
Proof Systems for Message{Passing Process Algebras

�

M. Hennessy, H. Lin

University of Sussex

Abstract

We give sound and complete proof systems for a variety of bisimulation based

equivalences over a message-passing process algebra. The process algebra is a

generalisation of CCS where the actions consist of receiving and sending messages

or data on communication channels; the standard pre�xing operator a:p is replaced

by the two operators c?x:p and c!e:p and in addition messages can be tested by a

conditional construct. The various proof systems are parameterised on auxiliary

proof systems for deciding on equalities or more general boolean identities over the

expression language for data. The completeness of these proof systems are thus

relative to the completeness of the auxiliary proof systems.

1 Introduction

In standard or pure process algebras processes are described in terms of their ability to

perform atomic unanalysed actions. For example

P(= a:P + b:c:P

describes a process which can continually either perform the action a or the sequence of

actions b; c . By a message{passing process algebra we mean a process algebra in which

these actions are given some structure; namely the reception or emission of data values

on communication channels. Thus

Q (= c?x: if x � 0 then d!x:Q else c!(x+ 1):Q

describes a process which can cyclically input a value along the channel c and either

output it along the channel d unchanged or output its successor along c, depending on

whether or not the value concerned is greater than or equal to 0.

The standard approach to providing a semantic basis for these message{passing al-

gebras, advocated for example in [Mil89], is to translate them into an underlying pure

algebra. The central feature of this translation, mapping p to [[p]], is that the input

expression c?x:p is mapped into the term

X

v2V al

c?v:[[p[v=x]]]

�

This work has been supported by the SERC grant GR/H16537 and the ESPRIT BRA project

CONCUR II

1

where V al is the domain of all data values. Thus the translation of the process Q above

is

R (=

X

n�0

c?n:d!n:R +

X

n<0

c?n:c!(n+ 1):R

This may be taken to be a description in a pure process algebra where we assume that

for each channel name c and for every data-value v, in this case every integer, there are

atomic actions c?v and c!v.

There are two disadvantages in this approach. The �rst is that descriptions which

are in some intuitive sense �nite are translated into processes which are inherently in-

�nite, at least if the domain of possible values, Val, is in�nite; it is necessary to have

in the underlying pure process algebra a summation operator �

I

where I has the same

cardinality as the value domain. Such process algebras are di�cult to use. For example

the standard algorithms and veri�cation tools, see e.g. [CPS89], do not apply and equa-

tional reasoning is di�cult since any proof system based on this approach is of necessity

in�nite. The second disadvantage is that with such translations uniformities which exist

in the object description disappear in the translation. For example the subsequent be-

haviour of Q above after the reception of an input v is described functionally by the term

�x:if x � 0 ! d!x:Q else c!(x+ 1):Q. this uniform treatment of inputs is not apparent

in the translation, R. Although this notion of uniformity is di�cult to de�ne precisely, it

should play a central role in proving properties of message passing systems. The object

of this paper is to develop a semantic theory of message{passing processes which takes

advantage of this uniformity. In particular our semantic theory will apply directly to

the syntax of message{passing processes and will not be mediated by a translation into

an in�nitary language. As a result the associated proof systems will be in some sense

�nitary.

Such theories already exist for value{passing processes. In [HIar] a fully-abstract

denotational model is presented while in [Hen91] a sound �nitary proof system is given

which is also complete for recursion free processes. However all of this work is with

respect to a particular behavioural equivalence called testing equivalence, [Hen88]. Here

we wish to consider an alternative and much �ner behavioural equivalence, bisimulation

equivalence from [Mil89]. The main result of the paper is a series of sound and complete

proof systems, with respect to a range of bisimulation based equivalences, for a recursion

free message{passing process algebra.

For most of the paper we restrict our attention to a very simple language which

consists essentially of a notation for the empty process, nil, a choice operator + and

action pre�xing; other operators such as forms of parallel or restriction can easily be

accommodated. However, when actions take the form c?x and c!e, in order for the

language to be of interest we also need to be able to test data and branch on the

consequences of the test. Syntactically this could be represented by an if b then : : : else

: : : construction, where b is a boolean expression, but instead we use the simpler notation

of guarded commands, b! t. Thus

c?x:x = 0! d!0:nil + x > 0! d!1:nil

is a process which inputs a value on c and outputs 0 on d if the input is 0 and 1 if

it is greater than 0 and does nothing otherwise. In order to reason about these kinds

of processes it is necessary, in general, to reason about data expressions. So following

2

[Hen91] we design a proof system whose judgements are guarded equations of the form

b � t = u

where b is a boolean expression and t; u are process terms that may contain free data

variables. Semantically this should be read as \under any evaluation of free data variables

that satis�es b t is semantically equivalent to u". The completeness of the proof system

is thus relative to that for the data domain involved. Moreover rather than getting

embroiled in the details of an actual proof system for data expressions we simply assume

the existence of some all powerful mechanism for answering arbitrary questions about

data. On the one hand this enables us to concentrate on the behaviour of processes and

on the other it re
ects what would be a reasonable implementation strategy for a proof

system based on our results; the main proof system would be based on the proof rules

whose applicability is determined by the structure of processes and this main system

would periodically call auxiliary proof systems to establish facts about data expressions.

A simple example of a proof rule from the main system is

b � t

i

= u

i

i = 1; 2

b � t

1

+ t

2

= u

1

+ u

2

while

b j= e = e

0

; b � t = u

b � c!e:t = c!e

0

:u

is a rule which depends on a call to an auxiliary proof system concerned with the data

domain; this is expressed in rather abstract terms, one of the antecedents referring to

the semantics of the expressions b; e and e

0

; as we shall see b j= e = e

0

is true if the

intended meaning of the boolean b always implies the intended meaning of e equals that

of e

0

. Of course the reasoning about processes can not be completely be divorced from

the reasoning about data and an example of where they interact is the cut rule

b j= b

1

_ b

2

; b

1

� t = u b

2

� t = u

b � t = u

This enables a proof to be developed by case analysis on the data.

The soundness of such a proof system depends on having a semantic equivalence for

processes and as we have already stated in this paper we are interested in bisimulation-

like semantics. As a starting point we use strong bisimulation, [Mil89], but as has been

pointed out in [MPW92, HL92] there are at least two natural generalisations of this

equivalence to message{passing processes. The �rst, called early strong bisimulation

equivalence, is based on the ability of processes to perform actions of the form c?v and

c!v while the second is based on the slightly more abstract actions c? and c!. Thus the

processes

c?x: even(x)! P + c?x: odd(x)! P

and

c?x:P + c?x:nil

are identi�ed by the early version of the equivalence but are di�erentiated in the late

case because the c? move from the �rst to the abstraction

�x: even(x)! P

3

can not be matched by a corresponding c? move from the second. Each of these general-

isations of strong bisimulation equivalence has a corresponding \weak" version in which

internal moves are abstracted. Thus in all we have four reasonable semantic equivalences

and for each of these we present a corresponding proof system. In the strong cases the

di�erence between early and late is manifested in the slightly di�erent methods for in-

ferring identities involving input pre�xes; the early equivalence requires a stronger proof

rule. On the other hand the weak version of both equivalences can be obtained by adding

to the corresponding proof system the standard � -laws from [Mil89].

The judgements of the proof systems involve open process terms, i.e. terms in which

data variables need to be instantiated before any operational signi�cance can be asso-

ciated with them, but the observational equivalences are only de�ned on closed terms.

Therefore in order to even express the soundness and completeness of the proof sys-

tems we need to generalise these equivalences to open terms. For each of these semantic

equivalences, ', we design a proof system with the property that

b � t = u if and only if t� ' u� for every evaluation � satisfying b.

As usual establishing soundness is straightforward but completeness requires some inge-

nuity. Here we use the approach of [HL92] and introduce symbolic versions of each of

the semantic equivalences which are de�ned directly on open terms. These are expressed

in terms of families of relations over open terms parameterised on boolean expressions

and we show that, for each semantic equivalence ' we consider,

t '

b

u if and only if t� ' u� for every evaluation � satisfying b.

Thus soundness and completeness of the proof systems can be established relative to the

semantic relations '

b

. Using this approach the completeness theorems in particular now

become \symbolic versions" of the standard completeness theorems of [Mil89], although

the details are somewhat more complicated.

We now give a brief outline of the content of the remainder of the paper. In the

next section we de�ne the simple language, give it a concrete operational semantics and

de�ne (early) strong bisimulation. This is followed by a discussion of the proof system

for proving processes bisimilar. We state the soundness theorem for the system and

indicate the di�culty in proving completeness. In the following section, Section 3, we

de�ne the symbolic semantics and the associated symbolic bisimulation equivalence and

prove that it captures precisely the concrete bisimulation equivalence over processes. We

then use this result to show the completeness of the proof system.

In Section 4 we repeat these results for weak bisimulation equivalence where again

it is necessary to develop an appropriate de�nition of weak symbolic equivalence. The

following section outlines corresponding results for a late operational semantics and con-

siders both the strong and weak cases. We end by discussing brie
y how to extend these

results to other language constructs.

Related Work: We end this section with a brief discussion of related work. As

stated previously the approach we have taken is based on that of [Hen91] where a sound

and complete proof system for testing equivalence is developed. Here we tackle various

bisimulation based equivalences and an essential ingredient of the completeness theorems

is the notion of symbolic bisimulation equivalence. This has already been used in [HL92]

4

to develop an algorithm for checking whether two message-passing processes are equiv-

alent and in [HL93] for developing a proof system to verify that such processes satisfy

properties described by formulae from a �rst-order modal logic.

The more standard approach to message-passing processes is to translate them into

\pure processes" as outlined at the beginning of this section [Mil89, HR88]. Indeed

in [Bur91] a front-end for the Concurrency Workbench is described which translates

message-passing processes from a language such as ours into \pure processes" which

can be accepted by the Concurrency Workbench and various examples treated using this

approach may be found in [Wal89]. However these approaches require the set of values to

be �nite and even using the boolean value space of two elements leads to an exponential

blow-up in the size of descriptions. We hope that with our approach at least some of

this complexity can be avoided. In [Lin93] an extension of the PAM veri�cation system,

[Lin91], based on our results, is described. It o�ers much the same functionality as the

the original PAM except that message-passing process algebras can be de�ned and the

proof elaboration scheme is more
exible.

In [GP90] a very general language for describing message-passing, based on ACP, is

described and in [GP91] a proof theory is given. Although these goals are quite similar

to ours their approach is very di�erent. A modular algebraic speci�cation language

is used to describe data domains and the description of processes is such that it may

be viewed as consisting of another module. They continue to view message-passing

processes as universally quanti�ed versions of \pure processes", the quanti�cation being

over the domain of messages, but they bring to bear the general framework of algebraic

speci�cations in order to handle proof theoretically this quanti�cation. Nevertheless it

would be interesting to compare the two approaches.

Very recently, proof systems for late and early strong bisimulation equivalences over

the �-calculus [MPW92] have been given in [PS93]. These proof systems are quite

di�erent from ours as they take considerable advantage of the blurring of variables and

constants in the �-calculus.

2 A Simple Language

The language we consider can be given by the following BNF grammar

t ::= nil j �:t j t+ t j b! t

� ::= � j c?x j c!e

where b is a boolean expression, e data expression, c is a channel name and x a data

variable. So this syntax assumes a prede�ned set of channel names, Chan, ranged over

by c and a set of data variables, DVar, ranged over by x; y; : : :. More importantly it

also assumes a language for data expressions DExp, ranged over by e; e

0

; : : : and a similar

language BExp, ranged over by b, for boolean expressions. At the very least we assume

that DExp contains the set of data variables DVar and also a set of data values Val and

for every pair of data expressions e; e

0

we assume that e = e

0

is a boolean expression.

We also assume that all free variables in boolean expressions are data variables. Apart

from this we do not worry about the expressive power of these languages although the

results on symbolic bisimulations require that the language for boolean expressions is

very powerful.

5

�:p

�

�!

e

p

c!e:p

c!v

�!

e

p where [[e]] = v

c?x:t

c?v

�!

e

t[v=x] c 2 Chan; v 2 V al

p

a

�!

e

p

0

implies p+ q

a

�!

e

p

0

q + p

a

�!

e

p

0

p

a

�!

e

p

0

; [[b]] = true implies b! p

a

�!

e

p

0

Figure 1: (Early) Operational Semantics

An evaluation, � is a mapping from DVar to Val and we use the standard notation

�fv=xg to denote the evaluation which di�ers from � only in that it maps x to v. An

application of � to a data expression e, denoted �(e), always yields a value from Val

and similarly for boolean expressions; �(b) is either true or false. Thus we assume that

evaluation of data and boolean expressions always terminate and our approach is to

work modulo these evaluations. We also assume that these evaluations satisfy standard

properties; each expression e has associated with it a set of variables fv(e) and, for

example, if � and �

0

agree on fv(e) then �(e) = �

0

(e). If an expression e has no

variables, it is closed, then �(e) is independent of � and we use [[e]] to denote it value.

Similarly with boolean expressions. We will use the suggestive notation b j= b

0

to indicate

that for every evaluation if �(b) is true then so is �(b

0

). Of course we could equally well

say that b ! b

0

is a logical theorem but our notation emphasises the fact that we wish

to work modulo the semantics of expressions. We will write b = b

0

for b j= b

0

and b

0

j= b.

We will also refer to substitutions, and assume that they satisfy the expected prop-

erties; we use e[e

0

=x] to denote the result of substituting e

0

for all occurrences of x in e.

More generally a substitution � is a mapping from data variables to expressions and we

use e� to denote the result of applying � to the expression e.

Returning to the process language above, the pre�x c?x binds the occurrence of x in

the sub-term t of c?x:t and we have as usual the sets of free variables fv(u) and bound

variables bv(u) of a term u; of course these depend in general on the variables in the

data and boolean expressions contained in u. This leads to the standard de�nition of �-

conversion, �

�

, over terms and of substitution, t[e=x] denoting the result of substituting

all free occurrences of x in t by e, and this relies on the de�nition of substitution in data

expressions. A term is closed if it contains no free variables and these we refer to as

processes, ranged over by p; q; : : :. Throughout the paper open terms refer to terms that

may contain free occurrences of data variables, but no process variables. Open terms are

ranged over by t; u; : : :.

The standard operational semantics of this language is given in Figure 1. It consists

of a set of binary relations,

a

�!

e

, between processes, where a ranges over the set Act =

f�; c?v; c!vg. In [MPW92, HL92] this is referred to as the early operational semantics

as when input terms such as c?x:p perform an action the value received is immediately

bound to the variable x. In Section 5 we will see a slightly di�erent way of organising

input actions where this binding is delayed.

A symmetric relation R between closed terms is a strong bisimulation if it satis�es:

(p; q) 2 R implies that for every a 2 Act

whenever p

a

�!

e

p

0

then there exists q

a

�!

e

q

0

and (p

0

; q

0

) 2 R

6

where a ranges over f�; c?v; c!vg. We use �

e

to denote the maximal (early) strong

bisimulation. This relation generalizes naturally to open terms by letting t �

e

u i�

t� �

e

u� for any �. We then have

Proposition 2.1 �

e

is preserved by every operator in the language. 2

We now consider a proof system for deriving statements about p �

e

q. In general

we will need to consider open terms because in order to prove a statement such as

c?x:t = c?x:u it is necessary to relate the open terms t and u. Also because we allow

testing of data we will need to establish statements relative to a boolean expression b.

Thus the judgements are guarded equations of the form

b � t = u

where b, the guard, is a boolean expression. For brevity we usually write t = u for

true � t = u.

The rules for the proof system are given in Figure 2, where � is any mapping from

process variables to process terms.. Note that reference is made to the semantics of

expressions in the OUTPUT rule, for establishing identities of the form c!e:t = c!e

0

:u,

and in the CUT rule which is used to perform proofs by case analysis. The rule GUARD

also uses a case analysis; an identity of the form b ! t = u may be established by

considering two cases, one when b is true and the other when it is false. The only rule

which may be a little surprising is that for input pre�xing. A much simpler rule would

be

b � t = u

b � c?x:t = c?x:u

But without the side condition x 62 fv(b) this is not sound; It could be used to prove

x = 1 � c?x:c!1:nil = c?x:c!x:nil

because

x = 1 � c!1:nil = c!x:nil

With this side condition it is sound but not su�ciently powerful to derive all true iden-

tities between early bisimilar processes. For example the two processes discussed in the

introduction

c?x: even(x)! P + c?x: odd(x)! P and c?x:P + c?x:nil

are strong bisimulation equivalent but can not be proved equivalent using this restricted

rule.

OUTPUT and CUT are the only two rules which relies on checking facts about the

data domain but rules such as

CONSEQUENCE

b j= b

0

; b

0

� t = u

b � t = u

can easily be derived.

In order to characterise strong bisimulation equivalence using this proof system we

need the standard equations, [Mil89], given in Figure 3. Let us write `

1

b � t = u to

mean that b � t = u can be derived from these equations using the rules in Figure 2.

The following are some simple facts about `

1

:

7

EQUIV

true � t = t

b � t = u

b � u = t

b � t = u; u = v

b � t = v

EQN

true � t� = u�

t = u is an axiom

CONGR

b � t

i

= u

i

i = 1; 2

b � t

1

+ t

2

= u

1

+ u

2

�-CONV

true � c?x:t = c?y:t[y=x]

y 62 fv(t)

E-INPUT

b �

P

i2I

�:t

i

=

P

j2J

�:u

j

b �

P

i2I

c?x:t

i

=

P

j2J

c?x:u

j

x 62 fv(b)

OUTPUT

b j= e = e

0

; b � t = u

b � c!e:t = c!e

0

:u

TAU

b � t = u

b � �:t = �:u

GUARD

b ^ b

0

� t = u b ^ :b

0

� nil = u

b � b

0

! t = u

CUT

b j= b

1

_ b

2

; b

1

� t = u b

2

� t = u

b � t = u

ABSURD

false � t = u

Figure 2: The Inference Rules

Proposition 2.2 1. `

1

b! b

0

! t = b ^ b

0

! t

2. `

1

t = t+ b

0

! t

3. b j= b

0

implies `

1

b � t = b

0

! t

4. `

1

b ^ b

0

� t = u implies `

1

b � b

0

! t = b

0

! u

5. `

1

b! (t+ u) = b! t + b! u

6. `

1

b! u + b

0

! u = b _ b

0

! u

7. if fv(b) \ bv(�) = ; then `

1

b! �:t = b! �:(b! t)

Proof: Left to the reader. 2

The E-INPUT rule has a generalised form which will be useful:

8

S1 X + nil = X

S2 X +X = X

S3 X + Y = Y +X

S4 (X + Y) + Z = X + (Y + Z)

Figure 3: The Axioms A

1

Proposition 2.3 Suppose x 62 fv(b; c

i

; d

j

); i 2 I; j 2 J . Then from

b � �

i2I

c

i

! �:t

i

= �

j2J

d

j

! �:u

j

infer

b � �

i2I

c

i

! c?x:t

i

= �

j2J

d

j

! c?x:u

j

Proof: For each non-empty K � I let c

K

be the boolean expression ^

k2K

c

k

^

^

k

0

2I�K

:c

k

0

. Then

W

c

K

= true; c

K

^ c

K

0

= false whenever K 6= K

0

. Using Propo-

sition 2.2 we can show that

`

1

�

i2I

c

i

! �:t

i

= t

�

where t

�

denotes �

K

c

K

! t

�

K

and t

�

K

denotes �

k2K

c

k

! �:t

k

. Let u

�

= �

L

d

L

! u

�

L

be

de�ned in a similar manner.

We know b � t

�

= u

�

and therefore for each K;L, b^ c

K

^d

L

� t

�

= u

�

. Again using

Proposition 2.2 we can prove

b ^ c

K

^ d

L

� t

�

= �

k2K

�:t

k

and

b ^ c

K

^ d

L

� u

�

= �

l2L

�:u

l

:

Therefore

b ^ c

K

^ d

L

� �

k2K

�:t

k

= �

l2L

�:u

l

:

Now we can apply E-INPUT to obtain

b ^ c

K

^ d

L

� �

k2K

c?x:t

k

= �

l2L

c?x:u

l

:

By reversing the above argument we have

b ^ c

K

^ d

L

� t

x

= u

x

where t

x

and u

x

denote �

K

c

K

! �

k2K

c?x:t

k

and �

L

d

L

! �

l2L

c?x:u

l

, respectively.

Since

W

K;L

c

K

^ d

L

= true, we can apply CUT to obtain b � t

x

= u

x

. Finally Proposi-

tion 2.2 can be used to transform t

x

and u

x

into the required form. 2

The soundness of the `

1

is given by the following proposition:

Proposition 2.4 If `

1

b � t = u and � j= b then t� �

e

u�

9

�:t

true;�

�!

E

t � 2 f �; c!e j c 2 Chan; e 2 Exp g

c?x:t

true;c?y

�!

E

t[y=x] y 62 fv(c?x:t)

t

b

0

;�

�!

E

t

0

implies b! t

b^b

0

;�

�!

E

t

0

t

b;�

�!

E

t

0

implies t+ u

b;�

�!

E

t

0

u+ t

b;�

�!

E

t

0

Figure 4: Symbolic Operational Semantics

Proof: The proof is by induction on the derivation of b `

1

t = u and a case analysis

on the last rule used. We examine one example, the E-INPUT rule.

Suppose � j= b. We must show (�

i2I

c?x:t

i

)� �

e

(�

j2J

c?x:u

j

)�. For convenience call

these P;Q, respectively.

If P

a

�!

e

P

0

then a must be c?v for some v and P

0

must be t

i

�fv=xg for some i.

Since x 62 fv(b) we have �fv=xg j= b. So by induction

(�

i2I

�:t

i

)�fv=xg �

e

(�

j2J

�:u

j

)�fv=xg;

i.e.

�

i2I

�:t

i

�fv=xg �

e

�

j2J

�:u

j

�fv=xg:

Call the two sides R and S, respectively. Then R

�

�!

e

t

i

�fv=xg. So there must be

some j 2 J such that S

�

�!

e

u

j

�fv=xg and t

i

�fv=xg �

e

u

j

�fv=xg, which means every

move of P can be matched by a corresponding move from Q. By symmetry P �

e

Q.

The other rules are similar and easier. 2

The converse to this is also true but the proof is far from straightforward. The

problem arises because �

e

is only de�ned on closed terms whereas the proof system

manipulates open terms. So there is no straightforward way to use structural induction

on terms. Instead we develop a symbolic version of bisimulation equivalence for open

terms which captures the standard bisimulation equivalence on all closed instantiations

and then prove completeness with respect to this symbolic version.

3 Symbolic Bisimulations

The reader is refered to [HL92] for motivation and discussion on symbolic bisimulations.

Here we adapt the de�nitions, which were originally given for symbolic graphs, to our

language.

The abstract transition relations are de�ned to be the least set of relations which

satisfy the rules in Figure 4. They take the form of relations

b;�

�!

E

between arbitrary

terms, where b is a boolean expression and � is a pre�x, i.e. it has one of the forms

�; c?x or c!e. Intuitively b acts like a trigger: it enables the move when it is true.

Based on these abstract actions we can de�ne symbolic bisimulations which, for reasons

explained in [HL92], must be parameterised on boolean expressions. A �nite set of

boolean expressions B is called a b-partition if

W

B = b. Let S = fS

b

j b 2 BExp g be

a family of relations over terms, indexed by boolean expressions. Then ESB(S) is the

family of symmetric relations de�ned by:

10

(t; u) 2 ESB(S)

b

if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, there is

a b ^ b

1

-partition B with the property that for each b

0

2 B there exists a

u

b

2

;�

0

�!

E

u

0

such that b

0

j= b

2

and

1. if � = c!e then �

0

= c!e

0

, b

0

j= e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � = �

0

and (t

0

; u

0

) 2 S

b

0

De�nition 3.1 (Symbolic Bisimulations)

S is an (early) strong symbolic bisimulation if S � ESB(S), where � is point-wise

inclusion. 2

Let �

E

= f�

b

E

g be the largest (early) strong symbolic bisimulation.

The interest in symbolic bisimulations lies in the fact they are de�ned with respect to

the abstract operational semantics, which for �nite terms can be represented as a �nite

transition graph; in contrast with the standard \concrete" bisimulations are de�ned over

in�nite transitions graphs, at least if the set of values is in�nite. In [HL92] we give an

algorithm for checking for this symbolic equivalence. Here we use it to show completeness

of the proof systems. First we relate symbolic and concrete bisimulation equivalence.

Theorem 3.2 1. (Soundness) t �

b

E

u implies t� �

e

u� for every evaluation � such

that � j= b

2. (Completeness) if t� �

e

u� for every evaluation � such that � j= b then t �

b

E

u

Proof: (Outline) The proof follows the corresponding result in [HL92], Theorem 6.5; it

consists in establishing a relationship between symbolic bisimulations and concrete ones.

If S = fS

b

g is a strong symbolic bisimulation let

R

S

= f (t�; u�) j 9b; �(b) = true and (t; u) 2 S

b

g

Soundness follows immediately if we can prove that R

S

is a bisimulation. Conversely if

R is a strong bisimulation let

S

b

= f (t; u) j � j= b () (t�; u�) 2 R g

for any boolean expression b. Completeness follows if we can show that S = fS

b

g is a

symbolic bisimulation.

The proof of these two subsidiary results depends on relating the abstract actions to

the concrete actions. We simply state the required relationships and leave the proofs to

the reader.

1. t�

�

�!

e

q if and only if there exist b; t

0

s.t. � j= b; q �

�

t

0

� and t

b;�

�!

E

t

0

.

2. t�

c!v

�!

e

q if and only if there exist b; e; t

0

and � s.t. � j= b; �(e) = v; q �

�

t

0

� and

t

b;c!e

�!

E

t

0

.

3. t�

c?v

�!

e

q if and only if there exist b; x; t

0

and � s.t. x 62 fv(t); � j= b; r �

�

t

0

�fv=xg and t

b;c?x

�!

E

t

0

.

11

2

With this theorem we can now return to the proof system and show its completeness

by proving

t �

b

E

u implies `

1

b � t = u (�)

This provides the converse to Proposition 2.4. The proof of (�) follows the standard

proof of the corresponding \concrete" result, as given in [Mil89], except that now we

work at the symbolic level.

The proof is by induction on the size of terms which is de�ned as follows:

1. j nil j = 0

2. j t+ u j = maxfj t j; j u jg

3. j b! t j = j t j

4. j �:t j = 1 + j t j

We also need the notion of normal form:

De�nition 3.3 t is a normal form, or in normal form, if it has the form �

i

b

i

! �

i

:t

i

and each t

i

is in normal form. 2

Lemma 3.4 For every term t there exists a normal form t

0

such that fv(t) =

fv(t

0

); j t j = j t

0

j and `

1

t = t

0

.

Proof: By structural induction on terms using the elementary facts about the proof

system given in Proposition 2.2 2

Theorem 3.5 (Completeness) t �

b

E

u implies `

1

b � t = u

Proof: By induction on the joint size of t and u. We may assume that both are normal

forms, t � �

i2I

c

i

! �

i

:t

i

and u � �

j2J

d

j

! �

j

:u

j

. Call a pre�x of type
 2 f �; c!; c? j

c 2 Chan g if it has the form �; c!e; c?x, respectively. Let I

= f i 2 I j �

i

has type
 g,

J

= f j 2 J j �

j

has type
 g. Let also t

= �

i2I

c

i

! �

i

:t

i

, u

= �

j2J

d

j

! �

j

:u

j

. We

show b � t

= u

for each type
. Clearly t

�

b

E

u

. We examine the cases
 = � and

 = c? here and leave the case
 = c! to the reader.

(Case
 = �). By symmetry we need only to show

b � u

�

+ c

i

! �:t

i

= u

�

:

for each i 2 I

�

. Note that b ^ :c

i

� c

i

! �:t

i

= nil so by CUT it is su�cient to show

b ^ c

i

� u

�

+ c

i

! �:t

i

= u

�

:

12

Now t

�

c

i

;�

�!

E

t

i

. So there exists a b ^ c

i

-partition B such that for each b

0

2 B there

is u

�

d

j

;�

�!

E

u

j

such that b

0

j= d

j

and t

i

�

b

0

E

u

j

. By induction b

0

� t

i

= u

j

. By TAU

b

0

� �:t

i

= �:u

j

. Since b

0

j= c

i

and b

0

j= d

j

we have b

0

� c

i

! �:t

i

= d

j

! �:u

j

. By S2

b

0

� u

�

+ c

i

! �:t

i

= u

�

. This is true for each b

0

in B and therefore an application of

CUT gives the required

b ^ c

i

� u

�

+ c

i

! �:t

i

= u

�

:

(Case
 = c?). Let z 62 fv(b; t; u). We know �

i2I

c?

c

i

! c?z:t

i

[z=x

i

] �

b

E

�

j2J

c?

d

j

!

c?z:u

j

[z=y

j

] where �

i

� c?x

i

; i 2 I

c?

and �

j

� c?y

j

; j 2 J

c?

. Therefore �

i2I

c?

c

i

!

�:t

i

[z=x

i

] �

b

E

�

j2J

c?

d

j

! �:u

j

[z=y

j

]. By the same argument as in the previous case,

we can show b � �

i2I

c?

c

i

! �:t

i

[z=x

i

] = �

j2J

c?

d

j

! �:u

j

[z=y

j

]. By Proposition 2.3

b � �

i2I

c?

c

i

! c?z:t

i

[z=x

i

] = �

j2J

c?

d

j

! c?z:u

j

[z=y

j

]. By �-CONV, b � �

i2I

c?

c

i

!

c?x

i

:t

i

= �

j2J

c?

d

j

! c?y

j

:u

j

. 2

4 Weak Bisimulation Equivalence

In this section we outline how to extend the results of the previous two sections to

so-called weak bisimulations.

The concrete double arrows

a

=)

e

, where a 2 f�; c?v; c!vg, are de�ned as the least

relations between closed terms generated by the following rules

� t

"

=)

e

t.

� t

a

�!

e

u implies t

a

=)

e

u.

� t

�

�!

e

a

=)

e

u implies t

a

=)

e

u.

� t

a

=)

e

�

�!

e

u implies t

a

=)

e

u.

Let â to be " when a = � , and a otherwise. The early weak bisimulation is then

de�ned as usual (for closed terms):

De�nition 4.1 R is an early weak bisimulation if (t; u) 2 R implies

� if t

a

�!

e

t

0

then u

â

=)

e

u

0

for some u

0

and (t

0

; u

0

) 2 R.

� if u

a

�!

e

u

0

then t

â

=)

e

t

0

for some t

0

and (t

0

; u

0

) 2 R.

Let �

e

be the largest early weak bisimulation. 2

Similarly, we de�ne symbolic double arrow by

� t

true;"

=)

E

t.

� t

b;�

�!

E

u implies t

b;�

=)

E

u.

� t

b;�

�!

E

b

0

;�

=)

E

u implies t

b^b

0

;�

=)

E

u.

� t

b;�

=)

E

b

0

;�

�!

E

u implies t

b^b

0

;�

=)

E

u.

13

Now let S = fS

b

j b 2 Exp g be a family of relations over terms, indexed by boolean

expressions b. Then EWB(S) is the family of symmetric relations de�ned by:

(t; u) 2 EWB(S)

b

if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, then

there is a b^ b

1

-partition B such that for each b

0

2 B there exists a u

b

2

;

^

�

0

=)

E

u

0

such that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � � �

0

and (t

0

; u

0

) 2 S

b

0

De�nition 4.2 (Weak Symbolic Bisimulations)

S is a weak symbolic bisimulation if S � EWB(S) 2

Let �

E

= f�

b

E

g be the largest (early) weak symbolic bisimulation.

The two versions of weak bisimulation can be related as in the case of strong bisim-

ulation.

Theorem 4.3 t �

b

E

u if and only if t� �

e

u� for every � which satis�es b.

Proof: Similar to that of Theorem 3.2. 2

The aim of this section is to extend the proof system of Section 2 to weak bisimulation

equivalence. However it is well-known that �

e

is not preserved by + and so we have to

work with the modi�ed relation:

De�nition 4.4 Two closed terms t; u are early observation equivalent, written t '

e

u,

if for all a 2 f�; c?v; c!vg

� Whenever t

a

�!

e

t

0

then u

a

=)

e

u

0

for some u and t

0

�

e

u

0

.

� Whenever u

a

�!

e

u

0

then t

a

=)

e

t

0

for some t and t

0

�

e

u

0

.

2

As usual '

e

is the largest congruence relation contained in �

e

. This relation can be

generalized to open terms by letting t '

e

u i� t� '

e

u� for any �. We then have the

standard result

Proposition 4.5 '

e

is preserved by all the operators in the language.

To give a sound and complete proof system for this relation, it is su�cient to add to

the proof system the equations A

2

given in Figure 5. These appear to be slightly weaker

than the traditional � -laws of [Mil89] but in fact we can generalise the third law so that

it applies to arbitrary pre�xes:

�:(X + �:Y) + �:Y = �:(X + �:Y):

When � is � this follows from T2 and S2 while the case for c?x can be derived using the

rule E-INPUT. Let us use `

2

b � t = u to denote that b � t = u can be derived from the

proof system using the axioms A

2

, and of course A

1

. Then we also have the following

generalisation of T3:

14

T1 �:�:X = �:X

T2 X + �:X = �:X

T3 c!e:(X + �:Y) + c!e:Y = c!e:(X + �:Y)

Figure 5: The Axioms A

2

Lemma 4.6 If fv(b)\ bv(�) = ; then `

2

�:(X + b! �:Y) = �:(X + b! �:Y) + b!

�:Y

Proof: Since X = X + b ! X we need only to show b ! �:(X + b ! �:Y) = b !

�:(X + b! �:Y) + b! �:Y which can be derived as follows (using Proposition 2.2):

b! �:(X + b! �:Y) ()

= b! �:(b! (X + b! �:Y)) (2.2.7)

= b! �:(b! (X + �:Y)) (2.2.5,1)

= b! �:(X + �:Y) (2.2.7)

= b! (�:(X + �:Y) + �:Y) (T3)

= b! �:(X + �:Y) + b! �:Y (2.2.5)

= b! �:(X + b! �:Y) + b! �:Y (previous steps reversed)

2

The main result of this section is

Theorem 4.7 `

2

b � t = u if and only if t� '

e

u� for every � such that � j= b.

The soundness is straightforward, by induction on the length of the proof of b � t = u

and we prove the completeness by relying on the symbolic version of weak bisimulation.

Again we have to modify it so that it is preserved by +:

De�nition 4.8 Two terms t; u are symbolic observation equivalent with respect to b,

written t '

b

E

u, if whenever t

b

1

;�

�!

E

t

0

with bv(�) \ fv(b; t; u) = ;, then there is a b ^ b

1

-

partition B with the following property: for each b

0

2 B there exists a u

b

2

;�

0

=)

E

u

0

such

that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and t

0

�

b

0

E

u

0

2. otherwise � � �

0

and t

0

�

b

0

E

u

0

and symmetrically for u. 2

Proposition 4.9 The relation '

true

E

is preserved by all the operators in the language.

Theorem 4.10 t '

b

E

u if and only if t� '

e

u� for every � which satis�es b.

Proof: Similar to that of Theorem 3.2. 2

So completeness of the proof system will follow if we can prove t '

b

E

u implies

`

2

b � t = u. This we will do by induction on the weak size of terms, ktk, de�ned as

follows:

15

1. knilk = 0

2. k�:tk = ktk

3. k�:tk = 1 + ktk if � 6� �

4. kt+ uk = maxfktk; kukg

5. kb! tk = ktk

The crucial lemma is the following:

Lemma 4.11 (Absorption) If t

b;�

=)

E

t

0

with fv(b)\bv(�) = ;, then `

2

t = t+b! �:t

0

.

Proof: By induction on why t

b;�

=)

E

t

0

.

1. t

b;�

�!

E

t

0

.

� �

0

:t

1

true;�

�!

E

t

0

with �

0

:t

1

�

�

�:t

0

. Use S3.

� b

0

! t

1

b

0

^b

00

;�

�!

E

t

0

because t

1

b

00

;�

�!

E

t

0

. By induction t

1

= t

1

+ b

00

! �:t

0

. So

b

0

! t

1

= b

0

! (b

00

! �:t

0

)

= b

0

! t

1

+ b

0

^ b

00

! �:t

0

� The other cases are similar.

2. t

b

0

;�

�!

E

t

1

b

00

;�

=)

E

t

0

with b � b

0

^b

00

. By induction t

1

= t

1

+b

00

! �:t

0

and t = t+b

0

!

�:t

1

. So, since bv(�) \ fv(b) = ;,

t = t+ b

0

! �:(t

1

+ b

00

! �:t

0

)

= t+ b

0

! (�:(t

1

+ b

00

! �:t

0

) + b

00

! �:t

0

)

= t+ b

0

! b

00

! �:t

0

= t+ b! �:t

0

3. t

b

0

;�

=)

E

t

1

b

00

;�

�!

E

t

0

with b � b

0

^ b

00

. Similar to the previous case.

2

De�nition 4.12 A normal form t � �

i

b

i

! �

i

:t

i

is a full normal form if

1. t

b;�

=)

E

t

0

, where bv(�) \ fv(b) = ;, implies t

b;�

�!

E

t

0

.

2. Each t

i

is in full normal form.

2

16

Lemma 4.13 For any normal form t there is a full normal form t

0

such that fv(t) =

fv(t

0

); ktk = kt

0

k and `

2

t = t

0

.

Proof: By structural induction on t using the absorption lemma. 2

By this lemma and Lemma 3.4, every term can be transformed into a full normal form

of equal weak size.

The following proposition relates symbolic observation equivalence to weak bisimu-

lation. It will be used in the proof of the completeness theorem.

Proposition 4.14 t �

b

E

u if and only if there is a b-partition B such that for all b

0

2

B; t '

b

0

E

u or t '

b

0

E

�:u or �:t '

b

0

E

u

Proof: The \if" part is trivial. For the \only if" part, because of Lemma 3.4

we can assume t; u are in normal form. By the construction similar to that used

in the proof of Proposition 2.3, we can further assume t � �

i2I

c

i

! �

k2I

i

�

ik

:t

ik

,

u � �

j2J

d

j

! �

l2J

j

�

jl

:u

jl

, where c

i

^ c

i

0

= false; i 6= i

0

; d

j

^ d

j

0

= false; j 6= j

0

;

W

i2I

c

i

=

true; and

W

j2J

d

j

= true.

Set B

0

= f b ^ c

i

^ d

j

j i 2 I; j 2 J g. Then

W

B

0

= b. Consider an arbitrary

b

0

� b ^ c

i

^ d

j

2 B

0

. Since b

0

j= b, t �

b

0

E

u. So for every t

c

i

;�

�!

E

t

k

, there exists a

b

0

-partition B

k

with the property that for each b

1

2 B

k

there is a u

d

j

;�̂

=)

E

u

0

s.t. t

k

�

b

1

E

u

0

,

and for every u

d

j

;�

�!

E

u

l

there exists a b

0

-partition B

l

with the property that for each

b

2

2 B

l

there is a t

c

i

;�̂

=)

E

t

0

s.t. t

0

�

b

2

E

u

l

.

Let B

1

= f^

k

b

k

i

j b

k

i

2 B

k

g; B

2

= f^

l

b

l

j

j b

l

j

2 B

l

g; and B

b

0

= f b

1

^ b

2

j b

1

2

B

1

; b

2

2 B

2

g. Then

W

B

b

0

= b

0

. Furthermore B

b

0

has the property that for each b

00

2 B

b

0

,

t �

b

00

E

u, and whenever t

c

i

;�

�!

E

t

0

, there is a u

d

j

;�̂

=)

E

u

0

�

b

00

E

t

0

; whenever u

d

j

;�

�!

E

u

0

there

is a t

c

i

;�̂

=)

E

t

0

�

b

00

E

u

0

. If for some t

0

t

c

i

;�

�!

E

t

0

�

b

00

E

u then t '

b

00

E

�:u; If for some u

0

u

d

j

;�

�!

E

u

0

�

b

00

E

t then �:t '

b

00

E

u. Otherwise we can show t '

b

00

E

u as follows. Let t

c

i

;�

�!

E

t

0

;

then since t �

b

00

E

u we have u

d

j

;�̂

�!

E

u

0

�

b

00

E

t

0

. By assumption u

0

can not be u itself when

� � � , so u

d

j

;�

�!

E

u

0

�

b

00

E

t

0

as required. By symmetry, t '

b

00

E

u.

Finally, set B = [

b

0

2B

0

B

b

0

. Then B has the required property. 2

Theorem 4.15 (Completeness) t '

b

E

u implies `

2

b � t = u.

Proof: We may assume t; u are in full normal form and apply induction on the joint

weak size of t and u. The case that the size is 0 is trivial. So let t � �

i2I

c

i

! �

i

:t

i

,

u � �

j2J

d

j

! �

j

:u

j

. We use the notations I

; J

; t

; u

as de�ned in the proof of

Theorem 3.5. Consider the case
 � c?. Let z 62 fv(b; t; u); i 2 I

c?

; j 2 J

c?

, and

t

z

c?

= �

i2I

c?

c

i

! c?z:t

i

[z=x

i

] t

�

c?

= �

i2I

c?

c

i

! �:t

i

[z=x

i

]

u

z

c?

= �

j2J

c?

d

j

! c?z:u

j

[z=y

j

] u

�

c?

= �

j2J

c?

d

j

! �:u

j

[z=y

j

]

Since t '

b

E

u, we have t

z

c?

'

b

E

u

z

c?

and therefore t

�

c?

'

b

E

u

�

c?

.

17

To prove `

2

b � t

c?

= u

c?

it is su�cient to establish

`

2

b ^ c

i

� u

c?

+ c

i

! c?x

i

:t

i

= u

c?

for each i 2 I

c?

.

Now t

c?

c

i

;c?z

�!

E

t

i

[z=x

i

], so there is a b ^ c

i

-partition B with the property that for

each b

0

2 B there is u

c?

d

j

;c?z

�!

E

u

j

[z=y

j

]

d;�̂

=)

E

u

0

s.t. b

0

j= d

j

^ d

0

and t

i

[z=x

i

] �

b

0

E

u

0

.

By Proposition 4.14 there exists a b

0

-partition B

0

, for each b

00

2 B

0

t

i

[z=x

i

] '

b

00

E

u

0

or

t

i

[z=x

i

] '

b

00

E

�:u

0

or �:t

i

[z=x

i

] '

b

00

E

u

0

. By induction, together with TAU and T1, in each

case we can derive

b

00

� �:u

0

= �:t

i

[z=x

i

]

Applying CUT on B

0

we get b

0

� �:u

0

= �:t

i

[z=x

i

].

If u

j

[z=y

j

] � u

0

, then b

0

� �:u

j

[z=y

j

] = �:t

i

[z=x

i

] and hence b

0

� �:u

j

[z=y

j

] =

�:u

j

[z=y

j

] + �:t

i

[z=x

i

].

Otherwise, by absorption u

j

[z=y

j

] = u

j

[z=y

j

] + d

0

! �:u

0

. Therefore

b

0

� �:u

j

[z=y

j

] = �:(u

j

[z=y

j

] + d

0

! �:u

0

)

= �:(u

j

[z=y

j

] + d

0

! �:u

0

) + d

0

! �:u

0

= �:u

j

[z=y

j

] + d

0

! �:u

0

= �:u

j

[z=y

j

] + d

0

! �:t

i

[z=x

i

]

Since b

0

j= d

0

, by Proposition 2.2.3 it follows that

b

0

� �:u

j

[z=y

j

] = �:u

j

[z=y

j

] + �:t

i

[z=x

i

]:

Similarly, because b

0

j= c

i

^ d

j

, we have

b

0

� d

j

! �:u

j

[z=y

j

] = d

j

! �:u

j

[z=y

j

] + c

i

! �:t

i

[z=x

i

]:

So

b

0

� u

�

c?

= u

�

c?

+ c

i

! �:t

i

[z=x

i

]:

This is true for each b

0

in the b ^ c

i

-partition B. So applying CUT we obtain b ^ c

i

�

u

�

c?

= u

�

c?

+ c

i

! �:t

i

[z=x

i

]: By Proposition 2.3 and �-CONV, we get the required

b ^ c

i

� u

c?

+ c

i

! �

i

:t

i

= u

c?

. 2

5 The Late Case

In this section we brie
y outline how the theory developed in the previous sections can

be carried over to the late case with some systematic modi�cations. It turns out that

only those parts concerning input actions need changing. For brevity we only treat weak

equivalence.

The late operational semantics of this language is given in Figure 6. For late symbolic

operational semantics we use the same set of rules as in Figure 4, but for notational

consistency �!

E

is repaced by �!

L

.

The late double arrow relations are also de�ned in the same way as in the early case

in Section 4, with =)

l

in place of =)

e

and =)

L

in place of =)

E

, except that the last

clause is only given for non-input actions in each case. So input actions do not absorb �

moves after them.

18

a:t

a

�!

l

t a 2 f�g [f c!v j c 2 Chan g

c?x:t

c?x

�!

l

�x:t

t

�

�!

l

t

0

implies t+ u

�

�!

l

t

0

t

�

�!

l

t

0

; b = true implies b! t

�

�!

l

t

0

Figure 6: Late Operational Semantics - closed terms

De�nition 5.1 A symmetric relationR between closed terms is a late weak bisimulation

if it satis�es: (p; q) 2 R implies

� If p

c?x

�!

l

�x:t then there exists q

c?y

=)

l

�y:u and for all v 2 V al 9q

0

s.t. u[v=y] =)

l

q

0

and (t[v=x]; q

0

) 2 R

� For any other action a, if p

a

�!

l

p

0

then there exists q

â

=)

l

q

0

and (p

0

; q

0

) 2 R

Let �

l

be the largest late weak bisimulation. 2

The late observation equivalence is then de�ned in terms of late weak bisimulation:

De�nition 5.2 Two closed terms is p; q are late observation equivalent, written p '

l

q,

if

� Whenever p

c?x

�!

l

�x:t then there exists q

c?y

=)

l

�y:u and for all v 2 V al 9q

0

s.t.

u[v=y] =)

l

q

0

and t[v=x] �

l

q

0

� For any other action a, whenever p

a

�!

l

p

0

then there exists q

a

=)

l

q

0

and p

0

�

l

q

0

And similarly for q.

This relation can be generized to open terms by letting t '

l

u i� t� '

l

u� for any �. 2

It can be shown that '

l

is preserved by all operators in our language. In general it is

�ner that '

e

; a typical example of a distinction made by '

l

but not by '

e

is discussed

in the Introduction.

Similarly we can de�ne late weak symbolic bisimulation:

De�nition 5.3 S = fS

b

j b 2 BExp g is a late weak symbolic bisimulation if

(t; u) 2 S

b

implies whenever t

b

1

;�

�!

L

t

0

with bv(�) \ fv(b; t; u) = ;, then there

is a b ^ b

1

-partition B such that fv(B) � fv(b) and for each b

0

2 B there

exists a u

b

2

;

^

�

0

=)

L

u

0

such that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and (t

0

; u

0

) 2 S

b

0

2. if � � � then �

0

� � and (t

0

; u

0

) 2 S

b

0

3. if � � c?x then �

0

� c?x and there is a b

0

-partition B

0

s.t for each b

00

2 B

0

there is

u

0

b

0

2

;�̂

=)

L

u

00

s.t b

00

j= b

0

2

and (t

0

; u

00

) 2 S

b

00

.

Let �

L

= f�

b

L

g be the largest late weak symbolic bisimulation. 2

19

It is important to note that we now require fv(B) � fv(b); hence when � � c?x

it is guaranteed x 62 fv(B). So we can not partition over the value space for an input

variable. This makes all the di�erences between early and late bisimulations!

Late weak symbolic observation equivalence is de�ned in terms of weak symbolic

bisimulation:

De�nition 5.4 Two terms t; u are late weak symbolic observation equivalence over b,

written t '

b

L

u, if whenever t

b

1

;�

�!

L

t

0

with bv(�) \ fv(b; t; u) = ;, then there is a b ^ b

1

-

partition B such that fv(B) � fv(b) and for each b

0

2 B there exists a u

b

2

;�

0

=)

L

u

0

such

that b

0

j= b

2

and

1. if � � c!e then �

0

� c!e

0

, b

0

j= e = e

0

and t

0

�

b

0

L

u

0

2. if � � � then �

0

� � and t

0

�

b

0

L

u

0

3. if � � c?x then �

0

� c?x and there is a b

0

-partition B

0

s.t for each b

00

2 B

0

there is

u

0

b

0

2

=)

L

u

00

s.t b

00

j= b

0

2

and t

0

�

b

00

L

u

00

.

and symmetrically for u. 2

The late versions of Theorems 4.3 and 4.10 can be proved similarly as their early

counterparts:

Theorem 5.5 t '

b

L

u if and only if t� '

l

u� for every � j= b.

The inference system for late symbolic observation equivalence can be obtained by

replacing E-INPUT in Figure 2 with the following simpler rule

L-INPUT

b � t = u

b � c?x:t = c?x:u

x 62 fv(b)

As the inference system is weakened, the � -law T3 can no longer be generalised to the

case of input pre�x. So we have to replace it with

T3L �:(X + �:Y) + �:Y = �:(X + �:Y)

Let A

2L

be the set of axioms consisting of T1, T2 and T3L. We write `

2L

b � t = u

to denote b � t = u can be derived from the new inference system using axioms in

A

1

and A

2L

.

We have the soundness theorem:

Theorem 5.6 (Soundness) `

2L

b � t = u implies t� '

l

u� for every � such that � j= b.

For the completeness theorem, we use essentially the same form of full normal form

as in the early case (keep in mind that now double input arrows only absorb those �

moves before it):

De�nition 5.7 A normal form t � �

i

b

i

! �

i

:t

i

is a late full normal form if

1. t

b;�

=)

L

t

0

implies t

b;�

�!

L

t

0

.

20

2. Each t

i

is in late full normal form.

2

The absorption lemma still holds (note that now � can not be an input action in the

second case in the proof of the lemma). Every term can be transformed to late normal

form and the appropriate version of Proposition 4.14 holds.

Theorem 5.8 (Completeness) t '

b

L

u implies `

2L

b � t = u.

Proof: Assume t; u are in late full normal form and apply induction on the joint weak

size of t and u. For the non-trivial case when the size is not 0 let t � �

i2I

c

i

! �

i

:t

i

,

u � �

j2J

d

j

! �

j

:u

j

. We need to show

b ^ c

i

� u+ c

i

! �

i

:t

i

= u

for each i 2 I. We only consider the case when �

i

� c?x here (the other two cases are

the same as in the early case). Let z be a fresh variable, i.e. z 62 fv(b; t; u).

Now t

c

i

;c?z

�!

L

t

0

i

[z=x]. So there exists a b^c

i

-partition B with fv(B) � fv(b^c

i

) s.t for

all b

0

2 B; b

0

j= c

i

and there is u

d

j

;c?z

�!

L

u

j

[z=y] s.t. b

0

j= d

j

and there exists a b

0

-partition

B

0

s.t for all b

00

2 B

0

there is u

j

[z=y]

d

0

;�̂

=)

L

u

0

s.t. b

00

j= d

0

and t

i

[z=x] �

L

u

0

.

By Proposition 4.14 and induction, together with TAU and T1, we can derive

b

00

� �:u

0

= �:t

i

[z=x]

By an argument similar to that used in Theorem 4.15, using CUT on B

0

, we obtain

b

0

� �:u

j

[z=y] = �:u

j

[z=y] + �:t

i

[z=x]:

Now, since z 62 fv(b

0

), we can apply L-INPUT to get

b

0

� c?z:�:u

j

[z=y] = c?z:(�:u

j

[z=y] + �:t

i

[z=x])

= c?z:(�:u

j

[z=y] + �:t

i

[z=x]) + c?x:t

i

[z=x]

= c?z:�:u

j

[z=y] + c?z:t

i

[z=x]

By T1 and �-CONV, b

0

� c?y:u

j

= c?y:u

j

+ c?x:t

i

. Since b

0

j= c

i

^ d

j

, we can derive

b

0

� d

j

! c?y:u

j

= d

j

! c?y:u

j

+ c

i

! c?x:t

i

. Hence b

0

� u = u+ c

i

! c?x:t

i

. Finally,

an application of CUT on B gives the required b ^ c

i

� u = u+ c

i

! c?x:t

i

. 2

6 Extensions

So far we have concentrated on the core language of Section 2. As said in the Introduc-

tion it can be easily extended by adding the j (parallel) and n (restriction) operators. The

concrete operational semantics for these operators are standard and we only give their

symbolic operational semantics (Figure 7, where symmetric rules have been omitted),

21

t

b;�

�! t

0

implies t j u

b;�

�! t

0

j u

� 2 f �; c!e j c 2 Chan; e 2 Exp g

t

b;c?x

�! t

0

implies t j u

b;c?x

�! t

0

j u

x 62 fv(u)

t

b;c?x

�! t

0

; u

b

0

;c!e

�! u

0

implies t j u

b^b

0

;�

�! t

0

[e=x] j u

0

t

b;�

�! t

0

implies tnc

b;�

�! t

0

nc

if chan(�) 6= c

Figure 7: Symbolic Operational Semantics { continued

followed by the equational laws reducing them to the core language. As the symbolic op-

erational semantics is the same for both early and late cases, the \E" and \L" subscripts

to �! have been omitted.

The equations characterizing the restriction operator and the expansion law for the

parallel operator are shown in Figure 8. These laws are fairly standard; they are included

here just for the sake of completeness.

It is routine to check that all �

e

;'

e

;�

l

and '

l

are preserved by the new operators,

and that the new equations are sound for these equivalence relations.

Now if we add these new equations to A

1

, then the three normal form lemmas 3.4,

4.13 and 5.7 carry over to the extended language. From these follow the completeness

results (Theorem 3.5, 4.15 and 5.8) for the extended language.

Acknowledgements: The authors would like to thank Luca Aceto for carefully reading

a draft of this paper and suggesting many improvements.

nilnc = nil

(X + Y)nc = Xnc+ Y nc

(�:X)nc =

(

�:(Xnc) if chan(�) 6= c

nil if chan(�) = c

LetX; Y denote �

i

�

i

:X

i

; �

j

�

j

:Y

j

; with fv(X)\bv(Y) = fv(Y)\bv(X) = ;

where fv(X) and bv(X) are free data variables and bound data variables in

the term X, respectively. Then

X j Y = sync move(X;Y) + async move(X;Y)

where

sync move(X;Y) = �f �:(X

i

fe=xg j Y

j

) j �

i

� c?x; �

j

� c!e g +

�f �:(X

i

j Y

j

fe=xg) j �

i

� c!e; �

j

� c?x g

async move(X;Y) = �

i

�

i

:(X

i

j Y) + �

j

�

j

:(X j Y

j

)

Figure 8: New Equations and Expansion Law

22

References

[Bur91] G. Burns. A language for value-passing CCS. Technical Report ECS-LFCS-

91-175, LFCS, University of Edinburgh, August 1991.

[CPS89] R. Cleaveland, J. Parrow, and B. Ste�en. A semantics based veri�cation tool

for �nite state systems. In Proceedings of the 9

th

International Symposium on

Protocol Speci�cation, Testing and Veri�cation, North Holland, 1989.

[GP90] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. Technical

Report CS-R9076, CWI, Amsterdam, 1990.

[GP91] J.F. Groote and A. Ponse. Proof theory for �CRL. Technical Report CS-

R9138, CWI, Amsterdam, 1991.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[Hen91] M. Hennessy. A proof system for communicating processes with value-passing.

Formal Aspects of Computing, 3:346{366, 1991.

[HIar] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes with

value-passing. Information and Computation, To appear.

[HL92] M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92,

Computer Science, University of Sussex, 1992.

[HL93] M. Hennessy and X. Liu. A modal logic for message passing processes. Tech-

nical Report 3/93, Computer Science, University of Sussex, 1993.

[HR88] C.A.R. Hoare and A.W. Roscoe. The laws of occam. Technical Report PRG

Monograph, Oxford University, 1988.

[Lin91] H. Lin. PAM: A process algebra manipulator. In Computer Aided Veri�cation,

volume 575 of Lecture Notes in Computer Science, pages 136{146. Springer{

Verlag, 1991.

[Lin93] H. Lin. A veri�cation tool for value-passing process. Technical Report Forth-

coming, Computer Science, University of Sussex, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part i.

Information and Computation, 100(1):1{40, 1992.

[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for value-passing calculi. Re-

port Forthcoming, SICS and Edinburgh University, 1993.

[Wal89] D. Walker. Automated analysis of mutual exclusion algorithms using CCS.

Formal Aspects of Computing, 1:273{292, 1989.

23

