
A Complete Axiomatisation for Timed Automata

Huimin Lin

Laboratory for Computer Siene

Inst. of Software, Chinese Aademy of Sienes

Email: lhm�ios.a.n

Wang Yi

Dept. of Computer Systems

Uppsala University

Email: yi�sd.uu.se

Abstrat

A proof system of timed bisimulation equivalene for timed automata is

presented, based on a CCS-style regular language for desribing timed au-

tomata. It onsists of the standard monoid laws for bisimulation and a set of

inferene rules. The judgments of the proof system are onditional equations

of the form �� t = u where � is a lok onstraint and t, u are terms denoting

timed automata. The proof of the ompleteness result relies on the notion

of symboli timed bisimulation, adapted from the work on value{passing pro-

esses.

1 Introdution

The last deade has seen a growing interest in extending various onurreny theo-

ries with timing onstruts so that real-time aspets of onurrent systems an be

modeled. Among them timed automata [AD94℄ has stood out as a fundamental

model for real-timed systems.

A timed automaton is a �nite automaton extended with a �nite set of real-

valued lok variables. A node of a timed automata is assoiated with an invariant

onstraint on the lok variables, while an edge is deorated with a lok onstraint,

an ation label, and a subset of loks to be reset after the transition. At eah node a

timed automaton may perform two kinds of transitions: it may let time pass for any

amount (a delay transition), as long as the invariant is satis�ed, or hoose an edge

whose onstraint is met, make the move, reset the relevant loks to zero, and arrive

at the target node (an ation transition). Although a timed automaton has only

�nite number of nodes, due to (real-valued) delay transitions it typially exhibits

in�nite-state behaviour. Two timed automata are timed bisimilar if they an math

eah other's ation transitions as well as delay transitions, and their residuals remain

timed bisimilar. The expliit presene of lok variables and resetting, features that

mainly assoiated with the so-alled \imperative languages", distinguishes timed

automata from proess aluli suh as CCS, CSP and their timed extensions whih

are \appliative" in nature and therefore more amenable to axiomatisation. By now

1

most theoretial aspets of timed automata have been well studied, but they still

lak a satisfatory algebrai theory.

In this paper we shall develop a omplete axiomatisation for timed automata,

in the form of an inferene system, in whih the equalities between pairs of timed

automata that are timed bisimilar an be derived. To this end we �rst propose a

language, in CCS style, equipping it with a symboli transitional semantis in suh

a way that eah term in the language denotes a timed automaton. The language has

a onditional onstrut �!t, read \if � then t", an ation pre�xing a(x):t, meaning

\perform the ation a, reset the loks in x to zero, then behave like t", and a

reursion �xXt whih allows in�nite behaviours to be desribed. The proof system

onsists of a set of inferene rules and the standard monoid laws for bisimulation.

Roughly speaking the monoid laws haraterize bisimulation, while the inferene

rules deal with spei� onstruts in the language. The judgments of the inferene

system are of the form

�� t = u

where � is a time onstraint and t, u are terms. Intuitively it means: t and u are

timed bisimilar over lok evaluations satisfying �. A typial inferene rule takes

the form:

GUARD

� ^ � t = u � ^ : � 0 = u

�� (!t) = u

It performs a ase analysis on the onstraint : !t behaves like t when is true,

and like the inative proess 0 otherwise. Note that the guarding onstraint of

 !t in the onlusion is part of the objet language desribing timed automata,

while in the premise it is shifted to the ondition part of the judgment in our meta

language for reasoning about timed automata.

A ruial rule, as might be expeted, is the one for ation pre�xing:

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

Here #

x

and * are post�xing operations on lok onstraints. �#

x

* is a lok on-

straint obtained from � by �rst setting the loks in x to zero (operator #

x

), then

removing up-bounds on all loks of � (operator *). Readers familiar with Hoare

Logi may notie some similarity between this rule and the rule dealing with assign-

ment there:

fP [e=x℄g x := e fPg

But here the operator #

x

is slightly more ompliated than substitution with zero,

beause loks are required to inrease uniformly. Also we need * to allow time to

pass inde�nitely.

A standard way to reasoning with reursion is to use, apart from the usual rule

for folding/unfolding reursions, the following unique �xpoint indution:

UFI

t = u[t=X℄

t = �xXu

X guarded in u

2

This rule was adopted in [Mil84℄ for a omplete axiomatisation of bisimulation equiv-

alene for regular pure-CCS. Here we use it in a quite di�erent ontext: terms in our

setting normally ontain lok variables, namely they are open terms. In spite of this,

it turns out that this rule is still sound and suÆient for a omplete axiomatisation

of regular behaviour, though the proof is slightly more ompliated than in the pure

aluli.

The ompleteness proof relies on the introdution of the notion of symboli timed

bisimulation, t �

�

u, whih aptures timed bisimulation in the following sense:

t �

�

u if and only if t� and u� are timed bisimilar for any lok evaluation � satisfying

�. Following [Mil84℄, to show that the inferene system is omplete, that is t �

�

u

implies ` � � t = u, we �rst transform t and u into standard equation sets whih

are the syntatial representations of timed automata. We then onstrut a produt

equation set out of the two and prove that t and u both satisfy this new equation

set, by exploiting the assumption that t and u are symbolially timed bisimilar. Due

to the presene of lok variables the notion of satis�ability is parameterised on a

set of lok onstraints. Finally we show that, using UFI, if two terms satisfy the

same set of standard equations then they are provably equal.

The result of this paper �lls a gap in the theory of timed automata. It demon-

strates that bisimulation equivalene of timed automata are as mathematially

tratable as those of standard proess algebras.

The rest of the paper is organised as follows: In the next setion we �rst reall the

de�nition of timed automata, then propose a language to desribe them. Setion 3

introdues symboli timed bisimulation. The inferene system is presented and its

soundness disusses in Setion 4. Setion 5 is devoted to proving the ompleteness

of the proof system. The paper onludes with Setion 6 where related work is also

briey disussed.

2 A Language for Timed Automata

2.1 Timed Automata

A timed automaton is a standard �nite-state automaton extended with a �nite ol-

letion of real-valued loks. In a timed automaton, eah node is assoiated with

an invariant, while a transition is labelled with a guard (a onstraint on loks),

a synhronisation ation, and a lok reset (a subset of loks to be reset). Intu-

itively, a timed automaton starts exeution with all loks initialized to zero. The

automaton an stay at a node while the invariant of the node is satis�ed, with all

loks inreasing at the same rate. A transition an be taken if the loks ful�ll the

guard. By taking the transition, all loks in the lok reset are set to zero, while

the others keep their values. Semantially, a state of an automaton is a pair of a

ontrol node and a lok valuation, i.e. the urrent setting of the loks. Transitions

in the semanti interpretation are either labelled with a synhronisation ation (if it

is an instantaneous swith from the urrent node to another) or with a positive real

number i.e. a time delay (if the automaton stays within a node letting time pass).

3

x � 4

l

0

l

1

y := 0

^

y � 3

x � 5

x � 1

x := 0; y := 0

a

b

Figure 1: A Timed Automaton.

Consider the timed automaton of Figure 1. It has two ontrol nodes l

0

and l

1

and two loks x and y. A state of the automaton is of the form (l; < s; t >), where

l is a ontrol node and s and t are non{negative reals giving the values of x and

y. Assuming that the automaton starts to operate in the state (l

0

; < 0; 0 >), it

may stay in node l

0

for any amount of time, as long as the invariant x � 4 of l

0

is satis�ed. During this time the values of x and y inrease uniformly, at the same

rate. Thus from the initial state, all states of the form (l

0

; < t; t >) with 0 � t � 4

are reahable, but only at the states (l

0

; < t; t >), where t � 1, the edge from l

0

to

l

1

is enabled. When following the edge from l

0

to l

1

the ation a is performed to

synhronize with the environment and the lok y is reset to 0 leading to states of

the form (l

1

; < t; 0 >) where t � 1.

For the formal de�nition, we assume a �nite set A for synhronization ations

and a �nite set C for real-valued lok variables. We use a; b et. to range over A

and x; y et. to range over C. We use B(C), ranged over by �, et., to denote the

set of onjuntive formulas of atomi onstraints in the form: x

i

1 m or x

i

�x

j

1 n,

where x

i

; x

j

2 C, 12 f�; <;�; >g and m;n are natural numbers. The elements of

B(C) are alled lok onstraints.

De�nition 2.1 A timed automaton over ations A and loks C is a tuple hN; l

0

; Ei

where

� N is a �nite set of nodes,

� l

0

2 N is the initial node,

� E � N � B(C)�A� 2

C

�N is the set of edges.

When hl; g; a; r; l

0

i 2 E, we write l

g;a;r

�! l

0

. 2

We shall present the operational semantis for timed automata in terms of a

proess algebrai language in whih eah term denotes an automaton.

2.2 The Language

We preassume a set of proess variables, ranged over by X; Y; Z; : : :. The language

for timed automata over C an be given by the following BNF grammar:

s ::= f�gt

t ::= 0 j �!t j a(x):s j t+ t j X j �xXt

4

delay

t�

d

�! t(� + d)

�+ d j= Inv(t) hoie

t�

a

�! t

0

�

0

(t+ u)�

a

�! t

0

�

0

ation

(a(x):t)�

a

�! t�fx := 0g

guard

t�

a

�! t

0

�

0

(�!t)�

a

�! t

0

�

0

� j= �

re

(t[�xXt=X℄)�

a

�! t

0

�

0

(�xXt)�

a

�! t

0

�

0

inv

t�

a

�! t

0

�

0

(f�gt)�

a

�! t

0

�

0

� j= �

Figure 2: Standard Transitional Semantis

0 is the inative proess whih an do nothing, exept for allowing time to pass. �!t,

read \if � then t", is the usual (one-armed) onditional onstrut. a(x):t is ation

pre�xing. + is nondeterministi hoie. The f�gt onstrut introdues an invariant.

Note that invariants an only our at plaes whih orrespond to loations in timed

automata. For instane, strings having the forms �!f gt, f�gt+f gu or f�gf gt

are not terms of the language, while f�g(t+ u) and �!a(x):f gt are allowed.

A reursion �xXt binds X in t. This is the only binding operator in this lan-

guage. It indues the notions of bound and free proess variables as usual. Terms

not ontaining free proess variables are losed. A reursion �xXt is guarded if every

ourrene of X in t is within the sope of an ation pre�xing.

The set of lok variables used in a term t is denoted C(t).

A lok valuation is a funtion from C to R

�0

(non-negative real numbers), and

we use � to range over lok valuations. The notations �fx := 0g and � + d are

de�ned thus

�fx := 0g(y) =

(

0 if y 2 x

�(y) otherwise

(�+ d)(x) = �(x) + d for all x

To give a transitional semantis to our language, we �rst assign eah term t an

invariant onstraint Inv(t) by letting

Inv(t) =

(

� if t has the form f�gs

tt otherwise

We shall require that all invariants are downward losed:

For all d 2 R

�0

; � + d j= � implies � j= �

Given a lok valuation � : C ! R

�0

, a term an be interpreted aording to

the rules in Figure 2, where the symmetri rule for + has been omitted. We all

t� a proess, where t is a term and � a valuation; we use p; q; : : : to range over the

set of proesses. We also write � for either an ation or a delay (a real number).

The transitional semantis uses two types of transition relations: ation transition

a

�! and delay transition

d

�!. Note that a proess an have only a �nite number of

5

Ation

a(x):t

tt;a;x

�! t

Choie

t

b;a;x

�! t

0

t+ u

b;a;x

�! t

0

Guard

t

 ;a;x

�! t

0

�!t

�^ ;a;x

�! t

0

Re

t[�xXt=X℄

b;a;x

�! t

0

�xXt

b;a;x

�! t

0

Inv

t

 ;a;x

�! t

0

f�gt

 ;a;x

�! t

0

Figure 3: Symboli Transitional Semantis

ation transitions, but it may have in�nite many delay transitions. It is the later

that makes timed proesses in�nite branhing (and in�nite states).

De�nition 2.2 A symmetri relation R over proesses is a timed bisimulation if

(p; q) 2 R implies

whenever p

�

�! p

0

then q

�

�! q

0

for some q

0

with (p

0

; q

0

) 2 R.

We write p � q if (p; q) 2 R for some timed bisimulation R. 2

The symboli transitional semantis of this language is listed in Figure 3. Again

the symmetri rule for + has been omitted. Note that invariants are simply forgot-

ten in the symboli transitional semantis. This reets our intention that symboli

transitions orrespond to edges in timed automata, while invariants reside in nodes.

Note also that there is no rule to dedue \delay" transitions in the symboli seman-

tis. As noted above, delay transitions are the soure of in�nity in the semantis

of timed automata. The purpose of the symboli transitional semantis, and the

symboli timed bisimulation built on it, is to avoid suh in�nity. Thus \delays" do

not appear expliitely in the symboli semantis. Instead they will be impliitly

enoded in the notion of \upward-loseness" used to de�ne symboli bisimulation in

the next setion.

Aording to the symboli semantis, eah guarded losed term of the language

gives rise to a timed automaton; On the other hand, it is not diÆult to see that every

timed automaton an be generated from a guarded losed term in the language. In

the sequel we will use the phrases \timed automata" and \terms" interhangeably.

The two versions of transitional semantis an be related as follows (note again only

ation transitions are related):

Lemma 2.3 1. If t

�;a;x

�! t

0

then t�

a

�! t

0

�fx := 0g for any � j= � ^ Inv(t).

2. If t�

a

�! t

0

�

0

then there exist �; x suh that � j= � ^ Inv(t), �

0

= �fx := 0g

and t

�;a;x

�! t

0

.

Proof: Both are proved by transition indution.

1. Assuming t

�;a;x

�! t

0

and � j= � ^ Inv(t), we show t�

a

�! t

0

�fx := 0g.

6

� � � tt and t � a(x):t

0

tt;a;x

�! t

0

. Then (a(x):t

0

)�

a

�! t

0

�fx := 0g by ation and

� j= �.

� � � �

0

^ and t � �

0

!t

00

�

0

^ ;a;x

�! t

0

is beause t

00

 ;a;x

�! t

0

. Then Inv(t) = tt.

Sine � j= ^ Inv(t), by indution we get t

00

�

a

�! t

0

�fx := 0g. Sine � j= �

0

,

by guard, t�

a

�! t

0

�fx := 0g.

� Inv(t) = �

0

and t � f�

0

gt

00

 ;a;x

�! t

0

is beause t

00

 ;a;x

�! t

0

. Then Inv(t

00

) = tt, and

� j= ^ Inv(t

00

). By indution, we get t

00

�

a

�! t

0

�fx := 0g. Sine � j= �

0

, by

inv, t�

a

�! t

0

�fx := 0g.

� The other ases are similar.

2. Assuming t�

a

�! t

0

�

0

, we show t

�;a;x

�! t

0

for some �; x suh that � j= � ^ Inv(t)

and �

0

= �fx := 0g.

� t � a(x):t

0

and t�

a

�! t

0

�fx := 0g. Then Inv(t) = tt. By Ation we have

t

tt;a;x

�! t

0

and � j= tt ^ Inv(t).

� t � !t

00

and t�

a

�! t

0

�

0

is beause � j= and t

00

�

a

�! t

0

�

0

. Then Inv(t) = tt.

By indution we get t

00

�;a;x

�! t

0

for some �, x suh that � j= � ^ Inv(t

00

) and

�

0

= �fx := 0g. By Guard, t

�^ ;a;x

�! t

0

and � j= � ^ ^ Inv(t).

� t � f�

0

gt

00

and t�

a

�! t

0

�

0

is beause � j= �

0

and t

00

�

a

�! t

0

�

0

. Then Inv(t) = �

0

and Inv(t

00

) = tt. By indution we get t

00

�;a;x

�! t

0

for some �, x suh that � j= �

and �

0

= �fx := 0g. By Inv, t

�;a;x

�! t

0

. Also � j= � ^ Inv(t).

� The other ases are similar.

2

3 Symboli Timed Bisimulation

In this setion we shall de�ne a symboli version of timed bisimulation. To sim-

plify the presentation we �x two timed automata. To avoid lok variables of one

automaton being reset by the other, we assume the sets of loks of the two timed

automata under onsideration are disjoint, and write C for the union of the two

lok sets

1

. Let N be the largest natural number ourring in the onstraints of

the two automata. An atomi onstraint over C with eiling N has one of the three

forms: x > N , x 1 m or x� y 1 n where x; y 2 C;12 f�; <;�; >g and m;n � N

are natural numbers.

1

This does not impose any restrition on our results, beause we an always rename lok

variables of an automaton without a�eting its behaviour.

7

In the following, \atomi onstraint" always means \atomi onstraint over C

with eiling N". Note that given two timed automata there are only �nite number

of suh atomi onstraints. We shall use to range over atomi onstraints.

A onstraint, or zone, is a boolean ombination of atomi onstraints. A on-

straint � is onsistent if there is some � suh that � j= �. Let � and be two

onstraints. We write � j= to mean � j= � implies � j= for any �. Note that the

relation j= is deidable.

A region onstraint, or region for short, over n lok variables x

1

; : : : ; x

n

is a

onsistent onstraint ontaining the following atomi onjunts:

� For eah i 2 f1; : : : ; ng either x

i

= m

i

or m

i

< x

i

< m

i

+ 1 or x

i

> N ;

� For eah pair of i; j 2 f1; : : : ; ng, i 6= j, suh that both x

i

and x

j

are not greater

than N , either x

i

�m

i

= x

j

�m

j

or x

i

�m

i

< x

j

�m

j

or x

j

�m

j

< x

i

�m

i

.

where the m

i

in x

i

� m

i

of the seond lause refers to the m

i

related to x

i

in the

�rst lause. In words, m

i

is the integral part of x

i

and x

i

�m

i

its frational part.

Given a �nite set of lok variables C and a eilingN , the set of region onstraints

over C is �nite and is denoted RC

C

N

. In the sequel, we will omit the sub- and super-

sripts when they an be supplied by the ontext.

Fat 1 Let � be a region onstraint. If � j= � and �

0

j= � then

� For all i 2 f1; : : : ; ng, if �(x

i

) � N then b�(x

i

) = b�

0

(x

i

).

� For any i; j 2 f1; : : : ; ng, i 6= j,

{ f�(x

i

)g = f�(x

j

)g i� f�

0

(x

i

)g = f�

0

(x

j

)g and

{ f�(x

i

)g < f�(x

j

)g i� f�

0

(x

i

)g < f�

0

(x

j

)g.

where bx and fxg are the integral and frational parts of x, respetively.

That is, two valuations satisfying the same region onstraint must agree on their

integral parts as well as on the ordering of their frational parts.

Lemma 3.1 Suppose that � is a region onstraint and a zone. Then either �)

or �) : .

Proof: We �rst transform into disjuntive normal form: =

W

i

V

j

e

ij

where

eah e

ij

is an atomi onstraint. Now ^ � =

W

i

V

j

(e

ij

^ �). It is easy to see, by

examining the possible forms of e

ij

, that eah e

ij

^ � is either equal to � or false.

Hene ^ � is either equal to � or false. In the former ase we have �) , and in

the later ase we get �) : . 2

Aording to this lemma, a region is either entirely ontained in a zone, or is

ompletely outside a zone. In other words, regions are the �nest polyhedra that an

be desribed by our onstraint language.

The notion of a region onstraint enjoy an important property: proesses in the

same region behave uniformly with respet to timed bisimulation ([Cer92℄):

8

Fat 2 Let t, u be two terms with disjoint sets of lok variables and � a region

onstraint over the union of the two lok sets. Suppose that both � and �

0

satisfy �.

Then t� � u� i� t�

0

� u�

0

.

A anonial onstraint is a disjuntion of regions. Given a onstraint we an

�rst transform it into disjuntive normal form, then deompose eah disjunt into a

disjoint set of regions. Both steps an be e�etively implemented. As a orollary to

Lemma 3.1, if we write RC(�) for the set of regions ontained in the zone �, then

W

RC(�) = �, i.e.

W

RC(�) is the anonial form of �.

We will need two (post�xing) operators to deal with resetting. The �rst one is

#

x

where x � C � C. We �rst de�ne it on regions, then generalise it to zones. With

abuse of notation, we will write 2 � to mean is a onjunt of �.

For a region �,

�#

x

= � #

0

x

^

V

f x

i

= 0 j x

i

2 x g ^

V

f x

i

= x

j

j x

i

; x

j

2 x g

^

V

f x

i

= x

j

�m j x

i

2 x; x

j

62 x; x

j

= m 2 � g

^

V

f x

i

< x

j

�m j x

i

2 x; x

j

62 x; x

j

> m 2 � g

and #

0

x

is de�ned by

tt #

0

x

= tt

(^ �) #

0

x

= � #

0

x

if x \ fv() 6= ;

(^ �) #

0

x

= ^ � #

0

x

if x \ fv() = ;

where fv() is the set of lok variables appearing in (atomi onstraint) .

For a anonial onstraint

W

i

�

i

with eah �

i

a region, (

W

i

�

i

)#

x

=

W

i

(�

i

#

x

). For

an arbitrary onstraint �, �#

x

is understood as the result of applying #

x

to the

anonial form of �.

Lemma 3.2 1. � j= � implies �fx := 0g j= �#

x

.

2. If � is a region onstraint then so is �#

x

.

Proof:

1. Let

W

i

�

i

be the anonial form of �. Sine � j= �, � j= �

i

for some i. Now

�

i

is a region onstraint, so �fx := 0g j= �

i

#

x

follows immediately from the

de�nition of #

x

.

2. Immediately from the de�nition of #

x

.

2

The seond operator * is de�ned similarly. We �rst de�ne it on regions:

�* = �*

0

^

^

i�j

e

ij

(�)

9

where *

0

is de�ned by

(x < m ^ �)*

0

= �*

0

(x = m ^ �)*

0

= m � x ^ �*

0

(x

i

�m

i

< x

j

�m

j

^ �)*

0

= x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1 ^ �*

0

(^ �)*

0

= ^ �*

0

for other atomi onstraint

tt*

0

= tt

and

e

ij

(�) =

(

x

i

�m

i

= x

j

�m

j

if x

i

= m

i

; x

j

= m

j

2 �

tt otherwise

For an arbitrary onstraint �, �* is understood as the result of applying * to eah

disjunt of the anonial form of �. � is *-losed if and only if �* = �.

Lemma 3.3 1. � j= � implies � j= �*.

2. �* is *-losed.

3. If � is *-losed then � j= � implies �+ d j= � for all d 2 R

�0

.

Proof:

1. Immediately from the de�nition of *.

2. It is suÆient to onsider the ase when � is a region onstraint. We hek

if eah onjunt introdued by the * operator is preserved by the a further

appliation of it. The only interesting ase is the third lause in the de�nition

of *

0

. Diret alulation gives:

(x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1)*

0

= (x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1)^

(x

j

�m

j

< x

i

�m

i

+ 1 ^ x

i

�m

i

+ 1 < x

j

�m

j

+ 1)

= x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1

3. Let

W

i

�

i

be the anonial form of �. We have �* =

W

i

�

i

* = �. Sine � j= �,

� j= �

i

* for some i. It is straightforward to hek that � + d j= for eah

onjunt of �

i

*.

2

Symboli bisimulation will be de�ned as a family of binary relations indexed by

lok onstraints. Following [Cer92℄ we use onstraints over the union of the (dis-

joint) lok sets of two timed automata as indies. The reason for this is as follows:

the de�nition of timed bisimulation requires two proesses to math ation transi-

tions as well as delay transitions, whih amounts to requiring them to math ation

transitions while their loks progress at the same rate. In the de�nition of symboli

bisimulation indexing onstraints are subjet to the * operation whih introdues

10

equalities between lok variables (the e

ij

omponent in the above de�nition), whih

guarantees the \same rate" requirement when suh onstraints are over the union

of the two lok sets.

Given a onstraint �, a �nite set of onstraints � is alled a �-partition if

W

� = �.

A �-partition � is alled �ner than another suh partition 	 if � an be obtained

from 	 by deomposing some of its elements. By the orollary to Lemma 3.1,

RC(�) is a �-partition, and is the �nest suh partition. In partiular, if � is a region

onstraint then f�g is the only partition of �.

De�nition 3.4 A onstraint indexed family of symmetri relations over terms S =

fS

�

j � is *�losed g is a symboli timed bisimulation if (t; u) 2 S

�

implies

1. � j= Inv(t), Inv(u) and

2. whenever t

 ;a;x

�! t

0

then there is a Inv(t) ^ � ^ -partition � suh that for

eah �

0

2 � there is u

0

;a;y

�! u

0

for some

0

; y and u

0

suh that �

0

)

0

and

(t

0

; u

0

) 2 S

�

0

#

xy

*

.

We write t �

�

u if (t; u) 2 S

�

2 S for some symboli bisimulation S. 2

Note that there is no lause for delay transitions in the de�nition, beause delays

are enoded in the *-loseness property of the indexing onstraints.

The use of a partition when mathing a symboli transition is essential. Without

it we will not be able to haraterise timed bisimulation using symboli transitions.

For example, onsider the two timed automata t

1

and t

2

below (we have omitted the

empty resets). They are apparently timed bisimilar. But the symboli transition

t

2

tt;a;fg

�! an not be entirely mathed by either of the two symboli transitions from t

1

.

We must use a partition, say fx � 1; x > 1g: t

1

an math the symboli transition

from t

2

using its left branh over the onstraint x � 1, and the right branh over

x > 1.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

?

???

�

�

�

�	

�

�

�

�R

x�1

a

x>1 tt

a a

b b b

tttttt

t

1

t

2

Symboli timed bisimulation aptures � in the following sense:

Theorem 3.5 For *�losed �, t �

�

u i� t� � u� for any � j= �^ Inv(t)^ Inv(u).

11

Proof: (=)) Assume (t; u) 2 S

�

2 S for some symboli bisimulation S. De�ne

R = f (t�; u�) j there exists some � suh that � j= � and (t; u) 2 S

�

2 S g

We show R is a timed bisimulation. Suppose (t�; u�) 2 R, i.e. there is some � suh

that � j= � and (t; u) 2 S

�

. By the �rst laus in De�nition 3.4, we have � j= Inv(t)

if and only if � j= Inv(u).

� t�

a

�! t

0

�

0

. By Lemma 2.3 there are ; x suh that � j= ^ Inv(t), �

0

=

�fx := 0g and t

 ;a;x

�! t

0

. So there is a � ^ -partition � with the properties

spei�ed in De�nition 3.4. Sine � j= � ^ , � j= �

0

for some �

0

2 �. Let

u

0

;a;y

�! u

0

be the symboli transition assoiated with this �

0

, as guaranteed by

De�nition 3.4. Then �

0

)

0

and (t

0

; u

0

) 2 S

�

0

#

xy

*

. Sine � j=

0

^ Inv(u),

u�

a

�! u

0

�fy := 0g. By Lemma 3.2, �fxy := 0g j= �

0

#

xy

. By Lemma 3.3,

�fxy := 0g j= �

0

#

xy

*. Therefore (t

0

�fxy := 0g; u

0

�fxy := 0g) 2 R. Sine

t

0

�fxy := 0g � t

0

�fx := 0g and u

0

�fxy := 0g � u

0

�fy := 0g, this is the same

as (t

0

�fx := 0g; u

0

�fy := 0g) 2 R.

� t�

d

�! t(� + d). Sine � is *-losed, � + d j= �. Then � + d j= Inv(u) and

hene u�

d

�! u(�+ d). Therefore (t(� + d); u(�+ d)) 2 R.

((=) Assume t� � u� for any � j= �

0

^ Inv(t) ^ Inv(u), i.e. (t�; u�) 2 R for some

timed bisimulation R, we show t �

�

0

u as follows. For eah *�losed �, de�ne

S

�

= f (t; u) j 8�

0

2 RC(�); (t�; u�) 2 R for any � j= �

0

^ Inv(t) ^ Inv(u) g

and let S = fS

�

j � is * � losed g. Then (t; u) 2 S

�

0

. S is well-de�ned beause

of Fat 2. We show S is a symboli bisimulation. Suppose (t; u) 2 S

�

. Consider

any �

0

2 RC(�). There exists � j= �

0

^ Inv(t) ^ Inv(u) suh that (t�; u�) 2 R.

Sine �

0

is a region it must be entirely ontained in Inv(t) ^ Inv(u), i.e. �

0

j=

Inv(t) , Inv(u). Therefore � j= Inv(t) , Inv(u). Now let t

 ;a;x

�! t

0

. De�ne

�

0

= f�

0

j �

0

2 RC(�) and �

0

) g. Then �

0

is a �^ -partition. For eah �

0

2 �

0

,

there exists � s.t. � j= �

0

with (t�; u�) 2 R. By the de�nition of �

0

, � j= . By

Lemma 2.3, t�

a

�! t

0

�fx := 0g. Sine (t�; u�) 2 R, u�

a

�! u

0

�

0

for some u

0

and �

0

with (t

0

�fx := 0g; u

0

�

0

) 2 R. By Lemma 2.3 again, u

0

;a

0

;y

�! u

0

for some

0

and y

with � j=

0

and �

0

= �fy := 0g. Hene (t�fx := 0g; u�fy := 0g) 2 R, whih is

the same as (t�fxy := 0g; u�fxy := 0g) 2 R. Sine � j= �

0

, by Lemma 3.2 we have

�fxy := 0g j= �

0

#

xy

. Sine �

0

is a region onstraint, so is �

0

#

xy

whih is the only

element of RC(�

0

#

xy

). Therefore (t

0

; u

0

) 2 S

�

0

#

xy

*

. 2

4 The Proof System

The proposed proof system onsists of a set of inferene rules in Figure 4 and a

set of equational axioms in Figure 5. The judgments of the inferene system are

onditional equations of the form

�� t = u

12

EQUIV

t = t

�� t = u

�� u = t

�� t = u �� u = v

�� t = v

AXIOM

t = u

t = u an axiom instane

CHOICE

�� t = t

0

�� t+ u = t

0

+ u

GUARD

� ^ � t = u � ^ : � 0 = u

�� !t = u

INV

� ^ � t = u � ^ : � f�g0 = u

�� f gt = u

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

THINNING

a(xy):t = a(x):t

y \ C(t) = ;

REC

�xXt = t[�xXt=X℄

UFI

t = u[t=X℄

t = �xXu

X guarded in u

UNG

�xX(X + t) = �xXt

PARTITION

�

1

� t = u �

2

� t = u

�� t = u

� j= �

1

_ �

2

ABSURD

� � t = u

Figure 4: The Inferene Rules

where � is a onstraint and t; u are terms. Its intended meaning is \t �

�

u", or

\t� � u� for any � j= � ^ Inv(t) ^ Inv(u)". tt� t = u will be abbreviated as t = u.

The axioms are the standard monoid laws for bisimulation in proess algebras.

More interesting are the inferene rules. For eah onstrut in the language there is

a orresponding introdution rule. CHOICE expresses the fat that timed bisimu-

lation is preserved by +. The rule GUARD permits a ase analysis on onditional.

The rule INV deals with invariants. It also does a ase analysis and appears very

similar to GUARD. However, there is a ruial di�erene: When the guard is

false !t behaves like 0, the proess whih is inative but an allow time to pass;

On the other hand, when the invariant is false f gt behaves like f�g0, the pro-

ess usually referred to as time-stop, whih is not only inative but also \still",

an not even let time elapse. ACTION is the introdution rule for ation pre�xing

(with lok resetting). The THINNING rule allows to introdue/remove redundant

loks. REC is the usual rule for folding/unfolding reursions, while UFI says if X

is guarded in u then �xXu is the unique solution of the equation X = u. UNG

an be used to transform unguarded terms into guarded ones. Finally the two rules

PARTITION and ABSURD do not handle any spei� onstruts in the language.

13

They are so-alled \strutural rules" used to \glue" piees of derivation together.

Taking �

1

= �

2

PARTITION speialises to a useful rule

CONSEQUENCE

�

1

� t = u

�� t = u

� j= �

1

Let us write ` � � t = u to mean � � t = u an be derived from this proof

system.

Some useful properties of the proof system are summarised in the following

proposition:

Proposition 4.1 1. ` �!(!t) = � ^ !t

2. ` t = t+ �!t

3. If � j= then ` �� t = !t

4. ` � ^ � t = u implies ` �� !t = !u

5. ` �!(t+ u) = �!t+ �!u

6. ` �!t+ !t = � _ !t

7. For any t and u, ` f�gt = f�gu

Proof: We only give proofs for 1, 4 and 7, leaving the others to the readers.

We �rst prove a lemma:

If � ^ = � then ` �� !t = 0 (1)

By GUARD we need to show

� ^ � t = 0 and � ^ : � 0 = 0

The �rst follows from the hypothesis and ABSURD, while the seond from EQUIV.

1. An appliation of GUARD gives

�� !t = � ^ !t (2)

and

:�� 0 = � ^ !t (3)

(3) is an instane of 1. To show (2), we apply GUARD again and obtain two

subgoals:

� ^ � t = � ^ !t and � ^ : � 0 = � ^ !t

The seond subgoal an be settled by (1). Apply symmetriity (the middle rule in

EQUIV) followed by GUARD, the �rst subgoal is redued to

(� ^) ^ (� ^)� t = t and (� ^) ^ :(� ^)� 0 = t

14

S1 X + 0 = X S2 X +X = X

S3 X + Y = Y +X S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Equational Axioms

whih an be settled by EQUIV (plus CONSEQUENCE) and ABSURD, respe-

tively.

4. By GUARD, ` �� !t = !u an be redued to

� ^ � t = �!u and � ^ : � 0 = �!u

The seond subgoal is an instane of (1). For the �rst one we apply GUARD again

obtaining

(� ^) ^ � t = u and (� ^) ^ : � t = 0

Now the �rst subgoal follows from the hypothesis and the seond from ABSURD.

7. It is suÆient to prove ` f�gt = f�g0 for any t. By INV this an be redued to

` �� t = f�g0 and ` :� � f�g0 = f�g0. The �rst subgoal is settled by ABSURD

while the seond by EQUIV. 2

The following lemma shows how to \push" a ondition through an ation pre�x:

Lemma 4.2 ` �� a(x):f gt = a(x):f g�#

x

*!t.

Proof: By ACTION this an be redued to

�#

x

*� f gt = f g�#

x

*!t

An appliations of INV gives two subgoals:

�#

x

* ^ � t = f g�#

x

*!t (4)

�#

x

* ^ : � f�g0 = f g�#

x

*!t (5)

Apply INV again to (4) we get

�#

x

* ^ ^ � t = �#

x

*!t and �#

x

* ^ ^ : � t = f�g0

the �rst follows from Proposition 4.1.3, while the seond from ABSURD.

(5) an be settled similarly by an appliation of INV followed by EQUIV and

ABSURD. 2

The UFI rule, as presented in Figure 4, is unonditional. However, a onditional

version an be derived:

Proposition 4.3 Suppose X is guarded in u. Then from ` �� t = u[�!t=X℄ infer

` �� t = �xX�!u.

15

Proof: Assume ` � � t = u[�!t=X℄. By Proposition 4.1.4 we have ` �!t =

�!u[�!t=X℄, i.e.

` �!t = (�!u)[�!t=X℄

Sine X is guarded in u, it is also guarded in �!u. By UFI, ` �!t = �xX�!u.

Hene

` �!t

REC

= (�!u)[�xX�!u=X℄

= �!u[�xX�!u=X℄

= �!(�!u)[�xX�!u=X℄

REC

= �!�xX�!u

Therefore, by Proposition 4.1.4 again, ` �� t = �xX�!u. 2

The rule PARTITION has a more general form:

Proposition 4.4 Suppose 	 is a �-partition and ` � t = u for eah 2 	, then

` �� t = u.

Proof: By indution on the size of 	. The base ase when 	 ontains only one

element is trivial. For the indution step, assume the statement of the proposition

holds for �-partitions of size k and let 	 = f

i

j 1 � i � k+1 g. Set 	

0

= f:

k+1

^

i

j 1 � i � k g. Sine `

i

� t = u, by CONSEQUENCE ` :

k+1

^

i

� t = u.

Therefore by the indution hypothesis,

`

_

	

0

� t = u

From this and the assumption `

k+1

� t = u, by PARTITION we obtain

`

k+1

_

_

	

0

� t = u

Sine

k+1

_

_

	

0

=

k+1

_(:

k+1

^

_

1�i�k

i

) =

_

1�i�k+1

i

=

_

	 = �, this ompletes

the indution. 2

In the rest of this setion we disuss the soundness of the proof system. First

we show that the rule UFI is sound with respet to �. Following [Mil89℄ we use the

tehnique of bisimulation up to.

De�nition 4.5 A symmetri relation R is a timed bisimulation up to � if (p; q) 2 R

implies

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and (p

0

; q

0

) 2 R.

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and (p

0

; q

0

) 2� R �.

2

Note that the derivatives of delay transitions are required to be in the same relation,

while those of ation transitions are allowed to be related modular �.

16

Lemma 4.6 If R is a timed bisimulation up to � then R ��.

Proof: Let (p; q) 2 R and p

�

�! p

0

. We need to show that there is some q

0

suh

that q

�

�! q

0

and (p

0

; q

0

) 2 R. The ase when � is an ation is settled in the same

way as in the proof of Proposition 6, Setion 4.3, [Mil89℄. The ase when � is a

delay follows diretly from De�nition 4.5. 2

Lemma 4.7 If X is guarded in v and v[t=X℄

a

�! t

0

, then t

0

has the form v

0

[t=X℄,

and moreover, for any u, v[u=X℄

a

�! v

0

[u=X℄.

This lemma onerns only ation transitions and its proof is the same as that of

Lemma 13, Setion 4.5, [Mil89℄.

Proposition 4.8 Suppose fv(v) � fXg and X is guarded in v. If t� � v[t=X℄�

and u� � v[u=X℄� then t� � u�.

Proof: We show the relation

R = f (v[t=X℄�; v[u=X℄�) j fv(v) � fXg g

is a timed bisimulation upto �. Assume (v[t=X℄�; v[u=X℄�) 2 R and onsider the

following two ases:

� v[t=X℄�

d

�! v[t=X℄(� + d). Then also v[u=X℄�)

d

�! v[u=X℄(� + d) and

(v[t=X℄(�+ d); v[u=X℄(�+ d)) 2 R.

� v[t=X℄�

a

�! t

0

�

0

. In this ase we an �nd a mathing transition v[u=X℄�

a

�!

u

0

�

0

suh that (t

0

�

0

; u

0

�

0

) 2� R �, as in the proof of Proposition 14, Setion 4.5,

[Mil89℄.

2

Soundness of the proof system is stated below:

Theorem 4.9 If ` � � t = u and � is *-losed then t� � u� for any � j= � ^

Inv(t) ^ Inv(u).

The standard approah to the soundness proof is by indution on the length of

derivations, and perform a ase analysis on the last rule/axiom used. However, this

does not quite work here. The reason is that the de�nition of timed bisimulation

requires two proesses to simulate eah other after any time delays. To reet

this in the proof system, we apply the * operator, after #

x

for lok resetting, in

the premise of the ACTION rule. But not all the inferene rules preserve the *-

loseness property. An example is GUARD. In order to derive � � !t = u, we

need to establish � ^ � t = u and � ^ : � 0 = u. Even if � is *-losed, � ^

may not be so.

To overome this diÆulty, we introdue the notion of \timed bisimulation up

to a time bound", formulated as follows

17

De�nition 4.10 Two proesses p and q are timed bisimular up to d

0

2 R

�0

, written

p �

d

0

q, if for any d suh that 0 � d � d

0

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and p

0

�

� q

0

,

� whenever q

d

�! q

0

then p

d

�! p

0

for some p

0

and p

0

�

� q

0

.

where p

�

� q is de�ned thus

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and p

0

� q

0

,

� whenever q

a

�! q

0

then p

a

�! p

0

for some p

0

and p

0

� q

0

.

2

The di�erene between timed bisimulation up to d and the standard notion of timed

bisimulation only onerns initial delay transitions: in timed bisimulation up to d

two proesses are required to math only those initial delay transitions with duration

no greater that d. Note that

�

� is the same as �

0

, and �

d

0

�

�

� in general.

Lemma 4.11 1. If p �

d

0

q for any d

0

2 R

�0

then p � q.

2. Let �

i

and d

i

, 0 � i � n, be suh that �

i+1

= �

i

+ d

i

, 0 � i < n. If t�

i

�

d

i

u�

i

for all i suh that 0 � i � n, then t�

0

�

d

u�

0

where d = d

0

+ : : :+ d

n

.

Proof: Both follow diretly from the de�nition of �

d

0

. 2

Now the following proposition, of whih Theorem 4.9 is a speial ase when � is

*-losed, an be proved by standard indution on the length of derivations :

Proposition 4.12 If ` � � t = u then t� �

d

0

u� for any � and d

0

suh that

�+ d j= � ^ Inv(t) ^ Inv(u) for all 0 � d � d

0

.

Proof: By indution on the length of inferene. The base ase when the length

is 0 is straightforward. For the indution step we do ase ananysis on the last rule

applied.

� ACTION. Assume �; d

0

are suh that �+ d j= � for any 0 � d � d

0

. To show

(a(x):t)� �

d

0

(a(x):u)�, let (a(x):t)�

d

�! (a(x):t)(�+d) with 0 � d � d

0

. This

an be mathed by (a(x):u)�

d

�! (a(x):u)(� + d). To see (a(x):t)(� + d)

�

�

(a(x):u)(� + d), observe that the only possible ation transition from both

sides is an a-transition:

(a(x):t)(�+ d)

a

�! t(�+ d)fx := 0g

(a(x):u)(�+ d)

a

�! u(�+ d)fx := 0g

Write �

0

for (�+d)fx := 0g. For any d

0

0

and any 0 � d

0

� d

0

0

, �

0

+d

0

j= �#

x

*. By

indution, t�

0

�

d

0

0

u�

0

. Therefore t�

0

� u�

0

by Lemma 4.11. This establishes

(a(x):t)(� + d)

�

� (a(x):u)(�+ d). Hene (a(x):t)� �

d

0

(a(x):u)�.

18

� GUARD. Assume �; d

0

are suh that � + d j= � for any 0 � d � d

0

. The

line [�; �+ d

0

℄ is divided by regions into �nite many segments [�; �

1

), [�

1

; �

1

℄,

(�

1

; �

2

), [�

2

; �

2

℄, : : :, [�

n

; �

n

℄ and (�

n

; � + d

0

℄, where �

i+1

= �

i

+ d

0

i

, suh that

eah segment is entirely ontained in some region. By Lemma 4.11 we only

need to show (!t)�

i

�

d

0

i

u�

i

for eah 1 � i � n.

By Lemma 3.1, eah (�

i

; �

i

+d

0

i

) is either entirely ontained in �^ or entirely

ontained in �^: . By indution, in the former ase we have (!t)�

i

�

d

0

i

u�

i

.

In the later ase we have 0�

i

�

d

0

i

u�

i

. Sine �

i

+ d

0

6j= for any 0 � d

0

� d

0

i

in this ase, it follows 0(�

i

+ d

0

) � (!t)(�

i

+ d

0

). Hene (!t)�

i

�

d

0

i

u�

i

.

Therefore we have (!t)�

i

�

d

0

i

u�

i

in both ases.

� UFI. See Proposition 4.8.

� The other ases are similar (and easier).

2

5 Completeness

This setion is devoted to proving the ompleteness of the proof system whih is

stated thus: if t �

�

u then ` � � t = u. The struture of the proof follows from

that of [Mil84℄. The intuition behind the proof is as follows: A timed automaton is

presented as a set of standard equations in whih the left hand-side of eah equation

is a formal proess variable orresponding to a node of the automaton, while the

right hand-side enodes the outgoing edges from the node. We �rst transform,

within the proof system, both t and u into suh equation sets (Proposition 5.1). We

then onstrut a \produt" of the two equation sets, representing the produt of the

two underlying timed automata. Beause t and u are timed bisimilar over �, eah

should also bisimilar to the produt over �. Using this as a guide we show that suh

bisimilarity is derivable within the proof system, i.e. both t and u provably �-satisfy

the produt equation set (Proposition 5.2). Finally we demonstrate that a standard

set of equations has only one solution, therefore the required equality between t and

u an be derived. The unique �xpoint indution is only employed in the last step of

the proof, namely Proposition 5.3.

Let X = fX

i

j i 2 I g and W be two disjoint sets of proess variables and x

a set of lok variables. Let also u

i

; i 2 I; be terms with free proess variables in

X [W and lok variables in x. Then

E : fX

i

= u

i

j i 2 I g

is an equation set with formal proess variables X and free proess variables in W.

E is losed if W = ;. E is a standard equation set if eah u

i

has the form

f

i

g(

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

+

X

k

0

2K

0

i

ik

0

!W

f

0

(i;k

0

)

)

19

A term t provably �-satis�es an equation set E if there exist a vetor of terms

f t

i

j i 2 I g, eah t

i

being of the form f

0

i

gt

0

i

, and a vetor of onditions f�

i

j i 2 I g

suh that �

1

= �, ` �� t

1

= t, �

i

j= Inv(u

i

),

0

i

, and

` �

i

� t

i

= u

i

[f

0

i

g(�

i

!t

0

i

)=X

i

ji 2 I℄

for eah i 2 I. We will simply say \t provably satis�es E" when �

i

= tt for all i 2 I.

Proposition 5.1 For any guarded term t with free proess variables W there ex-

ists a standard equation set E, with free proess variables in W, whih is provably

satis�ed by t. In partiular, if t is losed then E is also losed.

Proof: By indution on the struture of t. The only non-trivial ase is reursion

when t � �xXt

0

with X guarded in t

0

. By indution there is a standard equation

set E

0

: fX

i

= u

i

j i 2 I g with free proess variables in FV (t) [fXg and t

0

i

: s

suh that ` t

0

= t

0

1

and

` t

0

i

= u

i

[t

0

i

=X

i

ji 2 I℄

We may assume that X is di�erent from any X

i

. Let v

i

= u

i

[u

1

=X℄ for eah i. Note

that sine X is under an ation pre�xing in t

0

, it does not our free in u

1

. Hene

v

1

= u

1

. Consider the equation set

E : fX

i

= v

i

j i 2 I g

To show t satis�es E, set t

i

= t

0

i

[t=X℄. Then

` t = �xXt

0

= �xXt

0

1

REC

= t

0

1

[�xXt

0

1

=X℄

= t

0

1

[t=X℄

= t

1

Now

` t = t

0

1

[t=X℄

= u

1

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

1

[t

0

i

[t=X℄=X

i

ji 2 I℄

= u

1

[t

i

=X

i

ji 2 I℄

and

` t

i

= t

0

i

[t=X℄

= u

i

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

i

[t; t

0

i

[t=X℄=X;X

i

ji 2 I℄

= u

i

[t; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

[t

i

=X

i

ji 2 I℄; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

=X℄[t

i

=X

i

ji 2 I℄

= v

i

[t

i

=X

i

ji 2 I℄

2

20

Proposition 5.2 For losed terms t and u, if t �

�

u then there exist a �

0

suh that

�) �

0

and a standard, losed equation set E whih is provably �

0

-satis�ed by both

t and u.

Proof: It easy to see that, using ruleUNG, any unguarded term an be transformed

into a guarded one, so we may assume both t and u are guarded.

Let the sets of lok variables of t; u be x; y, respetively, with x \ y = ;. Let

also E

1

and E

2

be the standard equation sets for t and u, respetively:

E

1

: fX

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

j i 2 I g

E

2

: fY

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):Y

g(j;l)

j j 2 J g

So there are t

i

� f�

0

i

gt

0

i

; u

j

� f

0

j

gu

0

j

with ` t

1

= t, ` u

1

= u suh that j= �

i

, �

0

i

,

j=

i

,

0

i

, and

` t

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):t

f(i;k)

` u

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):u

g(j;l)

Without loss of generality, we may assume a

ik

= b

jl

= a for all i; k; j; l.

For eah pair of i; j, let

�

ij

= f� 2 RC(xy) j t

i

�

�*

u

j

g

Set �

ij

=

_

�

ij

. By the de�nition of �

ij

, �

ij

is the weakest ondition over whih

t

i

and u

j

are symbolially bisimilar, that is,) �

ij

for any suh that t

i

�

u

j

.

In partiular, �) �

11

. Also for eah � 2 �

ij

, � j= Inv(t

i

) , Inv(u

j

), i.e.,

� j= �

0

i

,

0

j

, hene � j= �

i

,

j

.

For eah � 2 �

ij

let

I

�

ij

= f (k; l) j t

f(i;k)

�

�#

x

ik

y

jl

*

u

g(j;l)

g

De�ne

E : Z

ij

= f�

i

g

X

�2�

ij

�!

X

(k;l)2I

�

ij

a(x

ik

y

jl

):Z

f(i;k)g(j;l)

We laim that E is provably �

11

-satis�ed by t when eah Z

ij

is instantiated with

t

i

over �

ij

. We need to show, for eah i,

` �

ij

� t

i

= f�

i

g

X

�2�

ij

�!(

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

)

Sine the elements of �

ij

are mutually disjoint, by Propositions 4.4 and 4.1, it is

suÆient to show that, for eah � 2 �

ij

,

` �� t

i

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

21

By the de�nition of I

�

ij

, we have t

f(i;k)

�

�#

x

ik

y

jl

*

u

g(j;l)

. Hene, from the de�nition

of �

ij

,

�#

x

ik

y

jl

*) �

f(i;k)g(j;l)

Therefore

` � � f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

Lemma 4:2

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�#

x

ik

y

jl

*!�

f(i;k)g(j;l)

!t

0

f(i;k)

Prop: 4:1

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�#

x

ik

y

jl

*!t

0

f(i;k)

Lemma 4:2

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

gt

0

f(i;k)

THINNING

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

):t

f(i;k)

S1-S4

= f�

i

g

X

k2K

i

a(x

ik

):t

f(i;k)

= t

i

Symmetrially we an show E is provably �

11

-satis�ed by u when Z

ij

is instan-

tiated with u

j

over �

ij

. 2

Proposition 5.3 If both t and u provably �-satisfy an equation set E then ` ��t =

u.

Proof: By indution on the size of E. For the base ase when E ontains only

one equation X

1

= v

1

, we have ` � � t = v

1

[�!t=X

1

℄. Sine E is standard, X

1

is guarded in v

1

. Therefore by Proposition 4.3, ` � � t = �xX

1

�!v

1

. Similarly

` �� u = �xX

1

�!v

1

. Hene ` �� t = u.

Assume the result for m and let E ontain m + 1 equations:

X

i

= v

i

1 � i � m + 1

Sine t provably �-satis�es E, there are t

i

and �

i

, 1 � i � m+1, suh that ` t

1

= t,

�

1

= �, and

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

for eah 1 � i � m + 1. In partiular

` �

m+1

� t

m+1

= v

m+1

[�

i

!t

i

=X

i

j1 � i � m + 1℄

= (v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄)[�

m+1

!t

m+1

=X

m+1

℄

By Proposition 4.3, noting that X

m+1

is guarded in v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄,

` �

m+1

� t

m+1

= �xX

m+1

�

m+1

!v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

22

Let w

m+1

be �xX

m+1

�

m+1

!v

m+1

. We have

` �

m+1

� t

m+1

= w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

By Proposition 4.1,

` �

m+1

!t

m+1

= �

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

Now, writing w

i

for v

i

[�

m+1

!w

m+1

=X

m+1

℄, we have

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!t

m+1

=X

m+1

℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄=X

m+1

℄

= v

i

[�

m+1

!w

m+1

=X

m+1

℄[�

i

!t

i

=X

i

j1 � i � m℄

= w

i

[�

i

!t

i

=X

i

j1 � i � m℄

This shows t provably �-satis�es the equation set

E

0

: X

i

= w

i

1 � i � m

Symmetrially we an show u provably �-satis�es E

0

. By indution we onlude

` �� t = u.

2

Putting together Propositions 5.2 and 5.3 we obtain the main theorem:

Theorem 5.4 For losed terms t and u, if t �

�

u then ` �� t = u.

Proof: By Proposition 5.2, there is a standard equation set E whih are �

0

-satis�ed

by both t and u for some �

0

suh that �

0

) �. By Proposition 5.3, ` �

0

� t = u.

Finally, by CONSEQUENCE, ` �� t = u. 2

6 Conlusion And Related Work

We have presented an axiomatisation, in the form of an inferene system, of timed

bisimulation for timed automata, and proved its ompleteness. To the best of our

knowledge, this is the �rst omplete axiomatisation for the full set of timed au-

tomata. There are two key rules in this axiomatisation: ACTION for ation pre-

�xing and UFI for reursion. The former aters for lok reseting and progressing.

The form of the later rule is syntatially the same as that used for parameterless

proesses [Mil84℄, but here it is impliitly parameterised on lok variables, sine

the terms involved may ontain free lok variables.

We have shown that by generalising pure equational reasoning to a set of infer-

ene rules dealing with spei� language onstruts needed for timed automata, the

standard monoid laws for bisimulation are suÆient for haraterizing bisimulation

23

in the timed world. This result agrees with the previous works on proof systems

for value-passing proesses [HL96℄ and for �-alulus [Lin94℄, providing a further

evidene that the four monoid laws apture the essene of bisimulation.

The most interesting development so far in algebrai haraterizations for timed

automata are presented in [ACM97, BP99℄. As the main result, they established

that eah timed automaton is equivalent to an algebrai expression out of the stan-

dard operators in formal languages, suh as union, intersetion, onatenation and

variants of Kleene's star operator, in the sense that the automaton reognize the

same timed language as denoted by the expression. However, the issue of axiomati-

sation was not onsidered there. In [DAB96℄ a set of equational axioms was proposed

for timed automata, but no ompleteness result was reported. [HS98℄ presents an

algebrai framework for real-time systems whih is similar to timed automata where

\invariants" are replaed by \deadlines" (to express \urgeny"), together with some

equational laws. Apart from these, we are not aware of any other published work

on axiomatising timed automata. On the other hand, most timed extensions of

proess algebras ame with equational axiomatisations. Of partiular relevane are

[Bor96℄ and [AJ94℄. The former developed a symboli theory for a timed proess

algebra, while the later used the unique �xpoint indution to ahieve a omplete

axiomatisation for the regular subset of the timed-CCS proposed in [Wan91℄.

Referenes

[ACM97℄ E. Asarin, P. Caspi and O. Maler. A Kleene theorem for timed automata.

In proeedings of LICS'97, 1997.

[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. Theoretial Computer

Siene, 126:183{235. 1994.

[AJ94℄ L. Aeto and A. Je�rey. A omplete axiomatization of timed bisimulation

for a lass of timed regular behaviours. Theoretial Computer Siene,

152(2):251{268. 1995.

[Bor96℄ M. Boreale. Symboli Bisimulation for Timed Proesses. In AMAST'96,

LNCS 1101 pp.321-335. Springer{Verlag. 1996.

[BP99℄ P. Bouyer and A. Petit. Deomposition and Composition of Timed Au-

tomata. In ICALP'99, LNCS 1644, pp. 210-219. Springer{Verlag. 1999.

[HS98℄ S. Bornot and J. Sifakis. An Algebrai Framework for Urgeny. In Cal-

ulational System Design, NATO Siene Series, Computer and Systems

Siene 173, Marktoberdorf, July 1998.

[Cer92℄ K.

�

Cer�ans. Deidability of Bisimulation Equivalenes for Parallel Timer

Proesses. In CAV'92, LNCS 663, pp.302-315. Springer{Verlag. 1992.

24

[DAB96℄ P.R. D'Argenio and Ed Brinksma. A Calulus for Timed Automata (Ex-

tended Abstrat). In FTRTFTS'96, LNCS 1135, pp.110-129. Springer{

Verlag. 1996.

[HL95℄ M. Hennessy and H. Lin. Symboli bisimulations. Theoretial Computer

Siene, 138:353{389, 1995.

[HL96℄ M. Hennessy and H. Lin. Proof systems for message-passing proess alge-

bras. Formal Aspets of Computing, 8:408{427, 1996.

[Lin94℄ H. Lin. Symboli bisimulations and proof systems for the �-alulus. Re-

port 7/94, Computer Siene, University of Sussex, 1994.

[LW00℄ H. Lin and Y. Wang. A proof system for timed automata. Fossas'2000,

LNCS 1784. Marh 2000.

[Mil84℄ R. Milner. A omplete inferene system for a lass of regular behaviours.

J. Computer and System Siene, 28:439{466, 1984.

[Mil89℄ R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.

[Wan91℄ Wang Yi. A Calulus of Real Time Systems. Ph.D. thesis, Chalmers

University, 1991.

[WPD94℄ Wang Yi, Paul Pettersson, and Mats Daniels. Automati Veri�ation of

Real-Time Communiating Systems By Constraint-Solving. In Pro. of the

7th International Conferene on Formal Desription Tehniques, 1994.

25

