings.

Similarly, condition (c) forbids another pathological situation;


(x; y) = f(1; 3; a); (3; 1; b)g in the lefthand glued forest of �gure 4.

(iii) Example 13 might lead us to suppose that glueing is always transitive,

for certainly in this case we have

(a) 
(y

0

; z) � �(y; y

0

) � 
(y; z) and

(b) �(y

0

; y) � 
(z; y

0

) � 
(z; y).

Indeed, in general, for x, y, z all on di�erent trees we expect that if x

is glued to y along a consistent f and y to z along g, then x is glued

to z at least along g � f . The following example, however, shows that

glueing is not completely transitive.

Example 15. Consider the process a : (b : 0 + b : 0) jj b : 0. We have the

glued forest shown in �gure 5 with runs x, x

0

and y where

"(x) = f(0; �); (1; a); (2; b)g

"(x

0

) = f(0; �); (1; a); (2; b)g

�(x; x

0

) = f(0; 0; �); (1; 1; a)g

�(y) = f(0; �); (1; b)g


(x; y) = f(2; 1; b)g


(x

0

; y) = f(2; 1; b)g

and clearly 
(y; x

0

) �
(x; y) = f(2; 2; b)g which is not contained in �(x; x

0

).
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Figure 5: A multiple glueing.

Thus we cannot hope for glued forests to be ssAN{cats in general,

as condition (c) of de�nition 3 fails. We must instead look at the matter

di�erently; �rst let us formally de�ne valid glueing data between two trees:

De�nition 16. A glueing 
 between two ss AN{cats X = (X; "; �) and

Y = (Y; �; �), written 
 : X �7! Y, is a function 
 : X � Y ! arr(AN )

satisfying

(i) It glues runs together: 
(x; y) 2 Hom["(x); �(y)].

(ii) It does not glue roots together: (0; 0; �) =2 
(x; y) for any x 2 X,

y 2 Y .

(iii) It respects agreement of runs on X : 
(x; y) � �(x

0

; x) � 
(x

0

; y).

(iv) It respects agreement of runs on Y: �(y; y

0

) � 
(x; y) � 
(x; y

0

).

(v) It is symmetric: 
(x; y)

�

=


(y; x) via the 
ip condition.

Conditions (iii) and (iv) ensure that if x and x

0

agree along a in

X and we glue y along that a to x, then we have to glue it to x

0

along

that a too; cf. point (iii) of discussion 14 above.

Fortunately, this notion of glueing is already well{known in the

literature.

De�nition 17. For AN{categories X = (X; "; �) and Y = (Y; �; �), a

bimodule 
 from X to Y is a function 
 : X � Y ! arr(AN ) satisfying

(i) 
(x; y) 2 Hom["(x); �(y)].

(ii) It respects agreement of runs on X : 
(x; y) � �(x

0

; x) � 
(x

0

; y).

(iii) It respects agreement of runs on Y: �(y; y

0

) � 
(x; y) � 
(x; y

0

).

We have again specialised our de�nition immediately to the case

in hand; the general de�nition of bimodule over an enriched category is

given in

[

2, 21

]

.
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The following is now immediate, and justi�es the notation.

Theorem 18. A glueing 
 between two trees X and Y is a bimodule


 : X �7! Y.

Example 15 shows that a pair of trees glued by a bimodule do

not necessarily give rise to an AN{category. We do, however, have

Proposition 19. If 
 : X �7! Y is a glueing between trees X = (X; "; �)

and Y = (Y; �; �) satisfying

(i) 
(y; x

0

) � 
(x; y) � �(x; x

0

) (left transitivity)

(ii) 
(x; y

0

) � 
(y; x) � �(y; y

0

) (right transitivity)

then (X ] Y; "] �; � ] � ] 
) is a skeletal symmetric AN{category.

We now go on to examine the appropriate ways of comparing

trees and glued trees.

4. Categories of Structures

In order to model all of the combinators of a typical process

algebra, it is important to have su�cient universal structures to model

various constructions on trees. Here we organise our forests into categories,

and show that enough general structure does indeed exist to model many

constructions of interest. For a more comprehensive discussion, see

[

10,

23

]

.

The obvious notion of arrow between enriched categories is that

of enriched functor

[

12

]

.

De�nition 20. An AN{functor F : X ! Y for X = (X; "; �) and Y =

(Y; �; �) AN{categories, is a function F : X ! Y satisfying

(i) The extent of an object does not change under F : �(F (x)) = "(x)

(ii) F increases agreement �(x; y) � �(F (x); F (y))

This immediately gives us the following categories:

Tree, with objects skeletal symmetric AN{categories with pre�x{

closed agreement and arrows AN{functors;

AN{Cat, with objects AN{categories and arrows AN{functors;

These categories enjoy the following constructions:

De�nition 21. The sum of two trees, X = (X; "; �) and Y = (Y; �; �),

written X + Y, is de�ned as the tree (Z; �; �) where
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(i) Z = X ] Y (modulo skeletality

�

)

(ii) �(0; x) = "(x), �(1; y) = �(y).

(iii) �((0; x); (0; x

0

)) = �(x; x

0

)

�((0; x); (1; y)) = �((1; y); (0; x)) = f0; �g

�((1; y); (1; y

0

)) = �(x; x

0

).

Thus X + Y joins X and Y together at the root.

Proposition 22. Tree has �nite coproducts given by +.

De�nition 23. Given two AN{categories, X = (X; "; �) and Y = (Y; �; �),

X times Y, written X 
 Y, is de�ned as the tree (Z; �; �) where

(i) Z = X ] Y

(ii) �(0; x) = "(x), �(1; y) = �(y)

(iii) �((0; x); (0; x

0

)) = �(x; x

0

)

�((0; x); (1; y)) = �((1; y); (0; x)) = ;

�((1; y); (1; y

0

)) = �(x; x

0

)

Thus X 
Y places X and Y side-by-side, giving no glueing between them.

(The notation is chosen because of the similarity of this construction with

the 
 of linear logic

[

6, 15

]

.)

If n is a natural number, we write nX for the n{fold coproduct

X 
 X 
 : : :
 X . The following is then routine.

Proposition 24. AN{Cat has �nite coproducts given by 
. Therefore,

nX is given by the composition of the n-fold diagonal functor,

[

13

]

�

n

with its left adjoint, 


n

.

The nature of coproducts in AN{Cat gives us another subcat-

egory, Forest, whose objects are �nite coproducts 


i

X

i

of trees (i.e. col-

lections of trees with no glueing between them), and whose arrows are

AN{functors. We then have immediately

Proposition 25. The following diagram, where � denotes a full subcat-

egory, is correct:

Tree � Forest � AN{Cat

�

The only case where skeletality is important is if X = Y = Nil, where Nil is the tree

(f�g; "(�) = f(0; �)g; �(�; �) = f(0; 0; �)g. Here we must set Nil+Nil = Nil.
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The inclusion functor of trees into forests (and hence that includ-

ing trees in AN{Cat) clearly does not preserve coproducts, and so cannot

have a right adjoint. There is a left inverse

y

which takes 


i

X

i

and joins all

the X

i

together at the root, but this is of little concurrency{theoretic in-

terest. Perhaps of more interest is the following characterisation of Forest:

De�nition 26. A category D is the free �nite coproduct completion

[

8

]

of

a category C if the following two conditions are satis�ed

(i) D has all �nite coproducts and

(ii) For any category C

0

with all �nite coproducts and any functor F :

C ! C

0

there exists a �nite coproduct preserving functor F

0

: D ! C

0

extending F which is unique up to a natural isomorphism.

Lemma 27. The following characterisation of free �nite coproduct com-

pletion is equivalent

[

4

]

to the de�nition given above, and rather simpler

to work with.

The free �nite coproduct completion of a category C, written

Fam(C), has as objects �nite families fa

i

g

i2I

of objects of C, and as

arrows fa

i

g

i2I

! fb

j

g

j2J

pairs (�; ff

i

g) where � : I ! J is a Set{arrow,

and f

i

: a

i

! b

�(j)

is a C{arrow.

Proposition 28. Forest is the free �nite coproduct completion of Tree.

De�nition 29. The intersection of two AN{categories, X = (X; "; �) and

Y = (Y; �; �), written X �Y, is de�ned as the AN{category (Z; �; �) where

(i) Z = f(x; y) j "(x) = �(y)g

(ii) �(x; y) = "(x) = �(y)

(iii) �((x; y); (x

0

; y

0

)) = min(�(x; x

0

); �(y; y

0

)).

Thus X � Y the largest subtree common to X and Y.

Proposition 30. AN{Cat has �nite products given by �. The emptyAN{

cat, 0 = (;; ;; ;), is an initial object (but not a tree).

Proposition 31. AN{Cat is �nitely complete.

y

I.e. a functor F : Forest! Tree such that F (X )

�

=

X for a tree X .
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We have seen that bimodules characterise glued trees. Thus it is

natural to organise these into a category.

De�nition 32. The category whose objects are bimodules X �7! Y, for

X and Y trees, and whose arrows (X �7! Y) �! (X

0

�7! Y

0

) are pairs

(F;G) where F : X ! X

0

, G : Y ! Y

0

are AN{functors satisfying


(x; y) � 


0

(F (x); G(y)) (�)

will be written Bim(Tree).

z

This de�nition makes sense when it is realised that since X �7! Y

is almost an AN{category (cf. proposition 19), the right notion of arrow

between such objects should be `almost' AN{functors:

Lemma 33. If (X]Y; "]�; �]�]
) is an AN{category, and similarly for




0

, then F ]G is an AN{functor, so our requirement (�) that the `square'

X �7! Y

F # # G

X

0

�7! Y

0

should `commute' then reduces to requirement (ii) of de�nition 20 i.e. that

arrows between AN{categories should increase glueing.

It is clear that the category Tree

2

(of pairs of trees and pairs of

AN{functors) can be obtained from Bim(Tree) by forgetting glueing. In

fact, this extends to an adjointness:

Proposition 34. The forgetful functor U : Bim(Tree) ! Tree

2

de�ned

by

U : (X ;Y; 
) 7�! (X ;Y)

has a left adjoint, ; : Tree

2

! Bim(Tree) which assigns the empty

glueing to two trees:

; : (X ;Y) 7�! (X ;Y; ;)

z

Note that this is not the usual notion of category of bimodules over a category. Indeed,

as AN is not locally cocomplete, we cannot even de�ne the usual notion, as the colimit

used to de�ne the composition of 
 : X �7! Y, and � : Y �7! Z, namely �
(x; z) =

colim

y;y

0�(y

0

; z) � �(y; y

0

) � 
(x; y) need not exist.
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5. Maximal Glueing

We have shown that glueing branches of trees together can be

modelled as a bimodule. However, this is not quite enough to characterise

CSP's parallel composition; for there is also an element of compulsion: if a

synchronisation can happen, it will. In this section, we introduce a special

class of glueings which allow us to include this element of compulsion.

De�nition 35. Given two trees, X = (X; "; �) and Y = (Y; �; �), and a

pair of runs x 2 X, y 2 Y , a CSP agreement between x and y is an

element of Hom["(x); �(y)] satisfying

(i) (0; 0; �) =2 f (it does not glue roots together)

(ii) If (n;m; a) 2 f then, for all n

0

< n, (n

0

; b) 2 "(x) implies either

(a) 9m

0

< m such that (n

0

;m

0

; b) 2 f , or

(b) :9m

0

such that (m

0

; b) 2 �(y).

So that for all elements before a glued one, either they too are glued,

or there is nothing they could possibly be glued to.

(iii) Vice versa for m.

Lemma 36. Conditions (i) and (ii) of de�nition 35 do indeed de�ne a

family of consistent subsets of ANN .

Lemma 37. The CSP agreements between two runs are linearly ordered

by inclusion.

Notation 38. We will write �

x;y

for an arbitrary CSP{agreement between

two runs, and �

x;y

for the largest such, the existence of which is guaranteed

by the previous proposition. Collections of such will be written f�

x;y

g and

f�

x;y

g.

We will use the maximal CSP{agreement �

x;y

to de�ne a CSP

glueing between two trees. This construction involves duplicating trees,

partly to make the de�nition of the semantics of parallel composition

smoother, and partly to avoid damaging nontransitivity of agreement,

such as that demonstrated in example 15; we take a copy of X for each

run in Y and vice versa, and then de�ne a glueing between these forests.

De�nition 39. The CSP glueing � : jY jX �7! jXjY between two trees

X = (X; "; �) and Y = (Y; �; �) is de�ned as the collection of maps

f


y;x

g : yX �7! xY
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between the AN{categories jY jX and jXjY as follows. (We write x

y

for

the run x in the y{indexed copy of X .)

The component 


y;x

(x

0

y

; y

0

x

): it will be given by �rst passing to

x by �(x

0

; x), thence to y via the CSP agreement �

x;y

, thence to y

0

via

�(y; y

0

):




y;x

(x

0

y

; y

0

x

) = �(y; y

0

) � �

x;y

� �(x

0

; x)

Proposition 40. For any two trees X and Y, 


y;x

: yX �7! xY is a

glueing.

We have shown that the individual components of � are glueings.

It is also true that � as a whole is:

Proposition 41. For any two trees, X and Y, � : jY jX �7! jXjY is a

glueing.

The e�ect of the duplication can be seen by reconsidering a pre-

vious example:

Example 42. For our previous problematic example, 15, we get the glued

forest shown in �gure 6.

Notice that the b on y

z

is now no longer glued to things it will

synchronise with on di�erent runs. The duplication we have done allows

us to present all possible process synchronisations in a consistent way.
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a

b b

b

b

x
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y

z

z

y

z

x

Figure 6: A problematic glueing revisited.

It is natural to organise the collection of CSP{glued trees into a

category. We proceed just as for Bim(Tree):
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De�nition 43. The category whose objects are triples (X ;Y; f�

x;y

g) with

X and Y are trees and f�

x;y

g is a collection of CSP glueings between runs

x 2 X and y 2 Y , and whose arrows (X ;Y; �) ! (X

0

;Y

0

; �

0

) are pairs

of AN{functors F : X ! X

0

, G : Y ! Y

0

not decreasing glueing, will be

written CSP(Tree

2

).

Again, we clearly have a forgetful functor U : CSP(Tree

2

) !

Tree

2

, and identical reasoning to that used in proposition 34 shows that

; : Tree

2

! CSP(Tree

2

) (which assigns the empty CSP{agreement to

all runs) is its left adjoint. There is also a right adjoint:

Theorem 44. The functor K : Tree

2

! CSP(Tree

2

) de�ned by

K : (X ;Y) 7�! (X ;Y; f�

x;y

g)

is right adjoint to U .

In summary, then, we have the following adjointness

CSP(Tree

2

)

K

 �

�!

 �

;

Tree

2

whereK is right adjoint to U is right adjoint to ;. This gives a satisfactory

account of two{way process synchronisation: the obvious generalisation to

CSP(Tree

n

) then smoothly treats multiway synchronisations.

6. Concluding Remarks

The programme of enriched category theory, at least for Lawvere

[

14

]

, is to seek out base categories enrichment over which will describe a

variety of mathematical structures. The basic machinery of enrichment,

in a particular case, is seen giving a generalised logic of the situation.

Here we have presented an instance of this scheme, de�ning a category AN

such that AN{categories are descriptions of the behaviour of processes.

Process synchronisation has been characterised as a bimodule in AN{Cat,

and maximal glueing, corresponding to maximal synchronisation, has been

shown to enjoy a simple universal characterisation.

There have been several other categorical accounts of process

algebra, the work of Bednarczyk

[

1

]

and Winskel et al.

[

17, 23

]

being par-

ticularly notable. These workers, though, give an account relative to an

arbitrary synchronisation algebra rather than geared speci�cally to syn-

chronisation on common actions. This, of necessity, makes their account
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less speci�c and less tightly characterised than ours. It is clear that there

are many categories of interest to the concurrency theorist: we merely

hope to have added to the list.
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