
A π-calculus with limited resources,
garbage-collection and guarantees

David Teller

Abstract. Techniques such as mobility and distribution are often use to overcome
limitations of resources such as the amount of memory or the necessity for specialized
devices. However, few attempts have been made at formalizing the notion of limited re-
sources in process algebras for mobility and distribution. One of our previous works[11]
introduced a variant of the π-calculus with explicit allocation, garbage-collection and
finalization of resources and a type system to guarantee bounds on resource usage.

In this paper, we revisit this controlled π-calculus, providing better semantics for
allocation and deallocation and a better observation of resource-related behaviours
and garbage-collection. We also expand the type system to provide guarantees of
respect of more complex protocols on resources. We demonstrate the interest of the
controlled π-calculus by building a model of a complex resources manager for concurrent
systems, with manual and automatic garbage-collection, error-handling and statically
distributed and transmitted authorizations and resources.

1 Introduction

In modern computer technologies, aspects of mobility, concurrency and
distribution are nearly omnipresent. Software deployed on a system has
often been built on a different system, possibly using a distributed Com-
pile Farm, and channeled to the end-user through safe or unsafe means,
distributed Domain Name Servers, cache hierarchies or grid supercomput-
ers arhieve great efficiency, while consumer electronics is expected to take
advantage of Cell [7] technologies in the near future to provide mostly
transparent distribution of tasks among dynamically assembled arrays of
processors.

While these techniques are often used for the sake of convenience, as
they correspond to the intuitive way of thinking about some problems,
they are also often necessary to overcome limitations on resources. For
instance, tasks such as building large software projects or computing large
sets of data for numerical analysis typically require amounts of memory
or CPU power not found on individual computers, while in many organi-
zations, documents are commonly sent to print servers, as client PCs do
not have their own printing resource.

Several attempts [6, 8] have been made at modelling the usage of re-
sources for mobility. However, few of these attempts take into account
the fact that many resources are both limited and used concurrently. In

2 David Teller

this study, we attempt to go further, by taking into account notions of
allocation, deallocation, reallocation of previously deallocated resources
and garbage-collection.

This document presents a process algebra based on the π-calculus, the
controlled π calculus, or cπ, built upon ideas previously expressed in the
previous incarnation of the controlled π-calculus [12] and in BoCa [2].

The foremost concept is that of resource. Resources are abstract rep-
resentations of notions such as memory space, file access rights or printers.
Resources may be allocated to entities such as variables, file handlers or
print requests. The language construction corresponding to entities is the
channel name. Thus, allocation and deallocation of resources to entities
are modelled by creation and destruction of names.

From this conception of resources, we enrich the π-calculus with no-
tions of resource usage, allocation and deallocation. In the controlled
π-calculus, if we consider the creation of name a by the transition

new a in j −→ (νa)j ,

new a in j is a process which creates a new name a and then behaves
as j while process (νa)j is a process which behaves as j but can use a
new channel name a. In turn, process (νa)j uses more resources than j
as some resources have been allocated to a. Hence, the transition cannot
take place if there are not enough resources available for a. Conversely, if,
for any reason, the following transition takes place

(νa)j′ −→ j′ ,

the resources held by a have been freed and may be reused by a different
process, possibly triggering transitions which were blocked by the lack of
resources.

The actual instant at which a resource is deallocated depends on a
notion of garbage-collection. Although it is simple to remove a name
when the corresponding channel has disappeared from any term, this is
not the only circumstance in which a channel is never used again. For
instance, in the following term,

(νa)a(x).j ,

the process has allocated resources for a and is expecting some input on
a but, since no other process knows of a, the communication will never take
place. That channel is therefore useless. A well-chosen garbage-collection
scheme may decide to suppress (νa) and effectively remove the whole term,

A π-calculus with limited resources, garbage-collection and guarantees 3

Processes P,Q ::= (νa : r)P | P |Q | i
Instructions i, j ::= 0 | new a : r in i | spawn i in j | a(b).i

| a〈b〉.i | !i | ifnull a then i else j
Contexts C[·] ::= (νa : r)C[·] | C[·]|P | P |C[·] | [·]

Figure 1. Syntax of cπ.

hence releasing resources. Complete enough garbage-collection schemes
may also free resources held by deadlocks or livelocks. As there are many
algorithms which may produce a garbage-collector and as, as we will see,
complete garbage-collection is an undecidable problem, we use a paramet-
ric relation �GC to determine when a channel may be removed.

This enriched π-calculus is both simpler and more generic than the
original cπ as well as more adapted to reasoning and programming with re-
sources than the standard π-calculus. Well-chosen garbage-collectors per-
mit dynamic handling of resources and exception-like error mechanisms.
In turn, this allows the writing of processes which enforce resource usage
policies. We complete the language by a type system, more powerful than
that of the original cπ, to prove statically the respect of some such policies.

In section 2, we introduce the revisited controlled π-calculus which we
illustrate in section 3 with the example of print spooler, demonstrating
possible usages of the primitives and garbage-collection. We then dis-
cuss in section 4 properties of the language and its relations with the
π-calculus. Section 5 contains a type system for guarantees on resource
usage. We conclude this paper by a review of related works and on-going
developments.

2 The language

The syntax of cπ is presented on figure 1.
As we wish to distinguish when operations take place, we differenciate

currently executed processes from (P , Q. . .) from instructions (i, j. . .)
waiting to be executed. Resources (r, s . . .) are members of the a set of
resources S, parameter of the language. Names (a, b. . .) are elements of
an infinite set N which also contains the set of ”null” names (}a, }b. . .),
special names of deallocated channels on which it is thus impossible to
communicate. Process (νa : r)P holds resources r for its private name a
and behaves as P , while process i executes the instructions i.

Instruction new a : r in i allocates a resource r resource to name a
and proceeds as i, while spawn i in j produces two concurrent threads
i and j. Instruction ifnull a then i else j checks whether a is } .
If so, it runs i, otherwise j. The other constructions are identical to

4 David Teller

their π-calculus counterpart. As a syntactical shortcut, we will write −→a
for a1, a2 . . . , an and (ν−→a : −→r) for (νa1 : r1) . . . (νan : rn). The sets
fn/bn of free/bound names are defined as in the π-calculus – note that
fn((νa : r)i) = fn(new a : r in i) = fn(i) ∪ {a} and that } is always
free.

Note that the main difference between (ν) and new · · · in as well as be-
tween | and spawn · · · in is that the first construct of each pair describes
a running process, while the second describes an instanciation. In fact, an
implementation of cπ might introduce constructors for new · · · in – rep-
resenting different methods of generating an entity – and for spawn · · · in
– representing different natures and locations of instanciated processes.

Definition 1 (Set of resources). A set of resources is a set (S,⊕,⊥,�
,>) such that ⊕ is commutative wherever it is defined, with neutral el-
ement ⊥, � is a preorder on S with minimal element ⊥ and maximal
element > and for all x, y, z, whenver x � y holds, x ⊕ z � y ⊕ z also
holds.

When x⊕ x⊕ · · · ⊕ x is defined, we note this infinite sum ∞ · x.

Definition 2 (Resources held). A process P is said to hold resources
res(P), where res is defined by

res((νa : r)P) = res(P)⊕ r
res(P |Q) = res(P)⊕ res(Q)
res(i) = 0

Note that the resources held by a process may change with time.

Semantics The structural equivalence is defined as the smallest equiv-
alence ≡, compatible with the axioms of figure 2 and with α-conversion
of bound names. Note that } is cannot be bound and is thus not α-
convertible. The resource-unaware semantics are defined as the smallest
relation −→pre compatible with the axioms of figure 3.

(νa : r)(νb : s)P ≡ (νb : s)(νa : r)P !t ≡ t|!t

a /∈ fv(Q)

((νa : r)P)|Q ≡ (νa : r)(P |Q)

P ≡ Q

P |R ≡ Q|R
P ≡ Q

(νa : r)P ≡ (νa : r)Q

Figure 2. Structural equivalence of cπ.

The semantics are very similar to those of a π-calculus with structural
equivalence. Note, however, that we do not have (νa : r)0 ≡ 0, as the left

A π-calculus with limited resources, garbage-collection and guarantees 5

R-Par
P −→pre P ′

P |Q −→pre P ′|Q
R-Label

P
α−→pre P ′

P |Q α−→pre P ′|Q

R-Comm
P

a(b)−→pre P ′ Q
a〈b〉−→pre Q′

P |Q −→pre P ′|Q′

R-Entity
P −→pre P ′

(νc : r)P −→pre (νc : r)P ′

R-Hide
P

α−→pre P ′

(νa : r)P
α−→pre (νx : r)P ′ a /∈ α

R-Equiv
P ≡ P ′ Q′ ≡ Q P ′ −→pre Q′

P −→pre Q

R-Spawn
spawn i in j −→pre i|j

R-Alloc
new a : r in i −→pre (νa : r)i

R-Receive
a 6= }

a(b)i
a(c)−→pre i{b← c}

R-Send
a 6= }

a〈c〉i a〈c〉−→pre i

R-Null ifnull } then i else j −→pre i

R-Defined
a 6= }

ifnull a then i else j −→pre j

Gc-Deallocate
−−→a : r �GC P

(ν−→a : −→r)P −→pre P{−→a ← −→}x}
−−−−→
cnullx fresh

Gc-Receive } (x)i −→pre 0 Gc-Send } 〈x〉t −→pre 0

Gc-RReceive ! } (x)t −→pre 0 Gc-RSend !} 〈x〉t −→pre 0

Figure 3. Resource-unaware semantics of cπ.

6 David Teller

side holds resources r, while the right side holds no resource. As opposed
to the previous incarnation of cπ, we do not have (νa : r)0 −→pre 0 either,
as this is actually a step of garbage-collection with most garbage-collection
schemes.

Rule Spawn executes the spawning of a new thread, while rule Chan-
nel executes the creation of a new channel, hence consuming resources.
Rules Receive and Send differ from their π-calculus counterparts insofar
as no communication is allowed on a destroyed channel. Processes waiting
for communication on } are rather garbage-collected by Gc-Receive,
Gc-Send, Gc-RReceive and Gc-RSend. The destruction of a channel
– and the corresponding release of resources held by the – is handled by
Gc-Deallocate. This rule depends on a parametric relation �GC , which
determine when a set of names can be removed. Note that, as opposed
to the π-calculus, a name can be removed although it still appears syn-
tactically in the term. This allows well-chosen garbage-collectors to clean
processes such as (νa : r)a(b).t and replace them by 0, as well as more
complex scenarios. We provide more complete examples in section 3.

Definition 3 (Resource-aware semantics). The resource-aware se-
mantics of an instance of cπ on the set of resources S with a resource
limit of n ∈ S and with a garbage-collector �GC is defined by the relation
−→GC

n where

P −→pre Q res(Q) � n

P −→GC
n Q

Resource-aware semantics take into account the fact that a system has
limited resources. When a resource is not available for a transition, that
transition does not take place. As we will see in section 3, the garbage-
collector can be used to provide error-handling mechanisms in case of
resource exhaustion.

3 Example: A print spooler

Let us consider a simple bounded resources manager, such as a simple print
spooler – note that most of the techniques we expose here would be equally
useful in the case of a system memory manager or any resource broker.
This spooler maintains a pool of available printers, receives requests from
clients and return a handler to any non-busy printer. Whenever the caller
has finished with the printer, this resource is returned to the pool. If some
requests had been put on hold, one of them is then unblocked and fulfilled.

Let us build a a cπ implementation/model of this manager, by succes-
sive iterations. For the sake of simplicity, in the course of this example,

A π-calculus with limited resources, garbage-collection and guarantees 7

Push p = printer〈p〉
Pop (x).i = printer(x).i
Pool = (νchan p1 : Printer)Push p1 | · · · | (νchan pn : Printer)Push pn

Client = new request in .alloc〈request〉.
request(printer, destructor).Print.destructor〈〉.Proceed

Figure 4. Building blocks of the print spooler.

we extend the syntax of cπ to support n-ary communications.
Figure 4 presents the low-level components of our spooler as well as the

expected behaviour of a client. The main components are Push, a macro
used to add (or return) a printer to the pool and Pop, a macro used to take
a printer from the pool, itself represented by Pool. The term Client is an
example of a possible client: it sends a request on the predefined channel
alloc, waits for the pair printer, destructor, uses printer as necessary,
then deallocates by calling destructor and proceeds without using printer
anymore.

3.1 Allocation and deallocation

Figure 5 presents one possible strategy for the print spooler. Allocating a
printer implies giving the client full access, while deallocating a resource
through the destructor returns that printer to the pool, without any check.

BRMDriver1 = !alloc(request).new destructor in .Pop (x).(
request〈x, destructor〉
| destructor().Push x

)

Garbage-Collection �1: ∀x,∀P, {x : } �1 P ⇐⇒ x /∈ fv(P)

Figure 5. Model of a print spooler

This deallocation strategy is unsafe, as a malicious or ill-written client
may never call destructor, may call it several times or may continue to
use the printer afterwards – this deallocation interface is therefore similar
to free() in C.

An orthogonal problem is the garbage-collection of intermediate chan-
nels such as l and destructor. For this purpose, relation �1 permits the

8 David Teller

destruction of names whenever they are not referenced anymore, in a man-
ner similar to that of the traditional π-calculus. Such a mechanism is
commonly found in programming languages, implemented as a reference-
counter in Python, Visual Basic or C++ frameworks such as Microsoft’s
Com or Mozilla’s XPCom. Note that this aspect of garbage-collection is
orthogonal to the management of printers themselves.

BRMDriver2 = !alloc(request).new destructor in .
new handler in .Pop (x).(

| request〈handler, destructor〉.delete〈buf〉.!handler(y).x〈y〉
| destructor().delete〈destructor〉.delete〈handler〉.Push x

)

The Garbage-Collection relation is the smallest �2 verifying

∀x,∀P, Q, {a : } �2 delete〈a〉.i | Q

Figure 6. A print spooler without dangling pointers

The process BRMDriver2 and the garbage-collection scheme �2, pre-
sented on figure 6, provide a more robust management of resources. Re-
lation �2 mimmicks a generic manual deallocator: any name a can be
destroyed by calling delete〈a〉. Since the destruction is handled by the
garbage-collector, the semantics of cπ guarantee that name a effectively
disappears.

The manager takes advantage of this deallocator to improve safety.
Instead of giving full control to the client, it transmits a (dynamically cre-
ated) handler, which can be revoked at any time by calling delete〈handler〉.
For this example, revokation only takes place when it is explicitely re-
quested through destructor. The printer can then safely be put back onto
the pool, without any risk of being reused by the client and without any
dangling pointers.

Although this strategy makes deallocation safer, it still does not work
whenever a client fails to call the destructor. As in modern program-
ming languages, such problems can be avoided using garbage-collection
and finalisation, as shown on figure 7.

Relation �3 defines a garbage-collection scheme, which supports a
mechanism similar to reference-counting, in which names can be removed
whenever they only appear in receptions or finalisations, as well as man-
ual deallocation of handlers using delete. The notion of finalisation, as
encountered in many garbage-collected programming languages such as

A π-calculus with limited resources, garbage-collection and guarantees 9

Finalize x.i = new loop : Loop in (!loop().ifnull x then i else loop〈〉 | loop〈〉)
BRMDriver3 = !alloc(request).new destructor in .

new handler : Handler in .Pop (x).(
| request〈handler, destructor〉.!handler(y).x〈y〉
| destructor().0
| Finalize handler.Push x

)

The Garbage-Collection relation is the smallest �3 verifying
∀x,∀P, x /∈ fv(P)⇒ {x} �3 P
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | x(y).Q
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | !x(y).Q
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | Finalize x.Q

∀x,∀P, Q, {a : Handler} �2 delete〈a〉.i | Q

Figure 7. A garbage-collected print spooler

Java, C# or OCaml, and as defined here by Finalize x.i, triggers a func-
tion/method/process (here, i) in response to the deallocation of an entity
(here, x). Note that, as in our previous works [11], and by opposition to
these languages, finalisation is safe, insofar as resurrection of an entity [1]
is impossible. Also note that, by opposition to the first version of cπ,
finalisation is a macro rather than a primitive of the language.

Term BRMDriver3 takes advantage of the automatic garbage-collection
and finalisation: destructor and handler are automatically destroyed,
while finalisation premits returning the printer to the pool after the dal-
location of handler. This behaviour is more robust than that of either
BRMDriver1 or BRMDriver2 and could be rendered even more robust
by more complete garbage-collectors.

3.2 Error-handling

Let us consider the following scenario: a client has acquired a printer
but has started misbehaving, possibly by sending a stream of incorrect
instructions to that printer. Assuming that the spooler can detect such
a situation, it should stop the printing transaction and return the printer
to the pool. A number of other external reasons may require stopping the
printing transaction, such as lack of memory or prioritization of a specific
client.

These behaviours can be modelled easily, as shown on figure 8, by
modifying the garbage-collector to send signals representing the error/
exception. A signal ERR is sent to represent a non-deterministic client

10 David Teller

BRMDriver4 = !alloc(request).Pop (x).new destructor in

new handler in new sigmem : MEM in new prio : PRIO in

new err : ERR in new flag : Flag in (
| request〈handler, destructor〉.!handler(y).x〈y〉
| destructor().0
| Finalize handler.ifnull prio then prioritize(c). · · · else Push x

| Finalize err.delete〈handler〉
| Finalize prio.delete〈handler〉
| Finalize mem.delete〈handler〉

)

The Garbage-Collection relation is the smallest �4 verifying
{x} �3 P ⇒ {x} �4 P
{x : ERR} �4 P non-deterministically
res(P) � memory limit⇒ {signal : MEM} �4 P

{signal : PRIO, flag : Flag} �4 P | prioritize〈client〉 | flag〈〉

Figure 8. A garbage-collected print spooler with signal- and error-handling

error, a signal PRIO to represent a reprioritization, requested on channel
prioritize (flag serves to guarantee that only one transaction will be can-
celled), and a signal MEM is triggered whenever processes use too much
memory. In all three cases, the spooler destroys the handler, hence termi-
nating the authorization of the client. If the request was a prioritization,
the prioritized client receives a new handler, without going through the
queue. Otherwise, the printer is returned to the pool.

The process BRMDriver4 defines the responses of the spooler to these
signals. From the point of view of programming languages, Finalize err,
Finalize prio and Finalize mem are exception-handlers, comparable to
try · · · catch blocks, although in a concurrent setting.

4 Behaviours and properties

4.1 Properties of the language

Proposition 1 (cπ can contain π).
There is a ”good” encoding of the π-calculus to an instance of cπ.

We produce a simple encoding of a monadic synchronous π-calculus with
structural equivalence and guarded replication, without choice, with a set
of names not containing } , to an instance of cπ with the trivial set of re-
sources and a garbage-collector of unused names. This encoding preserves
termination, reduction, structure, distribution, structural equivalence and

A π-calculus with limited resources, garbage-collection and guarantees 11

barbs.

Proposition 2 (More resources give more freedom).
If S is a set of resources and if r and s are elements of S such that r ≺ s
then, for any garbage-collection scheme GC, −→GC

r (−→GC
r .

The inclusion derives directly from the definition of −→GC
r . The non-

equality can be proved by examining process (νa : s)(a(x) | a〈}〉), as this
process has no reduction in −→GC

r and one step of reduction in −→GC
s .

As in the π-calculus, we may observe behaviours of terms in cπ using
barbs and simulations.

4.2 Behaviours

Definition 4 (Barbs).

If P and P ′ are processes such that P
x()−→pre P ′ (respectively P

x〈 〉−→pre

P ′), we say that P has a barb x() (respectively x〈〉). Whenever P has a
barb α, we write P ↓α.

Definition 5 (Weak barbed simulation).
For a resource-aware instance of cπ on the set of resources S and with a
limit n, a relation R is a weak barbed simulation if, whenever (P,Q) ∈ R,

• if P ↓α, then Q ↓α
• if P −→GC

n P ′ then, for some Q′, Q −→GC∗
n Q′ and (P ′, Q′) ∈ R

If R is a weak barbed simulation and PRQ, we write that Q simulates P .

Definition 6 (Weak barbed preorder).
In an instance of cpi, a relation R is a weak barbed preorder if, whenever
(P,Q) ∈ R, for all process contexts C, C[Q] simulates C[P]. If R is a
weak barbed preorder and PRQ, we write P � Q.

4.3 Properties of garbage-collection

Definition 7 (Sound).
A garbage-collection scheme GC is sound if and only if, for any −→a and P
such that −→a �GC P , we have P � P{−→a ← }a}.

Soundness is often a desirable property as it guarantees that the garbage-
collector will not remove behaviours. Note that soundness involves a pre-
order rather than an equivalence, as an equivalence would be contradictory
with the use of finalizers such as defined on figure 5.

Also note that one can imagine useful non-sound garbage-collectors,
for instance to model channel failures.

12 David Teller

Definition 8 (Complete).
A garbage-collection scheme GC is complete if and only if it contains all
sound garbage-collection schemes.

Proposition 3 (Perfect garbage-collection).
Sound and complete garbage-collection is undecidable.

We prove this by examining process P = (νa : r)(a〈}〉 | a().Mb) where Mb

encodes a Turing machine and emits a message on channel b after termi-
nation. As a sound and complete garbage-collector must decide whether
P � Q, it must also decide whether Mb terminates, hence solve the halting
problem.

4.4 Properties of garbage-collectors

Proposition 4 (Print spoolers).
From the garbage-collectors presented in section 3, �1 is sound, while �2,
�3 and �4 are unsound. None is complete.

Soundness By definition, if {a} �1 P , a is not free in P , therefore
P{a ← }a} = P . We also have (νa : r)P ≡ P | (νa : r)0. We can prove
easily that P | (νa : r)0� P .

Unsoundness Let us write

P = (νhandler : Handler)delete〈handler〉 | handler〈a〉 | handler(x).x〈b〉
and

Q = delete〈}〉 | }〈a〉 | } (x).x〈b〉 .

We have {handler : Handler} �2 P and P −→ Q by garbage-collection.
Since P −→∗↓a〈〉 and Q¬ −→∗↓a〈〉, we conclude that P¬ � Q, hence �2

is unsound. The proof is identical for �3 and �4.

Uncompleteness None of these schemes will garbage collect (νa)a〈b〉.
Proposition 5 (Actual garbage-collection).
Informally, the Garbage-Collection of Jvm, .Net’s Cli or OCaml is un-
sound and incomplete.

Unsoundness All three platforms have unsafe weak references, which
can be dereferenced even when they point to null. Therefore, assuming
that weak is a weak reference, let us consider an extract such as

• Java/Jvm

String s = weak.get().toString();
out.println("Action");

• C#/Cli

A π-calculus with limited resources, garbage-collection and guarantees 13

string s = weak.get().target;
Console.WriteLine("Action");

• OCaml

match Weak.get weak 0 with
Some x -> print_endline "Action";;

If the garbage-collector has removed the object referenced by ref, a
null-pointer or match-failure exception will prevent the observable output
"Action" from being performed.

Incompleteness As garbage-collection relies purely on the analysis of
stack and heap, in the following example, the value of s is never recovered:

boolean value = true;
final String s = "useless";
while(value) ;
System.out.println(s);

5 A type system for resource guarantees

5.1 The system

The semantics of cπ are parametrized on a notion of resources. The mecha-
nism of parametric garbage-collection combined with the use of terms such
as Finalize permit to write systems which take into account allocation
of resources as well as deallocations. We now introduce a type system to
provide guarantees on the usage of such resources.

T ::= Bound(t, λ) r ∈ S, λ : N −→ r
N ::= Name(C, r) e ∈ S
C ::= Chan(N, g, λ) g ∈ S, λ : N −→ r
| Ssh

Judgement Γ ` P : Bound(t, λ) states that, under environment Γ,
P can be evaluated as a process which may be executed fully using no
other resource than t and may have reused resources of external entities
as specified by λ. In particular, if λ(a) = la, after the deallocation of a,
P may reuse at most la of the resources originally allocated to a. The
judgement Γ ` a : Name(C, r) states that, according to Γ, a is the name
of an entity using resource r, with role C. If C is Chan(N, g, λ), a is a
communication channel, which can be used to communicate names of type
N , to transfer resource g from the sender to the receiver, some of which
may be deallocated and reused as per λ. Conversely, if C is Ssh, a is not
a channel and cannot be used for communication.

14 David Teller

Figure 9 presents the rules of this type system. For the sake of read-
ability, we slighly alter the syntax to allow writing new a : N in · · · and
(νa : N). When necessary, we will write 0λ for the function defined on
N whose value is uniformly ⊥ and a 7→ r for the function defined on N
whose value is r for a and ⊥ for everything else.

Properties

Lemma 1 (Weakening).
If Γ is an environment and P a process such that Γ ` P : Bound(t, λ),

then, for any t′ � t and any λ′ � λ, we have Γ ` P : Bound(t′, λ′).

The proof of this lemma is trivial, as each rule of the type system
allows growing t and λ.

Theorem 1 (Subject Reduction).
If P is a process, if Γ ` P : Bound(r, λ) and P −→∗ P ′ then there is a r′

and a λ′ such that Γ ` Bound(r′, λ′) and r⊕Σx∈Nλ(x) � r′⊕Σx∈Nλ′(x).

To understand this, let us first consider the case where λ = 0λ. This
case corresponds to a system closed as far as resource deallocation is con-
cerned, as it does not reuse resources held by free names. In this case,
the property becomes r′ � r: the guaranteed bound on resources cannot
increase.

The more general case where λ is not necessarily 0λ also covers transi-
tory states between the deallocation of a name and the reuse of resources
previously held by that name.

The proof is detailed in the annex.

Theorem 2 (Resource control).
If S is a set of resources, if GC is a garbage-collection scheme, if P is a
process, if P −→GC∗

> P ′ and if Γ ` P : Bound(r, 0λ) then, for all r′ � r,
we also have P −→GC∗

r′ P ′.

The proof (detailed in the annex) is straightforward.

5.2 Applications

Proposition 6 (Finalization). We can always derive

Γ ` i : Bound(r ⊕ rn, λ)
Γ ` Finalize x.i : Bound(r′, λ′)

r′ � r, λ′ � λ⊕ x 7→ rn

The proof (detailed in the annex) is straightforward. It is sufficient
to declare loop to be of type Name(Chan(, r′, λ′),⊥). Note that, in this
macro, name loop serves as a loop-invariant stating resources used by the
loop and its continuation.

A π-calculus with limited resources, garbage-collection and guarantees 15

Γ(a) = N

Γ ` x : N
Γ ` } : N Γ ` 0 : T

Γ ` P : Bound(tP , λ)
t′ � ra ⊕ tP λ(a) � ra ∀x 6= a, λ′(x) � λ(x)

Γ ` (νa : Name(, ra))P : Bound(t′, λ′)

Γ ` P : Bound(tP , λP) Γ ` Q : Bound(tQ, λQ)
t′ � tP ⊕ tQ λ′ � λP ⊕ λQ

Γ ` P |Q : Bound(t′, λ′)

T-IfNull

Γ ` i : Bound(t⊕ r, λi) Γ ` j : Bound(t, λj)
t′ � t λ′ � λi ⊕ (x 7→ r) λ′ � λj

Γ ` ifnull x : r then i else j : Bound(t′, λ′)

Γ ` a : Name(Chan(N, r, λa),) Γ, b : N ` i : Bound(t⊕ r, λ⊕ λa)
t′ � t λ′ � λ

Γ ` a(b).i : Bound(t′, λ′)

Γ ` a : Name(Chan(N, r, λa),) Γ ` i : Bound(t, λ) Γ ` b : N
t′ � t⊕ r λ′ � λ⊕ λa

Γ ` a〈b〉.i : Bound(t′, λ′)

Γ ` i : Bound(ti, λi) Γ ` j : Bound(tj , λj)
t′ � ti ⊕ tj λ′ � λi ⊕ λj

Γ ` spawn i in j : Bound(t′, λ′)

Γ ` i : Bound(ti)[λ]
λ(a) � ra t′ � ra ⊕ ti ∀x 6= a, λ′(x) � λ(x)

Γ ` new a : Name(, ra) in i : Bound(t′, λ′)

Γ ` i : Bound(t, λ) t′ � ∞ · t λ′ � ∞ · λ
Γ `!i : Bound(t′, λ′)

Figure 9. Type system for resource guarantees

16 David Teller

Proposition 7 (Print spooler). Typing the print spooler permits us
to determine the following properties:

• The spooler uses at most n printers.

• Each incoming call causes the allocation of at most one handler.

• There can be at most n handlers running at any time.

• The spooler allocates handlers only on demand.

• The spooler sends messages to the printer only when requested to do
so by a client.

The main idea is to use the set of resources N4 where Γ ` P :
Bound((p, h, k, m), λ) means that P uses resources to allocate at most
p printers, h handlers, k handlers and m messages. For this example, we
use both h and k to count handlers, respectively from the point of view of
the client and from that of the spooler – creating a handler uses resource
(0, 1, 1, 0).

Channel alloc serves to transfer resource (0, 1, 0, 0) from the client to
the spooler, while channel handler serves to transfer resource (0, 0, 0, 1)
from the client to the spooler and each printing channel p1, · · · , pn serves
to transfer resource (0, 0, 0, 1) from the spooler to the printer. Channel
printer transfers one resource (0, 0, 1, 0) from the pool to the spooler, for
allocation to a handler.

It is thus sufficient to check that

Γ ` BRMDriver4 | Pool : Bound((n, 0, n, 0), 0λ)

to prove the proposition. Conversely, a client will have type

Bound((0, h, 0,m), 0λ)

if it requests at most h printers/handlers and sends at most m messages.
Depending on the actual type of request, h can measure either the total
number of handlers allocated during the execution of the client or the
maximal number of handlers held at any time by the client, assuming that
the client uses finalization to recover the resources held by the handler.
By using a slightly more complicated set of resources, it is possible to
measure both properties at once

The typing derications themselves are long but straightforward.

5.3 Extending the type system

This version of the type system permits transferring resources from an
agent to another using a communication channel. This situation, however,
fails to take into account the fact that a process may charge for some

A π-calculus with limited resources, garbage-collection and guarantees 17

C ::= Chan(N, g, λg, p, λp) g, p ∈ S, λg, λp : N −→ r

Γ ` a : Name(Chan(N, g, λg, p, λp),)
Γ, b : N ` i : Bound(ti ⊕ g, λi ⊕ λg)

t′i � ti ⊕ p λ′i � λi ⊕ λp

Γ ` a(b).i : Bound(t′i, λ
′
i)

T-Rcv-Exchange

T-Snd-Exchange

Γ ` a : Name(Chan(N, g, λg, p, λp),)
Γ ` j : Bound(tj ⊕ p, λj ⊕ λp) Γ ` b : N

t′j � tj ⊕ g λ′j � λj ⊕ λg

Γ ` a〈b〉.j : Bound(t′j , λ
′
j)

Figure 10. A type system modified to permit resource exchanges.

resources. In this case, the transfer of a resource from process P1 to
process P2 may require the simultaneous transfer of resources from P2 to
P1.

Figure 10 presents the modifications to the type system. In this ex-
tended version, the resource type of communication channels is symmetri-
cal. Note that the properties of weakening, subject reduction and resource
control still hold after this modification.

6 Conclusions

Summary We have presented the new controlled π-calculus, a π-calculus
altered to take into account allocation of resources, resource-bounded ex-
ecution and garbage-collection. We have shown how to use this calculus
to represent a complex bounded resources manager – in this case, a print
spooler – with both manual and automatic garbage-collection and sev-
eral forms of error-handling, including reaction to the absence of some re-
sources. Furthermore, we have developped a rich type system to guarantee
properties of resource management in this controlled π-calculus, includ-
ing a novel manner of statically typing exchange of resources. Applying
this type system to the bounded resources manager, we have managed to
extract properties of resource-boundedness and static transfer of autho-
rizations.

This work builds on our previous experiences [14, 10, 12] with resource
control for concurrent and distributed systems. In relation to these devel-
opments, it improves our definition of garbage-collection and of resource-
related simulations, it removes the necessity of deallocators built-in the

18 David Teller

language, it starts to deal with error-handling and it adds the notions of
transfer of resources.

Related works Other approaches of resource management have been
proposed. The BoCa [2] calculus is a variant of Mobile Ambients with
a notion of resources which can be dynamically transferred, acquired or
released. Our notion of resources held during the execution of a process,
in particular, is close to the corresponding notion of weight of a process
in that language, although that notion is part of the well-formedness of a
BoCa term and is central to the semantics of the calculus.

The Mobile Resource Guarantees [6] project builds on a linear type
system to provide guarantees of safe memory deallocation and reuse as well
as memory bounds in a single-threaded ML dialect. The Vault project [3]
uses in a multithreaded yet safe subset of C and a complex type system
to guarantee that resources are in a correct state whenever they are used.
TyPiCal [8] has comparable aims with the π-calculus. None of these works,
however, takes into account garbage-collection.

Several other, mostly dynamic, solutions have been offered, from Guardians
for Mobile Ambients [4] to JML or Spec#’s design-by-contract. These
works, however, fail to provide static guarantees, behavioral observation
of resources or to take into account deallocation and reuse.

Future developments As we mentioned, instructions such as spawn · · · in · · ·
and new · · · in · · · instanciate processes or resources and, in an implemen-
tation of cπ, would be accompanied by constructors. Although we have
not dealt with constructors for processes, a number of processes such as
the print spooler can be seen as constructors for resources, which brings a
number of question – firstly, if it is possible to write a constructor in cπ,
how such a constructor should be defined, invoked, and what properties
it should have.

Closely related is the question of transformation and composition of
resources. While some resources, such as hard drive space and perhaps
some authorizations, can be composed into bigger resources, and while
we can take this into account at the level of typing, at the level of the
language, we have no way of express such behaviour. Similarely, while
some resources can be transformed by operations – such as a file becoming
an opened file, our definition of resources is insufficient to model this.

We have started working on all these problems. Preliminary results
seem to indicate that the controlled π-calculus and its type system may
be adapted to take into account constructors, composition and transfor-
mations and to provide static guarantees based on the state of resources.

We have also started to investigate whether the notion of static re-

A π-calculus with limited resources, garbage-collection and guarantees 19

source exchange could be generalized to more than two participants, per-
haps using some form of n-ary communication as seen in the Join-Calculus [5]
or in the Kell-Calculus [9].

Garbage-collection schemes raise another series of questions. As we
have seen, our definitions of soundness and completeness of a garbage-
collector are too restrictive for common garbage-collectors such as those
found in Java, C# or OCaml. We thus hope to better criteria to classify
such services.

More importantly, we have observed that nearly all the garbage-collection
schemes we have been using in our examples, both in this document
and during our research, could be classified as simple cases of pattern-
matching. We wonder whether this observation can be generalized and if
a ”useful” set of garbage-collectors can be easily defined. In particular, we
have attempted to define stack-based as well as regions-based techniques
as instances of � and preliminary results lead us to believe in the feasibility
of the task.

References

[1] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1998.

[2] F. Barbanera, M. Bugliesi, M. Dezani, and V. Sassone. A calculus of bounded
capacities. In Proceedings of Advances in Computing Science, 9th Asian Comput-
ing Science Conference, ASIAN’03, volume 2896 of Lecture Notes in Computer
Science. Springer, 2003.

[3] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-level software.
In SIGPLAN Conference on Programming Language Design and Implementation,
2001.

[4] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring.
In V. Sassone, editor, F-WAN: Foundations of Wide Area Network Computing,
number 66 in ENTCS. Elsevier Science, 2002.

[5] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. ACM Press, 1996.

[6] M. Hofmann. A type system for bounded space and functional in-place update–
extended abstract. Nordic Journal of Computing, 7(4), Autumn 2000. An earlier
version appeared in ESOP2000.

[7] H. P. Hofstee. Power efficient processor architecture and the cell processor. In
HPCA, pages 258–262. IEEE Computer Society, 2005.

[8] N. Kobayashi. TyPiCal: Type-based static analyzer for the pi-calculus.

[9] J.-B. Stefani. A calculus of kells. In V. Sassone, editor, Electronic Notes in
Theoretical Computer Science, volume 85. Elsevier, 2003.

[10] D. Teller. Formalisms for mobile resource control. In Proceedings of FGC’03,
volume 85 of ENCS. Elsevier, 2003.

[11] D. Teller. Resource recovery in the π-calculus. In Proceedings of the 3rd IFIP

20 David Teller

International Conference on Theoretical Computer Science, 2004. tbp.

[12] D. Teller. Resource recovery in the π-calculus. In Proceedings of the 3rd IFIP
International Conference on Theoretical Computer Science, 2004. tbp.

[13] D. Teller. Ressources limitées pour la mobilité: Utilisation, réutilisation,

garanties. PhD thesis, École Doctorale MathIF, 2004.

[14] D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Resources. In
Proceedings of the 13th International Conference on Concurrency Theory, volume
2421 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

A Encoding π in cπ (theorem 1)

We use a monadic synchronous π-calculus with structural equivalence
(rather than structural congruence) and guarded replication and we as-
sume that the set of names does not contain } . The set of resources is
the singleton {⊥} with trivial rules.

We define our encoding [[]]p by the following equations

[[0]]p = 0
[[P |Q]]p = [[P]]p| [[Q]]p
[[(νa)P]]p = (νa : ⊥) [[P]]p
[[!P]]p =! [[P]]t
[[α.P]]p = α. [[P]]t

[[0]]t = 0
[[P |Q]]t = spawn [[P]]t in . [[Q]]t
[[(νa)P]]t = (νa : ⊥) [[P]]t
[[!P]]t =! [[P]]t
[[α.P]]t = α. [[P]]t

Lemma 2 (Substitutions). For any P , x and y, [[P{x← y}]] = [[P]] {x←
y}.

Trivial.

Lemma 3 (Threads to processes). For any P , either [[P]]t = [[P]]p or
[[P]]t −→ [[P]]p.

Trivial.

Lemma 4 (Structural equivalence). For all P and Q, if P ≡ Q
then [[P]]p ≡ [[Q]]p.

We prove this by induction on the structure of a proof of P ≡ Q. The
only subtleties are

Replication If P =!α.R and Q =!α.R|R, we have [[P]]p =! [[α.R]]t and
! [[α.R]]t ≡! [[α.R]]t|α. [[R]]t. By definition of the encoding, α. [[R]]t = [[α.R]]p.
Hence, [[P]]p ≡ [[Q]]p.

A π-calculus with limited resources, garbage-collection and guarantees 21

Garbage-collection If P = (νa)0 and Q = 0 then [[P]]p = [[Q]]p.

Lemma 5 (Null values). For any P and p such that [[P]]p −→ ∗p, p
does not contain any occurrence of } .

Trivial.

Proposition 8 (Soundness). For all processes P and Q of the π-calculus
such that P −→ Q, we have [[P]]p −→ [[Q]]p.

We prove this by induction on the structure of a proof of P −→ Q.

Communication If P = a(x).R | a〈y〉.S and Q = R{x ← y} | S, we
have [[P]]p = a(x). [[R]]t | a〈y〉. [[S]]t and [[Q]]p = [[R{x← y}]]t | [[S]]t.

By one communication and the substitution lemma, we have [[P]]p −→
[[Q]]q.

Structural equivalence If P ≡ P ′, P ′ −→ Q′ and Q′ ≡ Q, by
induction hypothesis, [[P ′]]p −→ [[Q′]]p. By lemma 4, we conclude the case.

Proposition 9 (Completeness). For every process P of the π-calculus,
if [[P]]p −→ q then there exists Q in the π-calculus such that P −→ Q and
q = [[Q]]p.

By induction on a proof of [[P]]p −→ q. By 5, we know that there is no
occurrence of } hence no use of the Gc-* transitions.

B Subject Reduction of the type system

B.1 Auxiliary lemma

Lemma 6 (Substitution preserves typing). If Γ, x : N ` P : Bound(t, λ)
and Γ ` a : N then Γ ` P{x← a} : Bound(t, λx←a) where

• ∀y 6∈ {x, a}, λx←a(y) = λ(y)

• λx←a(x) = ⊥

• λx←a(a) = λ(a)⊕ λ(x)

This is proved by structural induction.
The only trick case is that of P = ifnull x : rn then i else j.
Let us write

Γ, x : N ` i : Bound(t⊕ r, λi)
Γ, x : N ` j : Bound(t, λj)

t′ � t
λ′ � λi ⊕ (x 7→ r)
λ′ � λj

Γ, x : N ` ifnull x : r then i else j : Bound(t′, λ′)

22 David Teller

By induction hypothesis, we also have{
Γ ` i{x← a} : Bound(t⊕ r, λx←a

i)
Γ ` j{x← a} : Bound(t, λx←a

j)

Let us prove that the relation between λ′, λi and λj still holds after
substitution. Let us write Λ = λi ⊕ (x 7→ r).

For any z distinct of x and a, we have

λ′x←a(z) = λ′(z) � λj(z) = λx←a
j

and
λ′x←a(z) = λ′(z) � Λ(z) = Λx←a(z) .

We also have

λ′x←a(x) = λx←a
j (x) = Λx←a(x) = ⊥ .

Also,
λ′x←a(a) = λ′(x)⊕ λ′(a) � λj(x)⊕ λj(a) = λx←a

j (a)

and

λ′(x)⊕ λ′(a) � Λ(x)⊕ Λ(a) = λi(x)⊕ λi(a)⊕ rn = Λx←a(a) .

Hence, the relations still hold. From T-IfNull, since (ifnull x then i else j){x←
a} = ifnull a then i{x← a} else j{x← a}, we conclude the case.

Lemma 7 (Equivalence preserves typing). If P ≡ Q and Γ ` P : T
then Γ ` Q : T .

Proof by a simple induction. The α-equivalence derives from the sub-
stitution lemma (lemma 6).

B.2 Main proof

Proved by induction on the structure of a proof of P −→ Q.
Let us define the weight of T by weight(Bound(t, λ)) = t⊕Σx∈Nλ(x).

Instanciation Case R-Spawn is trivial as the typing rule for spawn i in j
is identical to that of i | j.

Case R-Alloc is trivial as the typing rule for new a : N in i is identical
to that of (νa : N)i.

Tests Let us write P = ifnull a : rn then i else j. If x is not }
then, as the type of j is stronger than the type of j, the case is proved.

If x = } , let us write
Γ ` i : Bound(t⊕ r, λi)

t′ � t
λ′ � λi ⊕ (x 7→ r)

Γ, x ` P : Bound(t′, λ′)

A π-calculus with limited resources, garbage-collection and guarantees 23

Trivially, we have weight(Bound(t′, λ′)) � Bound(t ⊕ r, λi). Which
proves the case.

Communication Let us write
Γ, x : N ` i : Bound(t⊕ r, λ⊕ λa)
Γ ` a : Name(Chan(N, r, λa),)
Γ ` j : Bound(tj , λj)
Γ ` b : N

Typage de P

Typage de a(x).i

Γ, x : N `i : Bound(t⊕ r, λ⊕ λa) Par hypothse
Γ `a : Name(Chan(N, r, λa),) Par hypothse

⇒ Γ `a(x).i : Bound(t1, λ1) Par T-Rcv
Avec t1 � t

λ1 � λ

Typage de a〈b〉.j
Γ `j : Bound(tj , λj) Par hypothse
Γ `a : Name(Chan(N, r, λa),) Par hypothse
Γ `b : N Par hypothse

⇒ Γ `a〈b〉.j : Bound(t2, λ2) Par T-Snd
Avec t2 � tj ⊕ r

λ2 � λj ⊕ λa

Typage de P

Γ `a(x).i : Bound(t1, λ1) Cf. plus haut
Γ `: Bound(t2, λ2) Cf. plus haut

⇒ Γ `P : Bound(t3, λ3) Par T-Par
Avec t3 � t1 ⊕ t2

λ3 � λ1 ⊕ λ2

©

Typage de Q

Typage de i{x← b}
Γ, x : N `i{x← b} : Bound(t⊕ r, λ⊕ λa) Par hypothse
⇒ Γ `i : Bound(t⊕ r, λ⊕ λa) Par Substitution

Typage de Q

Γ `i{x← b} : Bound(t⊕ r, λ⊕ λa) Cf. plus haut
Γ `j : Bound(tj , λj) Par hypothse

Comme t3 ⊕ t1 ⊕ t2

24 David Teller

t2 � tj ⊕ r
t1 � t

Comme λ3 � λ1 ⊕ λ2

λ1 � λ
λ2 � λj ⊕ λa

⇒ Γ `Q : Bound(t3, λ3) Par T-Par

©

The case is proved.

Structure Proof of the various structural cases are identical to the
corresponding proofs in our previous works [13].

Garbage-collection Cases GC-Receive, GC-Send, GC-RReceive
and GC-RSend are trivial as Q is 0, which can always be typed, with
any type.

Case GC-Deallocate derives directly from the substitution lemma
(lemma 6).

The induction is thus proved. Hence the subject-reduction property.

C Resource control

Lemma 8 (Resource total). If Γ ` P : Bound(r, 0λ) then res(P) � r.

Trivial.

C.1 Main proof

From the Resource total lemma and subject-reduction, we conclude the
resource control theorem.

D Typing finalization

We have
Loop = Name(Chan(, r′, λ′),⊥)
Γ ` i : Bound(r ⊕ rn, λ)

r′ � r
λ′ � λ⊕ x 7→ rn

Typage de loop〈〉

A π-calculus with limited resources, garbage-collection and guarantees 25

Γ `0 : Bound(⊥, 0λ) Par T-Nil
Γ `loop : Name(Chan(, r′, λ′),) Par hypothse

⇒ Γ `loop〈〉 : Bound(r′, λ′) Par T-Snd

Typage de ifnull x then i else loop〈〉
Γ `loop〈〉 : Bound(r′, λ′) Cf. plus haut
Γ `i : Bound(r′ ⊕ rn, λ) Par hypothse

⇒ Γ `ifnull x then i else loop〈〉 : Bound(r′, λ′) Par T-Test-Nil

Typage de loop().ifnull x then i else loop〈〉
Γ `ifnull x then i else loop〈〉 : Bound(r′, λ′) Cf. plus haut
Γ `loop : Name(Chan(, r′, λ′),) Par hypothse

⇒ Γ `loop(). · · · : Bound(⊥, 0λ) Par T-Rcv

Typage de !loop().ifnull x then i else loop〈〉
Γ `loop(). · · · : Bound(⊥, 0λ) Cf. plus haut

⇒ Γ `!loop(). · · · : Bound(⊥, 0λ) Par T-Bang

Typage de !loop().ifnull x then i else loop〈〉 | loop〈〉
Γ `!loop(). · · · : Bound(⊥, 0λ) Cf. plus haut

Γ `loop〈〉 : Bound(r′, λ′) Cf. plus haut

⇒ Γ `!loop() · · · | loop〈〉 : Bound(r′, λ′) Par T-Par

Typage de Finalize x.i

Γ `!loop() · · · | loop〈〉 : Bound(r′, λ′) Cf. plus haut
⇒ Γ `(νloop : Loop)(· · ·) : Bound(r′, λ′)
©

