
A Process Algebra for Timed Systems

�

Matthew Hennessy, Tim Regan

University of Sussex

Abstract: A standard process algebra is extended by a new action � which is meant to

denote idling until the next clock cycle. A semantic theory based on testing is developed

for the new language. This is characterised in terms of barbs, a variety of ready traces

and also characterised as the initial theory generated by a set of equations.

1 Introduction

Process algebras are structured high-level description languages for concurrent systems,

[Mil89, Hoa85, BW90a]. They consist of a small number of constructors or combinators

for building processes together with a facility for recursive de�nitions. They have a

range of well-developed semantic theories and related proof systems associated with

them and they have been shown to be reasonably successful for both the speci�cation and

veri�cation of concurrent systems, [BW90b]. Intuitively they view processes as objects

which are capable of performing \abstract actions" which are usually interpreted as the

input or output of values or signals along communication channels. These capabilities

are expressed in terms of \next-state relations", �! , between processes; p

a

�! q

represents the fact that the process p can perform the action a and thereby evolve into

the process q. This is a relatively abstract interpretation of process. For instance there

is no mention of the length of time the action a takes, or when the action occurs or

indeed that it actually occurs at all; p

a

�! q merely says that the process p has the

capability of performing the action a. However this abstract view turns out to be a

major contributing factor to the success of process algebras; it enables one to describe

systems at di�erent levels of abstraction and to relate these di�erent descriptions via

semantic equivalences. For example one high-level description S could be viewed as a

desired speci�cation of a system and a lower-level description I a description of an actual

implementation and proving S semantically equivalent to I amounts to showing that the

implementation satis�es the required speci�cation.

Time is often an important aspect of the description of many concurrent systems

but it is not directly represented in any of the standard process algebras such as CCS,

CSP and ACP. The introduction of aspects of time into the setting of process algebras

has received much attention in recent research and not surprisingly, considering the fact

that time is a complex subject, there have been many proposals, [BB89, DS89, NRSV92,

MT90a, Re88, Yi90]. This paper presents another proposal. Our viewpoint may best be

explained by contrast with the approaches of say [BB89, Re88]. These papers suggest

�

The authors would like to acknowledge the �nancial support of British TelecomRT6224, the ESPRIT

II-BRA project CONCUR and the SERC.

1

very descriptive languages with which one may describe the minutiae of detailed timing

considerations in complex systems. Such languages are certainly required but there are

certain applications, those in which time plays a restricted role, for which these lan-

guages may be inappropriate because the descriptions may be unnecessarily complex.

Our proposal is quite modest: we wish to make a relatively minor extension to a stan-

dard process algebra with a mathematically simple notion of time which, although not

universally applicable, will be su�ciently useful in particular application areas such as

protocol veri�cation. Protocols are a typical example of systems where timing consider-

ations a�ect the behaviour of only a small part of the overall system. Our language is

designed so that speci�cation of the time-independent part of the system may be carried

out as usual while the time-dependent part may be treated with our time-based exten-

sion. We hope that by introducing a simple notion of time many of the characteristics

of standard process algebras which have made them so successful will still be retained in

the enlarged setting. In particular we wish to extend the semantic theory of processes

based on testing, [He88], to a setting where time plays a signi�cant role. From a method-

ological point of view it seems appropriate to start with a language in which the concept

of time is rather simple.

The idea is to introduce into a standard process algebra, CCS, a � action. The

execution of this � action by a process indicates that it is idling or doing nothing until

the next clock cycle. This action will share many of the properties of the standard actions

of CCS but because it represents the passage of time it will be distinguished from the

standard actions by certain of its properties. For example in our process algebra this

action will be deterministic in the sense that a process can only reach at most one new

state by performing � . This is a re
ection of the assumption that the passage of time is

deterministic. There is also an intuitive assumption underlying the usual (asynchronous)

theories of process algebras, such as CCS as expounded in [Mil89] and CSP as expounded

in [Hoa85], that all processes may idle inde�nitely and the semantic theory is formulated

in terms of the actions which a process may perform, if it so wishes. Indeed, this view

of processes is investigated in detail in [Mil83]. We continue to use this assumption;

using the syntax of CCS, the process a:p can idle, i.e. it can perform a � action.

This means that we assume all processes are patient in that they will wait inde�nitely

until communications in which they can participate become possible. Moreover this

means that the implicit assumption underlying CCS that all communication actions are

instantaneous is retained in our language since we have a distinguished action � denoting

the passage of time and, as we will see, all other actions are performed in between

occurrences of this time action. However, we add one further assumption, namely that

communications must occur if they are possible: a process cannot delay if it can perform

a communication. This we call the maximal progress assumption, [HdR89], which is a

common feature of many proposed timed process algebras. So, again using the syntax

of CCS, although a:p + b:q can idle, (a:p+ b:q)ja:q cannot idle; the communication via

the a channel must occur. However we are not simply giving a mild re-interpretation

to CCS. Because of the presence of � in the language we can express processes whose

behaviour is, at least to some extent, time-dependent. The new action does not only

indicate idleness but also forced delay; �:a:p is a process which can do nothing until the

�rst clock cycle and from that moment on it o�ers an a action.

Thus our approach to the introduction of time into process algebras may be charac-

terised by �ve intuitive properties:

2

1. discrete time: in our language time proceeds in discrete steps represented by oc-

currences of the action �,

2. time determinism: we assume that the passage of time is deterministic,

3. actions are instantaneous: time is not associated directly with communication

actions but occurs independently,

4. patience: processes will wait inde�nitely until they can communicate

5. maximal progress: processes communicate as soon as a possibility for communica-

tion arises.

Of course none of these assumptions are necessary in a timed process algebra and in our

comparison with related work we will discuss languages in which combinations of these

assumptions are dropped. However we hope to convince the reader that their adoption

leads to a calculus which

1. on the one hand is mathematically tractable ; we demonstrate this by extending

the theory of testing from [dNH84, He88] to this timed setting. This theory may be

characterised equationally in a manner which di�ers only slightly from a standard

theory of CCS, [dNH84]; moreover there is a close connection with the theory of

refusals, [Ph87].

2. on the other may be successfully applied to certain application areas; We demon-

strate this by treating a relatively simple example of a protocol in which time plays

a small but signi�cant role. Further more substantial examples may be found in

[Rea91].

As stated previously we do not expect our calculus to be applicable to all manner

of timed systems. But we believe it is applicable; moreover it o�ers the advantage of

relative simplicity with a fully developed semantic theory and therefore we hope that it

provides a sound basis on which to develop more extensive theories of timed systems.

We end this introduction with an outline of the contents of the the remainder of the

paper. In the next section we give the syntax of our timed process algebra TPL, which

stands for Timed Process Language, together with an operational semantics. Using this

operational semantics we then de�ne an operational preorder on timed processes based

on the must testing from [dNH84, He88]. This is a standard application of the testing

scenario from [He88] but here the tests may use the timing constructs from TPL and

therefore the power of testing is considerably increased. In the next section, Section 3,

we give an alternative characterisation of the testing preorder. For the untimed language

this alternative characterisation is given in terms of acceptances, [He88] which are of the

form sA; here s is a sequence of actions a process can perform to a state in which one of

the actions from the �nite set A can be performed. Because timed tests are more powerful

the alternative characterisation for TPL has to take into account more of the behaviour of

processes. It is expressed in terms of barbs, [Pn85, vG88], which are sequences of the form

s

1

A

1

s

2

: : : s

k

A

k

. Section 4 is devoted to an equational characterisation of the behavioural

preorder. This is in terms of a proof system which consists of a set of equations, a slight

weakening of the equational theory of CCS from [dNH84] together with an in�nitary

3

rule for recursively de�ned processes, again as used in [dNH84, He88] and a new rule for

patient processes. In the next section we develop a prototypical example of where we

believe our simple assumptions about time can be of use. It is a straightforward protocol

for transferring messages across a faulty medium. More extensive examples can be found

in [Rea91]. In the �nal section we describe some related work on timed process algebras.

The literature in this area of research is quite extensive and so we con�ne our discussion

to approaches which are quite similar to ours.

2 Syntax and Behavioural Semantics

In this section we present the process algebra TPL (Temporal Process Language) formally

and develop a behavioral theory of these processes based on \must" testing, [He88]. We

de�ne the language as closed terms built from a set of constructors, give an operational

semantics for the language in terms of labelled transition systems and �nally de�ne a

behavioural preorder based on testing.

The abstract syntax of the language is given by the following BNF de�nition:

t ::= nil j
 j x j �:t j btc(t) j a:t j �:t j t+ t j tjt j t[S] j t n a j recx:t

where a ranges over Act, a set of actions not containing the distinguished actions � and

� . The operator recx: acts in the usual way as a binder for variables and we are mainly

interested in closed terms which we call processes. We will use meta-variables p; q etc. to

range over these processes, a; b; c to range over the set of actions Act and Greek letters

�; � (but not ! or �) to range over Act

�

, the union of Act and f�g. We will not often

need to talk about a general action from Act [f�g [f�g and so this will be explicitly

stated where necessary.

We give some intuition of these operators, discussing each in turn.

� nil. This is the process which is terminated or deadlocked; it can perform no

actions from Act

�

but as discussed in the introduction we design our language so

that all processes are patient and for this reason nil will allow the passage of time,

i.e. it can idle inde�nitely.

�
. This process represents incomplete information or divergence. This incomplete

knowledge of a process is catastrophic in that a process whose behaviour is not

completely determined will be equivalent to one whose behaviour is completely

unknown.

� a:. The process a:p can perform an action a and in so doing evolve into the process

p. As is usual in CCS style languages there is an overbar or complementary function

Act ! Act which is idempotent and is used to formalise synchronisation. Again

because we wish all our processes to be patient a:p will be able to idle inde�nitely

until until the a action is requested by that environment.

� �:. This is the silent or internal action of our language. Since we are imposing

the assumption of maximal progress the process �:p will not be able to idle in any

environment. The � action represents some internal communication or computation

which requires nothing of the environment. When it is possible � will preempt any

4

passage of time. An intuition for this is that if a process is o�ering an action a

which is requested by another process by the o�er of an action a, we do not want

unspeci�ed delay to occur; the communication, the � move, must �re immediately.

� �:. The passage of time is modelled in our system by an occurance of a � action.

As discussed in the introduction this represents a relatively abstract notion of time

but it can be intuitively thought of as the click of a clock which measures the

passage of time for the system. We chose � as the symbol to represent the passage

of time because of its similarity to Phillips `broadcast stability operator' of [Ph87].

� +. Deterministic and nondeterministic choice between two processes is modelled

in CCS by the operator +. For actions a in Act and the action � the operator +

behaves in the same way as it does in the CCS setting. The di�erence comes with

the action � . If two processes are just idling before the environment requests one

of them the choice between them will not be made by the passage of time alone.

That is to say that + is not decided by the action � . This is necessary to ensure

that the passage of time is deterministic.

� b c(). This operator comes from the process algebra ATP put forward in [NRSV92].

It is similar to the context + �:�: but is properly decided by the passage of time

in favour of the right hand operand. This operator will be used in the complete

axiomatisation of the full calculus although it is also useful in many examples.

� j. The parallel bar we use is the handshake and interleaving of CCS. However

� again behaves di�erently. When two processes traverse time their composition

also does. This is represented by � being a broadcast event over j and again this

is necessary if we wish to ensure that time is deterministic.

� na. This is just the restriction operator of CCS. It is quanti�ed over Act but we

often use the shorthand nA to mean na

1

na

2

na

3

:::na

n

where A = fa

1

; a

2

; a

3

; :::; a

n

g.

Although it has the same syntax as the CSP and LOTOS hiding operators it has

a very di�erent operational meaning. For us the context n a forbids the action a

and a.

� [S]. This is the relabelling operator from CCS. Here S is function from Act to

Act which is almost everywhere the identity and which preserves the complement

function. In practice we assume that such functions are automatically extended so

that S(�) = � and S(�) = �. Relabeling functions enable the re-use of processes

in situations demanding the same functionality modulo action names.

From this informal description of the language we see that CCS is a sub-language of

TPL and therefore we say that a process from TPL is a CCS process if it does not use

the timing constructs � and b c().

The operational semantics of processes is given in two parts. The �rst, in Figure 1,

de�nes the next state relations,

�

�!, for each � 2 Act

�

. This is a slight generalisation

of the standard operational semantics for CCS and the new action � plays no role. In

Figure 2 the relation

�

�! is then de�ned in terms of these relations. The �rst rule says

that both a:p and nil may delay. This is a perfectly reasonable assumption; if a:p is

in an environment where no communication via a is possible, then it should be allowed

5

ACT

1

:

�:p

�

�! p

SUM

1

:

p

�

�! p

0

p + q

�

�! p

0

SUM

2

:

q

�

�! q

0

p+ q

�

�! q

0

THEN

1

:

p

�

�! p

0

bpc(q)

�

�! p

0

COM

1

:

p

�

�! p

0

pjq

�

�! p

0

jq

COM

2

:

q

�

�! q

0

pjq

�

�! pjq

0

COM

3

:

p

a

�! p

0

; q

a

�! q

0

pjq

�

�! p

0

jq

0

REL

1

:

p

�

�! p

0

p[S]

S(�)

�! p

0

[S]

RES

1

:

p

�

�! p

0

; � 62 fb; bg

p n b

�

�! p

0

n b

REC

1

:

t[recx:t=x]

�

�! p

0

recx:t

�

�! p

0

Figure 1: Standard Operational Semantics

to delay until the next time cycle. Similarly, nil may delay inde�nitely as it can never

perform a communication. Note, however, that �:p cannot delay; it must perform the

internal move � before the next time cycle. The third rule says that p + q may delay if

both p and q may delay. Note that the passage of time, i.e. performing a � action, does

not decide between the choice in p+ q. The fourth rule says that pjq may delay if both p

and q may delay and no communication between p and q is possible. The other rules are

straightforward; the �nal rule represents the standard methods for handling restriction

and recursion while the rule for �:p is perfectly natural.

We now give some examples of processes which may help to explain the in
uence

of � on the power of the language. In these examples we use the informal notation of

recursive de�nitions rather than recx: . We will also use the standard conventions in

writing CCS terms: occurrences of nil will often be omitted, action pre�xing will have

higher precedence than restriction and relabelling, both of which will in turn be higher

than j which will bind tighter than +.

Example 2.1 A process that may accept a message and transmit it back to the envi-

ronment, retransmiting every one time unit until an acknowledgement is received could

be written:

P (= message

in

:message

out

:P

0

P

0

(= ack:P + �:message

out

:P

0

:

6

ACT

2

:

a:p

�

�! a:p

NIL :

nil

�

�! nil

WAIT :

�:p

�

�! p

SUM

3

:

p

�

�! p

0

; q

�

�! q

0

p+ q

�

�! p

0

+ q

0

THEN

2

:

p 6

�

�!

bpc(q)

�

�! q

COM

4

:

p

�

�! p

0

; q

�

�! q

0

; pjq 6

�

�!

pjq

�

�! p

0

jq

0

REL

2

:

p

�

�! p

0

p[S]

�

�! p

0

[S]

RES

2

:

p

�

�! p

0

p n a

�

�! p

0

n a

REC

2

:

t[recx:t=x]

�

�! p

0

recx:t

�

�! p

0

Figure 2: Operational Semantics for �

2

Example 2.2 The process Egg

1

is de�ned so that if left too long before eating the egg

MAY be unhealthy (and may not).

Egg

1

(eat:healthy:nil+ �:�:eat:unhealthy:nil:

The process Egg

2

is de�ned so that if left too long before eating the egg WILL be

unhealthy.

Egg

2

(beat:healthy:nilc(beat:healthy:nilc(eat:unhealthy:nil))

2

Example 2.3 A \leaking counter" de�ned informally as

C

0

(= press:up:C

1

C

n+1

(= press:up:C

n+2

+ �:down:C

n

:

It can perform on up action each time it is pressed but if no press is forthcoming before

the next clock cycle it can perform a down action. So, for example, (C

0

jpress

k

) n press

acts like the process up

k

:(�:down)

k

. 2

7

Some of the informal assumptions underlying the design of the language which we

discussed in the introduction can now be seen to be re
ected in the operational semantics.

This is the import of the following proposition:

Proposition 2.4

1. (Time-determinism) if p

�

�! q and p

�

�! q

0

then q and q

0

are syntactically the

same

2. (Maximal progress) if p

�

�! q then p

�

�! r for no process r

Proof: By induction on the length of the proof of p

�

�! q, p

�

�! q respectively. 2

The informal assumption of patience is not as straightforward to capture. Intuitively

this should state that if a process p can not perform a � action then it must be able

to delay, i.e. perform a � action. But because of the presence of recursive de�nitions

the situation is more complicated. For example the processes recx:x and
 can perform

no action whatsoever. Intuitively these terms represent under-de�ned or \badly de�ned

processes" and therefore they require special attention. Terms which intuitively represent

well-de�ned processes are captured in the following de�nition:

De�nition 2.5 (Strong Convergence)

Let # be the least (post�x) predicate over TPL which satis�es

i) nil #; �:p #; �:p #

ii) p # implies (bpc(q)) #; (pjq) #; p n a #; p[S] #;

iii) p #; q #; implies (p + q) #;

iv) t[recx:t=x] # implies recx:t # :

2

We write p " to denote the negation of # and one can check that, for example,
 "

and recx:x ". With this new notation we can now see how patience is re
ected in our

operational semantics.

Proposition 2.6 (Patience) If p # and p

�

�! q for no process q then there exists a

process r such that p

�

�! r

Proof: By induction on the proof that p #. 2

We now turn our attention to the de�nition of a behavioural preorder between pro-

cesses. We follow the approach of [He88] which is based on testing and for convenience

we only consider the \must" case. However, because TPL is an extension of CCS, the

de�nitions we employ will be based on those from [dNH84] where the predicate # plays

a necessary role. A test e is a process from TPL which may additionally use the special

action ! for reporting success. A test e is applied to a process p by \running" the process

8

ejp, i.e. allowing it to evolve via � actions or � actions. Speci�cally a computation from

ejp is a maximal sequence (which may be �nite or in�nite) of the form

ejp = e

0

jp

0

7! e

1

jp

1

7! : : : 7! e

i

jp

i

7! : : : (where 7!=

�

�! [

�

�!)

To say when such an application is a success we need the notion of strong convergence

de�ned above.

We say p must e if in every computation from ejp,

ejp = e

0

jp

0

7! ::: 7! e

k

jp

k

7! : : :

there exists some n � 0 that e

n

!

�! , i.e. e

n

can report success, and for every k; 0 �

k < n e

k

jp

k

#. Finally, we say that

p

<

�

q

if for every test e, p must e implies q must e. We use

�

�

to denote the kernel of this

preorder.

The de�nition of

<

�

is close to that employed in [dNH84] and, therefore, if we restrict

both the processes and the tests to CCS the resulting theory is exactly that developed

in [dNH84]. However here we also allow occurrences of � in the tests and these new

tests, even when applied to CCS terms, i.e. terms not involving the timing constructs

� and b c(), have more distinguishing power than standard CCS tests. An interesting

di�erence in the power � vests in testing languages can be found in [La89]:

Example 2.7 This example concerns two vending machines (shown diagrammatically

in Figure 3 where � actions are ignored) with slightly di�erent internal behaviour

coin:(tea+ hit:tea)+ coin:(coffee+ hit:coffee)

and

coin:(tea+ hit:coffee) + coin:(coffee+ hit:tea):

These are equivalent in the standard theory but they can be distinguished by the tempo-

ral test coin:(tea:! + �:hit:tea:!), a test which says that if you can not do a tea action

immediately after doing a coin action then you will be able to do so after performing a

hit action. 2

This kind of testing of CCS processes has already been introduced in [Ph87] and [Ph88]

and for LOTOS in [La89]. Indeed, as mentioned, we have borrowed the notation used

by Phillips for his stability operator in [Ph88] for our new delay action, although there

is a signi�cant di�erence: his delay operator decides + whereas ours does not. It should

be emphasised that both authors introduce these operators into the test language only

and not into the process language.

The preorder

<

�

is not a congruence with respect to the operators + and b c().

For + the example is the usual one: a:nil

<

�

�:a:nil but b:nil+ a:nil

<

�

b:nil + �:a:nil is

not true. One can also check that b�:ac(b)

�

�

�:a but bac(b) is obviously not equivalent

to �:a. However, as we will see, the standard approach to generating a precongruence

from

�

�

will also work for our language: let p

<

�

+

q if for some a not occurring in p

and q a:nil + p

<

�

a:nil + q. In the next section we will prove that p

<

�

+

q is the

largest preorder contained in

<

�

which is preserved by all the operators of the language,

nil; �:; +; b c(); j; na and [S].

So now we have a fully
edged process language endowed with a behavioral preorder.

In the next section we present an alternative characterisation in terms of barbs, [Pn85].

9

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

teaco�ee

coin

coin

tea co�ee

hit

hit

hit

hit

co�eetea

coin
coin

tea co�ee

Figure 3: Langerak's Vending Machines

3 Alternative Characterisation

In this section we look at an alternative characterisation of

<

�

over TPL. The corre-

sponding alternative characterisation for the untimed language in [He88] is in terms of

\acceptances" of the form sA where s is a sequence of actions a process can perform to

arrive at a state and A is the set of next possible actions which can be performed from

that state. However because of the presence of the timing constructs in the tests for

TPL the characterisation now needs to be more complicated. The necessary behavioural

information can be encoded in a manner similar to the barbs of [Pn85] which are closely

related to the failure traces of [vG88]. However because of the presence of � in processes

and the treatment of divergence care must be taken in the de�nition of barbs and how

they are associated with processes.

De�nition 3.1 (Barbs) Let the set of barbs be the least set satisfying :

1.
 is a barb

2. if A is a �nite subset of Act then A is a barb

3. if b is a barb and a 2 Act [f�g then ab is a barb

4. if b is a barb and A is a �nite subset of Act then Ab is a barb

2

Thus a barb may be viewed as a sequence of the form

s

1

A

1

s

2

A

2

:::s

k

A

k

or

s

1

A

1

s

2

A

2

:::s

k

10

with 1 � k where s

i

2 (Act[�)

�

and each A

i

is a �nite subset of Act. These barbs may

be compared using the following order:

De�nition 3.2 � is the least preorder over barbs which satis�es

1.
� b.

2. A � B implies A� B

3. b� b

0

implies ab� ab

0

4. b� b

0

and A � A

0

implies Ab� A

0

b

0

2

This ordering is lifted to sets of barbs by de�ning

A� B , 8b 2 B:9a 2 A:a� b:

In order to associate barbs with processes we have to introduce some notation. First

the relations

�

�! are extended to

s

�!, for s 2 (Act [f�; �g)

�

, in the obvious way. Also

�

=), � 2 Act [f�g, is used to denote

�

�!

�

�

�!

�

�!

�

and this is also extended to

s

=),

s 2 (Act [f�g)

�

, in the natural way. Let

S(p) = fa : p

a

�!; a 2 Actg

Sort(p) = fa : p

s

=) p

0

a

�!; s 2 (Act [f�g)

�

; a 2 Actg:

We next generalise the strong convergence predicate # to take internal actions into ac-

count: Let + be the least predicate on TPL which satis�es

p # and 8p

0

:(p

�

�! p

0

) p

0

+) implies p + :

We use p + to denote the negation of p *. Finally we say p is stable if p # and p 6

�

�!, i.e.

for no p

0

is p

�

�! p

0

. Sometimes we will just want to say p cannot perform a � move in

which case we will call p � -stable. So for example a:p is both stable and � -stable while

a:p+
 is just � -stable.

Now consider a barb of the form

s

1

A

1

s

2

A

2

:::s

k

B

where B is either
 or another �nite subset of Act. This barb can be generated by the

process p if there exists a derivation of stable processes p

1

; p

2

; : : : ; p

k

:

p

s

1

=) p

1

s

2

=) p

2

: : :

s

k

=) p

k

with A

i

= S(p

i

) for 1 � i � k� 1 and if B is
 then p

k

* and otherwise p

k

is also stable

with B = S(p

k

). Let Barbs(p) be the set of barbs generated by the process p.

De�nition 3.3 For TPL processes p and q let p�

r

q i� Barb(p)� Barb(q). 2

11

The r superscript in this de�nition stands for regular since, although this ordering

serves as an alternative characterisation for CCS (as the next theorem states), it is

inadequate for TPL. We will need to restrict our attention to a specialisation of barbs

to obtain an alternative characterisation of TPL. The reason for this is that any stable

CCS process may perform a � action to itself whereas this is not true in TPL (e.g.

ba:nilc(b:nil)). It is also worth pointing out that this de�nition di�ers from that in

[HR90]. There the de�nition of�

r

is de�ned in terms of the preorder < and convergence

of processes over barbs, a concept we have not de�ned. We prefer here to de�ne �

r

in

terms of the sets of barbs alone. This substantially reduces the amount of work involved

in checking the equivalence of processes in next section's soundness proof.

Theorem 3.4 (Alternative Characterisation for CCS) For p,q in CCS, p

<

�

q if and

only if p�

r

q: 2

It is worth pointing out that this theorem is not true if we restrict Barb(p) to simple

barbs, i.e. those where each sequence s

i

is of length at most one. For example, let p

denote the process d:(a:nil+c:niljc:nil)nc. Then both p and d:nil have exactly the same

simple barbs, namely pre�xes of "fdgd;. However they can be distinguished by the test

d:(a:nil+ �!).

The theorem is also not true for the entire language TPL as barbs are too discrimi-

nating. For example

�:(b:nil+ �:a:nil) + �:(a:nil+ c:nil) 6�

r

a:nil+ b:nil

because the barb fa; bga distinguishes them although (as we will soon be able to verify)

they are related via

<

�

.

To characterise

<

�

over TPL we need to restrict ourselves to standard barbs, i.e.

barbs of the form

s

1

A

1

�s

2

A

2

�s

3

:::s

k

A

k

or

s

1

A

1

�s

2

A

2

�s

3

:::s

k

where each s

i

is now a member of the set Act

�

i.e. they do not contain occurances of � .

Let SBarb(p) be the standard barbs associated with the process p and (by overloading

notation) � the modi�cation to �

r

which restricts attention to standard barbs. We

may now state the main result of this section:

Theorem 3.5 (Alternative Characterisation for TPL) For p,q in TPL, p

<

�

q if and

only if p� q.

The remainder of this section is devoted to proving this characterisation of

<

�

over

TPL. The proof of the corresponding characterisation for CCS, Theorem 3.4, is omitted

as it is very similar.

Proposition 3.6 For p,q in TPL p� q implies p

<

�

q.

12

Proof: Let us assume p � q and p must e. We prove q must e by examining an

arbitrary computation from ejq:

C � ejq = e

0

jq

0

7! e

1

jq

1

7! : : : e

i

jq

i

7! : : : (1)

Each move 7! may either be

�

�! or

�

�! and let us concentrate on the former. Then

(1) may be rewritten in the form

C � ejq = e

0

jq

0

�

�!

�

f

1

jr

1

�

�!

�

�!

�

f

2

jr

2

: : : e

i

jq

i

�

�!

�

�!

�

: : : (2)

where each f

i

jr

i

corresponds to some e

j

jq

j

, j � 1. Note that this sequence of f

i

jr

i

's

may be �nite even if the origional sequence is in�nite. Now this computation may be

\unzipped" to reveal the contributions from the test and process:

q

0

s

1

=) r

1

�

�!

s

2

=) r

2

�

�! : : :

e

0

s

1

=) f

1

�

�!

s

2

=) f

2

�

�! : : : (3)

For the moment let us assume that each e

i

in the computation is strongly convergent.

This allows us to concentrate on the derivation from q

0

. It gives rise to the sequence of

barbs from SBarb(q):

b

1

: s

1

S(r

1

)

b

2

: s

1

S(r

1

)�s

2

S(r

2

)

:

:

:

b

k

: s

1

S(r

1

)�s

2

S(r

2

)�s

3

:::s

k

S(r

k

)

:

:

:

This sequence may terminate with a barb b

m

= s

1

S(r

1

)�s

2

S(r

2

)�s

3

:::s

m

 or it may well

be in�nite. Note that it cannot terminate with a barb b

m

= s

1

S(r

1

)�s

2

S(r

2

)�s

3

:::s

m

S(r

m

)

since this would imply that both the experiment and the q are in a stable position with

no communication possible and that q is in a convergent state. But this would imply

that the computation may proceed via a � move.

Now suppose that for somem � 0 SBarb(p) contains a barb a

n

= s

1

S

0

1

�s

2

S

0

2

�s

3

:::s

0

n

,

with n < m and s

0

n

a pre�x of s

n

, which satis�es a

n

� b

n

. Then this would lead to a

derivation from p of the form

p = p

0

s

1

=) g

1

�

�!

s

2

=) : : :

s

n

=) g

n

where S(g

i

) = S

0

i

for i < n and g

n

*. This could be zipped together with the derivation

from e in (3) to obtain a computation from ejp, which only uses the test states e

0

, e

1

,

e

2

,...

ejp 7! e

1

jp

1

7! : : : 7! e

l

jp

l

= e

l

jg

n

�

�! e

l

jg

n+1

�

�! : : :

which will either be in�nite or terminate at some e

l

jg

n+j

with g

n+j

" depending on why

g

n

*.

13

Since p must e it follows that for some e

i

; e

i

!

�! . Therefore the original compu-

tation (1) is successful. We know that the zipping together of these derivations works

because at each state where the 7! move is the result of a � action the relevant S

0

i

is

contained in S

i

.

So we may assume that SBarb(p) does not contain any such open barbs. It follows

that the origional computation (1) and the sequence of barbs b

1

; b

2

: : : are in�nite; a

maximal barb b

m

would be open and since p� q SBarb(p) would have to contain an a

such that a� b

k

and neccessarily a would be open.

So let us consider the in�nite sequence of barbs b

1

; b

2

: : :. For each b

k

we can obtain

a barb of p of the form a

k

= s

1

S

0

1

�s

2

S

0

2

�s

3

:::s

k

S

0

k

with s

0

i

� S(r

i

) for each 1 � i � k.

This gives us the following dervation from p.

p = p

0

s

1

=) g

1

�

�!

s

2

=) : : :

s

k

=) g

k

where S(g

i

) = S

0

i

for 1 � i � k. From this we wish to deduce the existence of an in�nite

derivation from p

p = p

0

s

1

=) g

1

�

�!

s

2

=) : : :

�

�!

s

k

=) g

k

: : : : (4)

However this requires the assumption that the transition system generated by p, based

on the \weak moves"

�

=), is �nite branching. For if it were not, p may have a branch to

match each of these barbs while having no in�nite branch to match them all. To prove

this assumption true we can show that, in the terminology of [Ab90], it is weakly �nite

branching { that is for each q accessible from p fp

0

: 9�:q

�

�! p

0

g is �nite { and also that

fp

0

: q

�

�!

�

p

0

g is �nite. The proof depends on the fact that q # for each such q and is

very similar to the corresponding proof in [dNH84] and is therefore omitted.

The derivation (4) can be combined with the computation from e in (3) to obtain an

in�nite computation from ejp which only uses the test states e

0

, e

1

, Again, using

p must e we can conclude that the original computation (1) is successful.

This leaves the case when some e

n

", which we leave to the reader. It is su�cient

to consider the barb from SBarb(q) which characterises the contribution of q up to the

appearance of e

n

and use the corresponding barb from p to obtain some e

k

with k � n

and e

k

!

�!. 2

We prove the converse by showing that in some sense the ability to generate a par-

ticular barb may be captured by an associated test. For every barb b and �nite set of

actions L de�ne the test e(b; L) by induction on b as follows:

1. e(
; L) = �:!

2. e(A;L) = b

P

x2LnA

x:!c(nil)

3. e(cb

0

; L) = �:! + c:e(b

0

; L)

4. e(A�b

0

; L) = b

P

x2LnA

x:!c(e(b

0

; L))

We leave the reader to check the following property of these tests:

14

Lemma 3.7 For every standard barb b and for every �nite L � Act such that Sort(b) �

L if Sort(p) � L then

p m6 ust e(b; L), 9a 2 SBarb(p) a� b:

Proposition 3.8 For p,q in TPL p

<

�

q implies p � q.

Proof: We prove the contrapositive, namely :(p � q) implies :(p

<

�

q). If p � q is

not true then for some standard barb b 2 SBarb(q) b

0

� b for no b

0

in SBarb(p). In this

case we employ the Lemma 3.7 where L is chosen so as to contain both of the �nite sets

Sort(p) and Sort(q). 2

Combining these two propositions we immediately have the Alternative Characterisa-

tion Theorem for TPL. As a direct corollary to this we can restrict the experimenters

considered with no change to the discriminatory power.

De�nition 3.9 An F-test f is a TPL experiment of the following recursively de�ned

form.

� f = �:!.

� f = b

P

A

a:!c(nil).

� f = �:! + a:f

0

, where f

0

is an F-test.

� f = b

P

A

a:!c(f

0

), where f

0

is an F-test.

2

Lemma 3.10 For any TPL processes p,q p

<

�

q if, and only if, for all F-tests f p must f

implies q must f

Proof: We have proved above that p

<

�

q , p � q. The proof of Lemma 3.7 then

gives that we need only consider F-tests. 2

With this alternative characterisation it is now relatively straightforward to compare

processes with respect to

<

�

. As an example we return to Example 2.7. We can

distinguish the two vending machines with the barb coinftea; hitg�hitfteag which is a

standard barb of the second process unmatched by one from the �rst. The alternative

characterisation also enables us to prove the characterisation of

<

�

c

promised in the

previous section.

Theorem 3.11

p

<

�

c

q , p

<

�

+

q:

Proof: It is su�cient to show that

<

�

+

is respected by all the operators. We leave

the individual proofs, which are quite tedious to the reader but we should point out the

proof for the restriction operator requires some care. 2

15

4 Proof Systems

In this section we develop a sound and complete proof system for the language TPL. The

importance of a proof system for a language is great. Some process algebras are de�ned

equationally since their designers feel this to be the most intuitive starting point. Indeed

Schmidt says in [Sch86]:

\The [axiomatic] format is best used to provide preliminary speci�cations for

a language or to give documentation about properties that are of interest to

the users of the language."

Hence it is often to the equations that one turns to reveal the di�erences between lan-

guages and the equivalences de�ned upon them. The importance of the soundness of a

proof system is obvious, it merely requires that the equations and proof rules are true of

the language under examination. Completeness is often harder to prove since it requires

that all truths in the language should be provable in the proof system.

The proof system we consider is based on the inequations given in Figures 4 and 5.

Many of these are standard equations for CCS but the operators b c() and � introduce

new and sometimes complex axioms, particularly in relation to the internal operator � .

From the equation �1 it is apparent that � is expressible in terms of b c() but we have

deliberately used � in the presentation because it is easily understood intuitively. Also

note that e1 is not derivable from e2.

The proof system is de�ned in Figure 6. It is essentially inequational reasoning with

extra rules for recursive terms, REC and ! � Induction. In the latter App(t) denotes

the set of �nite approximations to t, ft

n

: n � 0g, de�ned by:

1. t

0

=

2. (a) x

n+1

= x

(b) f(t)

n+1

= f(t

n+1

)

(c) (recx:t)

n+1

= t

n+1

[(recx:t)

n

=x].

These have been discussed at length in [He88]. The only extra rule is the Stability�Rule,

a simple form of which equates the process a:nil with recx:(a:nil+�:x) or even nil with

recx:�:x.

Let `

E

t � u denote that t � u is derivable in this proof system, t �

E

u that t � u is

derivable with purely inequational reasoning and �nally t �

Er

u that t � u is derivable

using in addition the unfolding rule REC.

We �rst discuss the soundness of the axioms. To characterise their importance we

introduce two further equivalences, derivation congruence and observational congruence,

[Mil90].

De�nition 4.1 Derivation congruence is the largest equivalence satisfying

< p; q >2 S)

i) 8p

0

:p

�

�! p

0

:q

�

�! p

0

ii) p +, q +

where � 2 Act [f�; �g. 2

16

x+ x = x +1 �:x+ x = �:x �1

x+ y = y + x +2 �:x+ y = �:(�:x+ y) �2

x+ (y + z) = (x+ y) + z +3 a:x+ a:y = a:(�:x+ �:y) �3

x+ nil = x +4 �:x+ y � �:x �4

�:x+ �:y � �:(x+ y) �5

nil n a = nil res1 nil[S] = nil rel1

�:x n a = nil res2 (�:x)[S] = S(�):x[S] rel2

� 2 fa; ag

�:x n a = �:(x n a) res3 (x+ y)[S] = x[S] + y[S] rel3

� 62 fa; ag

(x+ y) n a = x n a+ y n a res4

bxc(y) n a = bx n ac(y n a) res5 bxc(y)[S] = bx[S]c(y[S]) rel4

�:
 =

1
 n a =

4

x+
 =

2
[S] =

5

xj
 =

3 b
c(x) =

6

Figure 4: The Inequation System E

We write p � q to say that p and q are derivation congruent.

De�nition 4.2 Observational equivalence is the largest equivalence satisfying

< p; q >2 S)

i) 8p

0

:p

�

=) p

0

:9q

0

:q

�

=) q

0

: < p

0

; q

0

>2 S

ii) p +, q +

where � 2 Act [f�; "g. 2

It is well known that � is not preserved by + ([Mil90]) but if, as usual, we de�ne p �

+

q

if for some a not appearing in p or q p+ a � q+ a, then �

+

is a congruence with respect

to all our operators.

17

�:x = bnilc(x) �1

a:x = ba:xc(a:x) �2

bbxc(y)c(z) = bxc(z) �3

bxc(y) + buc(v) = bx+ uc(y + v) �4

b�:xc(y) = �:x ��1

�:bxc(y) = �:bxc(�:y) ��2

x+ �:byc(z) � �:bx+ yc(z) ��3

x =

P

I

�

i

:x

i

y =

P

J

j

:y

j

xjy =

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

) e1

x = b

P

I

�

i

:x

i

c(x

�

) y = b

P

J

j

:y

j

c(y

�

)

xjy = b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

) e2

Figure 5: Extra Inequations for System E

Lemma 4.3 For any TPL processes p and q

p � q) p � q) p

�

�

q:

Proof: The �rst implication is straightforward and to show the second it is su�cient

to prove prove that for any F-test f p m6 ust f and p � q implies q m6 ust f by induction

on the size of f . This we leave to the reader. 2

We can now consider the soundness of most of our equations with respect to these

congruences. The laws +1;+2;+3; and +4 are called the monoid laws (although com-

mutativity idempotence is not required of monoids). In [Mil90] they are shown to be

sound with respect to �. The equations res1; res2; res3; res4; rel1; rel2; rel3; and e1 are

also discussed there. Note that this does not necessarily imply that these laws are sound

over TPL. For example in [Mil90] x + y � y + x follows since x + y

�

�! z can only be

the result of x

�

�! z or y

�

�! z but not both. We would also have to consider the case

where x

�

�! x

0

and y

�

�! y

0

implying x+ y

�

�! x

0

+ y

0

. However these extra cases

are straightforward to check.

We can justify many more of our equations in terms of derivation and observation

congruence. The equations �1; : : : �4; ��1 and e2 are all true of �. As examples we

consider the two equations �4 and e2.

18

1: Reflexivity

t � t

2: T ransitivity

t � t

0

; t

0

� t

00

t � t

00

3: Substitution (a)

t � t

0

f(t) � f(t

0

)

for every f 2 f�:;+; j; na; [S]g

(b)

t � t

0

recx:t � recx:t

0

4: Instantiation

t � t

0

t� � t

0

�

for every substitution �

5: Inequations

t � t

0

for every inequation

t � t

0

in E

6:
�Rule

 � t

7: REC

recx:t = t[recx:t=x]

8: ! � Induction

for every d 2 App(t); d � t

0

t � t

0

9: Stability�Rule

P

i2I

�

i

:t

i

� recx:b

P

i2I

�

i

:t

i

c(x)

�

i

2 Act

�

Figure 6: The Proof System

� bxc(y) + buc(v) = bx + uc(y + v). Firstly we examine the � transition possible if

x and u cannot perform a � move. THEN

2

gives bx + uc(y + v)

�

�! y + v. It

also gives bxc(y)

�

�! y and buc(v)

�

�! v so by SUM

3

the only available � move

from bxc(y) + buc(v) is bxc(y) + buc(v)

�

�! y + v. The other transitions from

bx+uc(y+v) must, by THEN

1

, come from x+u. By SUM

1

and SUM

2

these must

be from x

�

�! x

0

or u

�

�! u

0

giving bx+ uc(y+ v)

�

�! x

0

or bx+ uc(y+ v)

�

�! y

0

.

Now the initial moves (i.e. non � moves) of bxc(y) + buc(v) are derived from

SUM

1

and SUM

2

i.e. from bxc(y) and buc(v). THEN

1

gives these as the result

of x

�

�! x

0

or u

�

�! u

0

. So bxc(y) + buc(v)

�

�! x

0

or bxc(y) + buc(v)

�

�! u

0

as

before.

19

� If x = b

P

I

�

i

:x

i

c(x

�

) and y = b

P

J

j

:y

j

c(y

�

) then xjy = b

P

I

�

i

:(x

i

jy)+

P

J

j

:(xjy

j

)+

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

). We examine wait transitions �rst. For the left hand

side these can only be the result of COM

4

which can only be applied when

x

�

�! x

0

, y

�

�! y

0

and xjy 6

�

�!. THEN

2

translates this �rst two condi-

tions into � 62 (f�

i

: i 2 Ig [f

j

: j 2 Jg) giving x

�

�! x

�

and y

�

�! y

�

.

The third condition implies (by COM

3

) that f�

i

: i 2 Ig \ f

j

: j 2 Jg = ;.

These conditions also imply b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

) +

P

�

i

=

j

�:(x

i

jy

j

)c(x

�

jy

�

)

is b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

)c(x

�

jy

�

) and by THEN

2

we have b

P

I

�

i

:(x

i

jy) +

P

J

j

:(xjy

j

)c(x

�

jy

�

)

�

�! x

�

jy

�

. The other moves are derived for the left hand

side by COM

1

, COM

2

, and COM

3

and for the right hand side by THEN

1

. We

examine only one case in detail. Suppose xjy

a

�! x

a

jy by COM

1

. Then by re-

peated use of SUM

1

we have

P

I

�

i

:(x

i

jy)+

P

J

j

:(xjy

j

)+

P

�

i

=

j

�:(x

i

jy

j

)

a

�! x

a

jy.

THEN

1

then gives desired move from the right.

The axioms �1, ��2,
1,
4, and
5 are all true of observational congruence. The

only non-trivial axiom to check is ��2 which relates the congruence to stability: for

any two processes p, q �:bpc(q) and �:bpc(�:q) are obviously observationally equivalent

because bpc(q) and bpc(�:q) are observationally equivalent and the extra condition for

congruence is easily checked. The standard � -laws of CCS may also be derived from ours.

�1 is the second � -law of CCS (see for example [Mil90]). The �rst � -law, �:�:x = �:x,

follows from our �2 (with y = �:x) and �3 (with y = x). The third, �:(x+ �:y) + �:y =

�:(x+ �:y) is derivable as follows:

�:(x+ �:y) + �:y = �:(�:(x+ �:y) + �:y) �3

= �:(x+ �:y + �:y) �2

= �:(x+ �:y) +1:

The remaining equations �2, �3, �4, �5, ��3,
2, and
3 have to be justi�ed directly

in terms of �

c

. We look at two examples:

� �:x + �:y � �:(x + y). This is not straightforward, but it embodies the idea that

nondeterminism is decreased as one moves up the preorder. We prove this sound

by induction on the length of barbs.

{
 2 SBarb(�:(x + y)). Then (x + y) * and so either x * or y * and so

(�:x+ �:y) * and
 2 SBarb(�:x+ �:y).

{ A 2 SBarb(�:(x+ y)). Then either x

"

=) x

0

with A = S(x

0

), y

"

=) y

0

with

A = S(y

0

), or A = S(x)[S(y). In either case this can be matched by �:x+�:y.

{ ab 2 SBarb(�:(x+ y)). Then �:(x + y)

a

=) z with b 2 SBarb(z). But then

either x

a

=) z or y

a

=) z and so ab 2 SBarb(�:x+ �:y).

{ A�b 2 SBarb(�:(x+ y)). Now if either A�b 2 SBarb(x) or A�b 2 SBarb(y)

we have A�b 2 SBarb(�:x + �:y). Suppose not, that is x

�

�! x

0

and

y

�

�! y

0

with A = S(x) [S(y) and b 2 SBarb(x

0

+ y

0

). Then b 2

SBarb(�:(x

0

+ y

0

)) and so by induction a 2 SBarb(�:x

0

+ �:y

0

) with a � b.

But SBarb(�:x

0

+ �:y

0

) = SBarb(x

0

) [SBarb(y

0

) and so a 2 SBarb(x

0

) or

a 2 SBarb(y

0

). Without loss of generality assume a 2 SBarb(x

0

). Then

S(x)�a 2 SBarb(x) � SBarb(�:x+ �:y) as required.

20

� x + �:byc(z) � �:bx+ yc(z). We examine b 2 SBarb(�:bx+ yc(z)). If b =
 then

either x * or y * giving (x+ �:byc(z)) * and
 2 SBarb(x+ �:byc(z)). If b = ab

0

then either x

a

�! x

0

with b

0

2 SBarb(x

0

) or y

a

�! y

0

with b

0

2 SBarb(y

0

). In

either case b 2 SBarb(x+ �:byc(z)). Otherwise b = A�b

0

. There are three cases to

consider.

{ x

�

=) x

0

with A = S(x

0

) and b 2 SBarb(x

0

). Then x + �:byc(z)

�

=) x

0

and

b 2 SBarb(x+ �:byc(z)).

{ y

�

=) y

0

with A = S(y

0

) and b 2 SBarb(y

0

). Then x + �:byc(z)

�

=) y

0

and

b 2 SBarb(x+ �:byc(z)).

{ A = S(x) [S(y) and b

0

2 SBarb(z). Then S(y)�b

0

2 SBarb(x+ �:byc(z))

with S(y)�b

0

� A�b

0

.

We have just shown:

Proposition 4.4 All the inequations in Figures 4 and 5 are sound with respect to

<

�

c

.

At this point it is convenient to ignore the soundness of the proof system and instead

address completeness.

In common with most completeness proofs in the process algebra literature we start

by de�ning the notion of normal form. These are gleaned from the behavior of processes

and the mechanics of the proof that every term indeed has a normal form. In the following

de�nition of normal forms we make the distinction between stable and unstable processes.

If the process is stable then either it changes under the passage of one unit of time or

it does not. If the process is unstable then either it is divergent or it has a number of

actions available to it before nondeterministicly resolving its instability in favour of a

stable normal form.

De�nition 4.5 A normal form (nf for short) is a term of the following inductively

de�ned form.

1.
 is a normal form.

2. b

P

A

a:n

a

c(n

�

) is a normal form if each n

a

is a normal form and n

�

is a normal

form.

3.

P

B

b:n

b

+

P

I

�:n

i

is a normal form if each n

b

is a normal form and each n

i

is a

stable normal form.

2

Taking I to be empty gives normal forms

P

A

a:n

a

and also taking A to be empty gives the

normal form nil. It may also be worth clarifying the notation

P

X

f(x). This is intended

as a shorthand for

P

x2X

f(x). We will use and abuse this notation liberally. We also

denote by n

a

the unique m such that the normal form n can evolve to by performing an

a action, i.e. n

a

�! m.

In proving that every term can be reduced to a normal form we need a measure on

which to perform induction.

21

De�nition 4.6 The depth of a �nite process d written jdj is de�ned structurally as

follows.

� j
j = jnilj = 0.

� ja:dj = 1 + jdj.

� j�:dj = jdj.

� j�:dj = jdj.

� jd + ej = maxfjdj; jejg.

� jbdc(e)j = maxfjdj; jejg.

� jdjej = jdj + jej.

� jd n aj = jdj.

� jd[S]j = jdj.

2

The depth of a term is supposed to represent the maximum length of a trace from

that term, ignoring � and � actions. To avoid complication jd n aj is de�ned as jdj

when obviously it could be much less. The reason for ignoring � comes from the line

jbdc(e)j = maxfjdj; jejg. If we replace this with the perhaps more intuitive jbdc(e)j =

maxfjdj; 1 + jejg (and adjust j�:dj accordingly) it is di�cult to see how to construct a

normal form from the choice between the two normal forms

P

A

a:n

a

and b

P

B

b:m

b

c(m

�

)

without possibly increasing the overall depth. Normalisation will be performed using

the following measure.

De�nition 4.7 The measure � is the preorder de�ned by

1. jdj < jf j or

2. jdj = jf j and M

�

(d) < M

�

(f) where M

�

(p) denotes the number of occurences of

the constuct b c() in p.

We write d � f when either d � f or jdj = jf j and M

�

(d) = M

�

(f), that is when neither

the depth or M

�

are greater in d than f . 2

The following fact is used repeatedly when normalising a �nite term and so is dealt

with separately.

Lemma 4.8 For �nite sets of normal forms fp

a

: a 2 Ag and fq

b

: b 2 Bg (A;B � Act)

there exists normal forms r

c

such that

P

A

a:p

a

+

P

B

b:q

b

=

E

P

A[B

c:r

c

and

P

A[B

c:r

c

�

P

A

a:p

a

+

P

B

b:q

b

.

Proof: We �rst show by a case analysis on n that if n is a normal form then there

exists a normal form n

0

such that

22

1. n

0

=

E

�:n.

2. n

0

� n.

This in turn is used to show that if n

1

and n

2

are normal forms then there exists a normal

form n

3

such that

1. n

3

=

E

�:n

1

+ �:n

2

.

2. n

3

� �:n

1

+ �:n

2

.

This is proved by induction on the depth of n

1

+ n

2

. The proof of the result is now

straightforward:

P

A

a:p

a

+

P

B

b:q

b

=

E

P

AnB

a:p

a

+

P

BnA

b:q

b

+

P

A\B

c:(�:p

c

+ �:q

c

) by �3

P

A

a:p

a

+

P

B

b:q

b

=

E

P

AnB

a:p

a

+

P

BnA

b:q

b

+

P

A\B

c:nf(�:p

c

+ �:q

c

) by above

2

Theorem 4.9 (Normal Form Theorem)

Every �nite term p has an equationally equivalent normal form nf(p) with nf(p) � p.

Proof:

We proceed by induction on �. There are several cases to consider depending on the

structure of p but we examine only p + q here.

� nf(p) =

E

b

P

A

a:p

a

c(p

�

), nf(q) =

E

b

P

B

b:q

b

c(q

�

).

p + q =

E

nf(p) + nf(q) by substitution

=

E

b

P

A

a:p

a

c(p

�

) + b

P

B

b:q

b

c(q

�

) by substitution

=

E

b

P

A

a:p

a

+

P

B

b:q

b

c(p

�

+ q

�

) by �4

=

E

b

P

A

a:p

a

+

P

B

b:q

b

c(nf(p

�

+ q

�

)) by induction on �

The result then follows by Lemma 4.8

� nf(p) =

E

P

A

a:p

a

, nf(q) =

E

b

P

B

b:q

b

c(q

�

).

p+ q =

E

nf(p) + nf(q) by substitution

=

E

P

A

a:p

a

+ b

P

B

b:q

b

c(q

�

) by substitution

=

E

b

P

A

a:p

a

+

P

B

b:q

b

c(

P

A

a:p

a

+ q

�

) by �2 & �4

=

E

b

P

A

a:p

a

+

P

B

b:q

b

c(nf(

P

A

a:p

a

+ q

�

)) by induction on �

The result then follows as above by Lemma 4.8.

� nf(p) =

E

b

P

A

a:p

a

c(p

�

), nf(q) =

E

P

B

b:q

b

+

P

J 6=;

�:q

j

.

p+ q =

E

nf(p) + nf(q) by substitution

=

E

b

P

A

a:p

a

c(p

�

) +

P

B

b:q

b

+

P

J 6=;

�:q

j

by substitution

=

E

P

A

a:p

a

+

P

B

b:q

b

+

P

J 6=;

�:q

j

by ��3

Again the result follows from Lemma 4.8.

23

� nf(p) =

E

P

A

a:p

a

+

P

I

�:p

i

, nf(q) =

E

P

B

b:q

b

+

P

J

�:q

j

.

p + q =

E

nf(p) + nf(q) by substitution

=

E

P

A

a:p

a

+

P

I 6=;

�:p

i

+

P

B

b:q

b

+

P

J 6=;

�:q

j

by substitution

The result follows as before from Lemma 4.8.

2

It will be convenient in the completeness theorem to be able to further reduce normal

forms. These we call strong normal forms.

De�nition 4.10 A normal form with the structure

P

A

a:d

a

+

P

I 6=;

�:d

0

i

where each d

i

is a stable normal form (i.e.

P

B

i

b:d

i

b

or b

P

B

i

b:d

i

b

c(d

i

�

)) is a strong normal form if

1. each B

i

is contained in A and

2. for each a in A \B

i

, �:d

a

+ �:d

i

a

=

E

d

a

.

2

We use snf(d) to denote the strong normal form of a term d. We did not include this

information in the de�nition of normal forms as the translation of a � -stable process into

its associated strong normal form may increase the depth of the term. However we can

prove the following lemma.

Lemma 4.11 For every normal form d =

P

A

a:d

a

+

P

I 6=;

�:d

i

with d

i

=

P

B

i

b:d

i

b

or

d

i

= b

P

B

i

b:d

i

b

c(d

i

�

) there exists a strong normal form snf(d) =

P

A

0
a:d

0

a

+

P

I 6=;

�:d

i

such

that d =

E

snf(d) and d

0

a

� d.

Proof: We proceed by direct equational manipulation of d. We will use the derived

axiom �:bxc(y) = x+ �:bxc(y). (This follows from �1 and the easily derivable equation

bxc(y) + �:z = x+ �:z)

d =

E

P

A

a:d

a

+

P

I 6=;

�:d

i

by def

n

=

E

P

A

a:d

a

+

P

J

�:

P

B

j

b:d

j

b

+

P

K

�:b

P

B

k

b:d

k

b

c(d

k

�

) by def

n

=

E

P

A

a:d

a

+

P

J

P

B

j

b:d

j

b

+

P

J

�:

P

B

j

b:d

j

b

+

P

K

�:b

P

B

k

b:d

k

b

c(d

k

�

) by�1

=

E

P

A

a:d

a

+

P

J

P

B

j

b:d

j

b

+

P

K

P

B

k

b:d

k

b

+

P

J

�:

P

B

j

b:d

j

b

+

P

K

�:b

P

B

k

b:d

k

b

c(d

k

�

)

from above

=

E

P

A

a:d

a

+

P

J

P

B

j

b:d

j

b

+

P

K

P

B

k

b:d

k

b

+

P

I 6=;

�:d

i

by def

n

We now examine the term

P

A

a:d

a

+

P

J

P

B

j

b:d

j

b

+

P

K

P

B

k

b:d

k

b

in isolation: we aim

to translate it into the form

P

A

0
a:d

0

a

. Suppose a:d

1

and a:d

2

are both summands of

P

A

a:d

a

+

P

J

P

B

j

b:d

j

b

+

P

K

P

B

k

b:d

k

b

. Then by �3 we have a:d

1

+a:d

2

=

E

a:(�:d

1

+�:d

2

).As

in Lemma 4.8 we can transform a:d

1

+ a:d

2

into a:nf(�:d

1

+ �:d

2

) with no increase in

depth. We repeat this proceedure until no such duplicated pre�xed action appear in the

24

sum. It is then straightforward to check that the transformation of d is both a strong

normal form and satis�es the requirements of the lemma. 2

It is also necessary to develop a partial normal form for in�nite terms, i.e. those involving

recursion. These are called head normal forms.

De�nition 4.12 A head normal form is a term of the following form.

1. b

P

A

a:p

a

c(p

�

) is in head normal form.

2.

P

A

a:p

a

+

P

I 6=;

�:p

i

is in head normal form if each p

i

is in a stable head normal

form.

2

We use hnf(p) to denote the head normal form of a term p.

Theorem 4.13 (Head Normal Form Theorem)

For any term p such that p + there exists a head normal form hnf(p) such that

p =

Er

hnf(p).

Proof: The proof is similar to that of the Normal Form Theorem except that the

induction used is on the length of the proof that p +. 2

In the next theorem, the heart of the completeness theorem, we use various simple

facts about

<

�

c

which are summarised in the following lemma. The proofs are straight-

forward and are left to the reader.

Lemma 4.14

1. (� -preservation) p� q) �:p�

c

�:q

2. (stability) for convergent p p�

c

q ^ p

�

�!) q

�

�!

3. (�-property)

p �

c

q

p

�

�! p

�

q

�

�! q

�

9

>

=

>

;

) p

�

�

c

q

�

:

Theorem 4.15 (Partial Completeness) For any �nite process d and any process q

d

<

�

c

q) `

E

d � q

Proof: We proceed by induction on the order � over d and its subterms. For con-

venience we abbreviate `

E

d � q to d �

E

q within the con�nes of this proof although

essential use is made of the extra rules. We may assume d is in normal form. If d *

then it is easy to prove by structural induction on d that d =

E

 and the result follows

immediately. So we may further assume that d + and therefore q +; in particular we

may now assume q is in head normal form.

25

� d � b

P

A

a:d

a

c(d

�

); q � b

P

B

b:q

b

c(q

�

)

Firstly we prove that n

�

�

E

q

�

. d

�

�

c

q

�

follows directly from the �-property,

Part 3 of Lemma 4.14 and so by induction we have d

�

�

E

q

�

.

Now we prove

P

A

a:d

a

�

E

P

B

b:q

b

. Any barb bv 2 SBarb(q) must be matched by

one in SBarb(d) so B � A. Any barb B�v 2 SBarb(q) must be matched by one

in SBarb(d) so A � B i.e. A = B. Also for all a 2 A d

a

� q

a

. For consider

v 2 SBarb(q

a

). Then av 2 SBarb(q) and so by d �

c

q we have au 2 SBarb(d)

with au� av. Hence u� v with u 2 SBarb(d

a

). By the � -preservation propery,

Part 1 of Lemma 4.14 d

a

� q

a

) �:d

a

�

c

�:q

a

and so by induction for all

a 2 A �:d

a

�

E

�:q

a

. Hence for all a 2 A a:�:d

a

�

E

a:�:q

a

and so

P

A

a:�:d

a

�

E

P

A

a:�:q

a

which, by �3 gives

P

A

a:d

a

�

E

P

A

a:q

a

, i.e.

P

A

a:d

a

�

E

P

B

b:q

b

.

Combining these results we have

d � b

X

A

a:d

a

c(d

�

) �

E

b

X

B

b:q

b

c(q

�

) � q:

� d �

P

B

b:d

b

+

P

I

�:d

i

.

There are several sub-cases to consider.

{ I = ; i.e. d �

P

A

a:d

a

.

Note that this includes the case when A = ;, that is d � nil. We de�ne the

term e = recx:b

P

A

a:d

a

c(x) and prove

8n:8p:d�

c

p) e

n

�

E

p:

We continue in this subproof by induction on n.

� n = 0. e

0

=
 and so by the
�Rule we have e

0

�

E

p.

� n = k + 1. By d's stability we know that p has the stable head normal

form p =

E

b

P

B

b:p

b

c(p

�

). First note that d�

c

p

�

follows directly by the

�-property and by induction on n we have e

k

�

E

p

�

.

Now we prove that

P

A

a:d

a

�

E

P

B

b:p

b

. Any barb bv 2 SBarb(p) must

be matched by one in SBarb(d) so B � A. Any barb B�v 2 SBarb(p)

must be matched by one in SBarb(d) so A � B i.e. A = B. Also for all

a 2 A d

a

� p

a

. For consider v 2 SBarb(p

a

). Then av 2 SBarb(p) and

so by d �

c

p we have au 2 SBarb(d) with au� av. Hence u � v with

u 2 SBarb(d

a

). By � -preservation d

a

� p

a

) �:d

a

�

c

�:p

a

and so by

induction for all a 2 A �:d

a

�

E

�:p

a

. Hence for all a 2 A a:�:d

a

�

E

a:�:p

a

and so

P

A

a:�:d

a

�

E

P

A

a:�:p

a

which, by �3, gives

P

A

a:d

a

�

E

P

A

a:p

a

,

i.e.

P

A

a:d

a

�

E

P

B

b:p

b

.

Combining these results we obtain b

P

A

a:d

a

c(e

k

) �

E

b

P

B

b:p

b

c(p

�

). But

e

k+1

= b

P

A

a:d

a

c(e

k

) and so e

k+1

�

E

p as required.

Instantiating the p above to be the q of this theorem we have 8n:e

n

�

E

q and

by ! � Induction we get e �

E

q. By the Stability � Rule d �

E

e and so

d �

E

q as required.

26

{ I 6= ;.

This last case is the most complicated and we will go through it in some

detail. Here d is an unstable normal form and therefore by Lemma 4.11 we

may assume d is a strong normal form.

d �

X

A

a:d

a

+

X

I 6=;

�:d

i

where d

i

=

(

P

B

i

b:d

i

b

or

b

P

B

i

b:d

i

b

c(d

�

)

with for each B

i

we have B

i

� A and �:d

a

+ �:d

i

a

=

E

�:d

i

a

for any a 2 B

i

\A.

Further by the stability property, Part 2 of Lemma 4.14, we may assume that

q �

X

C

c:q

c

+

X

J 6=;

�:b

X

E

j

e:q

j

e

c(q

j

�

):

First let us concentrate on the terms c:q

c

. It is easy to establish that C � A

and for each c in C d

c

� q

c

and therefore from � -preservation �:d

c

�

c

�:q

c

. By

induction we have �:d

c

�

E

�:q

c

and therefore c:d

c

�

E

c:q

c

. This means that

for each such c d �

E

d+ c:q

c

and, because of �4, to complete the theorem it is

su�cient to prove d �

E

d+�:b

P

E

j

e:q

j

e

c(q

j

�

) for each j in J . Let a typical such

q

j

be of the form b

P

E

e:q

e

c(q

�

). We actually show that d

0

�

E

�:b

P

E

j

e:q

j

e

c(q

j

�

),

where d

0

is

P

E

e:d

e

+

P

I

0
�:d

i

with I

0

= fi 2 I : B

i

� Eg. Since d �

+

q it

follows that I

0

is not empty. We use induction on its size.

� jI

0

j = 1. Exactly how we proceed depends on the form of d

0

; it has either

the form

P

E

e:d

e

+ �:

P

B

b:d

1

b

or

P

E

e:d

e

+ �:b

P

B

b:d

1

b

c(d

1

�

). We only

consider the latter case in detail as the former is dealt with in a similar

manner to the case above when d =

P

B

b:d

b

.

We �rst show that d

1

�

� q

�

. To any barb b 2 SBarb(q

�

) there corresponds

a barb E�b 2 SBarb(q). This must be matched by a barb from d and

the only candidates are those of the form B�b

0

where b

0

2 SBarb(d

1

�

).

Now by � -preservation we have �:d

1

�

�

c

�:q

�

and therefore by induction

�:d

1

�

�

E

�:q

�

.

It is also easy to establish that d

e

� q

e

, by considering the possible barbs

of q

e

and using the fact that d is a strong normal form. Again using

� -preservation we have d

e

�

E

q

e

for each e 2 E.

We now have the required ingredients to prove d

0

�

E

�:b

P

E

e:q

e

c(q

�

):

P

E

e:d

e

+ �:b

P

B

b:d

1

b

c(d

1

�

)

�

E

�:b

P

E

e:d

e

+

P

B

b:d

1

b

c(d

1

�

) by ��3

�

E

�:b

P

E

e:d

e

c(d

1

�

) by �3; �4 since B � E

=

E

�:b

P

E

e:d

e

c(�:d

1

�

) by ��2

�

E

�:b

P

E

e:q

e

c(�:q

�

)

=

E

�:b

P

E

e:q

e

c(q

�

) by ��2

This ends the proof when jI

0

j = 1.

27

� jI

0

j > 1.

We suppose without loss of generality that I

0

= f1; 2; 3; :::; kg. We de�ne

a new term d

00

which is a term lying between d

0

and �:q

j

.

d

00

�

X

E

e:d

0

e

+

X

2�i�k

�:d

0

i

where for 3 � i � k we de�ne d

0

i

� d

i

. The de�nition of d

0

2

depends on

the structure of d

1

and d

2

as does the rest of the proof.

� d

1

=

P

B

1

b:d

1

b

d

2

=

P

B

2

b:d

2

b

In this case we de�ne:

d

0

2

�

X

B

1

nB

2

b:d

1

b

+

X

B

2

nB

1

b:d

2

b

+

X

B

1

\B

2

b:nf(�:b

1

b

+ �:b

2

b

):

Then since B

1

[B

2

� E we have d

00

�

c

�:q

j

and by induction d

00

�

E

�:q

j

as required.

� d

1

=

P

B

1

b:d

1

b

d

2

= b

P

B

2

b:d

2

b

c(d

2

�

)

In this case we de�ne:

d

0

2

� b

X

B

1

nB

2

b:d

1

b

+

X

B

2

nB

1

b:d

2

b

+

X

B

1

\B

2

b:nf(�:b

1

b

+�:b

2

b

)c(nf(�:

X

B

1

b:d

1

b

+�:d

2

�

)):

Again d

00

�

c

�:q

j

and by induction d

00

�

E

�:q

j

. By �2 and ��2

d

0

�

E

d

00

and so d

0

�

E

�:q

j

as required.

� d

1

= b

P

B

1

b:d

1

b

c(d

1

�

) d

2

= b

P

B

2

b:d

2

b

c(d

2

�

)

In this case we de�ne:

d

0

2

� b

X

B

1

nB

2

b:d

1

b

+

X

B

2

nB

1

b:d

2

b

+

X

B

1

\B

2

b:nf(�:b

1

b

+ �:b

2

b

)c(nf(�:d

1

�

+ �:d

2

�

)):

Again d

00

�

c

�:q

j

and by induction d

00

�

E

�:q

j

. By ��2 d

0

�

E

d

00

and

so d

0

�

E

�:q

j

as required.

This completes the induction on jI

0

j and hence we have shown d

0

�

E

�:q

j

.

We now need to show that d

0

�

E

d

00

. Fortunately this follows directly from

�4.

That ends the �nal case in our partial completeness proof.

2

As an immediate corollary we have a completeness proof for arbitrary closed terms.

Theorem 4.16 (Completeness)

For arbitrary closed terms p; q, p

<

�

c

q implies `

E

p � q.

Proof: Suppose p �

+

q. In order to establish `

E

p � q, using ! � Induction, it is

su�cient to show `

E

d � q for an arbitrary �nite approximation d of p. But p �

+

q

implies d�

+

q and therefore `

E

d � q follows from the previous result. 2

To �nish this section let us now address the soundness of the system.

28

Theorem 4.17 (Soundness)

For arbitrary closed terms p; q, `

E

p � q implies p

<

�

c

q.

Proof: We have already shown that the inequations are sound and there are only two

non-trivial rules:

1. The Stability Rule. For any set of closed processes fp

i

: i 2 Ig it is easy to check

that

P

I

�

i

:p

i

� recx:b

P

I

�

i

:p

i

c(x) from which the soundness follows.

2. !-Induction. The proof of soundness of this rule is similar in spirit to that in

[He88]. It is su�cient to establish that for any experiment e, p must e implies

d must e for some �nite approximation d of p. In [He88] it was su�cient to prove

this for �nite experiments e and induction was used on the size of e. Here we can

not use this measure of induction since it may be possible that e

�

�! e. Instead

we use another measure which does not depend on the fact that e is �nite.

Let us abbreviate the computation

ejp = e

0

jp

0

7! e

1

jp

1

7! :::e

k

jp

k

to

ejp 7!

n

e

k

jp

k

if

(a) for every i � 0 e

i

can not report success

(b) in the derivation above the inferences

e

a

�! e

0

; p

a

�! p

0

implies ejp 7! e

0

jp

0

or

e

�

�! e

0

; p

�

�! p

0

implies ejp 7! e

0

jp

0

are used n times.

One can show that if p must e then the set fn j ejp 7!

n

e

0

jp

0

g is �nite. One can

now mimic the corresponding proof in [He88], Lemma 4.5.6, but using induction

on the maximal element of this set.

2

5 Example

We present in this section a description of a very simple `Security Costs Protocol'. The

`Security Costs Protocol' describes the transition of a message between two distributed

ports. Transmission of a message across a secure medium is considered expensive while

acknowledgements travel freely. The protocol initially sends the message across an un-

secure medium only resending across the secure medium if an acknowledgement has not

arrived before `timeout'.

29

&%

'$

A

&%

'$

D

&%

'$

C

&%

'$

B

�

�

�

�

�

�

�3

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�*

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

H

H

H

H

H

H

HY

t t

t t

t t

t t

t

t

t

t

tt

a b

mess

ur

ad

mess

ur

db

ack

bc

ack

ca

mess

r

ac

mess

r

cb

Accept:

A(a:mess

ur

ad

:(ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)

Reliable Medium:

C (mess

r

ac

:mess

r

cb

:C + ack

bc

:ack

ca

:C

Unreliable Medium:

D (mess

ur

ad

:(�:D + �:mess

ur

db

:D)

Transmission:

B (mess

ur

db

:ack

bc

:b:ack

bc

:B +mess

r

cb

:b:ack

bc

:B

System((AjBjCjD) n S where S = Sort(A)[Sort(B)[Sort(C)[Sort(D) n fa; bg

The message is received by the protocol on port a. This is done at the module A,

\Accept". A then sends the message to the unreliable medium, D, along port mess

ur

ad

.

D now either passes the message on to the �nal module of the protocol (B, \Trans-

mission") along port mess

ur

db

, or it losses the message. Upon the possible receipt of the

message from D, B will send an acknowledgement to A via the reliable medium along

ports ack

bc

and ack

ca

. If A does not receive this acknowledgement, then D has lost

the message and after one time unit A will retransmit it to the reliable medium along

port mess

r

ac

. This is then passed onto B by the reliable medium, C, along port mess

r

cb

.

When the environment has accepted transmission of the message from B an acknowl-

edgement is sent to A so that it can reset and be ready to receive another message.

This �nal point avoids A receiving a second message before the delivery of the �rst. So

in the summand mess

ur

db

:ack

bc

:b:ack

bc

:B of B the �rst ack

bc

represents the acknowledge-

ment \message received over unreliable medium, do not resend" whilst the second ack

bc

represents \message delivered to environment, reset to accept a new message".

We can now prove equationally that

System = a:(�:�:b:System+ �:b:System)

System = (AjBjCjD) n S by definition

= a:(mess

ur

ad

:(ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCjD) n S by d1

= a:�:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCj(�:D+ �:mess

ur

db

:D)) n S by d1

= a:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCj(�:D+ �:mess

ur

db

:D)) n S by d5

= a:(X + Y) by d4

30

w =

P

A

a:w

a

; x =

P

B

b:x

b

; y =

P

C

c:y

c

; z =

P

D

d:z

d

(wjxjyjz) n E = ext+ int

where

ext =

P

AnE

a:((w

a

jxjyjz) n E) +

P

BnE

b:((wjx

b

jyjz) n E)+

P

CnE

c:((wjxjy

c

jz) n E) +

P

DnE

d:((wjxjyjz

d

) n E)

int =

P

A\B

�:((w

a

jx

b

jyjz) n E) +

P

A\C

�:((w

a

jxjy

c

jz) n E)+

P

A\D

�:((w

a

jxjyjz

d

) n E) +

P

B\C

�:((wjx

b

jy

c

jz) n E)+

P

B\D

�:((wjx

b

jyjz

d

) n E) +

P

C\D

�:((wjxjy

c

jz

d

) n E) d1

w =

P

A

a:w

a

+ �:w

�

; x =

P

B

b:x

b

; y =

P

C

c:y

c

; z =

P

D

d:z

d

(wjxjyjz) n E = �:(((

P

A

a:w

a

+ w

�

)jxjyjz) n E)

if A \ B = ; ^A \ C = ; ^A \D = ;^

B \ C = ; ^B \D = ; ^ C \D = ;

and A [B [C [D � E d2

w =

P

A

a:w

a

+ �:w

�

; x =

P

B

b:x

b

; y =

P

C

c:y

c

; z =

P

D

d:z

d

(wjxjyjz) n E = ext+ int

where

ext =

P

AnE

a:((w

a

jxjyjz) n E) +

P

BnE

b:((wjx

b

jyjz) n E)+

P

CnE

c:((wjxjy

c

jz) n E) +

P

DnE

d:((wjxjyjz

d

) n E)

int =

P

A\B

�:((w

a

jx

b

jyjz) n E) +

P

A\C

�:((w

a

jxjy

c

jz) n E)+

P

A\D

�:((w

a

jxjyjz

d

) n E) +

P

B\C

�:((wjx

b

jy

c

jz) n E)+

P

B\D

�:((wjx

b

jyjz

d

) n E) +

P

C\D

�:((wjxjy

c

jz

d

) n E)

if A \ B 6= ; _A \ C 6= ; _A \D 6= ;_

B \ C 6= ; _B \D 6= ; _ C \D 6= ; d3

(�:x+ �:y)jz = �:xjz + �:yjz d4

��:x = �:x d5

�:�:�:x = �:�:x d6

Figure 7: Derived Equations

where X = �:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCjD) n S

Y = �:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCjmess

ur

db

:D) n S

Now X

31

= �:�:((ack

ca

:ack

ca

:A+mess

r

ac

:ack

ca

:A)jBjCjD) n S by d2

= �:�:�:(ack

ca

:AjBjmess

r

cb

:CjD) n S by d1

= �:�:�:�:(ack

ca

:Ajb:ack

bc

:BjCjD) n S by d1

= �:�:�:�:b:(ack

ca

:Ajack

bc

:BjCjD) n S by d1

= �:�:�:�:b:�:(ack

ca

:AjBjack

ca

:CjD) n S by d1

= �:�:�:�:b:�:�:(AjBjCjD) n S by d1

= �:�:b:System by d5; d6

And Y

= �:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jBjCjmess

ur

db

:D) n S by definition

= �:�:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jack

bc

:b:ack

bc

:BjCjD) n S by d3

= �:�:�:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jb:ack

bc

:Bjack

ca

:CjD) n S by d3

= �:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jb:ack

bc

:Bjack

ca

:CjD) n S by d5

= �:(U + V) by d3

where U = b:((ack

ca

:ack

ca

:A+ �:mess

r

ac

:ack

ca

:A)jack

bc

:Bjack

ca

:CjD) n S

V = �:(ack

ca

:Ajb:ack

bc

:BjCjD) n S

Again U

= b:�:(ack

ca

:Ajack

bc

:BjCjD) n S by d3

= b:�:�:(ack

ca

:AjBjack

ca

:CjD) n S by d1

= b:�:�:�:(AjBjCjD) n S by d1

= b:System by d5

And V

= �:(ack

ca

:Ajb:ack

bc

:BjCjD) n S by definition

= �:b:(ack

ca

:Ajack

bc

:BjCjD) n S by d1

= �:b:�:(ack

ca

:AjBjack

ca

:CjD) n S by d1

= �:b:�:�:(AjBjCjD) n S by d1

= �:b:System by a2

So �nally:

System

= a:(�:�:b:System+ �:(b:System+ �:b:System)) from above

= a:(�:�:b:System+ �:b:System) by �1; d5

Figure 7 shows the new equations used in this proof. All of these except d4 are derived

equations in our proof system; their derivations are straightforward but tedious. Every

closed instance of d4 can also be derived but the axiom itself cannot. Its use is inessential

but we employ it to make the proof more readable. We leave the reader to check its

soundness using the alternative characterisation.

32

6 Related Work

There is now an extensive literature on timed process algebras which can be classi�ed

from many di�erent viewpoints. For a general discussion on the varieties of timed pro-

cess algebras the reader is refered to [Je91] but from the purely syntactic level they can

be viewed as extensions of the three main process algebras, ACP, CSP and CCS, each

of which represent three somewhat di�erent approaches. For example [BB89] presents

a real-time extension of ACP, [Re88] contains an extension of CSP called Timed CSP

while CCS is the starting point for [MT90a] where the process algebra TCCS is de�ned.

Moreover the starting point determines to some extent the type of work reported in

these papers. In [Re88] a denotational model for Timed CSP is presented, re
ecting the

fact that much of the work on CSP is based on a denotational approach to semantics.

Similarly the concern of the ACP school of semantics with algebraic theories in
uences

the approach taken in [BB89] while the operational viewpoint, which underlies much of

the research on CCS is re
ected in [MT90a]. However in subsequent work by researchers

from these schools this distinction is much less clear. For example in [Gr89] an opera-

tional semantics is given to a real-time extension of ACP while in [Sch91] Timed CSP is

considered from the operational point of view of testing.

It is perhaps more fruitful to classify the di�erent approaches by their view of time

and the way it is represented semantically. Here the ACP and CSP approaches, as

expounded in [BB89, Re88] respectively, have much in common. They both take time to

be real-valued and, at least semantically, associate time directly with actions, as indeed is

the case with [QAF89]; Thus actions occur at some speci�c point in time. This approach

is very di�erent from ours as can be seen if we try to compare TPL with Real-time ACP

and Timed CSP using the informal terminology of the introduction. Nevertheless these

languages have been very in
uential. They are very expressive, have sound semantic

theories either based on forms of bisimulation equivalence, [Mil89], or Refusals, [Hoa85]

and have been seen to be useful in real-time applications.

The other major approach to representing time is to introduce special actions to rep-

resent the passage of time, which the current paper shares with [Gr89, MT90a, NRSV92]

and [Yi90, Yi91] although the basis for all those proposals may be found in [BC84]. All

of the languages presented in these papers share many of the underlying informal as-

sumptions of TPL outlined in the introduction. For example they all continue to assume

that actions are instantaneous and only the extension of ACP presented in [Gr89] does

not incorporate time determinism; however maximal progress is less popular as an as-

sumption and patience is even rarer. Although each of these proposals use a di�erent

syntax for their timed versions of process algebras it is of more interest to classify them

according to the assumptions they impose on the special \time" actions.

In [Gr89], the simplest proposal, time is just like any other action except that it must

synchronise across parallel bar. This �ts in very neatly with the general synchronisation

mechanism of ACP and an axiomatisation of weak bisimulation for �nite terms in an

extension of ACP with this timed action is given. In [MT90] a similar action is introduced

into CCS but it assumes more of the characteristics of time; time determinism is assumed

but they are uncommitted as to whether time is discrete or continuous. They give a

complete axiomatisation of strong bisimulation for �nite terms in a rather expressive

language. The language, and operational semantics, in [NRSV92] is similar in spirit to

TPL but is based on a di�erent algebra ACP. In fact it is from this language that the

33

b c() operator comes. Although they pay much attention to showing that their language

is of use in describing realistic phenomena they also develop an equational theory for

strong bisimulation. Neither of [NRSV92], [MT90] assume maximal progress but in its

place they have insistent actions, i.e. actions which will not delay until the next time

cycle. Needless to say the presence of insistent actions means that in general processes

are not patient, in the informal terminology of the introduction. It seems that in timed

process algebras in general either maximal progress is assumed or insistent actions are

allowed; this is reasonable as both provide a mechanism for forcing actions to happen.

The language presented in [Yi90, Yi91] is the closest in spirit to our language; in fact

it can in some sense be viewed as a real-time version of TPL as it assumes that actions are

instantaneous in addition to time determinism, maximal progress and patience. However

as with [Gr89, MT90a, NRSV92] its semantic theory is based on bisimulation theory.

It is also somewhat more expressive than TPL in that, roughly speaking, it has pre�x

constructs of the form

a(t):P (t)

which represents a process which can perform the action a at any time t and then act

like the process P (t); so the behaviour of processes can in some sense be parameterised

on the time when actions are performed.

Thus the approach we have taken has much in common with that of [Gr89, MT90a,

NRSV92, Yi90, Yi91]. A major feature of this common approach is that the action rep-

resenting time has special features which are incorporated into the operational semantics

of the various languages using some form of prioritisation of the actions. Indeed it is

shown in [Jef92] that many timed languages which take this approach can be translated

into an untimed language where actions have associated with them a priority. However

our semantic theory is based on testing and as far as we know the problem of developing

a testing based semantic theory for timed processes has not been tackled before although,

as we have previously mentioned a construct similar to � has been used in [Ph87, La89]

to describe so-called \refusal" tests. We have deliberately chosen a rather simple notion

of time and in this choice we were very in
uenced by the preliminary exploration in

[Ste88] carried out as part of the FORMAP project.

But now that a �rm basis has been laid for a testing based theory we hope to be

able to extend it to languages with more complicated constructs. The extension to the

constructs of [Yi91] which are parameterised on time should be straightforward but to

handle processes which are not patient will require a reworking of the notion of barb.

Finally extending the theory of tests for a language where time is not discrete will be a

major challenge.

References

[Ab90] Abramsky, S., \A Domain Equation for Bisimulation", Information and Control,

vol 92, pp 161{218, 1991

[AH90] Arun-Kumar, S. and Hennessy, M., \An E�ciency Preorder for Processes", Acta

Informatica, 29, pp 737-760, 1992.

[BB89] Baeten, J. and Bergstra, J., \Real Time Process Algebra", Formal Aspects of

Computer Science, vol 3, pp 142{188, 1991.

34

[BW90a] Baeten, J. and Weijland, W., \Process Algebra", Cambridge University Press,

1990.

[BW90b] Baeten, J. and Weijland, W., \Applications of Process Algebra", Cambridge

University Press, 1990.

[BC84] Berry, G. and Cosserat, L., \The ESTEREL Synchronous Programming Lan-

guage and its Mathematical Semantics", Technical Report 842, INRIA, Sophia-

Antipolis, 1988.

[BW89] Burns, A. and Wellings A., \Real-Time Systems and their Programming Lan-

guages", Adison-Wesley, 1989.

[CH88] Cleaveland, R. and Hennessy, M., \Priorities in Process Algebras", Information

and Control, vol 87, nos 1/2, July/August, pp 58{77, 1990.

[CPW86] Cohen, B., Pitt, D.H. and Woodcock, J.C.P., \The Importance of Time in

The Speci�cation of OST Protocols", Technical Report, NPL, London, 1986.

[DS89] Davies, J. and Schneider, S., \An Introduction to Timed CSP", Technical Re-

port, PRG, Oxford, 1989.

[dNH84] De Nicola, R. and Hennessy, M., \Testing Equivalence for Processes" Theoret-

ical Computer Science vol.34, pp 83-133, North-Holland, 1984.

[GB87] Gert, R. and Boucher, A., \A timed failures model for extended communication

processes", Springer-Verlag Lecture Notes in Computer Science vol.267, pp 95-

114, 1986.

[vG88] van Glabbeek, R., \The Linear Time-Branching Time Spectrum", Proc. CON-

CUR90, Lecture Notes in Computer Science, vol 458, pp 278{297, Springer-

Verlag, 1990.

[Gr89] Groote, J.F., \Speci�cation and Veri�cation of Real Time Systems in ACP"

Technical Report CS-R9015, CWI, Amsterdam, 1989. An extended abstract ap-

peared in L. Logrippo, R.L. Probert and H. Ural, editors, Proceedings 10

th

Inter-

national Symposium on Protocol Speci�cation, Testing and Veri�cation, Ottawa,

pages 261{274, 1990.

[He88] Hennessy, M., \Algebraic Theory of Processes", MIT Press, Cambridge, 1988.

[He83] Hennessy, M., \Synchronous and Asynchronous Experiments on Processes", In-

formation and Control, Vol 59, No 1-3, pp 36-83, 1983.

[He81] Hennessy, M., \A Term Model for Synchronous Processes", Information and

Control, Vol 51, No 1, pp 58-75, 1981.

[HR90] Hennessy, M. and Regan, T., \A Temporal Process Algebra" University of Sussex

Computer Science Technical Report 2:90, 1990.

[Hoa85] Hoare, C.A.R., \Communicating Sequential Processes", Prentice-Hall, 1985.

35

[HdR89] Hooman, J.J.M and deRoever, W.P. \Design and Veri�cation in Real-Time

Distributed Computing: an Introduction to Compositional Methods", Proceed-

ings of the Ninth International Conference on Protocol Speci�cation, Testing and

Veri�cation. North Holland, 1989.

[Je91] Je�rey, A., \Discrete Timed CSP", Technical Report PMG 79, Chalmers Uni-

versity of Technology, Sweden, 1991.

[Je91a] Je�rey, A., \Timed Process Algebra 6= Time � Process Algebra" Technical Re-

port PMG 78, Chalmers University of Technology, Sweden, 1991.

[Jef92] \Translating Timed Process Algebra into Untimed Process Algebra", Proc. For-

mal Techniques in Real-Time and Fault-Tolerant systems, Springer-Verlag Lec-

ture Notes in Computer Science vol 571, 1992.

[Kn75] Knuth, D., \Fundamental Algorithms", Adison-Wesley, 1975.

[La89] Langerak, R., \A Testing Theory for LOTOS Using Deadlock Detection", Pro-

ceedings of the Ninth International Conference on Protocol Speci�cation, Testing

and Veri�cation. North Holland, 1989.

[Mil83] Milner, R., \Calculi for Synchrony and Asynchrony", Theoretical Computer Sci-

ence pp 267{310, 1983.

[Mil89] Milner, R., \Calculus for Communication and Concurrency", Prentice-Hall, Lon-

don 1989.

[Mil90] Milner, R., \Operational and Algebraic Semantics of Concurrent Processes",

Hanbook of Theoretical Computer Science, North-Holland, 1990.

[MT90] Moller, F. and Tofts, C., \A Temporal Calculus of Communicating Systems"

Proceedings of CONCUR 90, Springer-Verlag Lecture Notes in Computer Science

vol 458, pp 401{415, 1990.

[MT90a] Moller, F. and Tofts, C., \A Temporal Calculus of Communicating Systems"

Springer-Verlag Lecture Notes in Computer Science, vol.458, pp 401-415, 1990.

[MT90b] Moller, F. and Tofts, C., \Relating Processes With Respect To Speed" Tech-

nical Report, LFCS, Edinburgh, 1991.

[Mur90] Murphy, D.V.J., \Time, Casuality, and Concurrency" PhD Thesis, University

of Glasgow, CSC 90/R32, 1990.

[NRSV92] Nicollin, X., Richier, JL., Sifakis, J. and Voiron, J., \ATP: an Algebra for

Timed Processes", to appear in Information and Control, 1992.

[Ph87] Phillips, I., \Refusal Testing", Theoretical Computer Science, vol.50, pp 241-284,

1987.

[Ph88] Phillips, I., \CCS With Broadcast Stability", Draft Technical Report, Imperial

College, 1988.

36

[Pn85] Pneuli, A., \Linear and Branching Structures in the Semantics and Logics of

Reactive Systems", Springer-Verlag Lecture Notes in Computer Science vol.194,

pp 15-32, 1985.

[QAF89] Quemada, J., Azcorra, A. and Frutos, D., \TIC: A Timed Calculus for LO-

TOS", Technical Report, Madrid, 1989.

[Re88] Reed, G.M., \A Hierarchy of Domains for Real Time Distributed Computing"

Technical Report, Oxford, 1988.

[Rea91] Regan, T., \Process Algebras for Real-Time Systems", PhD Thesis University

of Sussex, 1991.

[RR86] Reed, G.M. and Roscoe, A., \A Timed model for communicating sequential

processes", Springer-Verlag Lecture Notes in Computer Science, vol.226, pp 314-

323, 1986.

[RS88] Rudkin, S. and Smith, C.R., \A Temporal Enhancement for LOTOS" British

Telecom R and T ,1988.

[Sch86] Schmidt, D.A., \Denotational Semantics", Allyn and Bacon, 1986.

[Sch90] Schneider, S.A., \Correctness and Communication of Real-Time Systems", PhD

Thesis, PRG, University of Oxford, 1990.

[Sch91] Schneider, S.A., \An Operational Semantics for Timed CSP", To appear in

Information and Computation, 1992.

[Ste88] Steggles, P., \A Suggestion for a New Temporal LOTOS Semantics", Technical

Report, GEC, 1988.

[Wi85] Winskel, G., \A Complete Proof System for SCCS With Modal Assertions"

Technical Report, Cambridge, 1985.

[Yi90] Yi, W., \Real-Time Behavior of Asynchronous Agents", Springer-Verlag Lecture

Notes in Computer Science, vol.458, pp 502-520, 1990.

[Yi91] Yi, W., \ A Calculus of Real Time Systems", Ph.D Thesis, Chalmers University,

1991.

[Ze89] Zedan, H. (ed), \Real -Time Systems Theory and Applications", North-Holland,

1989.

[Jo89] Joseph, M., \Time and Real-time in Programs", Springer-Verlag Lecture Notes

in Computer Science vol.405, FST & TCS 9, Bangalore, 1989.

[Ch91] Chen, L., \Decidability and Completeness in Real-Time Processes", Technical

Report, LFCS, Edinburgh, 1991.

[Je91b] Je�rey, A., \A Linear Time Process Algebra", CAV 91, 1991.

37

[MT91] Moller, F. and Tofts, C., \Relating Processes With Respect to Speed", Springer-

Verlag Lecture Notes in Computer Science vol.527, CONCUR 91, pp 424-438,

1991.

[Kl91] Klusener, A.S., \Completeness in Real Time Process Algebra", Springer-Verlag

Lecture Notes in Computer Science vol.527, CONCUR 91, pp 96-110, 1991.

38

