
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Trust and Partial Typing in Open

Systems of Mobile Agents

James Riely and Matthew Hennessy

Report 4/98 6 July 1998

Computer Science

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Trust and Partial Typing in Open Systems of Mobile

Agents

JAMES RIELY AND MATTHEW HENNESSY

ABSTRACT. We present a partially-typed semantics for Dπ, a distributed π-calculus. The se-

mantics is designed for mobile agents in open distributed systems in which some sites may harbor

malicious intentions. Nonetheless, the semantics guarantees traditional type-safety properties at

good locations by using a mixture of static and dynamic type-checking. We show how the se-

mantics can be extended to allow trust between sites, improving performance and expressiveness

without compromising type-safety.

1 Introduction

In [13] we presented a type system for controlling the use of resources in a dis-

tributed system, or network. The type system guarantees two properties:

� resource access is always safe, e.g. integer resources are always accessed

with integers and string resources are always accessed with strings, and

� resource access is always authorized, i.e. resources may only be accessed by

agents that have been granted permission to do so.

While these properties are desirable, they are properties of a network as a whole.

In open systems it is impossible to verify the system as a whole, e.g. to “type-check

the web”. In this paper, we present type systems and semantics for open systems

that guarantee the first property above. We intend to address the second property

in a forthcoming sequel to this report.

Any treatment of open systems must assume some underlying security mech-

anisms for communication between sites, or locations. One approach would be to

add security features directly in the language, as in Abadi and Gordon’s Spi cal-

culus [1]. In such languages code signatures and nonces are directly manipulable

as program objects. Here we take a more abstract approach, presenting a “secure”

semantics for a language without explicit security features. Of the underlying com-

munication mechanism, we assume only that it delivers packets uncorrupted and

that the source of a packet can be reliably determined. In wide-area networks, a

low-level signature mechanism may be required to realize these assumptions.

We start our development from the following principles:

1. Sites are divided into two groups: the good, or typed, and the bad, or un-

typed, the latter of which may harbor malicious agents.

Research funded by CONFER II and EPSRC project GR/K60701.

Email: fjamesri,matthewhg@cogs.susx.ac.uk

Trust and Partial Typing in Open Systems of Mobile Agents 2

2. Malicious agents should not be able to corrupt computation at good sites;

however, not all agents at bad sites are malicious. Thus, the static notions of

good and bad should not be used to prevent actions by an agent; rather, some

form of dynamic typechecking is necessary.

3. Because agent interaction is commonplace, agent movement, rather than in-

teraction, should be subject to dynamic typechecking.

In practice, the distinction between good and bad sites is made relative to a par-

ticular administrative domain. In the narrowest setting, only one particular virtual

machine (VM), or location, might be considered good, or well-typed, whereas all

other machines on the network are considered potentially malicious. In this case,

the goal of a security mechanism is to protect the local machine from misuse, while

at the same time allowing code from other machines to be installed locally. More

generally, the distinction between good and bad might be drawn between intra- and

inter-net, with corporate or departmental machines protected by well-typing.

Here we are interested in preventing misuse based on type-mismatching —

for example, a foreign agent attempting to access an area of memory which is

unallocated, or is allocated to a different VM; or an agent attempting to read an

integer location as an array, and thus gaining access to arbitrarily large areas of

memory. Such type violations may lead to core dumps, information leakage or the

spread of viruses and other virtual pestilence.

We study these issues in the formal setting of Dπ [13], a distributed variant of

the π-calculus [18]. In Dπ resources reside at locations and mobile agents may

move from site to site, interacting via local resources to affect computations. The

typing system of Dπ is based on location types which describe the resources avail-

able at a site. For example

locfputi:reshinti; geti:reshinti; putl:reshloci; getl:reshlocig

is the type of a location with four resources, two for manipulating integers and two

for manipulating location names. A feature which distinguishes Dπ from related

languages [11, 5, 24] is that resource names have only local significance, i.e. re-

source names are unique locally, but not globally across the network. This property

reflects the open-ended nature of open systems such as the internet.

To formalize the notion of “bad sites” in Dπ, we add a new location type, lbad,

to the language. Agents residing at locations of type lbad are effectively untyped,

as are references to resources at bad locations, regardless of where these references

occur. This weaker form of typing is achieved by adding a new inference rule

to the typing system and a new form of subtyping. We call the resulting typing

system a partial typing system, as agents and resources at bad sites are untyped.

Nevertheless partial typing ensures that resources at good sites are not misused.

The weakness of partial typing allows for the existence of malicious agents at

bad sites. Further, since agents can move, unprotected good sites can easily be

Trust and Partial Typing in Open Systems of Mobile Agents 3

corrupted; an example of this phenomenon is described in Section 3.2. Technically

this means that partial typing is not preserved by the standard reduction semantics

of Dπ; a good site may cease to be well-typed after a migration from an untyped

site. The object of this paper is the formalization of a protection policy for good

sites against such malicious attacks.

As in [26, 20, 16, 19], the basic idea is to require that code be verified be-

fore it is loaded locally. Unlike these references, however, our work is explic-

itly agent-based, and allows incoming agents to carry references to resources dis-

tributed throughout the network; further, our approach supports the introduction of

trust between sites, as described below.

Verification of incoming agents takes the form of dynamic typechecking, where

incoming code is compared against a filter for the target site. Filters provide an in-

complete, or partial, view of the types of the resources in the network, both local

and remote. Since the information in filters is incomplete, the dynamic typecheck-

ing algorithm must be able to certify agents even when the filter contains little or

no information about the agent’s site of origin; otherwise, it would forbid too many

migrations. This is potentially very dangerous as malicious agents may lie about

resources at their origin or at a third-party site.

We avoid this danger by developing an adequate semantics based on the notion

of authority. An agent moving from location k to ` is dynamically typechecked

under the authority of k, using the filter for `; every resource access must be verified

either by the filter or the authority. The full development is given in Section 4,

where we prove Subject Reduction and Type Safety theorems for this semantics,

ensuring that resource access at good locations is always type-safe. This approach

should be contrasted with that of [14] (outlined in Appendix B), which gives an

adequate semantics for networks in which the authority of incoming agents cannot

reliably be determined.

One drawback of this framework is that every agent must be dynamically

typechecked when moving from one site to another. To alleviate this burden, in

Section 5 we introduce a relationship of trust between locations, formalized using

the location type ltrust. We then modify the operational semantics so that agents

originating at trusted locations need not be typechecked. Although technically this

is a simple addition to the type system, it is also very expressive. The result is that

the network is divided into webs of trust and agents can only gain entry to a web of

trust via typechecking. Once entry to a web of trust has been earned, however, an

agent can move freely around the web; it will only be typechecked again if it leaves

a web and subsequently wishes to reenter. Moreover these webs of trust may grow

dynamically as incoming agents inform sites of other sites that they can trust.

We now present a quick overview of the remainder of the paper. In Section 2

we first review Dπ and its standard semantics, including the standard static typing

system. Section 3 introduces the notion of partial typing and shows that partial

typing is not preserved by the standard reduction relation. The next two sections

Trust and Partial Typing in Open Systems of Mobile Agents 4

Table 1 Syntax of names e, values u, patterns X, threads P, and networks M.

e ::= k Location

a Resource

X;Y ::= x Variable

(X1; ::; Xn) Tuple

P;Q;R ::= stop Termination

P jQ Composition

(νe:T)P Restriction

gotou:P Movement

u!hviP Output

u?(X:T)P Input

�P Replication

if u = v then P else Q Matching

u;v;w ::= bv Base Value

e Name

x Variable

(u1; ::; un) Tuple

M;N ::= 0 Empty

M jN Composition

(νke:T)N Restriction

kJPK Agent

contain the main contributions of the paper. Section 4 presents the formalization

of filters and dynamic typing, showing how these are incorporated into the run-

time semantics. In Section 5 this framework is extended to include trust. Both

sections include several examples, as well as proofs of Subject Reduction and Type

Safety. In Section 6 we discuss the design of the semantics and describe some of

its limitations, pointing to topics for further research. The paper ends with a brief

survey of related work.

2 The Language and Standard Typing

In this section we review the syntax and standard semantics of Dπ. For a full

treatment of the language, including many examples, see [13]. Our formalization

of the language differs slightly from that of [13], as discussed in the conclusion.

2.1 Syntax

The syntax is given in Table 1, although discussion of types, T, is postponed to

Section 2.3. The syntax is parameterized with respect to the following syntactic

sets, which we assume to be disjoint:

� Base, of base values, ranged over by bv,

� Loc, of location names, ranged over by k–m,

� Res, of resource names, ranged over by a–d,

� Var, of variables, ranged over by x–z.

Names, e, include location names and resource names. Values, u–w, include base

values, names, variables and tuples of values. We occasionally use the metavari-

ables u–w to range over restricted classes of values, such as Var[Loc or Var[Res;

Trust and Partial Typing in Open Systems of Mobile Agents 5

such cases should be clear from context. Patterns, X–Y, include variables and tu-

ples of patterns; we require that patterns be linear, i.e. that each variable appear at

most once.

The main syntactic categories of the language are as follows:

� Threads, P–R, are terms of the ordinary polyadic π-calculus [17] with addi-

tional constructs for movement and restriction of locations.

� Agents, kJPK, are located threads.

� Networks, M–N, are collections of agents combined using the static combi-

nators of composition and restriction.

As an example of a network, consider the term:

`JPK j (ν
`

a:T)

�

`JQK j kJRK

�

This network contains three agents, `JPK, `JQK and kJRK. The first two agents are

running at location `, the third at location k. Moreover Q and R share knowledge

of a private resource a of type T, allocated at ` and unknown to P.

NOTATION. We adopt several notational conventions, as in [13].

� In the concrete syntax, gotou has greater binding power than composition.

Thus ‘gotok:P j Q’ should be read ‘(gotok:P) jQ’. We adopt several stan-

dard abbreviations. For example, we routinely drop type annotations when

they are not of interest. We omit trailing occurrences of stop and often de-

note tuples and other groups using a tilde. For example, we write eu instead

of u1; ::; un and eu:eT instead of u1:T1; ::; un:Tn. We also write ‘if u = v then P’

instead of ‘if u = v then P else stop’ and ‘if u 6= v then Q’ instead of ‘if u =

v then stop else Q.’

� We assume the standard notion of free and bound occurrences of variables

and names in networks and threads. The variables in the pattern X are bound

by the input construct u?(X)P, the scope is P. The name e is bound by

the restrictions (νe)P and (νke)N, the scopes are P and N, respectively. A

term with no free variables is closed. The functions fn(P) and fv(P) return

respectively the sets of free names and free variables occurring in P.

� We also assume a standard notion of substitution, where Pfju=xjg denotes the

capture-avoiding substitution of u for x in P. The notation Pfju=Xjg generalizes

this in an obvious way as a sequence of substitutions, following the structure

of the pattern X.

� In the sequel we identify terms up to renaming of bound names and variables.

Trust and Partial Typing in Open Systems of Mobile Agents 6

Table 2 Standard Reduction

Structural congruence:

(s-extr) M j (νke:T)N � (νke:T)(M jN) if e =2 fn(M)

(s-garbage
1

) (νke:T) 0 � 0

(s-garbage
2

) kJstopK � 0

(s-copy) kJ�PK � kJPK j kJ�PK

Reduction precongruence:

(r-move) kJgoto`:PK 7�! `JPK

(r-new) kJ(νe:T)PK 7�! (νke:T)kJPK if e 6= k

(r-split) kJP jQK 7�! kJPK j kJQK

(r-comm) kJa!hviPK j kJa?(X)QK 7�! kJPK j kJQfjv=XjgK

(r-eq
1

) kJif u = u then P else QK 7�! kJPK

(r-eq
2

) kJif u = v then P else QK 7�! kJQK if u 6= v

2.2 Standard Reduction

The standard reduction semantics is given in Table 2. The structural congruence

(M � N) and reduction precongruence (M 7�! M0) both related closed network

terms. The main reduction relation we are interested in is (�!) = (� � 7�! � �).

The structural congruence is defined to be the least congruence relation1 on net-

works that satisfies the commutative monoid laws for composition2 and the axioms

given in Table 2. The axioms provide means for the extension of the scope of a

name, for garbage collection of unused names and terminated threads, and for the

replication of agents.

The reduction relation 7�! is defined to be the least precongruence relation on

networks which satisfies the reduction axioms of Table 2. The axioms for commu-

nication and matching are taken directly from the π-calculus, with a few changes to

accommodate the fact that agents are explicitly located. Note that communication

can only occur between colocated agents.

The most important new rule is (r-move), kJgoto`:PK 7�! `JPK, which states

that an agent located at k can move to ` using the move operator goto`:P. Also

significant is (r-new), kJ(νe:T)PK 7�! (νke:T)kJPK, which states that a name cre-

ated by a thread can become available across the network. Note that when a new

name is lifted out of an agent, the network-level restriction records the name of

the location which allocated the name; these location tags are used only for static

typing. Finally, the rule (r-split), kJP jQK 7�! kJPK jkJQK, allows an agent to spawn

1A relation � is a precongruence on networks if N � N0 implies N jM � N0

jM, M jN �M jN0,

and (νke:T)N � (νke:T)N0. A relation is a congruence if it is both an equivalence and a precongru-

ence.
2The monoid laws are: M j 0 � M, M jN � N jM, and M j (N jO)� (M jN) jO.

Trust and Partial Typing in Open Systems of Mobile Agents 7

off subagents which are able to move around the network independently. The only

reduction rules that vary significantly in later sections are (r-move) and (r-new).

As an example, suppose that we wish to write a network with two agents, one

at k and one at `. The agent at k wishes to send a fresh integer channel a, located

at k, to the other agent using the channel b, located at `. This network could be

written:

`Jb?(z;x)QK j kJ(νa) (P j goto`:b!hk;ai)K

�! `Jb?(z;x)QK j (νka)
�

kJP j goto`:b!hk;aiK
�

(r-new)

�! `Jb?(z;x)QK j (νka)
�

kJPK j kJgoto`:b!hk;aiK
�

(r-split)

�! `Jb?(z;x)QK j (νka)
�

kJPK j `Jb!hk;aiK
�

(r-move)

�! (νka)`JQfjk;a=z;xjgK j kJPK (s-extr) ; (r-comm) ; (s-garbage
2

)

Beside each reduction, we have written the axioms used to infer it, omitting men-

tion of the monoid laws. An example of a process Q that uses the received value

(z;x) is ‘gotoz:x!h1i’, which after the communication becomes ‘gotok:a!h1i’.

2.3 Types and Subtyping

The purpose of the type system is to ensure proper use of base types, channels and

locations. In this paper we use the simple type language from [13, x5], extended

with base types. However all of the results in this paper extend smoothly to the

more powerful type system of [13, x6], which includes resource capabilities and

non-trivial subtyping on resource types.

We use uppercase Roman letters to range over types, whose syntax follows:

Resources: A–D ::= reshTi

Locations: K;L ::= locfa1:A1; ::; an:An;x1:B1; ::; xn:Bng

Values: S;T ::= BT K A K[A1; ::; An] (T1; ::; Tn)

The syntax provides types for base values, locations, local resources and tuples.

Types of the form K[

eA] are dependent tuple types, which allow communication of

non-local resources; we discuss these further in the next subsection. In examples,

we will use the notation u[ev]
def
= (u;ev) to indicate that the tuple (u;ev) has a dependent

type.

We require that each resource name and variable in a location type appear at

most once. Location types are essentially the same as standard record types, and

we identify location types up to reordering of their “fields”. Thus locfa:A; b:Bg=

locfb:B; a:Ag. We write ‘loc’ for ‘locfg’.

The subtyping preorder (T <

: S) is discussed at length in [13]. On base types

and channel types there is no nontrivial subtyping; for example, reshTi <: reshT0

i

if and only if T = T0. On location types, the subtyping relation is similar to that

traditionally defined for record or object types (although here it is invariant):

locfeu:eA;ev:eBg <: locfeu:eAg

Trust and Partial Typing in Open Systems of Mobile Agents 8

On tuples, the definition is by homomorphic extension:

eS <

:

eT if 8i : Si <: Ti

K[

eA] <

: L[

eB] if K <

: L and eA <

:

eB

An important property of the subtyping preorder is that it has a partial meet

operator u.

DEFINITION 2.1. A partial binary operator u on a preorder (S;�) is a partial meet

operator if it satisfies the following for every r, s, t 2 S:

(a) r � t and r � s imply tu s defined and r � tu s

(b) tu s defined implies tu s � t

(c) (tu s)u r defined implies tu (su r) defined and (tu s)u r = tu (su r)

(d) tu s defined implies su t defined and tu s = su t �

PROPOSITION 2.2. The set of types, under the subtyping preorder, has a partial

meet operator.

Proof. The operator is induced by the following equation on location types:

locfeu:eAgu locfev:eBg= locfeu:eA[ev:eBg if 8i; j :ui = vj implies Ai = Bj

For example, locfa:A; b:Bg u locfb:B; c:Cg = locfa:A; b:B; c:Cg. This is ex-

tended homomorphically at other types by:

T u T = T

(S1; ::; Sn) u (T1; ::; Tn) = (S1uT1; ::;SnuTn)

K[A1; ::; An] u L[B1; ::; Bn] = (KuL)[A1uB1; ::;AnuBn]

By induction on the structure of types, one can show that this operator satisfies the

claims of Definition 2.1. �

2.4 Standard Typing

Judgments in the typing system take three forms:

Γ ` N Network N is well-formed

Γ `w P Thread P is well-formed at location w

Γ `w v:T Value v is well-formed at location w with type T

Here Γ, ∆ range over type environments, which map location names to location

types and variables to base types or location types.3 Thus environments have the

3For simplicity, the typing system defined here requires that every tuple be fully decomposed

upon reception; i.e., terms of the form a?(x:(int; int))P are not typable. The more general case is

straightforward, but requires a more complex treatment of location types, as in [13].

Trust and Partial Typing in Open Systems of Mobile Agents 9

Table 3 Standard Typing

Values (rules for base values not shown):

Γ(u) <: T

Γ `w u:T

Γ(w) <

:

locfu:Ag

Γ `w u:A

Γ `w ui:Ti (8i)

Γ `w eu:eT

Γ `w u:K

Γ `u ev:eB

Γ `w (u;ev) :K[

eB]

Threads:

Γ `w u:reshTi

Γ `w v:T

Γ `w P

Γ `w u!hviP

Γ `w u:reshTi

fv(X) disjoint fv(Γ)

ΓufwX:Tg `w Q

Γ `w u?(X:T)Q

Γ `w u:S

Γ `w v:T

Γufwu:Tgufwv:Sg `w P

Γ `w Q

Γ `w if u = v then P else Q

Γ `w u:loc

Γ `u P

Γ `w gotou:P

e =2 fn(Γ)

Γufwe:Tg `w P

Γ `w (νe:T)P

Γ `w P

Γ `w Q

Γ `w stop; P jQ; �P

Networks:

Γ `k P

Γ ` kJPK

e =2 fn(Γ)

Γufke:Tg ` N

Γ ` (νke:T)N

Γ ` M

Γ ` N

Γ ` 0; M jN

form f

ek:eK;ex:eL;ey:fBTg, up to reordering. For example, the following is a type

environment:

Γ =

�

`:locfa:A;x:Bg; y:int; z:locfa:A0

g

	

We write Γ(u) to refer to the type of identifier u in Γ. So for Γ as defined above,

Γ(z) = locfa:A0

g whereas Γ(u) is undefined.

The standard typing system is defined in Table 3. This is the type system from

[13, x5], with a few notational changes and the addition of base types. We implic-

itly assume in all rules that the environment Γ is well-formed and that each type

on the right-hand-side of the turnstile is closed; i.e. we do not allow variables to

appear in location types in terms.

We presuppose a set of rules for base values, which, for example, say that in-

teger constants have type int and the boolean constants t and f have type bool. In

Table 3, there are two rules for identifiers. The first applies to “universal” identifiers

in the domain of the type environment: location names and variables of location

or base types. The second applies to “local” identifiers in location types: resource

names and variables of resource type. Universal identifiers have a consistent mean-

ing across all sites, whereas local identifiers do not; e.g. the location name ` refers

to the same thing no matter where it occurs, whereas the resource name a does not.

Note that when typing a dependent tuple (u;ev), the typing of ev is deduced with

respect to the location identifier u.

Trust and Partial Typing in Open Systems of Mobile Agents 10

For networks and threads, the main rules of interest are for agents and move-

ment. For the agent `JPK to be well-typed, P must be well-typed at location `;

whereas for the thread gotou:P to be well-typed at some location w, P must be

well-typed at location u.

The rules for restriction and input are intuitive, although they require some

notation for environment extensions. Both subtyping and the partial meet operator

extend pointwise to environments in the obvious manner: For subtyping we have:

∆ <

: Γ iff 8w 2 dom(Γ) : ∆(w) <

: Γ(w)

The partial meet operator ∆uΓ is undefined if ∆(w)uΓ(w) is undefined for some

w 2 dom(∆)\dom(Γ), otherwise:

∆uΓ = fw:K j ∆(w)uΓ(w) = Kg

[fw:K j ∆(w) = K and w =2 dom(Γ)g

[fw:K j Γ(w) = K and w =2 dom(∆)g

New environments are created from values using the notation fwu:Tg, where

w 2 Loc[Var. The definition is given by induction on u and T:

fwbv:BTg =?; if bv 2 valset(BT)

fwx:BTg = f x:BTg

fwk:Kg = f k:Kg

fwx:Kg = f x:Kg

fwa:Ag = fw:locfa:Agg

fwx:Ag = fw:locfx:Agg

fw(u;ev):K[

eB]g = fwu:Kg u fuev:eBg

fweu:eTg = fwu1:T1gu � � �ufwun:Tng

For example:

fw(0;a):(int;A)g = fw:locfa:Agg

fw(k;k[c]):(locfa:Ag; locfb:Bg[C])g = fk:locfa:A;b:B;c:Cgg

To understand the notation, the reader may wish to consider the following re-

sults, which are straightforward to establish.

LEMMA 2.3.

(a) If Γ <

: ∆1 and Γ <

: ∆2 then ∆1u∆2 defined and Γ <

: ∆1u∆2.

(b) If Γu∆ defined and ∆ <

: ∆0 then Γu∆0 defined.

(c) If Γ `w u:T then fwu:Tg defined and Γ <

:

fwu:Tg.

(d) If fwu:Sgufwu:Tg defined then fwu:(SuT)g defined. �

Trust and Partial Typing in Open Systems of Mobile Agents 11

With this notation the rule for restriction in networks, for example, should be

easily understandable. The network (νke:T)N is well-typed with respect to Γ, Γ `

(νke:T)N, if e is new to Γ and N is well-typed with respect to Γ extended at k by

the type information in declaration e:T, i.e. Γufke:Tg ` N.

The rule for matching allows the combination of capabilities available on dif-

ferent instances of a location name. Note that the rule may only be applied when

SuT is defined. In the case that S = T, the rule degenerates to the standard rule for

conditionals:
Γ `w u:T; v:T; P; Q

Γ `w if u = v then P else Q

The extra generality of the rule is necessary to type threads such as the following:

a?(z[x]) b?(w[y]) if z = w then gotoz:
�

x?(u) y!hui
�

This thread receives two remote channels from different sources, then forwards

messages from one channel to the other. Further examples are given in [13] where

we argue that the more general rule is crucial for typing many practical applica-

tions.

The typing system satisfies several standard properties such as type special-

ization, weakening and a substitution lemma, as described in [13]. The following

result establishes that well-typed terms are free of runtime errors throughout their

execution.

THEOREM 2.4 (SUBJECT REDUCTION FOR THE STANDARD SEMANTICS).

If Γ ` N and N �! N0 then Γ ` N0.

Proof. See [13, Theorem 5.1]. �

Trust and Partial Typing in Open Systems of Mobile Agents 12

3 Partial Typing

The purpose of this paper is to study systems in which only a subset of agents

are known to be well typed. Since agents themselves are unnamed and can move

about the network, we draw the distinction between the typed and the untyped

worlds using locations, or sites. In this section we first define a partial typing

system which allows agents at certain untyped, or bad, locations to have arbitrary,

potentially malicious behavior. We then present an example which shows that the

standard semantics is inadequate for partially typed systems and finally point to the

solution proposed in later sections.

3.1 The Partial Typing Relation

To capture the notion of a untyped locations formally, we introduce a new location

type, lbad, into the type language. We use the terms untyped and bad interchange-

ably, similarly typed and good. Location types are now defined:

K;L ::= locfea:eA;ex:eBg lbad

We sometimes refer to types in the augmented language as partial types. The

subtype relation is extended to partial types by adding the following subtyping

rule:

lbad <

:

locfeu:eAg

This reflects the fact that channels at an untyped location may have any type and

consequently behavior at bad locations is unconstrained. With the addition of lbad,

the partial meet operator becomes total on location types.

PROPOSITION 3.1. The set of types, extended with lbad, under the subtyping pre-

order, has a partial meet operator.

Proof. It is straightforward to show that the following definition provides an ex-

tension of the partial meet operator defined in Proposition 2.2:

locfeu:eSg u locfev:eTg =

�

locfeu:eS[ev:eTg if 8i; j :ui = vj implies Si = Tj

lbad otherwise

lbad u locfev:eTg = lbad

locfeu:eTg u lbad = lbad �

The typing relation given in Table 3, Γ `P, may now be applied to this extended

language of types with the result that untyped locations enjoy many expected prop-

erties. For example, since lbad <

:

locfa:reshintig and lbad <

:

locfa:reshboolig, we

can infer

fm:lbadg `m (a;a):(reshinti; reshbooli)

In general we can infer that a resource at an untyped location has any resource type,

meaning that local computations at these locations are unconstrained by typing

Trust and Partial Typing in Open Systems of Mobile Agents 13

Table 4 Partial Typing Relation

All rules from Table 3 but those for restriction (ν)

(thread-bad)
Γ(w) = lbad

Γ `w P
(thread-new

g

)

T 6= lbad

e =2 fn(Γ)

Γ;

(e)fwe:Tg `w P

Γ `w (νe:T)P

(net-new
b

)

Γ(k) = lbad

` =2 fn(Γ)

Γuf`:lbadg ` P

Γ ` (νk`:L)P
(net-new

g

)

T 6= lbad

e =2 fn(Γ)

Γ;

(e)fke:Tg ` N

Γ ` (νke:T)N

considerations. This is the case even if the resource is restricted. For example

if Γ(k) = lbad then, since lbadu locfa:Ag = lbad, the judgment Γ ` (ν
`

a:A)N

follows from Γ ` N. Moreover, since lbad <

:

locfa:Bg for any resource type B, in

this latter type judgment the type of occurrences of a in N may be arbitrary. Note

however that, because of our separate categories for base, resource and location

identifiers, no matter what the environment we cannot infer a:loc, k:int or 2:reshi.

Agents can also use the type information to infer that a remote location is un-

typed. For example consider an environment Γ such that:

Γ(`) = loc

(

b:reshlocfa:reshbooligi

c:reshlocfa:reshintigi

d:reshlbadi

)

Then the network

`Jb?(z) c?(w) if z = w then d!hziK

is well-typed with respect to Γ. If the same location m is received on both the

channels b and c, then the agent knows that m is untyped. Thus m can be output on

d, a channel that transmits locations of the type lbad.

Despite these examples, the standard typing system does not quite capture the

notion of “untyped location”, even with the addition of lbad. Most important, the

standard typing rule for movement does not allow untyped locations to send mali-

cious agents to typed locations. Consider a type environment Γ, defined as:

Γ =

n

k : locfa:reshintig

m : lbad

o

We would like to have that Γ ` mJgotok:a!htiK. Here an untyped agent at m at-

tempts to move to k and misuse the channel a. The standard typing rule for move-

ment, however, does not allow this judgment, since the standard rule for movement

requires that a!hti be well-typed at k, which definitely is not the case.

Trust and Partial Typing in Open Systems of Mobile Agents 14

The partial typing relation is defined in Table 4. All of the rules of the standard

type system carry over to the partial typing system but for those concerning restric-

tion, which require an additional side condition. Most important, the introduction

of the rule (thread-bad) allows untyped locations to have truly arbitrary behavior,

including the ability to (attempt to) send malicious agents to good locations. Thus

the partial typing relation validates the judgment Γ ` mJgotok:a!htiK, with Γ as

given in the previous paragraph.

The rule (net-new
b

) says that locations created at untyped locations should

themselves be untyped. This rule is required to maintain well-typing under reduc-

tions such as:

kJ(ν`:L)goto`:PK 7�! (νk`:L)kJgoto`:PK 7�! (νk`:L)`JPK

The rules (thread-new
g

) and (net-new
g

) are as in the standard type system, but

require that typed locations not create untyped ones. This “reasonableness require-

ment” is necessary to establish Type Safety, as formulated in Theorem 4.10.

3.2 An Example

Consider the following (partial) type environment:

Γ =

8

>

>

>

<

>

>

>

:

k : loc fa : reshintig

` : loc
n

b : reshloc[reshbooli]i

c : reshloc[reshinti]i

o

m : lbad

9

>

>

>

=

>

>

>

;

Here we have three locations, k, ` and m, the first two of which are typed, and the

last untyped. Of the good (typed) sites, we know that k has an integer channel a,

and ` has two channels: c, which communicates dependent tuples with the second

element being an integer channel; and b, which communicates dependent tuples

with the second element being boolean channels.

Consider a system with two agents at `, waiting to receive data on channels c

and b, respectively. The first agent will expect, as the second element of the tuple it

receives, the name of an integer channel, whereas the second will expect the name

of a boolean channel. In addition suppose that there are agents at k and m poised to

send data to ` on channels c and b, respectively. Such a system is the following:

P = `Jc?hw[y]i gotow:y!h0iK

j `Jb?hz[x]i gotoz:x!htiK

j kJgoto`:c!hk[a]iK

j mJgoto`:b!hk[a]iK

Here the agents at ` and k are all quite reasonable; they could be typed using the

standard type system of Table 3. The final agent, at m, however, flagrantly violates

Trust and Partial Typing in Open Systems of Mobile Agents 15

the types of channels a and b; this agent intends to send an integer channel (a)

where a boolean channel is expected (on b).

One can easily see that, using the standard typing system (without lbad), for

no ∆ do we have ∆ ` P. This is because channel a at k may be bound to either y

or x, and these identifiers are subject to conflicting uses. There is no assignment

of standard types to a, b and c that satisfies all of the constraints given in P. On

the other hand, using the partial typing system, we have Γ ` P. This well typing,

however, is not preserved by reduction.

First consider the agents communicating on c. Using standard reduction, as

defined in Table 2, these agents reduce as follows.

`Jc?hw[y]i gotow:y!h0iK j kJgoto`:c!hk[a]iK (1)

�! `Jc?hw[y]i gotow:y!h0iK j `Jc!hk[a]iK (2)

�! `Jgotok:a!h0iK (3)

�! kJa!h0iK (4)

The first reduction (1-2) follows from (r-move), (2-3) from (r-comm) and

(s-garbage), and (3-4) from (r-move) again. All of these reductions preserve

well-typing under Γ.

Now consider the agents communicating on b.

`Jb?hz[x]i gotoz:x!htiK j mJgoto`:b!hk[a]iK (5)

�! `Jb?hz[x]i gotoz:x!htiK j `Jb!hk[a]iK (6)

�! `Jgotok:a!htiK (7)

�! kJa!htiK (8)

The reductions are derived just as before, but (6), (7) and (8) are not well-typed

under Γ. This fact is obvious when considering (8) where an agent at k attempts to

send a boolean on an integer channel. Already in (6), however, typing under Γ fails.

In order to infer Γ ` `Jb!hk[a]iK we must establish that for some T, Γ `

`

b:reshTi

and Γ `

`

k[a]:T. Given the type of b at `, we would have to take T = loc[reshbooli],

but Γ 0

`

k[a]:loc[reshbooli], since a is an integer channel at k.

The semantics presented in the following section will prevent the reduction of

(5) to (6) by dynamically typing certain agents when they move from one location

to another. To accomplish this, we augment the standard reduction semantics with

type information detailing the resources available at each site. Significantly, this

type information is held locally at each site, and thus sites will have different views

of the network. Crucial to this semantics is the ability of a location to determine

the authority of an incoming thread, i.e. the location from which the thread was

sent. This semantics is improved in Section 5 by adding trusted locations to the

type system. In each of these sections, the main results are Subject Reduction (for

the partial typing relation) and Type Safety.

Trust and Partial Typing in Open Systems of Mobile Agents 16

It is worth contrasting this approach with the “purely local” approach adopted

for “anonymous networks” in [14] (and outlined in Appendix B). In anonymous

networks, the authority of incoming threads is not known. The semantics of [14]

uses a weaker typing system requiring consistency only of local resource types.

Thus, in that work, (6) is taken to be well-typed, with subject reduction failing

only in the move from (7) to (8). The chief advantage of the current work is that it

permits the use of trust, which appears to be incompatible with terms such as (6).

4 Filters and Authorities

In this section we propose a semantics which recovers subject reduction for

partially-typed networks. The solution assumes that the origin, or authority, of

incoming agents can be reliably determined.

4.1 Syntax and Semantics

To accomplish dynamic typechecking, it is necessary to add type information to

running networks. We do this by adding a filter khh∆ii for each location k in a

network. The filter includes a type environment ∆ which gives k’s view of the

resources in the network. Suppose that in a network N, location k knows that there

is resource named a of type A at location `. This intuition is captured by requiring

that N have a subterm khh∆ii such that ∆(`) <

:

locfa:Ag.

Formally, we extend the syntax of networks in Table 1 to include filters, as

follows:

N ::= : : : khh∆ii

We say that a term khh∆ii is a filter for k. The typing and reduction relations for

networks with filters are given in Table 5.

Static Typing. The static typing relation extends that of Tables 3 and 4 with the

two rules, given in Table 5. The rule (net-�lter
g

) requires that a filter for a good

location k must have full knowledge of the resources at k (Γ(k) = ∆(k)) and a view

of the rest of the world that is consistent with reality (Γ <

: ∆). The rule (net-�lter
b

)

indicates that filters for bad locations may be arbitrary.

These typing rules guarantee that whenever a filter exist, it must have a rea-

sonable view of the world, but the rules do not constrain the number of filters for

a given location. We could extend the type system to guarantee that each loca-

tion have a unique filter, but we prefer to impose this constraint outside the typing

relation.

DEFINITION 4.1. We say that a network N is well formed if for every k 2 fn(N)

there is exactly one subterm of N which is a filter for k, and for every subterm

(νm`:L)M of N there is exactly one subterm of M which is a filter for `. �

For the rest of the paper, we consider only well-formed networks.

Trust and Partial Typing in Open Systems of Mobile Agents 17

Table 5 Typing and reduction using filters

Static typing: all rules from Table 4

(net-�lter
g

)

Γ <

: ∆
Γ(k) = ∆(k)

Γ ` khh∆ii
(net-�lter

b

)

Γ(k) = lbad

Γ ` khh∆ii

Reduction precongruence: (r-split), (r-eq
1

) and (r-eq
2

) rules for � from Table 2

(r

f

-move) kJgoto`:PK j `hh∆ii
7�! `JPK j `hh∆ii

if k = ` or ∆
k
`

P

(r

f

-newr) kJ(νa:A)PK j khh∆ii
7�! (νka:A)

�

kJPK j khh∆ufka:Agii
�

if a =2 fn(∆)

(r

f

-newl) kJ(ν`:L)PK j khh∆ii
7�! (νk`:L)

�

kJPK j khh∆uf`:Lgii j `hhf`:Lgii
�

if ` =2 fn(∆)[fkg

(r

f

-comm) kJa!hviPK j kJa?(X:T)QK j khh∆ii
7�! kJPK j kJQfjv=XjgK j khh∆ufkv:Tgii

Dynamic typing: all rules from Table 4, with ‘

k
w’ replacing ‘`w’

(val

f

-self
1

)

lbad <

: K

∆
kw k:K
(val

f

-self
2

)

∆
kk a:A
(thread

f

-return)
∆
kw gotok:P

Reduction. As networks evolve, a site’s filter should be augmented to reflect its

increasing knowledge of the network. At the very least this should include updates

with information about new local resources. The rule (r

f

-newr) says that when a

new resource a is created at k, the type of that resource is recorded in the filter for k.

This ensures that k continues to have full knowledge of local resources. Similarly

when a new location ` is created by k, a new filter should be created for ` and the

filter for k updated to establish a view of `. This is achieved by the rule (r

f

-newl).

In addition, filters may take other measures to increase their knowledge of the

network. Here we modify the communication rule as follows: when a value is

received at a site, the site’s filter is augmented to include any new information

that can be gleaned from the communicated value. This is reflected in the rule

(r

f

-comm).

The purpose of filters is to check that incoming agents are well-typed. Thus,

the main change to the semantics is replace the reduction rule (r-move) with:

`hh∆ii j kJgoto`:PK
7�!

`hh∆ii j `JPK if k = ` or ∆
k
`

P

Trust and Partial Typing in Open Systems of Mobile Agents 18

Here ∆

k
`

P is a dynamic typing relation, which intuitively says that P is well-

formed to move to location `, if acting under authority of k. Agents originating

locally are assumed to be well-typed and therefore need not be checked dynami-

cally.

Dynamic Typing. One approach to dynamic typing would be to take the dynamic

typing relation to be the same as the static typing relation: (

k
w) = (`w). In effect,

this would limit incoming agents to include only names of resources that are known

in advance. While this is certainly sound, it is much too restrictive; for example,

new resources could only be used by agents that originated locally. Consider the

system:

kJ(νa)goto`:b!hk[a]iK j `Jb?(z[x])PK j `hh∆ii (*)

Here k creates a new resource and wishes to communicate it to `. However with

(

k
w) = (`w) the move from k to ` is refused — (r

f

-move) cannot be applied —

since the filter ∆ at ` can have no knowledge of the new resource a.

At the opposite extreme, we might allow threads to include any reference to

non-local resources. However, this approach is clearly unsound from the counter-

example given in the last section. The difficulty is that threads from bad locations

may provide incorrect information about good locations, breaking subject reduc-

tion.

To straddle the gap between sound-but-useless and unsound-but-expressive, we

introduce the notion of authority. We say that an agent leaving a location k acts

under the authority of k. When an agent with authority k enters another location,

we say that k is the authority of the agent.

While it is not safe to allow incoming agents to refer to any non-local resources,

it is safe to allow them to refer to resources located at their authority, i.e. at their

“home” location. Intuitively this is true because, under this discipline, “bad” agents

can only to “lie” about resources located at their authority, which must have been

a bad location to begin with. Lies about bad locations don’t hurt well-typing, since

bad locations are untyped.

Formally, the rules for runtime typing extend those of the static type system

given in Tables 3 and 4 with two additional rules for values and one for threads.

These rules allow references to an incoming agent’s authority to go unchecked.

The rule (val

f

-self
1

) allows an incoming agent to refer to its authority k, regardless

of whether the filter environment ∆ contains any information about k. (Note that

the condition lbad <

: K is vacuously satisfied; we include it here only for reference

in the next section.) The rule (val

f

-self
2

) allows an incoming agent to refer to

resources at its authority. As an example, let ∆
`

= f`:locfa:reshK[B]igg. Although

we cannot infer that ∆
`

`

`

a!hk[b]i using the static typing system, we can deduce

∆
`

k
`

a!hk[b]i using the dynamic typing relation. Thus the following reduction is

allowed by the semantics:

kJgoto`:a!hk;biK j `hh∆
`

ii �! `Ja!hk;biK j `hh∆
`

ii

Trust and Partial Typing in Open Systems of Mobile Agents 19

The rule (thread

f

-return) allows a thread to return to its home location without

subjecting the returning thread to further typechecking. This rule allows some

additional expressiveness and reduces the burdens of typechecking somewhat.

Note that while the static typing system interprets the rules of Tables 3 and

4 with respect to an omniscient authority (Γ), the dynamic type system interprets

these rules with respect to the knowledge contained in a filter (∆, where Γ <

: ∆).

Whereas untypability with respect to Γ indicates that a network is malformed, un-

typability with respect to ∆ may simply indicate that ∆ has insufficient information

to determine whether an agent is malicious or not.

The fact that resource names are not assigned unique locations is crucial to the

success of our strategy for dynamic typechecking. It would be difficult to see how

to formulate our approach while maintaining the assumption that each name had a

unique location (as, for example, in [5]). For example, suppose that the resource a

was “uniquely located” at k. Then the agent mJgoto`:b!hm[a]iK at the bad site m

could “hijack” a using (thread-self
2

), convincing ` that a was uniquely located at

m, rather than some good location k. In particular entry to ` by an agent from k may

subsequently be blocked because ` mistakenly believes that the unique location of

a is at m.

4.2 Examples

EXAMPLE 4.2. First we show how filters are updated via communication with

imported agents. Consider the network (*) discussed above, where the location k

wishes to transmit to ` the name of a new resource a. If ∆ = f`:locfb:reshK[A]igg

then we have the following reductions:

kJ(νa)goto`:b!hk[a]iK j `Jb?(z[x]:K[A])PK j `hh∆ii �!�

(νka)
�

`JP0

K j `hh∆0

ii

�

where P0

= Pfjk;a=z;xjg and ∆0

= ∆ufk:locfa:reshAigg. After the communication,

the filter for ` contains information about the type of resource a at k. �

EXAMPLE 4.3. Let us now revisit network (5) discussed in Section 3.2, which

shows that partial typing is not preserved by the standard reduction relation. To

use the new semantics, we must add a filter for each location. Here we show only

the filter for `, `hh∆ii, where ∆ satisfies the constraints of (net-�lter
g

). Thus, let us

consider the network

Γ ` mJgoto`:b!hk[a]iK j `hh∆ii

where Γ is as given in Section 3.2. Note that the agent at m attempts to misin-

form and agent at ` about the type of the resource a at k. In the revised reduction

semantics the move from m to ` is allowed only if ∆
m
`

b!hk[a]i, that is if we can

dynamically typecheck b!hk[a]i using the filter ∆ under the authority m. But this is

impossible, since Γ ` `hh∆ii. To see this, first note that ` has full self-knowledge, i.e.

Trust and Partial Typing in Open Systems of Mobile Agents 20

∆(`) = Γ(`), and therefore ∆(`) must have the entry b : reshloc[reshbooli]i; there-

fore to type the term we must be able to deduce ∆
mk a:reshbooli. Next note that

∆ must be consistent with reality, namely Γ. This means that if ∆ has knowledge

of the resource a at k then it must be at the conflicting type reshinti; therefore the

rules of Table 3 cannot be used to infer ∆
mk a:reshbooli. Finally, since k is not the

authority of the thread, neither can the additional rules of Table 5 be used to justify

the claim that ∆
mk a:reshbooli. It follows that the inference ∆
m
`

b!hk[a]i is impos-

sible. �

EXAMPLE 4.4. Let us now modify the previous example so that m attempts to

relate information about its own resources, rather than those of k. In such cases,

movement always succeeds, whether or not the source site is bad. For example, we

have the reduction:

mJgoto`:b!hm[a]iK j `hh∆ii �! `Jb!hm[a]iK j `hh∆ii

This follows since ∆
m
`

m[a]:loc[reshbooli] can be inferred using (val

f

-self
1

) and

(val

f

-self
2

), regardless of the type assigned to m in ∆. �

EXAMPLE 4.5. A untyped site will also succeed in sending an agent if the re-

ception site already knows the information being received. For example suppose

the view of ` is increased so that it now contains the resource a at k, that is

∆(k) = locfa:reshintig. Then we have the reduction

mJgoto`:c!hk[a]iK j `hh∆ii �! `Jc!hk[a]iK j `hh∆ii

because of the inference ∆
m
`

c!hk[a]i. Of course the authority of m plays no role

in this judgment. �

EXAMPLE 4.6. The information in filters determine which migrations are allowed

and reductions in turn may increase the information in filters. This means that

certain migrations can remain blocked until the appropriate filter has been updated.

Consider the following network, again typed using the environment Γ given in

Section 3.2, where ∆ is the restriction of Γ onto `, i.e. ∆ = f`:Γ(`)g:

mJgoto`:c!hk[a]iK j kJgoto`:c!hk[a]iK j `J�c?(z[x])PK j `hh∆ii

Here the migration from m to ` is not immediately possible, since ∆6
m
`

c!hk[a]i.

However the migration from k is allowed since ∆
k
`

c!hk[a]i, and the network re-

duces, after communication on c, to:

mJgoto`:c!hk[a]iK j `JP0

K j `J�c?(z[x])PK j `hh∆0

ii

where P0

= Pfjk;a=z;xjg and ∆0

= ∆ufk:locfa:reshintigg is obtained from ∆ by up-

dating the entry for k. The migration from m to ` can now take place, allowing the

network to reduce, after a further communication, to:

`JP0

K j `JP0

K j `J�c?(z[x])PK j `hh∆0

ii

Trust and Partial Typing in Open Systems of Mobile Agents 21

since ∆0

m
`

c!hk[a]i : In the absence of other agents, the migrations can only be

executed in one order (k first). �

EXAMPLE 4.7. As a filter is updated, contradictory evidence may be obtained

about a site, in which case the site must be untyped and can safely be deemed to be

bad. As an example let Γ and the filter ∆ = f`:Γ(`)g be as before, and consider the

network:

mJgoto`:b!hm[d]ic!hm[d]iK j `Jb?(z[x])c?(w[y])PK j `hh∆ii

After the migration from m to ` and one communication this reduces to

`Jc!hm[d]iK j `Jc?(w[y])P0

K j `hh∆0

ii

where ∆0

= ∆ufm:locfd:reshbooligg. After the second communication, the net-

work reduces to

`JP00

K j `hh∆00

ii

where ∆00

= ∆0

ufm:locfd:reshintigg= ∆ufm:lbadg. �

4.3 Subject Reduction and Type Safety

As we have seen in Section 3.2 partial typing is not preserved by the standard

reduction relation. However this property is regained by the revised reduction re-

lation of Table 5. First we note that well-formedness (Definition 4.1) is preserved

by reduction.

PROPOSITION 4.8. If P is well-formed and P �! P0 then P0 is well-formed.

Proof. By composition of results for � and 7�!, which follow by a straightforward

induction on judgments. �

THEOREM 4.9 (SUBJECT REDUCTION). If Γ ` N and N �! N0 then Γ ` N0

Proof. See Appendix A. �

A typing system is only of interest to the extent that it guarantees freedom

from runtime errors. Here we describe the runtime errors captured by our system,

which can be informally described as misuse of resources at good sites. Often the

formulation of runtime errors is quite cumbersome as it involves the invention of a

tagged version of the language, see [13, 22]. However in this case the presence of

filters makes it straightforward.

In Table 6 we define, for each location ` a unary predicate err `
��! over networks.

The judgment N err `
��! should be read: “in the network N there is a runtime error at

location `”. There are basically two kinds of errors which can occur. The first is

an attempted use of a resource at a location ` when that resource is not available at

that location. Filters have full local knowledge and therefore this error can occur

Trust and Partial Typing in Open Systems of Mobile Agents 22

Table 6 Runtime Error

`Ja?(X:T)PK j `hh∆ii err `
��! if ∆(`) 6<

:

locfa:reshTig

`Ja!hviPK j `hh∆ii err `
��! if ∆(`) 6<

:

locfa:reshTig; all T

`Ja!hviPK j `hh∆ii err `
��! if ∆(`) <

:

locfa:reshTig and ∆uf
`

v:Tg undef

`Jif u = v then P else QK

err `
��! if f

`

u:Tg undef or f
`

v:Tg undef, all T

N err `
��!

(νke:T)N err `fjk=ejg
�����!

N err `
��!

N jM err `
��!

N � M M err `
��!

N err `
��!

if an agent attempts to use a resource at ` which does not appear in the filter at `.

This is formalized in the first two cases of the definition in Table 6.

The second kind of error occurs when there is a local inconsistency between

values being manipulated by an agent. These may occur in either of two ways. The

first, accounted for in the third clause in Table 6, is when a value is about to be

transmitted locally which is inconsistent with the current contents of the filter. The

second, accounted for in the fourth clause, is when the values in a match cannot be

assigned the same type.

Finally, note that in the case that a location name m is restricted, errors at m are

attributed to the site which created m (given as k in Table 6). This fact explains the

need for the side condition T 6= lbad on the rules (thread-new
g

) and (net-new
g

) in

Table 4.

THEOREM 4.10 (TYPE SAFETY). If Γ ` N and Γ(`) 6= lbad then N err `
�X�!

Proof. See Appendix A. �

5 Trust

In the semantics of the last section all agents moving to a new site are dynamically

typechecked before gaining entrance. In this section we consider an optimization

which allows for freer and more efficient movement across the network. The idea is

to add trust between locations; a trusted site is guaranteed never to misbehave and

therefore agents moving from a trusted site need not be dynamically typechecked.

Formally we introduce a new type constructor for trusted location types,

ltrustfeu:eAg. The extended syntax of types is obtained by replacing the clause for

location types with:

K ::= lbad locfea:eA;ex:eBg ltrustfea:eA;ex:eBg

Note that (as with the addition of lbad) this extension increases the set of possible

resource types. For example the type reshltrustfa:reshintigi is the type of a re-

source for communicating trusted locations which have an integer resource named

Trust and Partial Typing in Open Systems of Mobile Agents 23

a. Thus we may have trusted locations with certain resources for handling trusted

data and others for handling untrusted data. In a similar vein we may have un-

trusted locations containing resources that communicate trusted data. As we shall

see, these resources at untrusted locations cannot be used to increase the level of

trust in a network.

The extension of the subtyping relation to these new types is based on two

ideas:

� Every trusted location is also a location.

� Every trusted location guarantees good behavior; therefore, a “bad” or un-

typed location can never be trusted by a good site. This means that the type

lbad is no longer the minimal location type in the subtyping preorder.

The subtyping relation is therefore built up using the ordering:

lbad ltrustfeu:eA;v:Bg

locfeu:eA;v:Bg ltrustfeu:eAg

locfeu:eAg

??⑧⑧⑧⑧⑧⑧

__❄ ❄ ❄ ❄ ❄ ❄

??⑧⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧⑧

__❄ ❄ ❄ ❄ ❄ ❄

The formal definition is given in Appendix A.

PROPOSITION 5.1. The set of types, extended with lbad and ltrust, under the sub-

typing preorder, has a partial meet operator.

Proof. See Appendix A. �

With the addition of ltrust, the filters in a network may contain more detailed

information about remote sites. Consider a network N which contains a filter `hh∆ii.
As before, if k is not mentioned in ∆, this means that ` has no knowledge of k. But

now there are now three possibilities with respect to a remote location k mentioned

in `hh∆ii:

� ∆(k) <: lbad, which means that ` has accumulated sufficient contradictory

information about k to conclude that k is untyped.

� ∆(k) <: ltrust, which means that ` trusts k. Note that this notion of trust is

asymmetric; ` may trust k without k trusting `. Also note that in well-typed

systems, the rule (net-�lter) in Table 5 ensures that k, trusted by `, cannot

be an untyped location unless ` itself is untyped; this is enforced by the

requirement that Γ(k) <: ∆(k), since lbad 6<

:

ltrust.

� ∆(k) <: loc, which means that ` knows of k, but cannot determine whether or

not k is well-typed.

Trust and Partial Typing in Open Systems of Mobile Agents 24

As we have seen in the previous section, the information in a filter may increase

as the network evolves, i.e. `hh∆ii may evolve to `hh∆0

ii, where ∆0

<

: ∆. But the

subtyping relation between types ensures that once a location k is deemed “bad” in

`hh∆ii it will remain so forever, and similarly with sites that are deemed “trusted”.

It is only the third category which may change. In Example 4.7 we have seen that

new information may result in ∆(k) changing from loc to lbad. We shall soon see

that new information can also “improve” the status of k from loc to ltrust.

With the addition of trust, we can revise the reduction relation of the previous

section to eliminate dynamic typechecking of agents arriving from trusted sites.

We adopt the semantics of Table 5, replacing (r

f

-move) with:

(r

t

-move) kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆ii if ∆(`) <

:

ltrust or ∆
k
`

P

Note that the presence of ltrust changes the importance of the condition lbad <

: K

in the dynamic typing rule (val

f

-self
1

). Whereas this condition was tautological in

Section 4, here it is not. The side condition precludes the use of (val
f

-self
1

) to infer

∆
k
`

k:ltrust. This is important, as it prevents bad sites from becoming trusted.

EXAMPLE 5.2. Let ∆ = f`:locfd:reshltrustig;k:ltrustg and consider the network:

`hh∆ii j `Jd?(z)PK j kJgoto`:d!hmiK j mJgoto`:d!hniK

Here the locations m and n are unknown to `, i.e. ∆(m) and ∆(n) are undefined. In

addition, d is a resource at ` for communicating trusted locations. The migration

from m to ` is not immediately allowed since ∆
m
`

d!hni cannot be inferred; m does

not have sufficient authority to convince ` that location n is to be trusted.

The move from k to `, however, is allowed, without dynamic typechecking,

since ` trusts k. After the movement and communication on d, the resulting network

is

`hh∆0

ii j `JPfjm=zjgK j mJgoto`:d!hniK

where ∆0

= ∆ufm:ltrustg. Thus, after communication with the agent from k, `

trusts m. At this stage the migration from m to ` is allowed, free of typechecking,

and m can inform ` of another trusted site, n. In this way the web of trust containing

` grows dynamically as the network evolves.

Note it is crucial that ` trust k initially; if this were not the case then the original

migration from k to ` would have been prevented by dynamic typechecking. There

is no way for a site to “prove its trustworthiness”; the web of trust can only grow

by communication between trusted sites. �

Trust and Partial Typing in Open Systems of Mobile Agents 25

EXAMPLE 5.3. Consider the network

mJgoto`0:goto`1:goto`2:PK j `ihh∆iii

where there is a web of trust among `i; that is ∆i(`j) <: ltrust for all i, j. Suppose

further that ∆0(m) is undefined, in particular that `0 does not trust m.

The migration from m to `0 is allowed only if the following judgment can be

verified:

∆
m
`0
goto`1:goto`1:goto`2:P

Note that this checks not only the potential behavior of the incoming agent at the

initial site `0 but also at the other sites `1, `2. So an agent is allowed into the web of

trust between `0, `1 and `2 only if can be assured not to harm any resources at any

of the locations in the web. Moreover this check is made against the knowledge

at the incoming site `0. Even if P intends to respect all the resources at `2, if it

mentions a resource at `2 of which ∆0 is unaware, entry will be barred.

If the typecheck against ∆0 succeeds then we obtain the network

`0Jgoto`1:goto`2:PK j `ihh∆iii

where the agent from m has gained entry to the web of trust. The subsequent move-

ments, from `0 to `1 and from `1 to `2, are allowed freely because of the relationship

of trust between these sites. If P moves outside the web of trust, however, say to

m, and then wishes to return to some `i, then it will be typechecked again before

reentry. In Section 6.1, we give an example which shows that such typechecking is

necessary for agents which wish to reenter a web of trust. �

EXAMPLE 5.4. As a final example, suppose that the set of locations is static and all

sites are mutually trusted. In this case we recover the standard semantics (modulo

the presence of filters), as given in Section 2. �

The static typing relation remains unchanged from the previous section, al-

though there is a certain redundancy of types in the static environments Γ. Since

it is reasonable to suppose that sites trust themselves, we might wish to limit Γ to

include only trusted and bad locations; however, none of our results require this.

The main results of the previous section extend to the new setting.

THEOREM 5.5 (SUBJECT REDUCTION). If Γ ` N and N �! N0 then Γ ` N0

Proof. See Appendix A. �

THEOREM 5.6 (TYPE SAFETY). If Γ ` N and Γ(`) 6= lbad then N err `
�X�!

Proof. See Appendix A. �

Trust and Partial Typing in Open Systems of Mobile Agents 26

6 Discussion

In this section we discuss some issues which arise in our formalization of the se-

mantics of open systems and point to some variations and extensions.

6.1 Authority

Note that as an agent moves about the network, it is always received at a site with

the authority of the last location visited. Thus when mJgotok:goto`:PK arrives at `,

the thread P is typechecked under authority k, rather than m. An alternative would

be to allow agents to maintain their authority as they move about the network. This

alternative approach, however, is not compatible with our typing system. To see

this, let us temporarily change the syntax of agents from `JPK to k
`

JPK, meaning

that the thread P is running at ` under the authority of k. Using this extended

syntax, our move rule, from Table 5 can be expressed:

k
mJgoto`:PK j `hh∆ii 7�! m

`

JPK j `hh∆ii if ∆(m) <

:

ltrust or ∆
m
`

P

The alternative semantics would be:

k
mJgoto`:PK j `hh∆ii 7�! k

`

JPK j `hh∆ii if ∆(k) <: ltrust or ∆
k
`

P

Consider the following network, where T = loc[reshbooli], typed using the envi-

ronment Γ given in Section 3.2 (filters not shown):

k
kJgotom:d?(z[x]:T)goto`:b!hz[x]iK j m

mJd!hk[a]iK

7�!

k
mJd?(z[x]:T)goto`:b!hz[x]iK j

m
mJd!hk[a]iK

7�!

k
mJgoto`:b!hk[a]iK

7�!

k
`

Jb!hk[a]iK

All of these reductions are allowed by the alternative semantics, however, Γ 0

k
`

Jb!hk[a]iK. Since ` checks the incoming agent b!hk[a]i under authority of k, it

believes its assertion that a is a Boolean channel at k, whereas a is in fact an inte-

ger channel. This example formalizes the intuition that agents can be polluted by

visiting bad sites.

6.2 Filter Update

The reduction semantics in Table 5 includes certain mechanisms for updating fil-

ters. The rules (r

f

-newr) and (r

f

-newl) are necessary to ensure that restricted names

are handled properly, in particular to ensure that well-formedness and well-typing

are preserved by reduction. The rule (r

f

-comm), however, is just one of a num-

ber of possible ways in which filters can actively update their knowledge of remote

sites. While (r

f

-comm) is simple and expressive, it may be expensive to implement.

A more restricted approach would be to assign a special channel, say update, for

which (r

f

-comm) applied, whereas all other channels would use the less expensive

Trust and Partial Typing in Open Systems of Mobile Agents 27

rule (r-comm), from the standard semantics. Another possibility would be to add

analysis to the filter operation. Then the move rule would become:

kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆u∆0

ii if ∆
k
`

P :∆0

The idea is that while checking an incoming term, the filter could also note any new

names that are received with authority. Another possibility is to abandon non-local

filter updates altogether; in this case, to allow a reasonable amount of expressive-

ness while preserving type safety, one would have to add further constructs to the

language, as outlined at the end of the next subsection.

6.3 Progress

While subject reduction is important, it is purely a safety property; it does not

imply that any reductions are ever performed. The semantics of Section 5 enjoys

the property that whenever an agent attempts to move from a site k to a location

that trusts k, the movement is always successful. This liveness property relies on

the fact that the target trusts k, however. It works because agents from trusted sites

come in with “universal authority”, i.e. the authority to say whatever they like.

A stronger property, which we call progress, is that whenever a well-typed

agent attempts to move between two good locations, the movement is successful.

Suppose we add the following clause to the definition of runtime error in Table 6:

kJgoto`:PK j `hh∆ii errfk;`g
�����! if kJgoto`:PK j `hh∆ii �X�!

We then say that the typing system guarantees progress if

Γ ` N and Γ(`) 6<

:

lbad, Γ(k) 6<: lbad implies :(N errfk;`g
�����!)

Note that this property is not dependent on the trust relation between sites. Un-

fortunately, this progress property does not hold for our semantics, as can be seen

from the following example. Let Γ, ∆ and N be defined as follows:

Γ =

8

<

:

k : ltrustfa : reshintig

` : ltrustfc : reshloc[reshinti]ig

m : ltrust

9

=

;

∆ =

�

` : ltrustfb : reshloc[reshbooli]ig
	

N = mJgoto`:c!hk[a]iK j `hh∆ii

Then Γ ` N, but N �X�!. The problem here is that, although the agent at m is well-

typed, the reference to a is made without authority.

In practice, progress may not be that important, depending upon the application

and the underlying implementation. In the example above where the move from m

to ` is unsuccessful, an implementation of the filter at ` might report to m the

reasons for the failure. It would then be up to m to resend the agent (or some piece

of it) via k.

Trust and Partial Typing in Open Systems of Mobile Agents 28

On the other hand, one way to guarantee progress would be to allow an incom-

ing agent to refer only to local values or values at its authority. It is straightforward

to design a static type system to enforce this constraint.4 However such an approach

is very restrictive without some addition to the language. One possibility would be

to introduce the notion of signed values (possibly based on [1]) which would allow

certain values in an agent to be received (and typed) under a different authority

than that of the agent itself. Even without full progress, signatures could be useful.

In the example sketched above, after m’s agent is refused entry to `, m might itself

resend the agent, rather than forwarding it to k, this time carrying a signed value to

prove that k[a] is of the appropriate type.

6.4 Anonymous Networks

In [14] we presented a semantics for open system in which the authority of in-

coming agents is not known. We call such systems anonymous networks. In

Appendix B we recast the semantics of [14] using filters and lbad. An attractive

property of the semantics is that filter updating is purely local, i.e. no non-local data

need be stored in filters. However because the origin of incoming agents cannot be

determined it is not possible to incorporate notions of trust into this semantics,

which implies that incoming agents must always be typechecked. In addition, it is

very easy for good sites to develop misconceptions about other good sites, frustrat-

ing progress.

6.5 Plugins

One quickly discovers a limitation of Dπ when trying to model mirroring of names

across a network. The idea is to create a new resource, say a class name, at one

location and then to have that resource copied, or mirrored, at other locations with

the appropriate type. Examples of such mirroring are found in Java class loading,

“plugins” and other forms of virtual-machine extension. To model this in Dπ, we

would use an operator which transformed the type of a location from locfea:eAg,

say, to locfea:eA;b:Bg. In Dπ only the restriction operator performs such a trans-

formation, but restriction binds its argument, whereas mirroring should not; the

equivalence (νb:B)P = (νc:B)Pfjc=bjg demonstrates that restriction is not a suitable

operation for mirroring.

We leave the full exploration of mirroring to future work; however, let us briefly

outline how such an extension might be made. The idea is to introduce a new type

of mirrorable resources, classA, with values of the form k:a. Values of mirrorable

types allow the operation (loadu:classA)P, with the following typing rules, the first

4One possibility is to change the move rule to read:

fw:Γ(w);u:Γ(u)g `u P

Γ `w gotou:P

Trust and Partial Typing in Open Systems of Mobile Agents 29

static, the second dynamic:

Γ `u v:A

Γufw:locfu:v :Agg `w P

Γ `w (loadu:v :classA)P ∆
kw k:a:classA

We believe that using indexed names for mirrorable values will be crucial to es-

tablish Subject Reduction for such a language under partial typing. Note that such

a naming strategy has been adopted by the Java community, although perhaps for

different reasons, where class names are of the form com.ibm.aglet.

7 Conclusions

We introduced the notion of partial typing, which captures the intuition that “bad”

sites in a network may harbor malicious agents while “good” sites may not. We

demonstrated that in the presence of partial typing, some form of dynamic type-

checking is required to ensure that good sites remain uncorrupted. We presented

a semantics for Dπ incorporating such dynamic typechecking, showing that it pre-

vented type violations at good sites, and discussed the extent to which it guaranteed

progress. Finally, we added webs of trust to the language, reducing the need for

dynamic typechecking while retaining type safety at good sites.

The presentation of Dπ given here differs somewhat from that of [13]; for ex-

ample, we have added base types and moved some of the semantic rules from the

structural equivalence to the reduction relation. Most of the changes are stylistic

rather than substantive. Two of the changes, however, are essential for the treat-

ment of partial typing. First, we have moved the rule (r-new) from the structural

equivalence to the reduction relation; this is necessary to allow filter updating. Sec-

ond, we have split the space of names in two, syntactically distinguishing locations

from resources; this is necessary to prevent the filter updating rules from producing

nonsense environments such as f`:locf`:reshigg.

Several other distributed variants of the π-calculus have been defined, and it

is informative to see how partial typing might be added to these languages. Syn-

tactically, Dπ is most similar to the language of Amadio and Prasad [4, 5], which

also uses a “goto” operator for thread movement, written “spawn(`;P)”. However,

in Amadio and Prasad’s language, the set of resources available to a thread does

not vary as the thread moves about the network. This means that an agent at `

can access resources at a different location k without requiring thread movement.

While this makes the language very expressive, it also frustrates the use of filters to

typecheck incoming threads. To add partial typing to such a language, one would

need to typecheck messages dynamically, rather than threads, violating the third

principle given in the introduction. In addition, the fact that names are assigned

unique locations in [5] appears to be incompatible with partial typing, as outlined

at the end of Section 4.1.

Trust and Partial Typing in Open Systems of Mobile Agents 30

The join calculus of Fournet, Gonthier, Levy, Marganget and Remy [11] shares

many of these properties. Whereas Amadio’s language adds thread movement to

message movement, however, the join calculus adds location movement. Unfortu-

nately this does not help combat the problems outlined above, which result from

the “universal extent” of resource names in both subject and object position. In

Dπ, the type system ensures that the “extent” of resource names in subject position

is local, i.e. resources may be referenced at remote sites, but may only be used

locally.

Cardelli and Gordon’s ambient calculus [6], on the other hand, appears to be

amenable to partial typing since ambient movement is a local operation; thus the

problem of “universal extent” does not arise. The typing system of Dπ is based

on the original sorting system of the π-calculus [17], and this sorting system has

recently been extended to the ambient calculus [8]. Whereas locations in Dπ have a

straightforward analog in implementations — they correspond to address spaces —

the notion of “ambient” is more general, adding expressiveness while blurring the

distinction between agent movement and agent interaction. In the ambient calculus

it is the open operator, rather than the in or out operators, which enables interaction

between two threads (or thread collections). Thus a first attempt at partial typing

for the ambient calculus would dynamically typecheck thread collections when-

ever they are opened. Since each ambient has only one “resource” (λ), however,

this implies that dynamic typechecking must occur before every interaction, again

violating our third principle. To get around this, one might introduce a type system

for ambients which distinguished two types of ambients: those which typecheck

incoming ambients and those which do not. The former would be similar to our

locations, the later, our resources. This discipline would open the possibility of

typing code during in and out operations, rather than open.

Several studies have addressed the issue of static typing for languages with re-

mote resources; some recent papers are [21, 7, 23]. Perhaps the work closest to ours

is that of Knabe [15], who has implemented an extension of Facile which supports

mobile agents. The main extensions are remote signatures and proxy structures,

which recall our location types. None of these works address open systems, how-

ever. On the other hand, Necula’s proof carrying code [20] and related techniques

[26, 16, 19] address the problem of dynamic typechecking in open systems, but do

not consider the subject of remote resources.

Another area of related work has to do with static methods for analyzing the

security of information flow [10, 2, 9, 25, 12]. Although this area of research

shares our general aims there is very little technical overlap with our approach to

resource protection in open systems.

Acknowledgments. The ideas presented in the paper have been sharpened by

discussion with Alan Jeffrey and by questions from audiences at NCSU and De

Paul, where preliminary versions of this work were presented.

Trust and Partial Typing in Open Systems of Mobile Agents 31

A Proofs

The Subject Reduction and Type Safety results for Section 4 are special cases of

those of Section 5, in which no trusted types appear. We present only the more

general results. First we establish Proposition 5.1.

The formal definition of subtyping with lbad and ltrust is:

ltrustfeu:eS;ev:eTg <

:

locfeu:eSg

lbad <

:

locfeu:eSg

ltrustfeu:eS;ev:eTg <

:

ltrustfeu:eSg

locfeu:eS;ev:eTg <

:

locfeu:eSg

lbad <

:

lbad

PROPOSITION (5.1). The set of types, extended with lbad and ltrust, under the

subtyping preorder, has a partial meet operator.

Proof. Ignoring resources, the meet operator can be defined as follows:

lbad loc ltrust

lbad lbad lbad undef

loc lbad loc ltrust

ltrust undef ltrust ltrust

Combining this with the subtyping rules already given for resources, we have

(omitting symmetric cases):

lbad u lbad = lbad

lbad u locfev:eTg = lbad

lbad u ltrustfev:eTg = undefined

locfeu:eSg u locfev:eTg =

�

locfeu:eS[ev:eTg if 8i; j :ui = vj implies Si = Tj

lbad otherwise

locfeu:eSg u ltrustfev:eTg =

�

ltrustfeu:eS[ev:eTg if 8i; j :ui = vj implies Si = Tj

undefined otherwise

ltrustfeu:eSg u ltrustfev:eTg =

�

ltrustfeu:eS[ev:eTg if 8i; j :ui = vj implies Si = Tj

undefined otherwise

The proof that this definition meets the requirements of Definition 2.1 follows by

straightforward calculations, with a rather tedious case analysis for each result. �

The proofs of Subject Reduction and Type Safety use the fact that Lemma 2.3

extends to the type system with lbad and ltrust.

THEOREM (5.5). If Γ ` N and N �! N0 then Γ ` N0

Proof. The result follows from results for the structural congruence and reduction

precongruence:

If N � N0 then Γ ` N if and only if Γ ` N0

If Γ ` N and N 7�! N0 then Γ ` N0

Trust and Partial Typing in Open Systems of Mobile Agents 32

The first result is proved by induction on the definition of �, the second by induc-

tion on the definition of 7�!. The proofs of both results, and the accompanying

lemmas, can easily be derived from those found in [13]; in particular see Lemmas

4.7 and A.2, Proposition 4.5 and Theorem 5.1 of that paper. The only substantial

differences are in the rules (r

f

-comm) and (r

f

-move), which we discuss below.

For the most part, the proof for (r
f

-comm) follows that given in [13]. The only

additional complication is presence of filter updating. Suppose that Γ(k) 6= lbad,

Γ `k v:T and Γ <

: ∆. We must show that ∆0

= ∆ufkv:Tg is defined and that Γ <

: ∆0,

but this follows immediately from Lemma 2.3c and Lemma 2.3a.

Now let us turn to (r

f

-move). Suppose that Γ ` kJgoto`:PK j `hh∆ii and

kJgoto`:PK j `hh∆ii 7�! `JPK j `hh∆ii. To establish the result, it is sufficient to show

that Γ `

`

P. There are three cases to consider:

� Suppose Γ(`) = lbad. The result follows from (thread-bad).

� Suppose that Γ(`) 6= lbad and Γ(k) 6= lbad. The result follows from Γ `

kJgoto`:PK, using (thread-move).

� Suppose that Γ(`) 6= lbad and Γ(k) = lbad. Since (net-�lter
g

) requires Γ <

: ∆
and lbad 6<

:

ltrust, it cannot be that ∆(k) <: ltrust. Therefore in order for

reduction to occur it must be that ∆
k
`

P. But using the proof that ∆
k
`

P, we

can construct a proof that Γ `

`

P. Most of the rules, in fact, are identical. The

only difficulty is to establish the validity of the addition rules for dynamic

typing given in Table 5. In these cases, we proceed as follows:

(val

f

-self
1

) Let K be a location type such that lbad <: K. Then Γ `w k:K, as

required.

(val

f

-self
2

) For any a and A, lbad <: locfa:Ag; thus Γ `k a:A.

(val

f

-return) By (thread-bad), Γ `k P; therefore Γ `w gotok:P. �

THEOREM (5.6). if Γ ` N and Γ(`) 6= lbad then N err `
�X�!

Proof. We prove the contrapositive, i.e. that N err `
��! and Γ(`) 6= lbad imply Γ 0 N.

The proof proceeds by induction on the derivation of N err `
��!. We present four

representative cases:

� Suppose that `Ja!hviPK j `hh∆ii err `
��! because for all T, ∆(`) 6<

:

locfa:reshTig.

Since Γ(`) 6= lbad, we have Γ(`) = ∆(`), so clearly Γ 0

`

a:reshTi. Thus we

have that Γ 0 `Ja!hviPK, as required.

� Suppose that `Ja!hviPK j `hh∆ii err `
��! because ∆(`) <

:

locfa:reshTig and ∆u
f

`

v:Tg is undefined. By way of contradiction, suppose further that Γ `

`

v:T.

Using Lemma 2.3c and Lemma 2.3a, we have that ∆uf
`

v:Tg is defined, a

contradiction. Thus it must be that Γ 0 `Ja!hviPK.

Trust and Partial Typing in Open Systems of Mobile Agents 33

� Suppose that `Jif u = v then P else QK

err `
��! because for every R either f

`

u:Rg

or f
`

v:Rg is undefined. By way of contradiction, suppose that Γ `

`

if u =

v then P else Q and therefore for some S, T we have:

Γ `

`

u:S Γ `

`

v:T Γuf
`

u:Tguf
`

v:Sg defined

By Lemma 2.3c, therefore, f
`

u:Sg defined and Γ <

:

f

`

u:Sg. Hence, by Lem-

ma 2.3b we have that f
`

u:Sguf
`

u:Tg defined. Finally, using Lemma 2.3d

we have that f
`

u:(SuT)g defined. Let R = SuT. Symmetrically, we can

conclude that f
`

v:Rg is also defined, leading to a contradiction.

� Finally, suppose that (ν
`

k:K)N err `
��! because N err k

��!. If Γ ` (ν
`

k:K)N then

(since Γ(`) 6= lbad) we have from (net-new
g

) that K 6= lbad, thus we can

apply induction to conclude that N err k
�X�!, a contradiction. �

B Anonymous Networks

In this section we describe how the techniques developed in this paper could be

brought to bear on the “anonymous” networks of [14]. As a starting place, we take

the standard semantics of Section 2 under the partial typing relation of Section 3.

As in Section 4, we extend the syntax of networks to include filters, although

here they are of the form khhKii, rather than khh∆ii. Filters need record only infor-

mation about local resources. The typing rules for filters are:

(net

a

-�lter
g

)

Γ(k) = K

Γ ` khhKii
(net

a

-�lter
b

)

Γ(k) = lbad

Γ ` khhKii

The reduction rules are as in Section 2.2, but for (r-move) and (r-new), which

become:

(r

a

-move) `hhLii j kJgoto`:PK 7�! `hhLii j `JPK if k = ` or f`:Lg `
`

P

(r

a

-newr) khhKii j kJ(νa:A)PK 7�! (νka:A)

�

kJPK j khhKu locfa:Agii
�

if a =2 fn(K)

(r

a

-newl) kJ(ν`:L)PK 7�! (νk`:L)

�

kJPK j `hhLii
�

if ` 6= k

The static and dynamic typing relations are the same. The rules are the same as

those given in Table 4, but for the rule for agents, which becomes:

(net

a

-agent)
fk:Γ(k)g `k P

Γ ` kJPK

In addition, we add the following three rules, which correspond to the three rules

for dynamic typing added in Table 5:

(val

a

-self
1

)

k =2 dom(Γ)

Γ `w k:K
(val

a

-self
2

)

k =2 dom(Γ)

Γ `k a:A
(thread

a

-remote)

k =2 dom(Γ)

Γ `w gotok:P

Trust and Partial Typing in Open Systems of Mobile Agents 34

Note that the definition of static typing here is much weaker than that presented

in the body of the paper. For example the network (6) of Section 3.2 is well-typed,

although (8) is not. Using these definitions, one can establish Subject Reduction

and a weaker notion of Type Safety (given in [14]).

This formulation has certain advantages over that of [14], such as the stronger

language of partial types. Moreover it allows self moves to go untyped; i.e. reduc-

tions of the form `Jgoto`:PK 7�! `JPK are always allowed.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Technical Report 414, University of Cambridge Computer Laboratory, January 1997.

[2] Martı́n Abadi. Secrecy by typing in security protocols. Draft, 1997.

Available from http://www.research.digital.com/SRC/personal/Martin_

Abadi/home.html.

[3] Conference Record of the ACM Symposium on Principles of Programming Lan-

guages, San Diego, January 1998. ACM Press.

[4] R. Amadio and S. Prasad. Localities and failures. In Proc. 14th Foundations of Soft-

ware Technology and Theoretical Computer Science, volume 880 of Lecture Notes in

Computer Science. Springer-Verlag, 1994.

[5] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. In

COORDINATION ’97, volume 1282 of Lecture Notes in Computer Science. Springer-

Verlag, 1997.

[6] L. Cardelli and A. D. Gordon. Mobile ambients, 1997. Draft, Available from http:

//www.cl.cam.ac.uk/users/adg/.

[7] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59,

January 1995. A preliminary version appeared in Proceedings of the 22nd ACM

Symposium on Principles of Programming.

[8] Luca Cardelli and Andrew Gordon. Ambient décor. Draft, 1998.

[9] Mads Dam. Proving trust in systems of second-order processes. In Hawaii Interna-

tional Conference on Systems Science. IEEE Computer Society Press, 1998.

[10] D. Denning. Certification of programs for secure information flow. Communications

of the ACM, 20:504–513, 1977.

[11] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mo-

bile agents. In U. Montanari and V. Sassone, editors, CONCUR: Proceedings of the

International Conference on Concurrency Theory, volume 1119 of Lecture Notes in

Computer Science, pages 406–421, Pisa, August 1996. Springer-Verlag.

[12] Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming with secrecy and

integrity. In ACM-POPL [3].

Trust and Partial Typing in Open Systems of Mobile Agents 35

[13] Matthew Hennessy and James Riely. Resource access control in systems of mobile

agents. Computer Science Technical Report 2/98, University of Sussex, 1998. Avail-

able from http://www.cogs.susx.ac.uk/.

[14] Matthew Hennessy and James Riely. Type-safe execution of mobile agents in anony-

mous networks. Computer Science Technical Report 3/98, University of Sussex,

1998. Available from http://www.cogs.susx.ac.uk/.

[15] Frederick Coleville Knabe. Language Support for Mobile Agents. PhD thesis,

Carnegie-Mellon University, 1995.

[16] Dexter Kozen. Efficient code certification. Technical Report 98-1661, Cornell Uni-

versity, Department of Computer Science, 1988. Available from http://www.cs.

cornell.edu/kozen/secure.

[17] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-

91-180, Laboratory for Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, UK, October 1991. Also in Logic and Algebra of

Specification, ed. F. L. Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag,

1993.

[18] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,

Parts I and II. Information and Computation, 100:1–77, September 1992.

[19] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed

assembly language. In ACM-POPL [3], pages 85–97.

[20] George Necula. Proof-carrying code. In Conference Record of the ACM Symposium

on Principles of Programming Languages. ACM Press, January 1996.

[21] Atsuhi Ohori and Kazuhiko Kato. Semantics for communication primitives in a poly-

morphic language. In Conference Record of the ACM Symposium on Principles of

Programming Languages, Charleston, January 1993. ACM Press.

[22] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409–454, 1996. Extended ab-

stract in LICS ’93.

[23] Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobility. In

FMOODS ’97, Canterbury, July 1997. Chapman and Hall.

[24] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical Report

435, Computer Laboratory, University of Cambridge, August 1997.

[25] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded

imperative language. In ACM-POPL [3].

[26] Frank Yellin. Low-level security in Java. In WWW4 Conference, 1995. Available

from http://www.javasoft.com/sfaq/verifier.html.

