
A Complete Axiomatisation for Timed Automata

Huimin Lin

Laboratory for Computer S
ien
e

Inst. of Software, Chinese A
ademy of S
ien
es

Email: lhm�ios.a
.
n

Wang Yi

Dept. of Computer Systems

Uppsala University

Email: yi�
sd.uu.se

Abstra
t

A proof system of timed bisimulation equivalen
e for timed automata is

presented, based on a CCS-style regular language for des
ribing timed au-

tomata. It
onsists of the standard monoid laws for bisimulation and a set of

inferen
e rules. The judgments of the proof system are
onditional equations

of the form �� t = u where � is a
lo
k
onstraint and t, u are terms denoting

timed automata. The proof of the
ompleteness result relies on the notion

of symboli
 timed bisimulation, adapted from the work on value{passing pro-

esses.

1 Introdu
tion

The last de
ade has seen a growing interest in extending various
on
urren
y theo-

ries with timing
onstru
ts so that real-time aspe
ts of
on
urrent systems
an be

modeled. Among them timed automata [AD94℄ has stood out as a fundamental

model for real-timed systems.

A timed automaton is a �nite automaton extended with a �nite set of real-

valued
lo
k variables. A node of a timed automata is asso
iated with an invariant

onstraint on the
lo
k variables, while an edge is de
orated with a
lo
k
onstraint,

an a
tion label, and a subset of
lo
ks to be reset after the transition. At ea
h node a

timed automaton may perform two kinds of transitions: it may let time pass for any

amount (a delay transition), as long as the invariant is satis�ed, or
hoose an edge

whose
onstraint is met, make the move, reset the relevant
lo
ks to zero, and arrive

at the target node (an a
tion transition). Although a timed automaton has only

�nite number of nodes, due to (real-valued) delay transitions it typi
ally exhibits

in�nite-state behaviour. Two timed automata are timed bisimilar if they
an mat
h

ea
h other's a
tion transitions as well as delay transitions, and their residuals remain

timed bisimilar. The expli
it presen
e of
lo
k variables and resetting, features that

mainly asso
iated with the so-
alled \imperative languages", distinguishes timed

automata from pro
ess
al
uli su
h as CCS, CSP and their timed extensions whi
h

are \appli
ative" in nature and therefore more amenable to axiomatisation. By now

1

most theoreti
al aspe
ts of timed automata have been well studied, but they still

la
k a satisfa
tory algebrai
 theory.

In this paper we shall develop a
omplete axiomatisation for timed automata,

in the form of an inferen
e system, in whi
h the equalities between pairs of timed

automata that are timed bisimilar
an be derived. To this end we �rst propose a

language, in CCS style, equipping it with a symboli
 transitional semanti
s in su
h

a way that ea
h term in the language denotes a timed automaton. The language has

a
onditional
onstru
t �!t, read \if � then t", an a
tion pre�xing a(x):t, meaning

\perform the a
tion a, reset the
lo
ks in x to zero, then behave like t", and a

re
ursion �xXt whi
h allows in�nite behaviours to be des
ribed. The proof system

onsists of a set of inferen
e rules and the standard monoid laws for bisimulation.

Roughly speaking the monoid laws
hara
terize bisimulation, while the inferen
e

rules deal with spe
i�

onstru
ts in the language. The judgments of the inferen
e

system are of the form

�� t = u

where � is a time
onstraint and t, u are terms. Intuitively it means: t and u are

timed bisimilar over
lo
k evaluations satisfying �. A typi
al inferen
e rule takes

the form:

GUARD

� ^ � t = u � ^ : � 0 = u

�� (!t) = u

It performs a
ase analysis on the
onstraint : !t behaves like t when is true,

and like the ina
tive pro
ess 0 otherwise. Note that the guarding
onstraint of

 !t in the
on
lusion is part of the obje
t language des
ribing timed automata,

while in the premise it is shifted to the
ondition part of the judgment in our meta

language for reasoning about timed automata.

A
ru
ial rule, as might be expe
ted, is the one for a
tion pre�xing:

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

Here #

x

and * are post�xing operations on
lo
k
onstraints. �#

x

* is a
lo
k
on-

straint obtained from � by �rst setting the
lo
ks in x to zero (operator #

x

), then

removing up-bounds on all
lo
ks of � (operator *). Readers familiar with Hoare

Logi
 may noti
e some similarity between this rule and the rule dealing with assign-

ment there:

fP [e=x℄g x := e fPg

But here the operator #

x

is slightly more
ompli
ated than substitution with zero,

be
ause
lo
ks are required to in
rease uniformly. Also we need * to allow time to

pass inde�nitely.

A standard way to reasoning with re
ursion is to use, apart from the usual rule

for folding/unfolding re
ursions, the following unique �xpoint indu
tion:

UFI

t = u[t=X℄

t = �xXu

X guarded in u

2

This rule was adopted in [Mil84℄ for a
omplete axiomatisation of bisimulation equiv-

alen
e for regular pure-CCS. Here we use it in a quite di�erent
ontext: terms in our

setting normally
ontain
lo
k variables, namely they are open terms. In spite of this,

it turns out that this rule is still sound and suÆ
ient for a
omplete axiomatisation

of regular behaviour, though the proof is slightly more
ompli
ated than in the pure

al
uli.

The
ompleteness proof relies on the introdu
tion of the notion of symboli
 timed

bisimulation, t �

�

u, whi
h
aptures timed bisimulation in the following sense:

t �

�

u if and only if t� and u� are timed bisimilar for any
lo
k evaluation � satisfying

�. Following [Mil84℄, to show that the inferen
e system is
omplete, that is t �

�

u

implies ` � � t = u, we �rst transform t and u into standard equation sets whi
h

are the synta
ti
al representations of timed automata. We then
onstru
t a produ
t

equation set out of the two and prove that t and u both satisfy this new equation

set, by exploiting the assumption that t and u are symboli
ally timed bisimilar. Due

to the presen
e of
lo
k variables the notion of satis�ability is parameterised on a

set of
lo
k
onstraints. Finally we show that, using UFI, if two terms satisfy the

same set of standard equations then they are provably equal.

The result of this paper �lls a gap in the theory of timed automata. It demon-

strates that bisimulation equivalen
e of timed automata are as mathemati
ally

tra
table as those of standard pro
ess algebras.

The rest of the paper is organised as follows: In the next se
tion we �rst re
all the

de�nition of timed automata, then propose a language to des
ribe them. Se
tion 3

introdu
es symboli
 timed bisimulation. The inferen
e system is presented and its

soundness dis
usses in Se
tion 4. Se
tion 5 is devoted to proving the
ompleteness

of the proof system. The paper
on
ludes with Se
tion 6 where related work is also

brie
y dis
ussed.

2 A Language for Timed Automata

2.1 Timed Automata

A timed automaton is a standard �nite-state automaton extended with a �nite
ol-

le
tion of real-valued
lo
ks. In a timed automaton, ea
h node is asso
iated with

an invariant, while a transition is labelled with a guard (a
onstraint on
lo
ks),

a syn
hronisation a
tion, and a
lo
k reset (a subset of
lo
ks to be reset). Intu-

itively, a timed automaton starts exe
ution with all
lo
ks initialized to zero. The

automaton
an stay at a node while the invariant of the node is satis�ed, with all

lo
ks in
reasing at the same rate. A transition
an be taken if the
lo
ks ful�ll the

guard. By taking the transition, all
lo
ks in the
lo
k reset are set to zero, while

the others keep their values. Semanti
ally, a state of an automaton is a pair of a

ontrol node and a
lo
k valuation, i.e. the
urrent setting of the
lo
ks. Transitions

in the semanti
 interpretation are either labelled with a syn
hronisation a
tion (if it

is an instantaneous swit
h from the
urrent node to another) or with a positive real

number i.e. a time delay (if the automaton stays within a node letting time pass).

3

x � 4

l

0

l

1

y := 0

^

y � 3

x � 5

x � 1

x := 0; y := 0

a

b

Figure 1: A Timed Automaton.

Consider the timed automaton of Figure 1. It has two
ontrol nodes l

0

and l

1

and two
lo
ks x and y. A state of the automaton is of the form (l; < s; t >), where

l is a
ontrol node and s and t are non{negative reals giving the values of x and

y. Assuming that the automaton starts to operate in the state (l

0

; < 0; 0 >), it

may stay in node l

0

for any amount of time, as long as the invariant x � 4 of l

0

is satis�ed. During this time the values of x and y in
rease uniformly, at the same

rate. Thus from the initial state, all states of the form (l

0

; < t; t >) with 0 � t � 4

are rea
hable, but only at the states (l

0

; < t; t >), where t � 1, the edge from l

0

to

l

1

is enabled. When following the edge from l

0

to l

1

the a
tion a is performed to

syn
hronize with the environment and the
lo
k y is reset to 0 leading to states of

the form (l

1

; < t; 0 >) where t � 1.

For the formal de�nition, we assume a �nite set A for syn
hronization a
tions

and a �nite set C for real-valued
lo
k variables. We use a; b et
. to range over A

and x; y et
. to range over C. We use B(C), ranged over by �, et
., to denote the

set of
onjun
tive formulas of atomi

onstraints in the form: x

i

1 m or x

i

�x

j

1 n,

where x

i

; x

j

2 C, 12 f�; <;�; >g and m;n are natural numbers. The elements of

B(C) are
alled
lo
k
onstraints.

De�nition 2.1 A timed automaton over a
tions A and
lo
ks C is a tuple hN; l

0

; Ei

where

� N is a �nite set of nodes,

� l

0

2 N is the initial node,

� E � N � B(C)�A� 2

C

�N is the set of edges.

When hl; g; a; r; l

0

i 2 E, we write l

g;a;r

�! l

0

. 2

We shall present the operational semanti
s for timed automata in terms of a

pro
ess algebrai
 language in whi
h ea
h term denotes an automaton.

2.2 The Language

We preassume a set of pro
ess variables, ranged over by X; Y; Z; : : :. The language

for timed automata over C
an be given by the following BNF grammar:

s ::= f�gt

t ::= 0 j �!t j a(x):s j t+ t j X j �xXt

4

delay

t�

d

�! t(� + d)

�+ d j= Inv(t)
hoi
e

t�

a

�! t

0

�

0

(t+ u)�

a

�! t

0

�

0

a
tion

(a(x):t)�

a

�! t�fx := 0g

guard

t�

a

�! t

0

�

0

(�!t)�

a

�! t

0

�

0

� j= �

re

(t[�xXt=X℄)�

a

�! t

0

�

0

(�xXt)�

a

�! t

0

�

0

inv

t�

a

�! t

0

�

0

(f�gt)�

a

�! t

0

�

0

� j= �

Figure 2: Standard Transitional Semanti
s

0 is the ina
tive pro
ess whi
h
an do nothing, ex
ept for allowing time to pass. �!t,

read \if � then t", is the usual (one-armed)
onditional
onstru
t. a(x):t is a
tion

pre�xing. + is nondeterministi

hoi
e. The f�gt
onstru
t introdu
es an invariant.

Note that invariants
an only o

ur at pla
es whi
h
orrespond to lo
ations in timed

automata. For instan
e, strings having the forms �!f gt, f�gt+f gu or f�gf gt

are not terms of the language, while f�g(t+ u) and �!a(x):f gt are allowed.

A re
ursion �xXt binds X in t. This is the only binding operator in this lan-

guage. It indu
es the notions of bound and free pro
ess variables as usual. Terms

not
ontaining free pro
ess variables are
losed. A re
ursion �xXt is guarded if every

o

urren
e of X in t is within the s
ope of an a
tion pre�xing.

The set of
lo
k variables used in a term t is denoted C(t).

A
lo
k valuation is a fun
tion from C to R

�0

(non-negative real numbers), and

we use � to range over
lo
k valuations. The notations �fx := 0g and � + d are

de�ned thus

�fx := 0g(y) =

(

0 if y 2 x

�(y) otherwise

(�+ d)(x) = �(x) + d for all x

To give a transitional semanti
s to our language, we �rst assign ea
h term t an

invariant
onstraint Inv(t) by letting

Inv(t) =

(

� if t has the form f�gs

tt otherwise

We shall require that all invariants are downward
losed:

For all d 2 R

�0

; � + d j= � implies � j= �

Given a
lo
k valuation � : C ! R

�0

, a term
an be interpreted a

ording to

the rules in Figure 2, where the symmetri
 rule for + has been omitted. We
all

t� a pro
ess, where t is a term and � a valuation; we use p; q; : : : to range over the

set of pro
esses. We also write � for either an a
tion or a delay (a real number).

The transitional semanti
s uses two types of transition relations: a
tion transition

a

�! and delay transition

d

�!. Note that a pro
ess
an have only a �nite number of

5

A
tion

a(x):t

tt;a;x

�! t

Choi
e

t

b;a;x

�! t

0

t+ u

b;a;x

�! t

0

Guard

t

 ;a;x

�! t

0

�!t

�^ ;a;x

�! t

0

Re

t[�xXt=X℄

b;a;x

�! t

0

�xXt

b;a;x

�! t

0

Inv

t

 ;a;x

�! t

0

f�gt

 ;a;x

�! t

0

Figure 3: Symboli
 Transitional Semanti
s

a
tion transitions, but it may have in�nite many delay transitions. It is the later

that makes timed pro
esses in�nite bran
hing (and in�nite states).

De�nition 2.2 A symmetri
 relation R over pro
esses is a timed bisimulation if

(p; q) 2 R implies

whenever p

�

�! p

0

then q

�

�! q

0

for some q

0

with (p

0

; q

0

) 2 R.

We write p � q if (p; q) 2 R for some timed bisimulation R. 2

The symboli
 transitional semanti
s of this language is listed in Figure 3. Again

the symmetri
 rule for + has been omitted. Note that invariants are simply forgot-

ten in the symboli
 transitional semanti
s. This re
e
ts our intention that symboli

transitions
orrespond to edges in timed automata, while invariants reside in nodes.

Note also that there is no rule to dedu
e \delay" transitions in the symboli
 seman-

ti
s. As noted above, delay transitions are the sour
e of in�nity in the semanti
s

of timed automata. The purpose of the symboli
 transitional semanti
s, and the

symboli
 timed bisimulation built on it, is to avoid su
h in�nity. Thus \delays" do

not appear expli
itely in the symboli
 semanti
s. Instead they will be impli
itly

en
oded in the notion of \upward-
loseness" used to de�ne symboli
 bisimulation in

the next se
tion.

A

ording to the symboli
 semanti
s, ea
h guarded
losed term of the language

gives rise to a timed automaton; On the other hand, it is not diÆ
ult to see that every

timed automaton
an be generated from a guarded
losed term in the language. In

the sequel we will use the phrases \timed automata" and \terms" inter
hangeably.

The two versions of transitional semanti
s
an be related as follows (note again only

a
tion transitions are related):

Lemma 2.3 1. If t

�;a;x

�! t

0

then t�

a

�! t

0

�fx := 0g for any � j= � ^ Inv(t).

2. If t�

a

�! t

0

�

0

then there exist �; x su
h that � j= � ^ Inv(t), �

0

= �fx := 0g

and t

�;a;x

�! t

0

.

Proof: Both are proved by transition indu
tion.

1. Assuming t

�;a;x

�! t

0

and � j= � ^ Inv(t), we show t�

a

�! t

0

�fx := 0g.

6

� � � tt and t � a(x):t

0

tt;a;x

�! t

0

. Then (a(x):t

0

)�

a

�! t

0

�fx := 0g by a
tion and

� j= �.

� � � �

0

^ and t � �

0

!t

00

�

0

^ ;a;x

�! t

0

is be
ause t

00

 ;a;x

�! t

0

. Then Inv(t) = tt.

Sin
e � j= ^ Inv(t), by indu
tion we get t

00

�

a

�! t

0

�fx := 0g. Sin
e � j= �

0

,

by guard, t�

a

�! t

0

�fx := 0g.

� Inv(t) = �

0

and t � f�

0

gt

00

 ;a;x

�! t

0

is be
ause t

00

 ;a;x

�! t

0

. Then Inv(t

00

) = tt, and

� j= ^ Inv(t

00

). By indu
tion, we get t

00

�

a

�! t

0

�fx := 0g. Sin
e � j= �

0

, by

inv, t�

a

�! t

0

�fx := 0g.

� The other
ases are similar.

2. Assuming t�

a

�! t

0

�

0

, we show t

�;a;x

�! t

0

for some �; x su
h that � j= � ^ Inv(t)

and �

0

= �fx := 0g.

� t � a(x):t

0

and t�

a

�! t

0

�fx := 0g. Then Inv(t) = tt. By A
tion we have

t

tt;a;x

�! t

0

and � j= tt ^ Inv(t).

� t � !t

00

and t�

a

�! t

0

�

0

is be
ause � j= and t

00

�

a

�! t

0

�

0

. Then Inv(t) = tt.

By indu
tion we get t

00

�;a;x

�! t

0

for some �, x su
h that � j= � ^ Inv(t

00

) and

�

0

= �fx := 0g. By Guard, t

�^ ;a;x

�! t

0

and � j= � ^ ^ Inv(t).

� t � f�

0

gt

00

and t�

a

�! t

0

�

0

is be
ause � j= �

0

and t

00

�

a

�! t

0

�

0

. Then Inv(t) = �

0

and Inv(t

00

) = tt. By indu
tion we get t

00

�;a;x

�! t

0

for some �, x su
h that � j= �

and �

0

= �fx := 0g. By Inv, t

�;a;x

�! t

0

. Also � j= � ^ Inv(t).

� The other
ases are similar.

2

3 Symboli
 Timed Bisimulation

In this se
tion we shall de�ne a symboli
 version of timed bisimulation. To sim-

plify the presentation we �x two timed automata. To avoid
lo
k variables of one

automaton being reset by the other, we assume the sets of
lo
ks of the two timed

automata under
onsideration are disjoint, and write C for the union of the two

lo
k sets

1

. Let N be the largest natural number o

urring in the
onstraints of

the two automata. An atomi

onstraint over C with
eiling N has one of the three

forms: x > N , x 1 m or x� y 1 n where x; y 2 C;12 f�; <;�; >g and m;n � N

are natural numbers.

1

This does not impose any restri
tion on our results, be
ause we
an always rename
lo
k

variables of an automaton without a�e
ting its behaviour.

7

In the following, \atomi

onstraint" always means \atomi

onstraint over C

with
eiling N". Note that given two timed automata there are only �nite number

of su
h atomi

onstraints. We shall use
 to range over atomi

onstraints.

A
onstraint, or zone, is a boolean
ombination of atomi

onstraints. A
on-

straint � is
onsistent if there is some � su
h that � j= �. Let � and be two

onstraints. We write � j= to mean � j= � implies � j= for any �. Note that the

relation j= is de
idable.

A region
onstraint, or region for short, over n
lo
k variables x

1

; : : : ; x

n

is a

onsistent
onstraint
ontaining the following atomi

onjun
ts:

� For ea
h i 2 f1; : : : ; ng either x

i

= m

i

or m

i

< x

i

< m

i

+ 1 or x

i

> N ;

� For ea
h pair of i; j 2 f1; : : : ; ng, i 6= j, su
h that both x

i

and x

j

are not greater

than N , either x

i

�m

i

= x

j

�m

j

or x

i

�m

i

< x

j

�m

j

or x

j

�m

j

< x

i

�m

i

.

where the m

i

in x

i

� m

i

of the se
ond
lause refers to the m

i

related to x

i

in the

�rst
lause. In words, m

i

is the integral part of x

i

and x

i

�m

i

its fra
tional part.

Given a �nite set of
lo
k variables C and a
eilingN , the set of region
onstraints

over C is �nite and is denoted RC

C

N

. In the sequel, we will omit the sub- and super-

s
ripts when they
an be supplied by the
ontext.

Fa
t 1 Let � be a region
onstraint. If � j= � and �

0

j= � then

� For all i 2 f1; : : : ; ng, if �(x

i

) � N then b�(x

i

)
 = b�

0

(x

i

)
.

� For any i; j 2 f1; : : : ; ng, i 6= j,

{ f�(x

i

)g = f�(x

j

)g i� f�

0

(x

i

)g = f�

0

(x

j

)g and

{ f�(x

i

)g < f�(x

j

)g i� f�

0

(x

i

)g < f�

0

(x

j

)g.

where bx
 and fxg are the integral and fra
tional parts of x, respe
tively.

That is, two valuations satisfying the same region
onstraint must agree on their

integral parts as well as on the ordering of their fra
tional parts.

Lemma 3.1 Suppose that � is a region
onstraint and a zone. Then either �)

or �) : .

Proof: We �rst transform into disjun
tive normal form: =

W

i

V

j

e

ij

where

ea
h e

ij

is an atomi

onstraint. Now ^ � =

W

i

V

j

(e

ij

^ �). It is easy to see, by

examining the possible forms of e

ij

, that ea
h e

ij

^ � is either equal to � or false.

Hen
e ^ � is either equal to � or false. In the former
ase we have �) , and in

the later
ase we get �) : . 2

A

ording to this lemma, a region is either entirely
ontained in a zone, or is

ompletely outside a zone. In other words, regions are the �nest polyhedra that
an

be des
ribed by our
onstraint language.

The notion of a region
onstraint enjoy an important property: pro
esses in the

same region behave uniformly with respe
t to timed bisimulation ([Cer92℄):

8

Fa
t 2 Let t, u be two terms with disjoint sets of
lo
k variables and � a region

onstraint over the union of the two
lo
k sets. Suppose that both � and �

0

satisfy �.

Then t� � u� i� t�

0

� u�

0

.

A
anoni
al
onstraint is a disjun
tion of regions. Given a
onstraint we
an

�rst transform it into disjun
tive normal form, then de
ompose ea
h disjun
t into a

disjoint set of regions. Both steps
an be e�e
tively implemented. As a
orollary to

Lemma 3.1, if we write RC(�) for the set of regions
ontained in the zone �, then

W

RC(�) = �, i.e.

W

RC(�) is the
anoni
al form of �.

We will need two (post�xing) operators to deal with resetting. The �rst one is

#

x

where x � C � C. We �rst de�ne it on regions, then generalise it to zones. With

abuse of notation, we will write
 2 � to mean
 is a
onjun
t of �.

For a region �,

�#

x

= � #

0

x

^

V

f x

i

= 0 j x

i

2 x g ^

V

f x

i

= x

j

j x

i

; x

j

2 x g

^

V

f x

i

= x

j

�m j x

i

2 x; x

j

62 x; x

j

= m 2 � g

^

V

f x

i

< x

j

�m j x

i

2 x; x

j

62 x; x

j

> m 2 � g

and #

0

x

is de�ned by

tt #

0

x

= tt

(
 ^ �) #

0

x

= � #

0

x

if x \ fv(
) 6= ;

(
 ^ �) #

0

x

=
 ^ � #

0

x

if x \ fv(
) = ;

where fv(
) is the set of
lo
k variables appearing in (atomi

onstraint)
.

For a
anoni
al
onstraint

W

i

�

i

with ea
h �

i

a region, (

W

i

�

i

)#

x

=

W

i

(�

i

#

x

). For

an arbitrary
onstraint �, �#

x

is understood as the result of applying #

x

to the

anoni
al form of �.

Lemma 3.2 1. � j= � implies �fx := 0g j= �#

x

.

2. If � is a region
onstraint then so is �#

x

.

Proof:

1. Let

W

i

�

i

be the
anoni
al form of �. Sin
e � j= �, � j= �

i

for some i. Now

�

i

is a region
onstraint, so �fx := 0g j= �

i

#

x

follows immediately from the

de�nition of #

x

.

2. Immediately from the de�nition of #

x

.

2

The se
ond operator * is de�ned similarly. We �rst de�ne it on regions:

�* = �*

0

^

^

i�j

e

ij

(�)

9

where *

0

is de�ned by

(x < m ^ �)*

0

= �*

0

(x = m ^ �)*

0

= m � x ^ �*

0

(x

i

�m

i

< x

j

�m

j

^ �)*

0

= x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1 ^ �*

0

(
 ^ �)*

0

=
 ^ �*

0

for other atomi

onstraint

tt*

0

= tt

and

e

ij

(�) =

(

x

i

�m

i

= x

j

�m

j

if x

i

= m

i

; x

j

= m

j

2 �

tt otherwise

For an arbitrary
onstraint �, �* is understood as the result of applying * to ea
h

disjun
t of the
anoni
al form of �. � is *-
losed if and only if �* = �.

Lemma 3.3 1. � j= � implies � j= �*.

2. �* is *-
losed.

3. If � is *-
losed then � j= � implies �+ d j= � for all d 2 R

�0

.

Proof:

1. Immediately from the de�nition of *.

2. It is suÆ
ient to
onsider the
ase when � is a region
onstraint. We
he
k

if ea
h
onjun
t introdu
ed by the * operator is preserved by the a further

appli
ation of it. The only interesting
ase is the third
lause in the de�nition

of *

0

. Dire
t
al
ulation gives:

(x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1)*

0

= (x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1)^

(x

j

�m

j

< x

i

�m

i

+ 1 ^ x

i

�m

i

+ 1 < x

j

�m

j

+ 1)

= x

i

�m

i

< x

j

�m

j

^ x

j

�m

j

< x

i

�m

i

+ 1

3. Let

W

i

�

i

be the
anoni
al form of �. We have �* =

W

i

�

i

* = �. Sin
e � j= �,

� j= �

i

* for some i. It is straightforward to
he
k that � + d j= for ea
h

onjun
t of �

i

*.

2

Symboli
 bisimulation will be de�ned as a family of binary relations indexed by

lo
k
onstraints. Following [Cer92℄ we use
onstraints over the union of the (dis-

joint)
lo
k sets of two timed automata as indi
es. The reason for this is as follows:

the de�nition of timed bisimulation requires two pro
esses to mat
h a
tion transi-

tions as well as delay transitions, whi
h amounts to requiring them to mat
h a
tion

transitions while their
lo
ks progress at the same rate. In the de�nition of symboli

bisimulation indexing
onstraints are subje
t to the * operation whi
h introdu
es

10

equalities between
lo
k variables (the e

ij

omponent in the above de�nition), whi
h

guarantees the \same rate" requirement when su
h
onstraints are over the union

of the two
lo
k sets.

Given a
onstraint �, a �nite set of
onstraints � is
alled a �-partition if

W

� = �.

A �-partition � is
alled �ner than another su
h partition 	 if �
an be obtained

from 	 by de
omposing some of its elements. By the
orollary to Lemma 3.1,

RC(�) is a �-partition, and is the �nest su
h partition. In parti
ular, if � is a region

onstraint then f�g is the only partition of �.

De�nition 3.4 A
onstraint indexed family of symmetri
 relations over terms S =

fS

�

j � is *�
losed g is a symboli
 timed bisimulation if (t; u) 2 S

�

implies

1. � j= Inv(t), Inv(u) and

2. whenever t

 ;a;x

�! t

0

then there is a Inv(t) ^ � ^ -partition � su
h that for

ea
h �

0

2 � there is u

0

;a;y

�! u

0

for some

0

; y and u

0

su
h that �

0

)

0

and

(t

0

; u

0

) 2 S

�

0

#

xy

*

.

We write t �

�

u if (t; u) 2 S

�

2 S for some symboli
 bisimulation S. 2

Note that there is no
lause for delay transitions in the de�nition, be
ause delays

are en
oded in the *-
loseness property of the indexing
onstraints.

The use of a partition when mat
hing a symboli
 transition is essential. Without

it we will not be able to
hara
terise timed bisimulation using symboli
 transitions.

For example,
onsider the two timed automata t

1

and t

2

below (we have omitted the

empty resets). They are apparently timed bisimilar. But the symboli
 transition

t

2

tt;a;fg

�!
an not be entirely mat
hed by either of the two symboli
 transitions from t

1

.

We must use a partition, say fx � 1; x > 1g: t

1

an mat
h the symboli
 transition

from t

2

using its left bran
h over the
onstraint x � 1, and the right bran
h over

x > 1.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

?

???

�

�

�

�	

�

�

�

�R

x�1

a

x>1 tt

a a

b b b

tttttt

t

1

t

2

Symboli
 timed bisimulation
aptures � in the following sense:

Theorem 3.5 For *�
losed �, t �

�

u i� t� � u� for any � j= �^ Inv(t)^ Inv(u).

11

Proof: (=)) Assume (t; u) 2 S

�

2 S for some symboli
 bisimulation S. De�ne

R = f (t�; u�) j there exists some � su
h that � j= � and (t; u) 2 S

�

2 S g

We show R is a timed bisimulation. Suppose (t�; u�) 2 R, i.e. there is some � su
h

that � j= � and (t; u) 2 S

�

. By the �rst
laus in De�nition 3.4, we have � j= Inv(t)

if and only if � j= Inv(u).

� t�

a

�! t

0

�

0

. By Lemma 2.3 there are ; x su
h that � j= ^ Inv(t), �

0

=

�fx := 0g and t

 ;a;x

�! t

0

. So there is a � ^ -partition � with the properties

spe
i�ed in De�nition 3.4. Sin
e � j= � ^ , � j= �

0

for some �

0

2 �. Let

u

0

;a;y

�! u

0

be the symboli
 transition asso
iated with this �

0

, as guaranteed by

De�nition 3.4. Then �

0

)

0

and (t

0

; u

0

) 2 S

�

0

#

xy

*

. Sin
e � j=

0

^ Inv(u),

u�

a

�! u

0

�fy := 0g. By Lemma 3.2, �fxy := 0g j= �

0

#

xy

. By Lemma 3.3,

�fxy := 0g j= �

0

#

xy

*. Therefore (t

0

�fxy := 0g; u

0

�fxy := 0g) 2 R. Sin
e

t

0

�fxy := 0g � t

0

�fx := 0g and u

0

�fxy := 0g � u

0

�fy := 0g, this is the same

as (t

0

�fx := 0g; u

0

�fy := 0g) 2 R.

� t�

d

�! t(� + d). Sin
e � is *-
losed, � + d j= �. Then � + d j= Inv(u) and

hen
e u�

d

�! u(�+ d). Therefore (t(� + d); u(�+ d)) 2 R.

((=) Assume t� � u� for any � j= �

0

^ Inv(t) ^ Inv(u), i.e. (t�; u�) 2 R for some

timed bisimulation R, we show t �

�

0

u as follows. For ea
h *�
losed �, de�ne

S

�

= f (t; u) j 8�

0

2 RC(�); (t�; u�) 2 R for any � j= �

0

^ Inv(t) ^ Inv(u) g

and let S = fS

�

j � is * �
losed g. Then (t; u) 2 S

�

0

. S is well-de�ned be
ause

of Fa
t 2. We show S is a symboli
 bisimulation. Suppose (t; u) 2 S

�

. Consider

any �

0

2 RC(�). There exists � j= �

0

^ Inv(t) ^ Inv(u) su
h that (t�; u�) 2 R.

Sin
e �

0

is a region it must be entirely
ontained in Inv(t) ^ Inv(u), i.e. �

0

j=

Inv(t) , Inv(u). Therefore � j= Inv(t) , Inv(u). Now let t

 ;a;x

�! t

0

. De�ne

�

0

= f�

0

j �

0

2 RC(�) and �

0

) g. Then �

0

is a �^ -partition. For ea
h �

0

2 �

0

,

there exists � s.t. � j= �

0

with (t�; u�) 2 R. By the de�nition of �

0

, � j= . By

Lemma 2.3, t�

a

�! t

0

�fx := 0g. Sin
e (t�; u�) 2 R, u�

a

�! u

0

�

0

for some u

0

and �

0

with (t

0

�fx := 0g; u

0

�

0

) 2 R. By Lemma 2.3 again, u

0

;a

0

;y

�! u

0

for some

0

and y

with � j=

0

and �

0

= �fy := 0g. Hen
e (t�fx := 0g; u�fy := 0g) 2 R, whi
h is

the same as (t�fxy := 0g; u�fxy := 0g) 2 R. Sin
e � j= �

0

, by Lemma 3.2 we have

�fxy := 0g j= �

0

#

xy

. Sin
e �

0

is a region
onstraint, so is �

0

#

xy

whi
h is the only

element of RC(�

0

#

xy

). Therefore (t

0

; u

0

) 2 S

�

0

#

xy

*

. 2

4 The Proof System

The proposed proof system
onsists of a set of inferen
e rules in Figure 4 and a

set of equational axioms in Figure 5. The judgments of the inferen
e system are

onditional equations of the form

�� t = u

12

EQUIV

t = t

�� t = u

�� u = t

�� t = u �� u = v

�� t = v

AXIOM

t = u

t = u an axiom instan
e

CHOICE

�� t = t

0

�� t+ u = t

0

+ u

GUARD

� ^ � t = u � ^ : � 0 = u

�� !t = u

INV

� ^ � t = u � ^ : � f�g0 = u

�� f gt = u

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

THINNING

a(xy):t = a(x):t

y \ C(t) = ;

REC

�xXt = t[�xXt=X℄

UFI

t = u[t=X℄

t = �xXu

X guarded in u

UNG

�xX(X + t) = �xXt

PARTITION

�

1

� t = u �

2

� t = u

�� t = u

� j= �

1

_ �

2

ABSURD

� � t = u

Figure 4: The Inferen
e Rules

where � is a
onstraint and t; u are terms. Its intended meaning is \t �

�

u", or

\t� � u� for any � j= � ^ Inv(t) ^ Inv(u)". tt� t = u will be abbreviated as t = u.

The axioms are the standard monoid laws for bisimulation in pro
ess algebras.

More interesting are the inferen
e rules. For ea
h
onstru
t in the language there is

a
orresponding introdu
tion rule. CHOICE expresses the fa
t that timed bisimu-

lation is preserved by +. The rule GUARD permits a
ase analysis on
onditional.

The rule INV deals with invariants. It also does a
ase analysis and appears very

similar to GUARD. However, there is a
ru
ial di�eren
e: When the guard is

false !t behaves like 0, the pro
ess whi
h is ina
tive but
an allow time to pass;

On the other hand, when the invariant is false f gt behaves like f�g0, the pro-

ess usually referred to as time-stop, whi
h is not only ina
tive but also \still",

an not even let time elapse. ACTION is the introdu
tion rule for a
tion pre�xing

(with
lo
k resetting). The THINNING rule allows to introdu
e/remove redundant

lo
ks. REC is the usual rule for folding/unfolding re
ursions, while UFI says if X

is guarded in u then �xXu is the unique solution of the equation X = u. UNG

an be used to transform unguarded terms into guarded ones. Finally the two rules

PARTITION and ABSURD do not handle any spe
i�

onstru
ts in the language.

13

They are so-
alled \stru
tural rules" used to \glue" pie
es of derivation together.

Taking �

1

= �

2

PARTITION spe
ialises to a useful rule

CONSEQUENCE

�

1

� t = u

�� t = u

� j= �

1

Let us write ` � � t = u to mean � � t = u
an be derived from this proof

system.

Some useful properties of the proof system are summarised in the following

proposition:

Proposition 4.1 1. ` �!(!t) = � ^ !t

2. ` t = t+ �!t

3. If � j= then ` �� t = !t

4. ` � ^ � t = u implies ` �� !t = !u

5. ` �!(t+ u) = �!t+ �!u

6. ` �!t+ !t = � _ !t

7. For any t and u, ` f�gt = f�gu

Proof: We only give proofs for 1, 4 and 7, leaving the others to the readers.

We �rst prove a lemma:

If � ^ = � then ` �� !t = 0 (1)

By GUARD we need to show

� ^ � t = 0 and � ^ : � 0 = 0

The �rst follows from the hypothesis and ABSURD, while the se
ond from EQUIV.

1. An appli
ation of GUARD gives

�� !t = � ^ !t (2)

and

:�� 0 = � ^ !t (3)

(3) is an instan
e of 1. To show (2), we apply GUARD again and obtain two

subgoals:

� ^ � t = � ^ !t and � ^ : � 0 = � ^ !t

The se
ond subgoal
an be settled by (1). Apply symmetri
ity (the middle rule in

EQUIV) followed by GUARD, the �rst subgoal is redu
ed to

(� ^) ^ (� ^)� t = t and (� ^) ^ :(� ^)� 0 = t

14

S1 X + 0 = X S2 X +X = X

S3 X + Y = Y +X S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Equational Axioms

whi
h
an be settled by EQUIV (plus CONSEQUENCE) and ABSURD, respe
-

tively.

4. By GUARD, ` �� !t = !u
an be redu
ed to

� ^ � t = �!u and � ^ : � 0 = �!u

The se
ond subgoal is an instan
e of (1). For the �rst one we apply GUARD again

obtaining

(� ^) ^ � t = u and (� ^) ^ : � t = 0

Now the �rst subgoal follows from the hypothesis and the se
ond from ABSURD.

7. It is suÆ
ient to prove ` f�gt = f�g0 for any t. By INV this
an be redu
ed to

` �� t = f�g0 and ` :� � f�g0 = f�g0. The �rst subgoal is settled by ABSURD

while the se
ond by EQUIV. 2

The following lemma shows how to \push" a
ondition through an a
tion pre�x:

Lemma 4.2 ` �� a(x):f gt = a(x):f g�#

x

*!t.

Proof: By ACTION this
an be redu
ed to

�#

x

*� f gt = f g�#

x

*!t

An appli
ations of INV gives two subgoals:

�#

x

* ^ � t = f g�#

x

*!t (4)

�#

x

* ^ : � f�g0 = f g�#

x

*!t (5)

Apply INV again to (4) we get

�#

x

* ^ ^ � t = �#

x

*!t and �#

x

* ^ ^ : � t = f�g0

the �rst follows from Proposition 4.1.3, while the se
ond from ABSURD.

(5)
an be settled similarly by an appli
ation of INV followed by EQUIV and

ABSURD. 2

The UFI rule, as presented in Figure 4, is un
onditional. However, a
onditional

version
an be derived:

Proposition 4.3 Suppose X is guarded in u. Then from ` �� t = u[�!t=X℄ infer

` �� t = �xX�!u.

15

Proof: Assume ` � � t = u[�!t=X℄. By Proposition 4.1.4 we have ` �!t =

�!u[�!t=X℄, i.e.

` �!t = (�!u)[�!t=X℄

Sin
e X is guarded in u, it is also guarded in �!u. By UFI, ` �!t = �xX�!u.

Hen
e

` �!t

REC

= (�!u)[�xX�!u=X℄

= �!u[�xX�!u=X℄

= �!(�!u)[�xX�!u=X℄

REC

= �!�xX�!u

Therefore, by Proposition 4.1.4 again, ` �� t = �xX�!u. 2

The rule PARTITION has a more general form:

Proposition 4.4 Suppose 	 is a �-partition and ` � t = u for ea
h 2 	, then

` �� t = u.

Proof: By indu
tion on the size of 	. The base
ase when 	
ontains only one

element is trivial. For the indu
tion step, assume the statement of the proposition

holds for �-partitions of size k and let 	 = f

i

j 1 � i � k+1 g. Set 	

0

= f:

k+1

^

i

j 1 � i � k g. Sin
e `

i

� t = u, by CONSEQUENCE ` :

k+1

^

i

� t = u.

Therefore by the indu
tion hypothesis,

`

_

	

0

� t = u

From this and the assumption `

k+1

� t = u, by PARTITION we obtain

`

k+1

_

_

	

0

� t = u

Sin
e

k+1

_

_

	

0

=

k+1

_(:

k+1

^

_

1�i�k

i

) =

_

1�i�k+1

i

=

_

	 = �, this
ompletes

the indu
tion. 2

In the rest of this se
tion we dis
uss the soundness of the proof system. First

we show that the rule UFI is sound with respe
t to �. Following [Mil89℄ we use the

te
hnique of bisimulation up to.

De�nition 4.5 A symmetri
 relation R is a timed bisimulation up to � if (p; q) 2 R

implies

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and (p

0

; q

0

) 2 R.

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and (p

0

; q

0

) 2� R �.

2

Note that the derivatives of delay transitions are required to be in the same relation,

while those of a
tion transitions are allowed to be related modular �.

16

Lemma 4.6 If R is a timed bisimulation up to � then R ��.

Proof: Let (p; q) 2 R and p

�

�! p

0

. We need to show that there is some q

0

su
h

that q

�

�! q

0

and (p

0

; q

0

) 2 R. The
ase when � is an a
tion is settled in the same

way as in the proof of Proposition 6, Se
tion 4.3, [Mil89℄. The
ase when � is a

delay follows dire
tly from De�nition 4.5. 2

Lemma 4.7 If X is guarded in v and v[t=X℄

a

�! t

0

, then t

0

has the form v

0

[t=X℄,

and moreover, for any u, v[u=X℄

a

�! v

0

[u=X℄.

This lemma
on
erns only a
tion transitions and its proof is the same as that of

Lemma 13, Se
tion 4.5, [Mil89℄.

Proposition 4.8 Suppose fv(v) � fXg and X is guarded in v. If t� � v[t=X℄�

and u� � v[u=X℄� then t� � u�.

Proof: We show the relation

R = f (v[t=X℄�; v[u=X℄�) j fv(v) � fXg g

is a timed bisimulation upto �. Assume (v[t=X℄�; v[u=X℄�) 2 R and
onsider the

following two
ases:

� v[t=X℄�

d

�! v[t=X℄(� + d). Then also v[u=X℄�)

d

�! v[u=X℄(� + d) and

(v[t=X℄(�+ d); v[u=X℄(�+ d)) 2 R.

� v[t=X℄�

a

�! t

0

�

0

. In this
ase we
an �nd a mat
hing transition v[u=X℄�

a

�!

u

0

�

0

su
h that (t

0

�

0

; u

0

�

0

) 2� R �, as in the proof of Proposition 14, Se
tion 4.5,

[Mil89℄.

2

Soundness of the proof system is stated below:

Theorem 4.9 If ` � � t = u and � is *-
losed then t� � u� for any � j= � ^

Inv(t) ^ Inv(u).

The standard approa
h to the soundness proof is by indu
tion on the length of

derivations, and perform a
ase analysis on the last rule/axiom used. However, this

does not quite work here. The reason is that the de�nition of timed bisimulation

requires two pro
esses to simulate ea
h other after any time delays. To re
e
t

this in the proof system, we apply the * operator, after #

x

for
lo
k resetting, in

the premise of the ACTION rule. But not all the inferen
e rules preserve the *-

loseness property. An example is GUARD. In order to derive � � !t = u, we

need to establish � ^ � t = u and � ^ : � 0 = u. Even if � is *-
losed, � ^

may not be so.

To over
ome this diÆ
ulty, we introdu
e the notion of \timed bisimulation up

to a time bound", formulated as follows

17

De�nition 4.10 Two pro
esses p and q are timed bisimular up to d

0

2 R

�0

, written

p �

d

0

q, if for any d su
h that 0 � d � d

0

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and p

0

�

� q

0

,

� whenever q

d

�! q

0

then p

d

�! p

0

for some p

0

and p

0

�

� q

0

.

where p

�

� q is de�ned thus

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and p

0

� q

0

,

� whenever q

a

�! q

0

then p

a

�! p

0

for some p

0

and p

0

� q

0

.

2

The di�eren
e between timed bisimulation up to d and the standard notion of timed

bisimulation only
on
erns initial delay transitions: in timed bisimulation up to d

two pro
esses are required to mat
h only those initial delay transitions with duration

no greater that d. Note that

�

� is the same as �

0

, and �

d

0

�

�

� in general.

Lemma 4.11 1. If p �

d

0

q for any d

0

2 R

�0

then p � q.

2. Let �

i

and d

i

, 0 � i � n, be su
h that �

i+1

= �

i

+ d

i

, 0 � i < n. If t�

i

�

d

i

u�

i

for all i su
h that 0 � i � n, then t�

0

�

d

u�

0

where d = d

0

+ : : :+ d

n

.

Proof: Both follow dire
tly from the de�nition of �

d

0

. 2

Now the following proposition, of whi
h Theorem 4.9 is a spe
ial
ase when � is

*-
losed,
an be proved by standard indu
tion on the length of derivations :

Proposition 4.12 If ` � � t = u then t� �

d

0

u� for any � and d

0

su
h that

�+ d j= � ^ Inv(t) ^ Inv(u) for all 0 � d � d

0

.

Proof: By indu
tion on the length of inferen
e. The base
ase when the length

is 0 is straightforward. For the indu
tion step we do
ase ananysis on the last rule

applied.

� ACTION. Assume �; d

0

are su
h that �+ d j= � for any 0 � d � d

0

. To show

(a(x):t)� �

d

0

(a(x):u)�, let (a(x):t)�

d

�! (a(x):t)(�+d) with 0 � d � d

0

. This

an be mat
hed by (a(x):u)�

d

�! (a(x):u)(� + d). To see (a(x):t)(� + d)

�

�

(a(x):u)(� + d), observe that the only possible a
tion transition from both

sides is an a-transition:

(a(x):t)(�+ d)

a

�! t(�+ d)fx := 0g

(a(x):u)(�+ d)

a

�! u(�+ d)fx := 0g

Write �

0

for (�+d)fx := 0g. For any d

0

0

and any 0 � d

0

� d

0

0

, �

0

+d

0

j= �#

x

*. By

indu
tion, t�

0

�

d

0

0

u�

0

. Therefore t�

0

� u�

0

by Lemma 4.11. This establishes

(a(x):t)(� + d)

�

� (a(x):u)(�+ d). Hen
e (a(x):t)� �

d

0

(a(x):u)�.

18

� GUARD. Assume �; d

0

are su
h that � + d j= � for any 0 � d � d

0

. The

line [�; �+ d

0

℄ is divided by regions into �nite many segments [�; �

1

), [�

1

; �

1

℄,

(�

1

; �

2

), [�

2

; �

2

℄, : : :, [�

n

; �

n

℄ and (�

n

; � + d

0

℄, where �

i+1

= �

i

+ d

0

i

, su
h that

ea
h segment is entirely
ontained in some region. By Lemma 4.11 we only

need to show (!t)�

i

�

d

0

i

u�

i

for ea
h 1 � i � n.

By Lemma 3.1, ea
h (�

i

; �

i

+d

0

i

) is either entirely
ontained in �^ or entirely

ontained in �^: . By indu
tion, in the former
ase we have (!t)�

i

�

d

0

i

u�

i

.

In the later
ase we have 0�

i

�

d

0

i

u�

i

. Sin
e �

i

+ d

0

6j= for any 0 � d

0

� d

0

i

in this
ase, it follows 0(�

i

+ d

0

) � (!t)(�

i

+ d

0

). Hen
e (!t)�

i

�

d

0

i

u�

i

.

Therefore we have (!t)�

i

�

d

0

i

u�

i

in both
ases.

� UFI. See Proposition 4.8.

� The other
ases are similar (and easier).

2

5 Completeness

This se
tion is devoted to proving the
ompleteness of the proof system whi
h is

stated thus: if t �

�

u then ` � � t = u. The stru
ture of the proof follows from

that of [Mil84℄. The intuition behind the proof is as follows: A timed automaton is

presented as a set of standard equations in whi
h the left hand-side of ea
h equation

is a formal pro
ess variable
orresponding to a node of the automaton, while the

right hand-side en
odes the outgoing edges from the node. We �rst transform,

within the proof system, both t and u into su
h equation sets (Proposition 5.1). We

then
onstru
t a \produ
t" of the two equation sets, representing the produ
t of the

two underlying timed automata. Be
ause t and u are timed bisimilar over �, ea
h

should also bisimilar to the produ
t over �. Using this as a guide we show that su
h

bisimilarity is derivable within the proof system, i.e. both t and u provably �-satisfy

the produ
t equation set (Proposition 5.2). Finally we demonstrate that a standard

set of equations has only one solution, therefore the required equality between t and

u
an be derived. The unique �xpoint indu
tion is only employed in the last step of

the proof, namely Proposition 5.3.

Let X = fX

i

j i 2 I g and W be two disjoint sets of pro
ess variables and x

a set of
lo
k variables. Let also u

i

; i 2 I; be terms with free pro
ess variables in

X [W and
lo
k variables in x. Then

E : fX

i

= u

i

j i 2 I g

is an equation set with formal pro
ess variables X and free pro
ess variables in W.

E is
losed if W = ;. E is a standard equation set if ea
h u

i

has the form

f

i

g(

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

+

X

k

0

2K

0

i

ik

0

!W

f

0

(i;k

0

)

)

19

A term t provably �-satis�es an equation set E if there exist a ve
tor of terms

f t

i

j i 2 I g, ea
h t

i

being of the form f

0

i

gt

0

i

, and a ve
tor of
onditions f�

i

j i 2 I g

su
h that �

1

= �, ` �� t

1

= t, �

i

j= Inv(u

i

),

0

i

, and

` �

i

� t

i

= u

i

[f

0

i

g(�

i

!t

0

i

)=X

i

ji 2 I℄

for ea
h i 2 I. We will simply say \t provably satis�es E" when �

i

= tt for all i 2 I.

Proposition 5.1 For any guarded term t with free pro
ess variables W there ex-

ists a standard equation set E, with free pro
ess variables in W, whi
h is provably

satis�ed by t. In parti
ular, if t is
losed then E is also
losed.

Proof: By indu
tion on the stru
ture of t. The only non-trivial
ase is re
ursion

when t � �xXt

0

with X guarded in t

0

. By indu
tion there is a standard equation

set E

0

: fX

i

= u

i

j i 2 I g with free pro
ess variables in FV (t) [fXg and t

0

i

: s

su
h that ` t

0

= t

0

1

and

` t

0

i

= u

i

[t

0

i

=X

i

ji 2 I℄

We may assume that X is di�erent from any X

i

. Let v

i

= u

i

[u

1

=X℄ for ea
h i. Note

that sin
e X is under an a
tion pre�xing in t

0

, it does not o

ur free in u

1

. Hen
e

v

1

= u

1

. Consider the equation set

E : fX

i

= v

i

j i 2 I g

To show t satis�es E, set t

i

= t

0

i

[t=X℄. Then

` t = �xXt

0

= �xXt

0

1

REC

= t

0

1

[�xXt

0

1

=X℄

= t

0

1

[t=X℄

= t

1

Now

` t = t

0

1

[t=X℄

= u

1

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

1

[t

0

i

[t=X℄=X

i

ji 2 I℄

= u

1

[t

i

=X

i

ji 2 I℄

and

` t

i

= t

0

i

[t=X℄

= u

i

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

i

[t; t

0

i

[t=X℄=X;X

i

ji 2 I℄

= u

i

[t; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

[t

i

=X

i

ji 2 I℄; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

=X℄[t

i

=X

i

ji 2 I℄

= v

i

[t

i

=X

i

ji 2 I℄

2

20

Proposition 5.2 For
losed terms t and u, if t �

�

u then there exist a �

0

su
h that

�) �

0

and a standard,
losed equation set E whi
h is provably �

0

-satis�ed by both

t and u.

Proof: It easy to see that, using ruleUNG, any unguarded term
an be transformed

into a guarded one, so we may assume both t and u are guarded.

Let the sets of
lo
k variables of t; u be x; y, respe
tively, with x \ y = ;. Let

also E

1

and E

2

be the standard equation sets for t and u, respe
tively:

E

1

: fX

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

j i 2 I g

E

2

: fY

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):Y

g(j;l)

j j 2 J g

So there are t

i

� f�

0

i

gt

0

i

; u

j

� f

0

j

gu

0

j

with ` t

1

= t, ` u

1

= u su
h that j= �

i

, �

0

i

,

j=

i

,

0

i

, and

` t

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):t

f(i;k)

` u

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):u

g(j;l)

Without loss of generality, we may assume a

ik

= b

jl

= a for all i; k; j; l.

For ea
h pair of i; j, let

�

ij

= f� 2 RC(xy) j t

i

�

�*

u

j

g

Set �

ij

=

_

�

ij

. By the de�nition of �

ij

, �

ij

is the weakest
ondition over whi
h

t

i

and u

j

are symboli
ally bisimilar, that is,) �

ij

for any su
h that t

i

�

u

j

.

In parti
ular, �) �

11

. Also for ea
h � 2 �

ij

, � j= Inv(t

i

) , Inv(u

j

), i.e.,

� j= �

0

i

,

0

j

, hen
e � j= �

i

,

j

.

For ea
h � 2 �

ij

let

I

�

ij

= f (k; l) j t

f(i;k)

�

�#

x

ik

y

jl

*

u

g(j;l)

g

De�ne

E : Z

ij

= f�

i

g

X

�2�

ij

�!

X

(k;l)2I

�

ij

a(x

ik

y

jl

):Z

f(i;k)g(j;l)

We
laim that E is provably �

11

-satis�ed by t when ea
h Z

ij

is instantiated with

t

i

over �

ij

. We need to show, for ea
h i,

` �

ij

� t

i

= f�

i

g

X

�2�

ij

�!(

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

)

Sin
e the elements of �

ij

are mutually disjoint, by Propositions 4.4 and 4.1, it is

suÆ
ient to show that, for ea
h � 2 �

ij

,

` �� t

i

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

21

By the de�nition of I

�

ij

, we have t

f(i;k)

�

�#

x

ik

y

jl

*

u

g(j;l)

. Hen
e, from the de�nition

of �

ij

,

�#

x

ik

y

jl

*) �

f(i;k)g(j;l)

Therefore

` � � f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�

f(i;k)g(j;l)

!t

0

f(i;k)

Lemma 4:2

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�#

x

ik

y

jl

*!�

f(i;k)g(j;l)

!t

0

f(i;k)

Prop: 4:1

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

g�#

x

ik

y

jl

*!t

0

f(i;k)

Lemma 4:2

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

y

jl

):f�

0

f(i;k)

gt

0

f(i;k)

THINNING

= f�

i

g

X

(k;l)2I

�

ij

a(x

ik

):t

f(i;k)

S1-S4

= f�

i

g

X

k2K

i

a(x

ik

):t

f(i;k)

= t

i

Symmetri
ally we
an show E is provably �

11

-satis�ed by u when Z

ij

is instan-

tiated with u

j

over �

ij

. 2

Proposition 5.3 If both t and u provably �-satisfy an equation set E then ` ��t =

u.

Proof: By indu
tion on the size of E. For the base
ase when E
ontains only

one equation X

1

= v

1

, we have ` � � t = v

1

[�!t=X

1

℄. Sin
e E is standard, X

1

is guarded in v

1

. Therefore by Proposition 4.3, ` � � t = �xX

1

�!v

1

. Similarly

` �� u = �xX

1

�!v

1

. Hen
e ` �� t = u.

Assume the result for m and let E
ontain m + 1 equations:

X

i

= v

i

1 � i � m + 1

Sin
e t provably �-satis�es E, there are t

i

and �

i

, 1 � i � m+1, su
h that ` t

1

= t,

�

1

= �, and

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

for ea
h 1 � i � m + 1. In parti
ular

` �

m+1

� t

m+1

= v

m+1

[�

i

!t

i

=X

i

j1 � i � m + 1℄

= (v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄)[�

m+1

!t

m+1

=X

m+1

℄

By Proposition 4.3, noting that X

m+1

is guarded in v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄,

` �

m+1

� t

m+1

= �xX

m+1

�

m+1

!v

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

22

Let w

m+1

be �xX

m+1

�

m+1

!v

m+1

. We have

` �

m+1

� t

m+1

= w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

By Proposition 4.1,

` �

m+1

!t

m+1

= �

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

Now, writing w

i

for v

i

[�

m+1

!w

m+1

=X

m+1

℄, we have

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!t

m+1

=X

m+1

℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄=X

m+1

℄

= v

i

[�

m+1

!w

m+1

=X

m+1

℄[�

i

!t

i

=X

i

j1 � i � m℄

= w

i

[�

i

!t

i

=X

i

j1 � i � m℄

This shows t provably �-satis�es the equation set

E

0

: X

i

= w

i

1 � i � m

Symmetri
ally we
an show u provably �-satis�es E

0

. By indu
tion we
on
lude

` �� t = u.

2

Putting together Propositions 5.2 and 5.3 we obtain the main theorem:

Theorem 5.4 For
losed terms t and u, if t �

�

u then ` �� t = u.

Proof: By Proposition 5.2, there is a standard equation set E whi
h are �

0

-satis�ed

by both t and u for some �

0

su
h that �

0

) �. By Proposition 5.3, ` �

0

� t = u.

Finally, by CONSEQUENCE, ` �� t = u. 2

6 Con
lusion And Related Work

We have presented an axiomatisation, in the form of an inferen
e system, of timed

bisimulation for timed automata, and proved its
ompleteness. To the best of our

knowledge, this is the �rst
omplete axiomatisation for the full set of timed au-

tomata. There are two key rules in this axiomatisation: ACTION for a
tion pre-

�xing and UFI for re
ursion. The former
aters for
lo
k reseting and progressing.

The form of the later rule is synta
ti
ally the same as that used for parameterless

pro
esses [Mil84℄, but here it is impli
itly parameterised on
lo
k variables, sin
e

the terms involved may
ontain free
lo
k variables.

We have shown that by generalising pure equational reasoning to a set of infer-

en
e rules dealing with spe
i�
 language
onstru
ts needed for timed automata, the

standard monoid laws for bisimulation are suÆ
ient for
hara
terizing bisimulation

23

in the timed world. This result agrees with the previous works on proof systems

for value-passing pro
esses [HL96℄ and for �-
al
ulus [Lin94℄, providing a further

eviden
e that the four monoid laws
apture the essen
e of bisimulation.

The most interesting development so far in algebrai

hara
terizations for timed

automata are presented in [ACM97, BP99℄. As the main result, they established

that ea
h timed automaton is equivalent to an algebrai
 expression out of the stan-

dard operators in formal languages, su
h as union, interse
tion,
on
atenation and

variants of Kleene's star operator, in the sense that the automaton re
ognize the

same timed language as denoted by the expression. However, the issue of axiomati-

sation was not
onsidered there. In [DAB96℄ a set of equational axioms was proposed

for timed automata, but no
ompleteness result was reported. [HS98℄ presents an

algebrai
 framework for real-time systems whi
h is similar to timed automata where

\invariants" are repla
ed by \deadlines" (to express \urgen
y"), together with some

equational laws. Apart from these, we are not aware of any other published work

on axiomatising timed automata. On the other hand, most timed extensions of

pro
ess algebras
ame with equational axiomatisations. Of parti
ular relevan
e are

[Bor96℄ and [AJ94℄. The former developed a symboli
 theory for a timed pro
ess

algebra, while the later used the unique �xpoint indu
tion to a
hieve a
omplete

axiomatisation for the regular subset of the timed-CCS proposed in [Wan91℄.

Referen
es

[ACM97℄ E. Asarin, P. Caspi and O. Maler. A Kleene theorem for timed automata.

In pro
eedings of LICS'97, 1997.

[AD94℄ R. Alur and D.L. Dill. A theory of timed automata. Theoreti
al Computer

S
ien
e, 126:183{235. 1994.

[AJ94℄ L. A
eto and A. Je�rey. A
omplete axiomatization of timed bisimulation

for a
lass of timed regular behaviours. Theoreti
al Computer S
ien
e,

152(2):251{268. 1995.

[Bor96℄ M. Boreale. Symboli
 Bisimulation for Timed Pro
esses. In AMAST'96,

LNCS 1101 pp.321-335. Springer{Verlag. 1996.

[BP99℄ P. Bouyer and A. Petit. De
omposition and Composition of Timed Au-

tomata. In ICALP'99, LNCS 1644, pp. 210-219. Springer{Verlag. 1999.

[HS98℄ S. Bornot and J. Sifakis. An Algebrai
 Framework for Urgen
y. In Cal-

ulational System Design, NATO S
ien
e Series, Computer and Systems

S
ien
e 173, Marktoberdorf, July 1998.

[Cer92℄ K.

�

Cer�ans. De
idability of Bisimulation Equivalen
es for Parallel Timer

Pro
esses. In CAV'92, LNCS 663, pp.302-315. Springer{Verlag. 1992.

24

[DAB96℄ P.R. D'Argenio and Ed Brinksma. A Cal
ulus for Timed Automata (Ex-

tended Abstra
t). In FTRTFTS'96, LNCS 1135, pp.110-129. Springer{

Verlag. 1996.

[HL95℄ M. Hennessy and H. Lin. Symboli
 bisimulations. Theoreti
al Computer

S
ien
e, 138:353{389, 1995.

[HL96℄ M. Hennessy and H. Lin. Proof systems for message-passing pro
ess alge-

bras. Formal Aspe
ts of Computing, 8:408{427, 1996.

[Lin94℄ H. Lin. Symboli
 bisimulations and proof systems for the �-
al
ulus. Re-

port 7/94, Computer S
ien
e, University of Sussex, 1994.

[LW00℄ H. Lin and Y. Wang. A proof system for timed automata. Fossa
s'2000,

LNCS 1784. Mar
h 2000.

[Mil84℄ R. Milner. A
omplete inferen
e system for a
lass of regular behaviours.

J. Computer and System S
ien
e, 28:439{466, 1984.

[Mil89℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.

[Wan91℄ Wang Yi. A Cal
ulus of Real Time Systems. Ph.D. thesis, Chalmers

University, 1991.

[WPD94℄ Wang Yi, Paul Pettersson, and Mats Daniels. Automati
 Veri�
ation of

Real-Time Communi
ating Systems By Constraint-Solving. In Pro
. of the

7th International Conferen
e on Formal Des
ription Te
hniques, 1994.

25

