A Complete Axiomatisation for Timed Automata

Huimin Lin Wang Yi
Laboratory for Computer Science Dept. of Computer Systems
Inst. of Software, Chinese Academy of Sciences Uppsala University
Email: lhm@ios.ac.cn Email: yi@csd.uu.se
Abstract

A proof system of timed bisimulation equivalence for timed automata is
presented, based on a CCS-style regular language for describing timed au-
tomata. It consists of the standard monoid laws for bisimulation and a set of
inference rules. The judgments of the proof system are conditional equations
of the form ¢ >t = u where ¢ is a clock constraint and ¢, 4 are terms denoting
timed automata. The proof of the completeness result relies on the notion
of symbolic timed bisimulation, adapted from the work on value—passing pro-
cesses.

1 Introduction

The last decade has seen a growing interest in extending various concurrency theo-
ries with timing constructs so that real-time aspects of concurrent systems can be
modeled. Among them timed automata [AD94] has stood out as a fundamental
model for real-timed systems.

A timed automaton is a finite automaton extended with a finite set of real-
valued clock variables. A node of a timed automata is associated with an invariant
constraint on the clock variables, while an edge is decorated with a clock constraint,
an action label, and a subset of clocks to be reset after the transition. At each node a
timed automaton may perform two kinds of transitions: it may let time pass for any
amount (a delay transition), as long as the invariant is satisfied, or choose an edge
whose constraint is met, make the move, reset the relevant clocks to zero, and arrive
at the target node (an action transition). Although a timed automaton has only
finite number of nodes, due to (real-valued) delay transitions it typically exhibits
infinite-state behaviour. Two timed automata are timed bisimilar if they can match
each other’s action transitions as well as delay transitions, and their residuals remain
timed bisimilar. The explicit presence of clock variables and resetting, features that
mainly associated with the so-called “imperative languages”, distinguishes timed
automata from process calculi such as CCS, CSP and their timed extensions which
are “applicative” in nature and therefore more amenable to axiomatisation. By now

most theoretical aspects of timed automata have been well studied, but they still
lack a satisfactory algebraic theory.

In this paper we shall develop a complete axiomatisation for timed automata,
in the form of an inference system, in which the equalities between pairs of timed
automata that are timed bisimilar can be derived. To this end we first propose a
language, in CCS style, equipping it with a symbolic transitional semantics in such
a way that each term in the language denotes a timed automaton. The language has
a conditional construct ¢—t, read “if ¢ then ¢”, an action prefixing a(x).t, meaning
“perform the action a, reset the clocks in x to zero, then behave like ¢”, and a
recursion fix X't which allows infinite behaviours to be described. The proof system
consists of a set of inference rules and the standard monoid laws for bisimulation.
Roughly speaking the monoid laws characterize bisimulation, while the inference
rules deal with specific constructs in the language. The judgments of the inference
system are of the form

po>t=u

where ¢ is a time constraint and ¢, u are terms. Intuitively it means: ¢ and u are
timed bisimilar over clock evaluations satisfying ¢. A typical inference rule takes

the form:
pAYD>t=u (AN WYD>O0=u

o> (P—t) =u
It performs a case analysis on the constraint ¢: ©»—t behaves like ¢ when ¢ is true,
and like the inactive process 0 otherwise. Note that the guarding constraint i of
1—t in the conclusion is part of the object language describing timed automata,
while in the premise it is shifted to the condition part of the judgment in our meta
language for reasoning about timed automata.
A crucial rule, as might be expected, is the one for action prefixing:

d)i/xﬂ >l=u
¢ > a(x).t = a(x).u

GUARD

ACTION

Here |, and 1} are postfixing operations on clock constraints. ¢lxf is a clock con-
straint obtained from ¢ by first setting the clocks in x to zero (operator |y), then
removing up-bounds on all clocks of ¢ (operator 1}). Readers familiar with Hoare
Logic may notice some similarity between this rule and the rule dealing with assign-

ment there:
{Ple/al} = e {P}

But here the operator | is slightly more complicated than substitution with zero,
because clocks are required to increase uniformly. Also we need 1} to allow time to
pass indefinitely.

A standard way to reasoning with recursion is to use, apart from the usual rule
for folding/unfolding recursions, the following unique fixpoint induction:

t = ult/X]

UFI t=fixXu

X guarded in u

This rule was adopted in [Mil84] for a complete axiomatisation of bisimulation equiv-
alence for regular pure-CCS. Here we use it in a quite different context: terms in our
setting normally contain clock variables, namely they are open terms. In spite of this,
it turns out that this rule is still sound and sufficient for a complete axiomatisation
of regular behaviour, though the proof is slightly more complicated than in the pure
calculi.

The completeness proof relies on the introduction of the notion of symbolic timed
bisimulation, t ~® u, which captures timed bisimulation in the following sense:
t ~? wif and only if ¢p and up are timed bisimilar for any clock evaluation p satisfying
¢. Following [Mil84], to show that the inference system is complete, that is t ~¢ u
implies = ¢ >t = u, we first transform ¢ and u into standard equation sets which
are the syntactical representations of timed automata. We then construct a product
equation set out of the two and prove that ¢ and u both satisfy this new equation
set, by exploiting the assumption that ¢ and u are symbolically timed bisimilar. Due
to the presence of clock variables the notion of satisfiability is parameterised on a
set of clock constraints. Finally we show that, using UFI, if two terms satisfy the
same set of standard equations then they are provably equal.

The result of this paper fills a gap in the theory of timed automata. It demon-
strates that bisimulation equivalence of timed automata are as mathematically
tractable as those of standard process algebras.

The rest of the paper is organised as follows: In the next section we first recall the
definition of timed automata, then propose a language to describe them. Section 3
introduces symbolic timed bisimulation. The inference system is presented and its
soundness discusses in Section 4. Section 5 is devoted to proving the completeness
of the proof system. The paper concludes with Section 6 where related work is also
briefly discussed.

2 A Language for Timed Automata

2.1 Timed Automata

A timed automaton is a standard finite-state automaton extended with a finite col-
lection of real-valued clocks. In a timed automaton, each node is associated with
an invariant, while a transition is labelled with a guard (a constraint on clocks),
a synchronisation action, and a clock reset (a subset of clocks to be reset). Intu-
itively, a timed automaton starts execution with all clocks initialized to zero. The
automaton can stay at a node while the invariant of the node is satisfied, with all
clocks increasing at the same rate. A transition can be taken if the clocks fulfill the
guard. By taking the transition, all clocks in the clock reset are set to zero, while
the others keep their values. Semantically, a state of an automaton is a pair of a
control node and a clock valuation, i.e. the current setting of the clocks. Transitions
in the semantic interpretation are either labelled with a synchronisation action (if it
is an instantaneous switch from the current node to another) or with a positive real
number i.e. a time delay (if the automaton stays within a node letting time pass).

z:=0;y:=0 b I

Figure 1: A Timed Automaton.

Consider the timed automaton of Figure 1. It has two control nodes [y, and [;
and two clocks x and y. A state of the automaton is of the form (I, < s,t >), where
[is a control node and s and ¢ are non—negative reals giving the values of x and
y. Assuming that the automaton starts to operate in the state (lp, < 0,0 >), it
may stay in node [y for any amount of time, as long as the invariant x < 4 of [
is satisfied. During this time the values of x and y increase uniformly, at the same
rate. Thus from the initial state, all states of the form (ly, < ¢,¢ >) with 0 <¢ < 4
are reachable, but only at the states (ly, < t,t >), where ¢ > 1, the edge from [, to
[; is enabled. When following the edge from [, to [; the action a is performed to
synchronize with the environment and the clock y is reset to 0 leading to states of
the form (I, < ¢,0 >) where t > 1.

For the formal definition, we assume a finite set A for synchronization actions
and a finite set C for real-valued clock variables. We use a,b etc. to range over A
and x, y etc. to range over C. We use B(C), ranged over by ¢, 1 etc., to denote the
set of conjunctive formulas of atomic constraints in the form: z; X m or z; —x; X n,
where z;,z; € C, Xe {<, <, >,>} and m,n are natural numbers. The elements of
B(C) are called clock constraints.

Definition 2.1 A timed automaton over actions A and clocks C is a tuple (N, ly, E)
where

e N is a finite set of nodes,
e [y € N is the initial node,
e £EC N xB(C)x Ax2%x N is the set of edges.
When (1, g,a,r,l') € E, we write | 223 ['. O
We shall present the operational semantics for timed automata in terms of a

process algebraic language in which each term denotes an automaton.

2.2 The Language

We preassume a set of process variables, ranged over by X, Y, Z, The language
for timed automata over C can be given by the following BNF grammar:

s == {o}t
t == 0 | ¢—=t | alx)s | t+t | X | fixXt

4

/

tp —t'p

DELAY +d = Inv(t) CHOICE .
tp —Ls t(p + d) P = Tno(t) (t+u)p —t'p
tp s t'p
NN G S e=0, M oy g Y
fix Xt/ X a [N} a /N
. (tHfixXt/XT])p — t'p v e =1l .\,

(fixXt)p — t'pf {o}t)p — 10

Figure 2: Standard Transitional Semantics

0 is the inactive process which can do nothing, except for allowing time to pass. ¢—t,
read “if ¢ then ¢”, is the usual (one-armed) conditional construct. a(x).t is action
prefixing. + is nondeterministic choice. The {¢}t construct introduces an invariant.
Note that invariants can only occur at places which correspond to locations in timed
automata. For instance, strings having the forms ¢—{¢}t, {¢p}t + {¢}u or {dH{ Y}t
are not terms of the language, while {¢}(t + u) and ¢—a(x).{t)}t are allowed.

A recursion fix Xt binds X in ¢t. This is the only binding operator in this lan-
guage. It induces the notions of bound and free process variables as usual. Terms
not containing free process variables are closed. A recursion fix Xt is guarded if every
occurrence of X in ¢ is within the scope of an action prefixing.

The set of clock variables used in a term ¢ is denoted C().

A clock valuation is a function from C to R=° (non-negative real numbers), and
we use p to range over clock valuations. The notations p{x := 0} and p + d are

defined thus
B {0 ifyex
p{x:=0}(y) = { p(y) otherwise

(p+d)(z) =p(x)+d forall x

To give a transitional semantics to our language, we first assign each term ¢ an
invariant constraint Inv(t) by letting

| ¢ ift has the form {¢}s
Inv(t) = { tt otherwise

We shall require that all invariants are downward closed:
For all d € RZ°, p+d = ¢ implies p |= ¢

Given a clock valuation p : C — RZ2°%, a term can be interpreted according to
the rules in Figure 2, where the symmetric rule for + has been omitted. We call
tp a process, where t is a term and p a valuation; we use p, ¢, ... to range over the
set of processes. We also write p for either an action or a delay (a real number).
The transitional semantics uses two types of transition relations: action transition

5 and delay transition —%5. Note that a process can have only a finite number of

b,a,x

t ==t

ACTION ——gax _~ CHOICE ———————

a(x).t =t 4 22X

e tixXt/X] 22X ¢

GUARD N REC b

p—t ==t fix Xt —5

t ‘L‘”f t
{0}t =

Figure 3: Symbolic Transitional Semantics

action transitions, but it may have infinite many delay transitions. It is the later
that makes timed processes infinite branching (and infinite states).

Definition 2.2 A symmetric relation R over processes is a timed bisimulation if
(p,q) € R implies

whenever p - p' then ¢ - ¢ for some ¢' with (p',¢') € R.
We write p ~ ¢ if (p,q) € R for some timed bisimulation R. O

The symbolic transitional semantics of this language is listed in Figure 3. Again
the symmetric rule for + has been omitted. Note that invariants are simply forgot-
ten in the symbolic transitional semantics. This reflects our intention that symbolic
transitions correspond to edges in timed automata, while invariants reside in nodes.
Note also that there is no rule to deduce “delay” transitions in the symbolic seman-
tics. As noted above, delay transitions are the source of infinity in the semantics
of timed automata. The purpose of the symbolic transitional semantics, and the
symbolic timed bisimulation built on it, is to avoid such infinity. Thus “delays” do
not appear explicitely in the symbolic semantics. Instead they will be implicitly
encoded in the notion of “upward-closeness” used to define symbolic bisimulation in
the next section.

According to the symbolic semantics, each guarded closed term of the language
gives rise to a timed automaton; On the other hand, it is not difficult to see that every
timed automaton can be generated from a guarded closed term in the language. In
the sequel we will use the phrases “timed automata” and “terms” interchangeably.
The two versions of transitional semantics can be related as follows (note again only
action transitions are related):

Lemma 2.3 1. Ift -> 29X then tp — t'p{x := 0} for any p = ¢ A Inv(t).

CIftp % t’p’ then there exist ¢, x such that p = ¢ A Inv(t), p' = p{x := 0}
d)ax
and t —

Proof: Both are proved by transition induction.

1. Assuming ¢t — 20X 4 and p E ¢ A Inv(t), we show tp - t'p{x := 0}.

6

tt,a,x

¢ = tt and t = a(x).t' == t'. Then (a(x).t')p — t'p{x := 0} by acTioN and
pE o

o=¢ Npand t = ¢ —t" PILX 4 s because 7 %F . Then Inv(t) = tt.
Since p = 1 A Inv(t), by induction we get t'p — 'p{x := 0}. Since p & ¢/,
by GUARD, tp — t/p{x := 0}.

Inv(t) = ¢' and t = {¢'}t" DX 41 is because ¢ 22¥ #. Then Inv(t") = tt, and
p = ¢ A Inv(t"). By induction, we get t"p —= t'p{x := 0}. Since p = ¢', by
INV, tp — t'p{x := 0}.

e The other cases are similar.

2. Assuming tp — t'p', we show ¢ 29X 4 for some ¢, x such that p = ¢ A Inv(t)
and p' = p{x:=0}.
o t =a(x).t and tp - tp{x := 0}. Then Inv(t) = tt. By AcTION we have
t 22 ¢ and p = tt A Inu(t).
o t =—t" and tp —= t'p is because p =1 and t"p — t'p'. Then Inv(t) = tt.
By induction we get t” P0X 41 for some ¢, x such that p | ¢ A Inv(t") and
p' = p{x:=0}. By GUARD, ¢ YA 4 and pE &N A Inu(t).

o t ={¢'}t" and tp — t'p’ is because p = ¢' and t"'p — t'p’. Then Inv(t) = ¢'
and Inv(t") = tt. By induction we get ¢” 29X 4 for some ¢, x such that p = ¢

¢,a,x

and p' = p{x:=0}. By Inv, t == t'. Also p = ¢ A Inv(t).

e The other cases are similar.

3 Symbolic Timed Bisimulation

In this section we shall define a symbolic version of timed bisimulation. To sim-
plify the presentation we fix two timed automata. To avoid clock variables of one
automaton being reset by the other, we assume the sets of clocks of the two timed
automata under consideration are disjoint, and write C for the union of the two
clock sets !. Let N be the largest natural number occurring in the constraints of
the two automata. An atomic constraint over C' with ceiling N has one of the three
forms: x > N, x Xm or x — y X n where z,y € C,Xe {<, <, > >} and m,n < N
are natural numbers.

IThis does not impose any restriction on our results, because we can always rename clock
variables of an automaton without affecting its behaviour.

In the following, “atomic constraint” always means “atomic constraint over C'
with ceiling N”. Note that given two timed automata there are only finite number
of such atomic constraints. We shall use ¢ to range over atomic constraints.

A constraint, or zone, is a boolean combination of atomic constraints. A con-
straint ¢ is consistent if there is some p such that p E ¢. Let ¢ and 1 be two
constraints. We write ¢ = ¢ to mean p = ¢ implies p =« for any p. Note that the
relation = is decidable.

A region constraint, or region for short, over n clock variables z;, ..., z, is a
consistent constraint containing the following atomic conjuncts:

e For each i € {1,...,n} either 2; = m; or m; < z; <m; + 1 or z; > N;

e Foreach pairofi,j € {1,...,n}, i # j, such that both z; and z; are not greater
than N, either z; — m; = x; —m; or v, — m; < x; —m; or x; —m; < T; — M.

where the m; in x; — m; of the second clause refers to the m; related to x; in the
first clause. In words, m; is the integral part of z; and x; — m; its fractional part.

Given a finite set of clock variables C' and a ceiling NV, the set of region constraints
over (' is finite and is denoted RC’%. In the sequel, we will omit the sub- and super-
scripts when they can be supplied by the context.

Fact 1 Let ¢ be a region constraint. If p = ¢ and p' = ¢ then
e Forallie{l,...,n}, if p(z;) < N then |p(z;)] = |p'(z;)].
e Foranyi,je{l,...,n},i#7,

— {p(@i)} = {p(x;)} iff {p'(x:)} = {p'(x;)} and
— {p(z)} < A{plz;)} iff {0 (x:)} <{p'(x5)}.

where |x| and {x} are the integral and fractional parts of x, respectively.

That is, two valuations satisfying the same region constraint must agree on their
integral parts as well as on the ordering of their fractional parts.

Lemma 3.1 Suppose that ¢ is a region constraint and) a zone. Then either ¢ =
or ¢ = .

Proof: We first transform ¢ into disjunctive normal form: ¢ = V,; A, e;; where
each e;; is an atomic constraint. Now ¢ A ¢ = \; A;(e;; A ¢). Tt is easy to see, by
examining the possible forms of e;;, that each e;; A ¢ is either equal to ¢ or false.
Hence ¥ A ¢ is either equal to ¢ or false. In the former case we have ¢ = 1, and in
the later case we get ¢ = —. O

According to this lemma, a region is either entirely contained in a zone, or is
completely outside a zone. In other words, regions are the finest polyhedra that can
be described by our constraint language.

The notion of a region constraint enjoy an important property: processes in the
same region behave uniformly with respect to timed bisimulation ([Cer92]):

8

Fact 2 Let t, u be two terms with disjoint sets of clock variables and ¢ a region
constraint over the union of the two clock sets. Suppose that both p and p' satisfy ¢.
Then tp ~ up iff tp' ~ up'.

A canonical constraint is a disjunction of regions. Given a constraint we can
first transform it into disjunctive normal form, then decompose each disjunct into a
disjoint set of regions. Both steps can be effectively implemented. As a corollary to
Lemma 3.1, if we write RC(¢) for the set of regions contained in the zone ¢, then
VRC(p) = ¢, i.e. V RC(¢) is the canonical form of ¢.

We will need two (postfixing) operators to deal with resetting. The first one is
Ix where x C C' C C. We first define it on regions, then generalise it to zones. With
abuse of notation, we will write ¢ € ¢ to mean c is a conjunct of ¢.

For a region ¢,

dx=0¢ e ANMzi=0]zmex}ANzi=2;]7,7;€x}
ANNMzi=z;—m|z, ex,z;¢x,2,=m€ ¢}
NNz <zj—m|z, €x,0;, X2, >m€E ¢}

and |. is defined by

tt = tt
(cn¢) Li=0 1% if x N folc) # 0
(cAd) l=chol, ifxnfo(c)=0

where fv(c) is the set of clock variables appearing in (atomic constraint) c.

For a canonical constraint \/; ¢; with each ¢; a region, (V; ¢;)lx = V;(¢idx). For
an arbitrary constraint ¢, ¢lx is understood as the result of applying |x to the
canonical form of ¢.

Lemma 3.2 1. p | ¢ implies p{x := 0} E ¢|x.
2. If ¢ is a region constraint then so is ¢lx.
Proof:

1. Let V; ¢; be the canonical form of ¢. Since p = ¢, p = ¢; for some i. Now
¢; is a region constraint, so p{x := 0} = ¢;lx follows immediately from the
definition of |.

2. Immediately from the definition of |.

The second operator {} is defined similarly. We first define it on regions:

of = HN' A /\ eij(¢)

i<j

where 1) is defined by

(
(
(x; —
(
t

and

z<mA o) = of
r=mAo =m <A of

mz<x] mi NOW =z —m; <xzyj—mjAx;—my; <xi—mi+1Agf

cA) =cA¢ff' for other atomic constraint ¢
t) = tt

6(@5)_ Ty —Mm; =Tj —Mmy ifxz-:mi,:rj:mjeqﬁ
K tt otherwise

For an arbitrary constraint ¢, ¢{} is understood as the result of applying 1} to each
disjunct of the canonical form of ¢. ¢ is {-closed if and only if ¢f} = ¢.

Lemma 3.3 1. p | ¢ implies p E o1).

2.
3.

o s -closed.
If ¢ is ©t-closed then p = ¢ implies p+d | ¢ for all d € RP.

Proof:

1.

2.

Immediately from the definition of 1.

It is sufficient to consider the case when ¢ is a region constraint. We check
if each conjunct introduced by the {} operator is preserved by the a further
application of it. The only interesting case is the third clause in the definition
of 1'. Direct calculation gives:

(2; —m; <xj—my ANxj—mj <z —m; + 1D)fY
= (z;—m; <zj—m; ANx;—m; <z; —m;+ 1A
:rj—mj<:ri—mi+1/\:1:¢—mi—|—1<:rj—mj+1)
= :ri—mi<:rj—mj/\:rj—mj<:1:Z~—mi—|—1

Let \/; ¢; be the canonical form of ¢. We have ¢t = V/; ¢/t = ¢. Since p = ¢,

p E ¢ for some i. Tt is straightforward to check that p + d | v for each
conjunct 1 of ¢;1.

|

Symbolic bisimulation will be defined as a family of binary relations indexed by
clock constraints. Following [Cer92] we use constraints over the union of the (dis-
joint) clock sets of two timed automata as indices. The reason for this is as follows:
the definition of timed bisimulation requires two processes to match action transi-
tions as well as delay transitions, which amounts to requiring them to match action
transitions while their clocks progress at the same rate. In the definition of symbolic
bisimulation indexing constraints are subject to the { operation which introduces

10

equalities between clock variables (the e;; component in the above definition), which
guarantees the “same rate” requirement when such constraints are over the union
of the two clock sets.

Given a constraint ¢, a finite set of constraints ® is called a ¢-partition if \/ & = ¢.
A ¢-partition @ is called finer than another such partition ¥ if ® can be obtained
from ¥ by decomposing some of its elements. By the corollary to Lemma 3.1,
RC() is a ¢-partition, and is the finest such partition. In particular, if ¢ is a region
constraint then {@} is the only partition of ¢.

Definition 3.4 A constraint indexed family of symmetric relations over terms S =
{S? | ¢ is —closed } is a symbolic timed bisimulation if (¢,u) € S? implies

1. ¢ = Inv(t) < Inv(u) and

2. whenever ¢+ 2%% ¢ then there is a Inv(t) A ¢ A i-partition ® such that for

each ¢' € ® there is u %Y 0 for some Y', y and o' such that ¢ = ¢’ and
(', u') € SO,

We write ¢ ~¢ u if (t,u) € S? € S for some symbolic bisimulation S. O

Note that there is no clause for delay transitions in the definition, because delays
are encoded in the f-closeness property of the indexing constraints.

The use of a partition when matching a symbolic transition is essential. Without
it we will not be able to characterise timed bisimulation using symbolic transitions.
For example, consider the two timed automata ¢; and ¢, below (we have omitted the
empty resets). They are apparently timed bisimilar. But the symbolic transition

ty tﬂ} can not be entirely matched by either of the two symbolic transitions from #;.
We must use a partition, say {x <1, = > 1}: #; can match the symbolic transition
from t, using its left branch over the constraint z < 1, and the right branch over
x> 1.

t to
<1 r>1 tt
a a
tt tt tt
b b b

Symbolic timed bisimulation captures ~ in the following sense:

Theorem 3.5 For f—closed ¢, t ~? w iff tp ~ up for any p = ¢ A Inv(t) A Inv(u).

11

Proof: (=) Assume (t,u) € S? € S for some symbolic bisimulation S. Define
R = { (tp,up) | there exists some ¢ such that p |= ¢ and (t,u) € S® € S}

We show R is a timed bisimulation. Suppose (tp, up) € R, i.e. there is some ¢ such
that p = ¢ and (t,u) € S?. By the first claus in Definition 3.4, we have p &= Inv(t)
if and only if p = Inv(u).

o tp - o). By Lemma 2.3 there are ¢, x such that p = ¢ A Inv(t), p' =
p{x := 0} and ¢ L0 1 S0 there is a ¢ A -partition ® with the properties
specified in Definition 3.4. Since p = ¢ A1), p = ¢' for some ¢' € d. Let
u %Y o be the symbolic transition associated with this ¢', as guaranteed by
Definition 3.4. Then ¢' = o' and (#,u') € S®*+1. Since p | ' A Inv(u),
up — u'p{y := 0}. By Lemma 3.2, p{xy := 0} E ¢'|xy. By Lemma 3.3,
p{xy := 0} E ¢'lxyfh. Therefore (t'p{xy := 0},u'p{xy := 0}) € R. Since
t'p{xy := 0} = t'p{x := 0} and v/p{xy := 0} = u'p{y := 0}, this is the same
as (t'p{x:=0},u'p{y :=0}) € R.

o tp % t(p+d). Since ¢ is fi-closed, p+d |= ¢. Then p+d = Inv(u) and
hence up % u(p + d). Therefore (t(p + d), u(p + d)) € R.

(<) Assume tp ~ up for any p = ¢o A Inv(t) A Inv(u), i.e. (tp,up) € R for some
timed bisimulation R, we show t ~% 1 as follows. For each f—closed ¢, define

S? = {(t,u) | V¢' € RC($), (tp,up) € R for any p = ¢’ A Inv(t) A Inv(u) }

and let S = {S? | ¢ is t — closed }. Then (¢,u) € S%. S is well-defined because
of Fact 2. We show S is a symbolic bisimulation. Suppose (t,u) € S?. Consider
any ¢’ € RC(¢). There exists p = ¢' A Inv(t) A Inv(u) such that (tp,up) € R.
Since ¢’ is a region it must be entirely contained in Inv(t) A Inv(u), i.e. ¢
Inv(t) < Inv(u). Therefore ¢ = Inv(t) < Inv(u). Now let ¢ L% ¢ Define
' ={¢|¢ € RC(p) and ¢ = 1 }. Then @' is a ¢ A ¢p-partition. For each ¢’ € @',
there exists p s.t. p E ¢ with (tp,up) € R. By the definition of @', p = 1. By
Lemma 2.3, tp —% t'p{x := 0}. Since (tp,up) € R, up —=+ u'p’ for some v’ and p'
with (#'p{x := 0},4/p') € R. By Lemma 2.3 again, u Y for some Y and y
with p = ¢ and p' = p{y := 0}. Hence (tp{x := 0}, up{y := 0}) € R, which is
the same as (tp{xy := 0}, up{xy := 0}) € R. Since p = ¢, by Lemma 3.2 we have
p{xy = 0} = ¢'|xy. Since ¢ is a region constraint, so is ¢}y which is the only
element of RC(¢'|xy). Therefore (t',u') € S# v, O

4 The Proof System

The proposed proof system consists of a set of inference rules in Figure 4 and a
set of equational axioms in Figure 5. The judgments of the inference system are
conditional equations of the form

p>t=u

12

o>t=u po>t=u o>u=wv

EQUIV

t=t p>u=t p>t=v
AXIOM r—— t = u an axiom instance
cnocs
GUARD ONY D> t;;w_i/\:_‘f >0=u

ANYD>t=u Ay > {ffl0=u

INV PAY ¢>{i}tfu {fr}
acTioN e
THINNING oy = a0 yNC(t) =10
REC Ax X1 = {[Ax X/ X]
UFI Z%—[}t{/;i] X guarded in u
UNG Ax X (X 1 1) = fixX{
PARTITION ¢1M2§ti}2u>t:u ¢ b1V éy
ABSURD R e—

Figure 4: The Inference Rules

where ¢ is a constraint and ¢, u are terms. Its intended meaning is “t ~% u”, or
“tp ~ up for any p = ¢ A Inv(t) A Inv(u)”. tt >t = u will be abbreviated as t = u.

The axioms are the standard monoid laws for bisimulation in process algebras.
More interesting are the inference rules. For each construct in the language there is
a corresponding introduction rule. CHOICE expresses the fact that timed bisimu-
lation is preserved by +. The rule GUARD permits a case analysis on conditional.
The rule INV deals with invariants. It also does a case analysis and appears very
similar to GUARD. However, there is a crucial difference: When the guard 1 is
false 1p»—t behaves like 0, the process which is inactive but can allow time to pass;
On the other hand, when the invariant ¢ is false {¢)}¢ behaves like {ff}0, the pro-
cess usually referred to as time-stop, which is not only inactive but also “still”,
can not even let time elapse. ACTION is the introduction rule for action prefixing
(with clock resetting). The THINNING rule allows to introduce/remove redundant
clocks. REC is the usual rule for folding/unfolding recursions, while UFI says if X
is guarded in u then fixXwu is the unique solution of the equation X = u. UNG
can be used to transform unguarded terms into guarded ones. Finally the two rules
PARTITION and ABSURD do not handle any specific constructs in the language.

13

They are so-called “structural rules” used to “glue” pieces of derivation together.
Taking ¢y = ¢o PARTITION specialises to a useful rule

d)l >t=u
CONSEQUENCE —d) — [0)): 01

Let us write - ¢ >t = u to mean ¢ >t = u can be derived from this proof
system.

Some useful properties of the proof system are summarised in the following
proposition:

Proposition 4.1 1. F ¢—(p—t) = o AN p—t
2. Ft=t+ ¢p—t
3. If o Ep thent ¢p1>t =p—t
4. FoANY >t =uimpliest ¢ > p—t =1p—u
5. F ¢—(t+u) = gt + ¢p—u
6. Fop—t+ =t =0V ip—t
7. For any t and u, & {ff}t = {ff}u

Proof: We only give proofs for 1, 4 and 7, leaving the others to the readers.
We first prove a lemma:

If oAy =1f then Fop>yY—t=0 (1)
By GUARD we need to show
pNANY>t=0 and ¢A—)>0=0

The first follows from the hypothesis and ABSURD, while the second from EQUIV.
1. An application of GUARD gives

b > Pt = p Ah—t (2)

and

—H>0=0dAp—t (3)

(3) is an instance of 1. To show (2), we apply GUARD again and obtain two
subgoals:
ONYD>t=pANp—t and pA—D>0=0AY—t

The second subgoal can be settled by (1). Apply symmetricity (the middle rule in
EQUIV) followed by GUARD, the first subgoal is reduced to

@AP)A(pAP)>t=1 and (9AY)A=(pA1h) >0 =1

14

S1 X+40=X 2 X+ X=X
S3 X4Y=V+X 84 X4+V)+Z=X+(V+272)

Figure 5: The Equational Axioms

which can be settled by EQUIV (plus CONSEQUENCE) and ABSURD, respec-
tively.
4. By GUARD, F ¢ > ¢)—t = ¢p—u can be reduced to

OANYD>t=0¢—=u and ¢ AU >0=¢p—u

The second subgoal is an instance of (1). For the first one we apply GUARD again
obtaining
(AYP)ANYD>t=u and (pAY)A—pD>L=0

Now the first subgoal follows from the hypothesis and the second from ABSURD.
7. It is sufficient to prove - {ff}¢t = {ff}0 for any ¢. By INV this can be reduced to
Fff >t = {ff}0 and + —ff > {ff}0 = {ff}0. The first subgoal is settled by ABSURD
while the second by EQUIV. O

4

The following lemma shows how to “push” a condition through an action prefix:

Lemma 4.2 - ¢ > a(x).{¢}t = a(x).{}plx—1.
Proof: By ACTION this can be reduced to

Plxft > {0}t = {0}l —t

An applications of INV gives two subgoals:

Plxt A >t = {1}l (4)
Plxt A= > {ff}0 = {¢}dlutt—t (5)

Apply INV again to (4) we get

Sl AU At = glfi=t and Gladh A A=) >t = {ff}0

the first follows from Proposition 4.1.3, while the second from ABSURD.
(5) can be settled similarly by an application of INV followed by EQUIV and
ABSURD. |

The UFT rule, as presented in Figure 4, is unconditional. However, a conditional
version can be derived:

Proposition 4.3 Suppose X is guarded in u. Then from b ¢>t = u[p—t/X] infer
Fop>t=fixXop—u.

15

Proof: Assume b+ ¢ >t = u[p—t/X]|. By Proposition 4.1./ we have - ¢p—t =
d—ulp—t/X], i.e.
o=t = (p—u)[p—t/X]

Since X is guarded in w, it is also guarded in ¢p—u. By UFI, F ¢—t = fix X p—u.
Hence

- ot BEC (6u)[ix X p—u/X)
= ¢—ulfixXo—u/X]|
= ¢ (¢—u)[fixXo—u/X]
REC 4 fixX¢—su
Therefore, by Proposition 4.1.4 again, - ¢ > t = fixX ¢p—u. O

The rule PARTITION has a more general form:

Proposition 4.4 Suppose ¥ is a ¢-partition and = >t = u for each 1) € U, then
Fo>t=u.

Proof: By induction on the size of ¥. The base case when ¥ contains only one
element is trivial. For the induction step, assume the statement of the proposition
holds for ¢-partitions of size k and let U = {¢; | 1 <i < k+1}. Set V' = { =1 A
Y; | 1 <i<k}. Since b ¢p; >t = u, by CONSEQUENCE F =1 A >t = u.
Therefore by the induction hypothesis,

FVI¥ >t=u
From this and the assumption - ¢y >t = u, by PARTITION we obtain

l_warl\/\/\IﬂDt:U,

Since Y1V U = V(oA i) =) ¢ = \/ ¥ = ¢, this completes

1<i<k 1<i<k+1
the induction. O

In the rest of this section we discuss the soundness of the proof system. First
we show that the rule UFI is sound with respect to ~. Following [Mil89] we use the
technique of bisimulation up to.

Definition 4.5 A symmetric relation R is a timed bisimulation up to ~ if (p,q) € R
implies

e whenever p SN p’ then ¢ SN ¢’ for some ¢' and (p/,¢') € R.

e whenever p — p' then ¢ — ¢’ for some ¢’ and (p',¢') €~ R ~.

O

Note that the derivatives of delay transitions are required to be in the same relation,
while those of action transitions are allowed to be related modular ~.

16

Lemma 4.6 If R is a timed bisimulation up to ~ then R C~.

Proof: Let (p,q) € R and p 25 . We need to show that there is some ¢’ such
that ¢ == ¢ and (p',¢') € R. The case when s is an action is settled in the same
way as in the proof of Proposition 6, Section 4.3, [Mil89]. The case when p is a
delay follows directly from Definition 4.5. O

Lemma 4.7 If X is guarded in v and v[t/X] = t', then t' has the form v'[t/X],
and moreover, for any u, viu/X] — v'[u/X].

This lemma concerns only action transitions and its proof is the same as that of
Lemma 13, Section 4.5, [Mil89].

Proposition 4.8 Suppose fo(v) C {X} and X is guarded in v. If tp ~ v[t/X]p
and up ~ viu/X|p then tp ~ up.

Proof: We show the relation

R = {(v[t/X]p,v[u/X]p) | fo(v) € {X}}

is a timed bisimulation upto ~. Assume (v[t/X]p,v[u/X]p) € R and consider the
following two cases:

o u[t/X]p - v[t/X](p + d). Then also v[u/X]p) —= v[u/X](p + d) and
(0[t/X](p+ d), v[u/X](p+d)) € R.

o v[t/X]p -+ t'p'. In this case we can find a matching transition v[u/X]p —*+
u'p' such that (¢'p', u'p') €~ R ~, as in the proof of Proposition 14, Section 4.5,
[Mil89).

Soundness of the proof system is stated below:

Theorem 4.9 If- ¢ >t = u and ¢ is ff-closed then tp ~ up for any p = ¢ A
Inv(t) A Inv(u).

The standard approach to the soundness proof is by induction on the length of
derivations, and perform a case analysis on the last rule/axiom used. However, this
does not quite work here. The reason is that the definition of timed bisimulation
requires two processes to simulate each other after any time delays. To reflect
this in the proof system, we apply the f} operator, after |, for clock resetting, in
the premise of the ACTION rule. But not all the inference rules preserve the f-
closeness property. An example is GUARD. In order to derive ¢ > ¢p—t = u, we
need to establish p Ay >t =wuand ¢ A =) >0 = u. Even if ¢ is {}-closed, ¢ A ¢
may not be so.

To overcome this difficulty, we introduce the notion of “timed bisimulation up
to a time bound”, formulated as follows

17

Definition 4.10 Two processes p and ¢ are timed bisimular up to dy € R=°, written
p ~% ¢, if for any d such that 0 < d < d,

e whenever p SN p' then ¢ SN ¢ for some ¢’ and p' ~ ¢/,

e whenever ¢ LN ¢' then p SN p’ for some p' and p' ~ ¢'.
where p ~ ¢ is defined thus

e whenever p — p' then ¢ — ¢’ for some ¢' and p' ~ ¢/,

e whenever ¢ — ¢’ then p —— ' for some p' and p' ~ ¢'.

O

The difference between timed bisimulation up to d and the standard notion of timed
bisimulation only concerns initial delay transitions: in timed bisimulation up to d
two processes are required to match only those initial delay transitions with duration
no greater that d. Note that ~ is the same as ~°, and ~®C~ in general.

Lemma 4.11 1. If p ~% q for any dy € R=° then p ~ q.

2. Let p; and d;, 0 < i < n, be such that pj1 = p; +d;, 0 < i <n. If tp; ~% up;
for all i such that 0 < i <n, then tpy ~% upy where d =dy+ ... +d,.

Proof: Both follow directly from the definition of ~%. O

Now the following proposition, of which Theorem 4.9 is a special case when ¢ is
ft-closed, can be proved by standard induction on the length of derivations :

Proposition 4.12 If - ¢ >t = u then tp ~% up for any p and dy such that
p+dEoéNInv(t) A Inv(u) for all 0 < d < dy.

Proof: By induction on the length of inference. The base case when the length
is 0 is straightforward. For the induction step we do case ananysis on the last rule
applied.

e ACTION. Assume p, dy are such that p+d = ¢ for any 0 < d < dy. To show
(a(x).t)p ~® (a(x).u)p, let (a(x).t)p = (a(x).t)(p+d) with 0 < d < do. This
can be matched by (a(x).u)p & (a(x).u)(p + d). To see (a(x).t)(p + d) ~
(a(x).u)(p + d), observe that the only possible action transition from both
sides is an a-transition:

(a(x).t)(p+d) = t(p+ d){x :=0}
(a(x).u)(p+ d) == u(p + d){x := 0}

Write pf for (p+d){x := 0}. For any dj and any 0 < d' < dj, p'+d' = ¢l By
induction, tp' ~% wup'. Therefore tp' ~ up' by Lemma 4.11. This establishes
(a(x).t)(p+d) ~ (a(x).u)(p + d). Hence (a(x).t)p ~% (a(x).u)p.

18

e GUARD. Assume p, dy are such that p+d | ¢ for any 0 < d < dy. The
line [p, p+ dy] is divided by regions into finite many segments [p, p1), [p1, p1],
(p1,02), (P2, p2ls - [Pns pn] and (pn, p + do), where p;11 = p; + di, such that
each segment is entirely contained in some region. By Lemma 4.11 we only
need to show (1)—t)p; ~% up; for each 1 < i < n.

By Lemma 3.1, each (p;, p; +d,) is either entirely contained in ¢ A1) or entirely
contained in A—). By induction, in the former case we have (1)—t)p; ~% up;.
In the later case we have 0p; ~% wp;. Since p; + d' =) for any 0 < d' < d|
in this case, it follows 0(p; + d') ~ (Y—t)(p; +d'). Hence (p—t)p; ~% up;.
Therefore we have (1)—t)p; ~% up; in both cases.

e UFI. See Proposition 4.8.

e The other cases are similar (and easier).

5 Completeness

This section is devoted to proving the completeness of the proof system which is
stated thus: if £ ~? u then = ¢ > ¢t = u. The structure of the proof follows from
that of [Mil84]. The intuition behind the proof is as follows: A timed automaton is
presented as a set of standard equations in which the left hand-side of each equation
is a formal process variable corresponding to a node of the automaton, while the
right hand-side encodes the outgoing edges from the node. We first transform,
within the proof system, both ¢ and « into such equation sets (Proposition 5.1). We
then construct a “product” of the two equation sets, representing the product of the
two underlying timed automata. Because ¢ and u are timed bisimilar over ¢, each
should also bisimilar to the product over ¢. Using this as a guide we show that such
bisimilarity is derivable within the proof system, i.e. both ¢ and u provably ¢-satisfy
the product equation set (Proposition 5.2). Finally we demonstrate that a standard
set of equations has only one solution, therefore the required equality between ¢ and
u can be derived. The unique fixpoint induction is only employed in the last step of
the proof, namely Proposition 5.3.

Let X = {X; |i € I} and W be two disjoint sets of process variables and x
a set of clock variables. Let also u;, ¢ € I, be terms with free process variables in
X UW and clock variables in x. Then

E: {Xj=u|iel}

is an equation set with formal process variables X and free process variables in W.
E is closed if W = (0. E is a standard equation set if each u; has the form

{1 }(Z ¢ik_>aik(xik)-Xf(i,k) + Z wik'%Wf'(i,k'))

keK; K'EK]

19

A term t provably ¢-satisfies an equation set FE if there exist a vector of terms
{t; |1 € I}, each t; being of the form {¢}}¢;, and a vector of conditions { ¢; | i € I }
such that ¢, = ¢, = ¢ >t =t, ¢; | Inv(u;) < 9, and

=i >t = w[{Yi}Hdi—t) [Xili € 1]
for each © € I. We will simply say “¢ provably satisfies £” when ¢; = tt for all 2 € I.

Proposition 5.1 For any guarded term t with free process variables W' there ex-
ists a standard equation set E, with free process variables in W, which is provably
satisfied by t. In particular, if t is closed then E is also closed.

Proof: By induction on the structure of t. The only non-trivial case is recursion
when ¢ = fixXt' with X guarded in #. By induction there is a standard equation
set E': {X; = u; | i € I} with free process variables in FV(¢t) U{X} and ¢} : s
such that ¢ = ¢} and

We may assume that X is different from any X;. Let v; = u;[u;/X] for each i. Note
that since X is under an action prefixing in ¢, it does not occur free in u;. Hence
v1 = uy;. Consider the equation set

E {Xl:UZ|Z€I}
To show ¢ satisfies E, set t; = ¢;[t/X]. Then

Ft = fixX?t
= fixX¢#
REC ¢ Rx Xt/ X]
=t/ X]
= 4
Now
Ft o= t[t/X]
= wity/Xili € I][t/X]
= w[ti[t/X]/X;li € 1]
= wt;/X;li € I]
and

=t = [t/ X]
= wilty/ Xili € I][t/X]
[
[

|
e

20

Proposition 5.2 For closed terms t and u, if t ~® u then there exist a ¢' such that
¢ = ¢ and a standard, closed equation set E which is provably ¢'-satisfied by both
t and u.

Proof: It easy to see that, using rule UNG, any unguarded term can be transformed
into a guarded one, so we may assume both ¢ and u are guarded.

Let the sets of clock variables of £, u be x, y, respectively, with x Ny = (). Let
also F; and E5 be the standard equation sets for ¢ and u, respectively:

E1 : {Xz = {¢z} Z d)lk—mzk(xzk)Xf(%k) | 1€ I}

keEK;
Ey: Y5 ={d} 2o bu—=bu(yi) Youn | 7 € T}
leL;
So there are t; = {¢;}t], u; = {¢j}u} with b ¢, =, F u; = u such that = ¢; < ¢,
): wl <~ w;; and

=t ={di} Y duw—ram(xin)trany Fug = {0} D0 a—bu(yin) g

kEK; lEL]'

Without loss of generality, we may assume a;, = b;; = a for all ¢, k, j, 1.
For each pair of 7, j, let

q)z'j = {A € RC(Xy) | tz NAﬂ u]‘}

Set ¢ = \/ ®;;. By the definition of ®;;, ¢;; is the weakest condition over which
t; and u; are symbolically bisimilar, that is, ¢» = ¢;; for any ¢ such that ¢; ~% u;.
In particular, ¢ = ¢1;. Also for each A € ®;;, A = Inv(t;) & Inv(yj), i.e.,

A = ¢} < 1%, hence A = ¢; < 1.
For each A € ®;; let

Aliry
I = { (k1) | tyapy ~25 T ugg)

Define
E: Zz'j:{¢>i} Z A— Z a(XikYﬂ)-Zf(i,k)g(j,l)

Aed;; (kD)el

We claim that F is provably ¢;-satisfied by ¢ when each Z;; is instantiated with
t; over ¢;;. We need to show, for each ¢,

Foy >t ={di} Y A= Y alxayi) {San }orameGo =t ir)

Aedi; (kDel

Since the elements of ®;; are mutually disjoint, by Propositions 4.4 and 4.1, it is

sufficient to show that, for each A € ®;;,

FADt={} D aXwyi) A YPrimeGn—rin

A
(kDETS

21

By the definition of I3}, we have ¢ ;; 1) N

i ug(j,y- Hence, from the definition

of q)ija
A\inkyj‘lﬂ = ¢f(i,k)g(j,l)
Therefore
A > {0} D alxayi) {Dsum tOraweGn—Trin
(kDel;
Lemma 4.2
= {¢z} Z szle {¢f (3,k }A\szkyjzﬂ_>¢f (4,k)g(d,l)_>tf(l k)
(kDel
Prop. 4.1
= {@} Z szYgl {¢f (i,k }Aixlkyjzﬂ_)tf (3,k)
(k)el?
Lemma 4.2
= {0} Z a(Xiky;1) {¢fzk }tf ik)
(k1ers
THINNING
= {oi} D alxi) true
(kDers
S1-54
= {¢z} Z sz tf i,k)
keK;

= t;

Symmetrically we can show E is provably ¢,;-satisfied by u when Z;; is instan-
tiated with u; over ¢;;. O

Proposition 5.3 If both t and u provably ¢-satisfy an equation set E then 't ¢>t =
u.

Proof: By induction on the size of E. For the base case when F contains only
one equation X; = vy, we have b ¢ >t = v[¢p—1/X;]. Since F is standard, X
is guarded in v;. Therefore by Proposition 4.3, - ¢ >t = fixX;¢p—wv;. Similarly
Fo>u=fixX;¢p—v;. Hence - o>t = u.

Assume the result for m and let E contain m + 1 equations:

Since t provably ¢-satisfies F, there are t; and ¢;, 1 < ¢ < m+ 1, such that - t; = t,

¢1 = ¢, and

for each 1 < i <m + 1. In particular

- ¢m+1 > tm+1 = Um+1[¢z_>t1/Xz|1 S { S m + 1]
= (vmr1[@i—=t:/Xi|1 < i <m)[i1 —tmi1/ Xin]

By Proposition 4.3, noting that X, is guarded in vy, 1[¢;—t;/X;|1 < i < m),

F Gmgt Dt = AX X 1O 1 = Umpa [0i— 1/ X[1 < i < m

22

Let w41 be fix X, 110m11—Ume1. We have
F Gmi1 B b1 = Winga[¢i—ti/ Xi[1 < i < mf
By Proposition 4.1,
F Oma1—=tme1 = Omi1 =W [0i—t/ X1 < i < m)
Now, writing w; for v;[dm1—=wmi1/Xmi1], we have

F bt = wilgit X1 <i<m 1]
= vilpi—ti/ Xi|l <i <m][dmi1—=tmp1/ Xomgi]

[pi—ti/ Xi|1 <0 < m[dmgr =W [Gi—i/ XG|1 <0 < m/ X 4]

= Vi[Pmi1 W1 /X |[di—4:/ Xi|L <0 <m]

_= U’i

This shows ¢ provably ¢-satisfies the equation set

Symmetrically we can show wu provably ¢-satisfies E’. By induction we conclude
Fo>t=u.

Putting together Propositions 5.2 and 5.3 we obtain the main theorem:
Theorem 5.4 For closed terms t and u, if t ~® u then - ¢ >t = u.

Proof: By Proposition 5.2, there is a standard equation set E which are ¢/-satisfied
by both ¢ and u for some ¢’ such that ¢’ = ¢. By Proposition 5.3, - ¢' >t = u.
Finally, by CONSEQUENCE, F ¢ 1> ¢ = u. m

6 Conclusion And Related Work

We have presented an axiomatisation, in the form of an inference system, of timed
bisimulation for timed automata, and proved its completeness. To the best of our
knowledge, this is the first complete axiomatisation for the full set of timed au-
tomata. There are two key rules in this axiomatisation: ACTION for action pre-
fixing and UFT for recursion. The former caters for clock reseting and progressing.
The form of the later rule is syntactically the same as that used for parameterless
processes [Mil84], but here it is implicitly parameterised on clock variables, since
the terms involved may contain free clock variables.

We have shown that by generalising pure equational reasoning to a set of infer-
ence rules dealing with specific language constructs needed for timed automata, the
standard monoid laws for bisimulation are sufficient for characterizing bisimulation

23

in the timed world. This result agrees with the previous works on proof systems
for value-passing processes [HL96] and for m-calculus [Lin94], providing a further
evidence that the four monoid laws capture the essence of bisimulation.

The most interesting development so far in algebraic characterizations for timed
automata are presented in [ACM97, BP99]. As the main result, they established
that each timed automaton is equivalent to an algebraic expression out of the stan-
dard operators in formal languages, such as union, intersection, concatenation and
variants of Kleene’s star operator, in the sense that the automaton recognize the
same timed language as denoted by the expression. However, the issue of axiomati-
sation was not considered there. In [DAB96] a set of equational axioms was proposed
for timed automata, but no completeness result was reported. [HS98] presents an
algebraic framework for real-time systems which is similar to timed automata where
“Invariants” are replaced by “deadlines” (to express “urgency”), together with some
equational laws. Apart from these, we are not aware of any other published work
on axiomatising timed automata. On the other hand, most timed extensions of
process algebras came with equational axiomatisations. Of particular relevance are
[Bor96] and [AJ94]. The former developed a symbolic theory for a timed process
algebra, while the later used the unique fixpoint induction to achieve a complete
axiomatisation for the regular subset of the timed-CCS proposed in [Wan91].

References

[ACM97] E. Asarin, P. Caspi and O. Maler. A Kleene theorem for timed automata.
In proceedings of LICS’97, 1997.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235. 1994.

[AJ94] L. Aceto and A. Jeffrey. A complete axiomatization of timed bisimulation
for a class of timed regular behaviours. Theoretical Computer Science,
152(2):251-268. 1995.

[Bor96] M. Boreale. Symbolic Bisimulation for Timed Processes. In AMAST’96,
LNCS 1101 pp.321-335. Springer—Verlag. 1996.

[BP99] P. Bouyer and A. Petit. Decomposition and Composition of Timed Au-
tomata. In ICALP’99, LNCS 1644, pp. 210-219. Springer—Verlag. 1999.

[HS98] S. Bornot and J. Sifakis. An Algebraic Framework for Urgency. In Cal-
culational System Design, NATO Science Series, Computer and Systems
Science 173, Marktoberdorf, July 1998.

[Cer92] K. Ceriins. Decidability of Bisimulation Equivalences for Parallel Timer
Processes. In CAV’92, LNCS 663, pp.302-315. Springer—Verlag. 1992.

24

[DAB96] P.R. D’Argenio and Ed Brinksma. A Calculus for Timed Automata (Ex-

[HLO5]

[HL96]

[Lin94]

[LWOO]

[Mil84]

[MiI89]
[Wan91]

tended Abstract). In FTRTFTS’96, LNCS 1135, pp.110-129. Springer—
Verlag. 1996.

M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer
Science, 138:353-389, 1995.

M. Hennessy and H. Lin. Proof systems for message-passing process alge-
bras. Formal Aspects of Computing, 8:408-427, 1996.

H. Lin. Symbolic bisimulations and proof systems for the m-calculus. Re-
port 7/94, Computer Science, University of Sussex, 1994.

H. Lin and Y. Wang. A proof system for timed automata. Fossacs’2000,
LNCS 1784. March 2000.

R. Milner. A complete inference system for a class of regular behaviours.
J. Computer and System Science, 28:439-466, 1984.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Wang Yi. A Calculus of Real Time Systems. Ph.D. thesis, Chalmers
University, 1991.

[WPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of

Real-Time Communicating Systems By Constraint-Solving. In Proc. of the
7th International Conference on Formal Description Techniques, 1994.

25

