
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

The Effect of Java Exceptions on Code

Optimizations

Andrew Stevens

Des Watson

fandrewst, deswg@cogs.susx.ac.uk

Report 4/2001 March 2001

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170



The Effect of Java Exceptions on Code

Optimizations

Andrew Stevens and Des Watson

fandrewst, deswg@cogs.susx.ac.uk

Abstract. The Java language supports exceptions by providing language constructs that allow the

programmer to manage any exception that may occur during execution. The Java Virtual Machine

(JVM) supports this management by maintaining tables that provide information on the exception

handler’s location along with the type of exception that it handles. The resulting program’s control

flow during execution is highly unpredictable and is not amenable to static analysis. Such control

flow prediction is a valuable asset to an aggressively optimizing compilation system, since, for ex-

ample, it can identify areas of the program that are likely to be executed most often. Some initial

analysis on such programs suggests that the presence of exceptions increases this dynamic behaviour

by a factor of four as well as reducing the sizes of basic blocks. Such a result suggests that reducing

this effect will increase the potential for compilers to generate faster programs.

1 Introduction

This position paper presents some of the exception-related issues encountered

during a research project in the field of compiler-generated code optimization.

The goal of this research is to develop a Java bytecode analysis and optimizing

framework that addresses the effect of these exceptions. This paper concen-

trates on how support for exceptions in the Java language [1] and its Virtual

Machine [5] complicates standard compiler analysis techniques, along with pro-

posed techniques that could help to address these problems.

2 Exceptions in Java

There are three levels of support for exceptions in Java programs that are exe-

cuted on Java Virtual Machines (JVM). The first level is syntactic support in the

programming languages via the try/catch/finally and throw statements.

The next level is required in order to represent this support in the compiled byte-

code class files. Finally, the runtime JVM implements and manages this support

as determined by the bytecodes and the environment in which the program exe-

cutes. This is a passive exception scheme; the efficiency cost of maintaining the

exceptions is nil as long as no exceptions are thrown.

2.1 Exception Categories

Exceptions fit into three different categories: explicit, implicit synchronous and

implicit asynchronous. Explicit exceptions occur when a throw statement is ex-

ecuted (actually the bytecode athrow instruction). These exceptions, defined at



2 Andrew Stevens and Des Watson

the language level, allow the programmer to modify the control flow of the pro-

gram under definable conditions. Implicit synchronous exceptions, however, are

not thrown at locations that the programmer defines. Instead, they are the result

of runtime verifications that check that the semantic rules of the language are

not broken. These checks include type-checking, array indexing, class loading

and resource allocation problems. These are synchronous since they are thrown

within a thread at the point that the exception is detected. The implicit, asyn-

chronous exceptions occur for two reasons: an internal error occurs in the JVM

or when the stop method of class Thread is called. These are asynchronous

since they can be thrown at any point during the execution of instructions in a

thread.

At the language level, all these types of exceptions can be handled using try

and catch. If the type of the thrown exception matches the catch parameter, or

is a sub-class of the catch parameter, then the body of the catch is executed. The

scope of these handling regions is recorded in an exception table within the class

file binary, with one such table per method. Whenever the JVM detects a thrown

exception then the table entries (if any) for the current method are examined to

find an appropriate handler. If no handler matches the type of exception thrown

then the current stack is popped and the exception is re-thrown in the previous

frame. This process continues until a handler is located or until all frames for

the current thread are popped. If no handlers are found then the uncaughtEx-

ception method is called for the ThreadGroup that owns the current thread,

which then terminates. The result of this call will generally terminate the pro-

gram and generate a stack trace. This behaviour can be altered by subclassing

ThreadGroup and overriding the call.

2.2 Prediction of Control Flow

In order to examine the problems that exceptions create for program analysis by

a compiler, it is important to understand the benefits of such analysis. Since Java

is an interpreted language it has great potential for optimization. Many systems

exist that attempt to translate Java programs into native executables [2, 6, 7, 8].

The more information that a compiler can obtain about a program in advance

of execution, the more effect any optimizations will have. If, for example, the

compiler can predict the control flow [3], then more aggressive optimizations

can be applied to areas most used in execution. Unfortunately, this information

is generally not available since control flow can depend on values only available

during the execution itself.

Exceptions in Java have a significant effect on such predictions since implicit

exceptions are very hard to detect before execution. Certain compiler research

projects [4, 6, 2] deal with this problem by not supporting exceptions at all.

Another reason for such a decision is the lack of an appropriate representation



The Effect of Java Exceptions on Code Optimizations 3

in a predefined intermediate language. Clearly this is not an ideal solution since

the behaviour of the program will change and the benefits of exception-based

control flow will be lost.

2.3 Related Research

The importance of predicting the dynamics of program execution was examined

by Larus [3]. He shows that successful prediction of the control flow leads to

the exposure of optimization opportunities. He also notes the problems caused

by the cost of running the tools that identify interprocedural paths. His paper

presents another factor that increases the number of dynamic procedural context

changes. The introduction of exceptions therefore increases the cost of exposing

the executed control flow and therefore decreases the opportunity for optimiza-

tions.

The Colorado State University development of a Java compiler called j2s,

that uses an intermediate format called SUIF [6], presents compilation issues

directly related to the object-oriented qualities of Java. This relates to the goal

of the current research of completing an aggressive optimizing Java compilation

framework. The main difference is that the j2s system ignores exceptions; this is

due to the lack of support within the SUIF representation and related tools. The

resulting compiler therefore could not take advantage of any optimizations that

apply directly to the SUIF format, in case the program semantics are altered.

Kienle and Hölzle report on the design of a similar compiler, also called j2s,

that also targets SUIF [2]. This work also does not currently support exceptions

(or threads) but does successfully compile JDK1.2beta2 javac. This j2s system

targets a new version of the SUIF representation called OSUIF. The new OS-

UIF format, along with supporting libraries, contains support for object-oriented

languages as well as support for generating exception handling code. The j2s de-

velopment team plans to extend its support to include exceptions by augmenting

the control flow graph to include exception edges.

The instrumentation of Java programs at the class file (bytecode) level has

been built into a toolkit by Lee and Zorn [4]. The profiling tool, called “Bytecode

Instrumenting Tool”, enables a program to insert profiling instructions through-

out a Java program to produce information about that program at runtime. Such

a system is aimed at providing the system designer with information about the

program that may help to point at possible performance bottlenecks. This sys-

tem also ignores exception support in the language which means that the profiled

program may fail a JVM verification check. The current research has examined

the idea of instrumenting the class files and provides a framework to enable this.

This approach was discarded, however, since such a dynamic feedback of data

suits a just-in-time compilation system and not the static ahead-of-time approach

that has been adopted.



4 Andrew Stevens and Des Watson

3 Analysis

One of the first stages in any standard control flow analysis is to generate basic

blocks. These blocks are areas of code with one entry point and one exit point.

The first phase of the research project to reduce the effect of exceptions in Java

programs is the design of an analysis tool that helps measure this effect on these

basic blocks, and the dynamics of the program in general. The tool uses Java

bytecodes as the representation for analysis. This has the key benefit of allowing

all external library classes to be analyzed as well as to produce results for the

whole program.

The results presented in this section were generated by using an analysis

tool, written as part of this research, called JEX (Java Exception Extractor). Two

Java programs were used to generate results: Sun’s javac compiler and the JEX

program itself. The first pass of the analysis loads all the class files related to the

analyzed program into memory. It then steps through each method in each class

and generates a control flow graph where each node in the graph is a basic block.

Not all methods in a class file can be scanned since some contain no bytecodes.

These are either native or abstract methods and are ignored by these tests. The

control flow graphs are created using two rules, the first assumes that exceptions

can occur and the second assumes that implicit exceptions cannot occur. The

Java Virtual Machine specification[5] contains the information for each bytecode

instruction, defining any possible exceptions. When exceptions are enabled, an

instruction that could potentially generate an exception marks the end of the

current basic block. The resulting control flow graphs are stepped through in

order to count the block sizes along with the number of possible unpredictable

control flow branches. An exception would create an unpredictable branch since

the destination handler may not be predicted until runtime.

As can be seen in Table 1, the basic block sizes when exceptions are enabled

are significantly smaller when compared to the sizes when disabled. The major-

ity of block sizes for all the tests are in the range of 1–10. A possible reason

behind this is shown in Table 2, in the section that counts the number of methods

with 10 or fewer instructions. As can be seen, for both programs, the number of

methods that fit into this category is about 40% of the total number. Since basic

blocks, by definition, cannot cross methods, the blocks in these methods will all

be small. The results show that large basic blocks are being broken up into many

significantly smaller blocks. Since this break up is due to possible exceptions

that a compiler may not be able to rule out, the scope for optimization is greatly

reduced. The effect of these exceptions is to increase the level of control flow

dynamics of the program; this can be seen by counting the number of instruc-

tions that can generate branches whose destination can only be determined at

runtime. An exception would create an unpredictable branch. This count for the



The Effect of Java Exceptions on Code Optimizations 5

JEX program without implicit exceptions is 53208 whereas with exceptions it

is 211211. Similarly the same count using the javac program is 27380 without

exceptions and 102994 with exceptions. Both these results correspond to around

a 400% increase in the program’s dynamics with the introduction of exceptions.

Size of block (number of instructions)

Program Exceptions 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81+

javac Yes 93231 276 4 0 1 0 0 0 0

No 54823 1223 128 34 14 5 5 2 32

JEX Yes 193854 704 30 11 3 3 1 2 0

No 108657 3758 616 224 65 27 20 13 64

Table 1. Basic Block Size Frequencies

Methods

No. of classes Total Number Implemented Size 1 to 10

javac 740 7226 6583 3023

JEX 1984 18309 15998 7495

Table 2. Program Statistics

3.1 Exception Prediction

Several possible predictions can be made from examining the different types of

exceptions. The potential for explicit exceptions is easily recognized by the pres-

ence of the athrow bytecode. However, the destination of the handler for such

exceptions will depend on the exception type, which is a runtime value. In the

current phase of the research project, the bytecode class files relating to a pro-

gram are being instrumented with bytecodes that will allow runtime information

regarding these exceptions to be generated. This information could help to obtain

the destination of explicit exceptions and prove that certain implicit exceptions

are not possible.

3.2 Current Work

At present, the prototype bytecode analysis and optimization tool (JEX) stati-

cally analyzes Java programs from their class file (bytecode) representation. The

analysis results are then used to extract information about the control flow and

exception-related branches. The next step will be to partially evaluate areas of

the program to provide information on potential exceptions during the execu-

tion. All this information can then be fed back into the optimization algorithms

to assist with reducing the effects of such exceptions.



6 Andrew Stevens and Des Watson

4 Conclusions

Exceptions in Java add many benefits to the design and implementation of a pro-

gram from enforcing caller handling of errors to recovering from system resource

limits. As a strongly typed object-oriented language, Java adds to these benefits

by enabling the compiler to validate that explicit exceptions are being handled in

the surrounding scope. With these benefits come disadvantages. The fragmen-

tation of basic blocks within the control flow has a negative impact on the types

of optimization that can be applied. The effect of these exceptions also increases

the dynamics of the program’s control flow, reducing the predictive powers of

an ahead-of-time compiler. A compilation system that can statically analyse and

profile the code in an attempt to reduce the number of possible runtime excep-

tions could help to reduce this impact. An extension of this research could move

the analysis framework into a runtime Java Virtual Machine in order to act upon

semantic information not statically available.

References

[1] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley,

August 1996. http://java.sun.com/docs/books/jls/index.html.

[2] Holger Kienle and Urs Hölzle. j2s: A SUIF Java compiler. Technical report, Department of

Computer Science, University of California Santa Barbara, August 1997. Also available as

Technical Report TRCS97-16.

[3] James Larus. Whole program paths. In Proceedings of the ACM SIGPLAN ’99 Conference on

Programming Language Design and Implementation, 1999.

[4] Han Bok Lee and Benjamin G. Zorn. Bit: A tool for instrumenting Java bytecodes. In USENIX

Symposium on Internet Technologies and Systems Proceedings, pages 72–83, Monterey, Cali-

fornia, 1997.

[5] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,

September 1996. http://java.sun.com/docs/books/vmspec.

[6] Sumith Mathew, Eric Dahlman, and Sandeep Gupta. Compiling Java to SUIF: Incorporating

support for object-oriented languages. In Proceedings of the Second SUIF Compiler Workshop,

August 1997.

[7] Gilles Muller, Bárbara Moura, Fabrice Bellard, and Charles Consel. Harissa: A flexible and

efficient Java environment mixing bytecode and compiled code. In Proceedings of the 3rd Con-

ference on Object-Oriented Technologies and Systems, pages 1–20, Berkeley, June 16–20 1997.

Usenix Association.

[8] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim Newsham, and

Scott A. Watterson. Toba: Java for applications: A way ahead of time (WAT) compiler. In

Proceedings of the 3rd Conference on Object-Oriented Technologies and Systems, pages 41–54,

Berkeley, June 16–20 1997. Usenix Association.


