
A complete axiomatization of timed bisimulation for

a class of timed regular behaviours

LUCA ACETO and ALAN JEFFREY

ABSTRACT. One of the most satisfactory results in process theory is Milner’s axiomatization of

strong bisimulation for regular CCS. This result holds for open terms with finite-state recursion. Wang

has shown that timed bisimulation can also be axiomatized, but only for closed terms without recur-

sion. In this paper, we provide an axiomatization for timed bisimulation of open terms with finite-state

recursion.

KEY WORDS AND PHRASES. Complete axiomatizations, ω-completeness, equational logic, timed

bisimulation equivalence, regular processes, timed CCS.

1 Introduction

Much research in concurrency theory has recently been devoted to the develop-

ment of extensions of standard process algebras like CCS [15], CSP [10] and ACP

[3] with constructs allowing for the modelling of timing aspects in the behaviour

of processes. By now, most process algebras have a timed counterpart (see, e.g.,

[1, 5, 17, 20]), and the development of results and techniques for these languages

is becoming comparable with that for the standard process description languages.

For example, complete axiomatizations of behavioural congruences for subsets

of timed process algebras have been presented in, e.g., [9, 13, 17, 21]—showing

that behavioural congruences which deal with timing considerations are as math-

ematically tractable as the standard untimed ones.

Two of the most beautiful results in the theory of process algebras are the com-

plete axiomatizations of strong bisimulation equivalence and observational con-

gruence for regular CCS processes provided by Milner in his classic papers [14]

and [16], respectively. These results have put the notions of behaviour used in

Luca Aceto: luca@cogs.susx.ac.uk

School of Cognitive and Computing Sciences

University of Sussex, Brighton BN1 9QH, UK.

Research was partly carried out during a stay at Aalborg University Centre, Denmark,

and was partially supported by the Danish Natural Science Research Council project DART.

Alan Jeffrey: alanje@cogs.susx.ac.uk

School of Cognitive and Computing Sciences

University of Sussex, Brighton BN1 9QH, UK.

Supported by SERC project GR/H 16537.

Additional funding was received from EC BRA 7166 CONCUR2.

Copyright c

 1994 Luca Aceto and Alan Jeffrey.

University of Sussex Computer Science Report 4/94

the theory of CCS on an equal footing with the one common in formal language

theory, and have contributed to the realization that the notion of process is at least

as elegant and mathematically tractable as that of language.

The main purpose of this paper is to show that the techniques developed by

Milner in [14, 16] can be adapted to provide a complete axiomatization of the

notion of timed bisimulation equivalence, due to Wang Yi [20], over a class of

regular timed CCS processes [11, 21]. More precisely, we shall offer a complete

axiomatization of timed bisimulation over the language of action guarded regular

expressions studied in [11]. This complete axiomatization is obtained by com-

bining an improved version of the laws which were shown in [21] to characterize

timed bisimulation over finite trees with standard laws for recursively defined pro-

cesses, viz, laws to unwind recursive definitions of expressions, and a version of

unique fixed-point induction.

The paper is organized as follows. Section 2 is devoted to preliminaries, and

background material on timed CCS and timed bisimulation. The axiomatization

of timed bisimulation is presented and discussed in Section 3, where its soundness

is also proved. The proof of completeness of the axiomatization is given in detail

in Section 4, and relies on an adaptation of the techniques used by Milner in [14,

16].

As this is not an introductory paper on timed CCS, we have taken the liberty

to refer the reader to the original papers by Wang Yi for motivations and exam-

ples. We hope, however, that the paper will still be sufficiently readable for the

uninitiated reader.

2 Timed regular behaviours and timed bisimulation

The language for expressions that we shall consider in this paper is a generaliza-

tion of the regular subcalculus of Wang Yi’s timed CCS [20, 22]. This language

has been investigated by Holmer, Larsen and Wang Yi in [11], and we shall mostly

follow the notation and definitions given in that reference.

As usual, we shall assume a countably infinite set ∆ of action names, ranged

over by a and b, and a distinguished action τ 62 ∆. Let Act = ∆[fτg, be the set

of actions, ranged over by µ and ν.

Following [12], we define a monoid (X ;+;0) to be:

� left-cancellative iff (x+ y = x+ z)) (y = z), and

� anti-symmetric iff (x+ y = 0)) (x = y = 0).

Examples of left-cancellative anti-symmetric monoids include:

� The singleton set (1;+;0).

� The natural numbers (N;+;0).

� The non-negative rationals (Q+

;+;0).

� The non-negative reals (R+

;+;0).

2

� The countable ordinals (ω1;+;0).

We can define a partial order on X as:

x� y iff 9z : x+ z = y

It is simple to verify that� is a partial order if (X ;+;0) is a left-cancellative anti-

symmetric monoid. A time domain is a left-cancellative anti-symmetric monoid

(Tim;+;0), ranged over by t , u and v, such that � is a total order. Define:

t ^u = the minimum of t and u

t _u = the maximum of t and u

and when t � u:

t�u = the unique v such that u+ v = t

Let Tim
+

= Timnf0g be the set of positive delays, ranged over by c, d and e.

Let Lab= Act[fε(c) j c 2 Tim

+

g be the set of labels, ranged over by σ.

Let Var be a countably infinite set of process variables, ranged over by x, y

and z.

The set of regular process expressions over Act, Tim and Var is given by the

following grammar:

E ::= 0 j x j µ:E j ε(t):E j E +E j fix(x = E)

The interested reader is referred to [20, 22] for intuition on the operators used in

the above definition.

We shall assume the standard notions of free and bound variables in expres-

sions, with fix(x =) as the binding construct. The set of free variables in an ex-

pression E is denoted by fvE. Throughout this paper we shall restrict ourselves to

considering regular process expressions in which recursions are action guarded,

a notion that is defined below.

DEFINITION. A variable x is action guarded in E iff x 2AG(E), defined:

AG(0) = Var

AG(x) = Var nfxg

AG(µ:E) = Var

AG(ε(t):E) = AG(E)

AG(E +F) = AG(E)\AG(F)

AG(fix(x = E)) = AG(E)nfxg

A regular process expression E is well-formed iff for every subexpression of E of

the form fix(x = F), x is action guarded in F.

For example, the expression (fix(x = τ:x))+ y is well-formed, while the expres-

sion fix(x = ε(c):x) is not. The above definition departs slightly from the one

3

0
ε(c)

��! 0 µ:P µ

�! P a:P ε(c)
��! a:P

ε(c+ t):P
ε(c)

��! ε(t):P
P

ε(c)
��! P0

ε(t):P ε(t+c)

���! P0

P
µ

�! P0

ε(0):P µ

�! P0

P
µ

�! P0

P+Q
µ

�! P0

Q
µ

�!Q0

P+Q
µ

�!Q0

P
ε(c)

��! P0

; Q
ε(c)

��!Q0

P+Q
ε(c)

��! P0

+Q0

Effix(x= E)=xg σ

�! P

fix(x = E) σ

�! P

FIGURE 1. The operational semantics for TC0

given in [11, Definition 2.1]. In particular, the expression (fix(x = τ:x))+y would

not be well-formed according to the definition of [11] because the free variable y

does not occur within a subexpression of the form µ:F.

The set of all well-formed regular process expressions is TC, ranged over by

E, F and G. The set of all closed, well-formed regular process expressions is

TC0, ranged over by P, Q and R. Elements of this set will often be referred to as

processes.

Following Milner [16], we shall identify expressions which differ only by the

renaming of bound variables. We shall also write EfF1; : : :;Fn=x1; : : :;xng for the

result of simultaneously substituting Fi for each free occurrence of xi in E, renam-

ing bound variables as necessary.

The operational semantics for TC0 is given by the labelled transition system

(TC0;Lab;!) in Figure 1. The interested reader is referred to [20, 22] for com-

ments on the rules. Note that, following Wang Yi [20, 22], ε(0) has been excluded

from the semantics of processes.

To conclude this introductory section, we shall now define the notion of timed

bisimulation equivalence.

DEFINITION (TIMED BISIMULATION EQUIVALENCE [20]). A relation R over

TC0 is a timed bisimulation iff P R Q implies, for all σ:
� whenever P

σ

�! P0 then, for some Q0, Q
σ

�! Q0 and P0

�Q0.

� whenever Q
σ

�! Q0 then, for some P0, P
σ

�! P0 and P0

�Q0.

The relation of timed bisimulation equivalence, denoted by�, is the largest timed

bisimulation.

The interested reader is referred to the aforementioned papers by Wang Yi, and

to [11] for intuition and examples of processes that are equivalent or inequiva-

lent with respect to �. The definition of � can be extended to expressions in the

standard way as follows:

DEFINITION. Let E and F be expressions with free variables in x̃ = x1; : : :;xm.

4

(S1) E +F = F +E

(S2) E+(F +G) = (E +F)+G

(S3) E +E = E

(S4) E+0 = E

(TD) ε(t):(E +F) = ε(t):E + ε(t):F
(TA) ε(t +u):E = ε(t):ε(u):E
(T0) ε(0):E = E

(R1) fix(x = E) = Effix(x= E)=xg

(R2) If F = EfF=xg, then F = fix(x= E), provided x is action guarded in E

FIGURE 2. The axiom system G

(MP) τ:E + ε(c):F = τ:E
(AP) a:E + ε(t):a:E = a:E

(NP) ε(t):0 = 0

FIGURE 3. The axiom system F is G plus (MP), (AP) and (NP)

(MP) τ:E + ε(c):F = τ:E
(P) E + ε(t):E = E

FIGURE 4. The axiom system E is G plus (MP) and (P)

Then E � F iff for all vectors P̃ = P1; : : :;Pm EfP̃=x̃g � FfP̃=x̃g.

PROPOSITION 1 ([20, THEOREM 5.1]). Timed bisimulation equivalence forms

a congruence over TC.

In the remainder of this paper, we shall present a complete axiomatization of �

over TC.

3 Axiomatization and soundness

In [20] various equational laws were proved to hold for Wang Yi’s timed CCS

modulo timed bisimulation equivalence, and in [21] a set of such axioms was

shown to be complete over the language of recursion-free TC0 processes with

delays from the time domain of the positive reals. We shall now present an ax-

iomatization which will be proven complete for � over the whole of TC, i.e.,

complete for regular process expressions with action guarded recursion. The de-

tailed proof of completeness occupies Section 4 of this paper.

Wang’s axiomatization for recursion-free TC0 processes is given by the ax-

iom system F in Figures 2 and 3. Our axiomatization for regular TC process

expressions is given by the axiom system E in Figures 2 and 4.

The axioms (S1)–(S4) are the standard laws for a complete axiomatization of

5

strong bisimulation equivalence over finite trees [8]. Together with axioms (R1)

and (R2), these form a complete axiomatization of strong bisimulation equiva-

lence for guarded regular CCS terms [14]. (In fact, the axiomatization in [14]

can be obtained as a special case of that in Figure 2 by taking the time domain to

be the singleton set (1;+;0).)

The axioms (TD), (TA) and (T0) correspond to the operational properties of

time determinacy, time additivity and zero delay. These axioms are present in

Wang’s [20, 21] axiomatization. As we shall see in Section 4, the axiom system

G given in Figure 2 is powerful enough to prove Milner’s [14] Equational Char-

acterization Theorem for timed regular expressions. However, G is not powerful

enough to give a complete axiomatization for recursion-free timed expressions.

Wang [20, 21] added the axioms (MP), (AP) and (NP) to G to provide a com-

plete axiomatization for recursion-free TC0 processes. These axioms correspond

to the operational properties of maximal progress and persistency, and are dis-

cussed in detail by Wang. However, the resulting axiom system F , given in Fig-

ure 3, is not powerful enough to give a complete axiomatization for recursion-free

TC process expressions.

Our axiomatization replaces (AP) and (NP) with one new persistency axiom

(P). In Section 4 we show that E is complete for timed bisimulation equivalence

over TC process expressions. In Section 5 we show that E is strictly stronger

than F , and thus that Wang’s axiomatization is not complete for open TC process

expressions.

We shall write E ` E = F when E = F may be proved from E together with

the structural rules for = to be a congruence, and similarly for F ` E = F and

G ` E = F .

To conclude this section, we shall show that E is indeed sound with respect

to timed bisimulation equivalence over TC.

PROPOSITION 2 (SOUNDNESS). For all TC expressions E;F, E ` E = F im-

plies E � F.

PROOF. All the laws in E have been shown sound by Wang Yi in [21]. The only

exception is the persistency axiom (P), the soundness of which is established by

the timed bisimulation:

f(Q+P;Q) j 9c :P
ε(c)

��! Qg[f(P;P) j P 2 TC0g

The verification of the fact that the above relation satisfies the defining clause of

� uses the properties of time determinacy, time additivity and persistency of the

operational semantics for TC0. (The interested reader is referred to [20] and [19]

for details on these properties). 2

6

4 Completeness

In this section, we shall present the proof of completeness of the set of laws E over

TC. The structure of the proof of this result will follow closely the most beautiful

arguments used by Milner in [14, 16] to prove the completeness of the axioma-

tizations for strong bisimulation and observational congruence over regular CCS

processes.

The structure of the completeness proof will be as follows: first of all, we shall

show that every TC expression E provably satisfies a certain kind of equation set.

This is what Milner calls the Equational Characterization Theorem. Next, we

shall show that if E � F and E provably satisfies an equation set, while F prov-

ably satisfies another equation set, then both E and F provably satisfy a common

equation set. Finally, we show that whenever two TC expressions provably sat-

isfy the same equation set, then E proves that they are equal.

DEFINITION. An equation set x̃ = Ẽ is a finite non-empty sequence of declara-

tions x1 = E1; : : :;xn = En, where the xis are pairwise distinct variables, and the

Eis are TC expressions.

A vector F̃ = F1 : : :Fn satisfies x̃ = Ẽ iff 8i :Fi � EifF̃=x̃g.

For an equational theory T , a vector F̃ = F1 : : :Fn T -provably satisfies x̃ = Ẽ

iff 8i :T ` Fi = EifF̃=x̃g.

An expression E (T -provably) satisfies x̃ = F̃ iff we can find a vector Ẽ which

(T -provably) satisfies x̃ = F̃ and E � E1 (T ` E = E1).

We refer to x1 as the leading variable of the equation set x̃ = F̃.

For example, the equation set:

x1 = ε(1):a:x2 + ε(3):y x2 = ε(2):b:x1 (1)

is satisfied by fix(z = ε(1):a:ε(2):b:z+ ε(3):y).

DEFINITION. An equation set x̃ = Ẽ is standard iff each Ei is of the form:

∑
j2Ji

ε(t j):µ j:x j + ∑
k2Ki

ε(uk):wk

where the vectors x̃ and w̃ are disjoint. We call x̃ the formal variables of x̃ = Ẽ,

and w̃ the free variables of x̃ = Ẽ.

For example, the above equation set (1) is standard, but the following is not:

x1 = ε(1):x2 + ε(3):y; x2 = a:ε(2):b:x1

PROPOSITION 3. If x̃ = Ẽ is standard and w is not a formal variable of S, then

we can find a standard x̃ = F̃ such that 8i :G ` Fi = EifE1=wg.

7

PROOF. Define F̃ as:

Fi � ∑
j2Ji

ε(t j):µ j:x j +∑
k 2 Ki

wk 6= w

ε(uk):wk

+∑
k 2 Ki

wk = w

j0 2 J1

ε(uk + t j0):µ j0 :x j0 +∑
k 2 Ki

wk = w

k0

2 K1

ε(uk +uk0):wk0

It is simple to show that this is standard, and that 8i :G ` Fi = EifE1=wg. 2

PROPOSITION 4. If x is action guarded in E and G ` E = F then x is action

guarded in F.

PROOF. Show that AG() is a model for the equational theory G. 2

PROPOSITION 5. We shall use the following standard results about substitution:

1. GfF̃=x̃gfE=wg �GfE=wgfF̃fE=wg=x̃g, if w does not occur in x̃, and x̃ are

not free in E.

2. FfG=wgfẼ=x̃g � FfGfẼ=x̃g=wgfẼ=x̃g, if x̃ are not free in Ẽ.

PROOF. Routine structural induction. 2

THEOREM 6 (EQUATIONAL CHARACTERIZATION). For any E we can find a

standard equation set x̃ = G̃ which E G-provably satisfies.

PROOF. An induction on E. The only difficult case is when E � fix(w = F). In

this case, by induction we find a x̃ = H̃ which F G-provably satisfies, and wlog

we can assume that w is not a formal variable of x̃ = H̃, and that x̃ are not free in

E. Thus we have a F̃ such that:

G ` F1 = F (2)

8i :G ` Fi = HifF̃=x̃g (3)

Define:

Ei � FifE=wg (4)

Let G̃ be the standard equation set given by Proposition 3 such that:

G ` Gi = HifH1=wg (5)

Since w is action guarded in F, by Proposition 4 it must be action guarded in

H1fF̃=x̃g, so, as w 62 x̃, must be action guarded in H1, so cannot be free in H1 .

Then:

G ` E

= FfE=wg (R1)

= F1fE=wg (2)

8

= E1 (4)

and:

G ` E1

= F1fE=wg (4)

= H1fF̃=x̃gfE=wg (3)

= H1fE=wgfF̃fE=wg=x̃g (Propn 5.1)

= H1fE=wgfẼ=x̃g (4)

= H1fẼ=x̃g (w 62 fvH1)

and so:

G ` Ei

= FifE=wg (4)

= HifF̃=x̃gfE=wg (3)

= HifE=wgfF̃fE=wg=x̃g (Propn 5.1)

= HifE=wgfẼ=x̃g (4)

= HifH1fẼ=x̃g=wgfẼ=x̃g (above)

= HifH1=wgfẼ=x̃g (Propn 5.2)

= GifẼ=x̃g (5)

Thus we have found a standard x̃ = G̃ which E G-provably satisfies. 2

Theorem 6 shows that every expression E in TC G-provably satisfies a standard

equation set x̃ = G̃. The second stepping stone towards the promised complete-

ness theorem is a result showing that if E � F , where F G-provably satisfies a

standard equation set ỹ = H̃, then there exists a third standard equation set E-

provably satisfied by both E and F. Note that this part of the completeness proof

requires the axioms (MP) and (P).

THEOREM 7. Let E and E 0 be expressions in TC such that E � E 0. Assume that

E E-provably satisfies a standard equation set x̃ = F̃, and E 0 E-provably satisfies

a standard equation set x̃0 = F̃ 0. Then there exists a standard equation set E-

provably satisfied by both E and E 0.

PROOF (FOLLOWING MILNER). Assume that:

Fi � ∑
j2Ji

ε(t j):a j:x j + ∑
k2Ki

ε(uk):τ:xk + ∑
l2Li

ε(vl):wl (6)

F 0

i0 � ∑
j02J0

i0

ε(t 0j0):a j0 :x

0

j0 + ∑
k0

2K0

i0

ε(u0k0

):τ:x0k0

+ ∑
l 0

2L0

i0

ε(v0l 0

):w0

l 0

(7)

As E E-provably satisfies x̃ = F̃ and E 0 E-provably satisfies x̃0 = F̃ 0, we can find

Ẽ and Ẽ 0 such that:

E ` E = E1 (8)

9

8i :E ` Ei = FifẼ=x̃g (9)

E ` E 0

= E 0

1 (10)

8i :E ` E 0

i = F 0

i fẼ 0

=x̃0g (11)

Let R be the relation f(i; i0) j Ei � E 0

i0g, let z̃ be the vector of fresh variables

fzii0 j i R i0g (with z11 as leading variable), and define the vectors G̃, H̃ and H̃0 as:

Gii0 � ∑
j 2 Ji ; j0 2 J0

i0

j R j0 ;a j = a0

j0

ε(t j_ t 0j0):a j:z j j0 +∑
k 2 Ki;k 2 K0

i0

k R k0

ε(uk_u0k0

):τ:zkk0 +∑
l 2 Li ; l

0

2 L0

i0

wl = w0

l0

ε(vl _ v0l 0

):wl (12)

Hii0 � Ei (13)

H0

ii0 � E 0

i (14)

Note that the equation set z̃ = G̃ is standard by construction. We now show that

the vector H̃ E-provably satisfies z̃= G̃. To this end, we prove, first of all, that, for

each i R i0, every summand of Gii0fH̃=z̃g can be absorbed into Hii0 . We consider

three cases, depending on the form taken by the summand of Gii0fH̃=z̃g.

For any i R i0, j 2 Ji and j0 2 J0i0 such that j R j0 and a j = a0j0 :

E `Hii0

= Ei (13)

= FifẼ=x̃g (9)

= FifẼ=x̃g+ ε(t j):a j:E j (S1–S3,6)

= FifẼ=x̃g+ ε(t j):(a j:E j + ε((t j_ t 0j0)� t j):a j:E j) (P)

= FifẼ=x̃g+ ε(t j):a j:E j + ε(t j):ε((t j_ t 0j0)� t j):a j:E j (TD)

= FifẼ=x̃g+ ε(t j):a j:E j + ε(t j +((t j_ t 0j0)� t j)):a j:E j (TA)

= FifẼ=x̃g+ ε(t j):a j:E j + ε(t j_ t 0j0):a j:E j (t +(u� t) = u)

= FifẼ=x̃g+ ε(t j_ t 0j0):a j:E j (S1–S3,6)

= Ei + ε(t j_ t 0j0):a j:E j (9)
= Hii0 + ε(t j_ t 0j0):a j:H j j0 (13)

= Hii0 + ε(t j_ t 0j0):a j:z j j0fH̃=z̃g (substitution)

Similarly, for any i R i0, k 2 Ki and k0 2 K0

i0

such that k R k0:

E ` Hii0 = Hii0 + ε(uk_u0k0

):τ:zkk0fH̃=z̃g

and for any i R i0, l 2 Li and l0 2 L0

i0 such that wl = w0

l 0

:

E `Hii0 = Hii0 + ε(vl_ v0l 0

):wlfH̃=z̃g

We remark here that the proof of the above equality makes an essential use of

axiom (P), and could not have been carried out using Wang’s persistency axioms

(AP) and (NP).

10

Thus each summand of Gii0fH̃=z̃g can be absorbed into Hii0 , and by (S1)–(S4):

E `Hii0 = Hii0 +Gii0fH̃=z̃g (15)

We now show that the converse also holds, namely that Hii0 can be absorbed into

Gii0fH̃=z̃g. To this end, by (9) and (13), it is sufficient to prove that each summand

of FifẼ=x̃g can be absorbed into Gii0fH̃=z̃g. Again, we distinguish three cases

depending on the form the summand takes.

For any i R i0 and j 2 Ji, either:

� t j � uk, for every k 2 Ki, or:

� there exists k 2 Ki such that t j > uk.

We proceed to show that in either case:

E `Gii0fH̃=z̃g= Gii0fH̃=z̃g+ ε(t j):a j:x jfẼ=x̃g

� Case 8k 2 Ki : t j � uk. In this case, by the operational semantics for TC0, it

follows that FifẼ=x̃g

ε(t j)

��!

a j

�! E j. As Ei � E 0

i0

and G is sound for �, we have

that FifẼ=x̃g�F 0

i0fẼ=x̃0g. So F 0

i0fẼ 0

=x̃0g

ε(t j)

��!

a j

�! E 0

j0 for some j0 with t j � t 0j0,

a j = a0j0 and j R j0. Thus:

E `Gii0fH̃=z̃g

= Gii0fH̃=z̃g+ ε(t j_ t 0j0):a j:H j j0 (S1–S3,12)

= Gii0fH̃=z̃g+ ε(t j):a j:H j j0 (t j � t 0

j0

)

= Gii0fH̃=z̃g+ ε(t j):a j:E j (13)

= Gii0fH̃=z̃g+ ε(t j):a j:x jfẼ=x̃g (substitution)

� Case 9k2Ki :t j > uk. Choose k such that uk is minimal in the set fuh j h2Kig.

Then, by the operational semantics for TC0, FifẼ=x̃g

ε(uk)

��!

τ

�!Ek. Therefore,

as in the previous case, we have F 0

i0fẼ 0

=x̃0g

ε(uk)

��!

τ

�! E 0

k0

for some k02K0

i0 with

uk � u0k0

and k R k0. In fact, by symmetry and the fact that uk is minimal in

the set fuh j h 2 Kig, it is easy to see that uk = u0

k0

. Thus:

E `Gii0fH̃=z̃g

= Gii0fH̃=z̃g+ ε(uk_u0k0

):τ:Hkk0 (S1–S3,12)

= Gii0fH̃=z̃g+ ε(uk):τ:Hkk0 (uk = u0

k0

)

= Gii0fH̃=z̃g+ ε(uk):(τ:Hkk0 + ε(t j�uk):a j:H j j0) (MP,t j > uk)

= Gii0fH̃=z̃g+ ε(uk):τ:Hkk0

+ ε(uk):ε(t j�uk):a j:H j j0 (TD)

= Gii0fH̃=z̃g+ ε(uk):τ:Hkk0 + ε(uk +(t j�uk)):a j:H j j0 (TA)

= Gii0fH̃=z̃g+ ε(uk):τ:Hkk0 + ε(t j):a j:H j j0 (t +(u� t) = u)

= Gii0fH̃=z̃g+ ε(uk_u0k0

):τ:Hkk0

+ ε(t j):a j:H j j0 (uk = u0
k0

)

= Gii0fH̃=z̃g+ ε(t j):a j:H j j0 (S1–S3,12)

= Gii0fH̃=z̃g+ ε(t j):a j:E j (13)

= Gii0fH̃=z̃g+ ε(t j):a j:x jfẼ=x̃g (substitution)

11

Note that the above reasoning uses the equation (MP).

Thus:

E `Gii0fH̃=z̃g= Gii0fH̃=z̃g+ ε(t j):a j:x jfẼ=x̃g

Similarly, for any i R i0 and k 2 Ki, it is not too difficult to prove that:

E `Gii0fH̃=z̃g= Gii0fH̃=z̃g+ ε(uk):τ:xkfẼ=x̃g

We are now left to show that for any i R i0 and l 2 Li:

E `Gii0fH̃=z̃g = Gii0fH̃=z̃g+ ε(vl):wlfẼ=x̃g (16)

As before, we prove this statement by considering the following two sub-cases:

� vl � uk, for every k 2 Ki, or:

� there exists k 2 Ki such that vl > uk.

The proof of (16) when there exists k 2 Ki such that vl > uk follows the lines

spelled out in detail above. We shall thus concentrate on presenting a detailed

proof of (16) in the case vl � uk, for every k 2 Ki.

Assume that l 2 Li and that vl � uk, for every k2Ki. We claim that there exists

l0 2 L0

i0

such that v0

l 0

� vl and wl = w0

l 0

. To see that this is indeed the case, note

that FifẼ=x̃g � F 0

i0fẼ 0

=x̃0g, by (9), (11) and the soundness of E. Let w̃ denote the

set of free variables occurring in either FifẼ=x̃g or F 0

i0fẼ 0

=x̃0g. Choose a vector

ã of distinct actions, one action aw for each w 2 w̃, that do not occur in FifẼ=x̃g

and F 0

i0fẼ 0

=x̃0g. (This is always possible as the set of action names ∆ is countably

infinite.) Take the vector P̃ of processes given by Pw � aw:0. We then have that:

FifẼ=x̃gfP̃=w̃g � F 0

i0fẼ 0

=x̃0gfP̃=w̃g (17)

As l 2 Li and vl � uk, for every k 2 Ki, it follows that FifẼ=x̃gfP̃=w̃g

ε(vl)

��!

awl

�!.

By (17) and the fact that awl
does not occur in F 0

i0
fẼ 0

=x̃0g, we then have that

F 0

i0fẼ 0

=x̃0gfP̃=w̃g

ε(vl)

��!

awl

�! because, for some l0 2 L0

i0 , v0l 0

� vl and w0

l 0

= wl as

claimed.

Now we can easily prove (16) as follows:

E `Gii0fH̃=z̃g

= Gii0fH̃=z̃g+ ε(vl_ v0l 0

):wl (S1–S3,12)

= Gii0fH̃=z̃g+ ε(vl):wl (v0l 0

� vl)

= Gii0fH̃=z̃g+ ε(vl):wlfẼ=x̃g (substitution)

Thus each summand of FifẼ=x̃g can be absorbed into Gii0fH̃=z̃g, and by (S1)–

(S4):

E `Gii0fH̃=z̃g = Gii0fH̃=z̃g+FifẼ=x̃g (18)

Hence:

E `Hii0

12

= Hii0 +Gii0fH̃=z̃g (15)

= Ei +Gii0fH̃=z̃g (13)

= FifẼ=x̃g+Gii0fH̃=z̃g (9)

= Gii0fH̃=z̃g (18)

Thus H̃ E-provably satisfies z̃ = G̃, and E ` E = E1 = H11 so E E-provably sat-

isfies z̃ = G̃. Similarly, E 0 E-provably satisfies z̃ = G̃. 2

The final ingredient of the proof of completeness is a result showing that every

standard equation set has a unique solution up to provable equality.

THEOREM 8 (UNIQUE SOLUTION). If x̃ = H̃ is a standard equation set, then

there is a TC expression E which E-provably satisfies it. Moreover, if another

TC expression F also E-provably satisfies x̃ = H̃, then E ` E = F.

PROOF. The claim follows from the following, slightly stronger statement:

Let x̃ = x1; : : :;xm and w̃ = w1; : : :;wn be disjoint vectors of pairwise dis-

tinct variables, and H̃ = fH1; : : :;Hmg be well-formed expressions with

free variables in x̃[w̃ in which each variable xi is action guarded. Con-

sider the equation set x̃ = H̃. Then there exists an expression E 2 TC

which E-provably satisfies it. Moreover, if F also E-provably satisfies

x̃ = H̃ , then E ` E = F.

This is proven by induction on m by a simple reworking of the proof of Theorem

5.7 in [14]. The interested reader will have no difficulty in filling in the details

following Milner’s proof. 2

We are now in a position to prove the completeness of E.

THEOREM 9 (COMPLETENESS). For all TC expressions E;F, E � F implies

E ` E = F.

PROOF. By Theorem 6, E may be proved to satisfy a standard equation set; like-

wise F. By Theorem 7, E and F may be proved to satisfy a single standard equa-

tion set. Finally, Theorem 8 ensures that E ` E = F. 2

5 Comparison with Wang’s axiomatization

In this section we show that the theory E is strictly stronger than Wang’s F over

TC. More precisely, we shall prove that if F proves an equality E = F , then so

does E. On the other hand, F is not strong enough to prove the new persistency

axiom (P).

PROPOSITION 10. For all E;F 2 TC, F ` E = F implies E ` E = F.

PROOF. A straightforward induction on the length of the proof of the equation

E = F from the theory F . Note that axiom (AP) is an instance of axiom (P), and

that an application of axiom (NP) can be mimicked using (P) and (S1)–(S4).2

13

PROPOSITION 11. F 6 ` E = E + ε(t):E

PROOF. Define a denotational semantics for TC in the domain f0;1;2g with the

semantics:

[[x]]ρ = ρ(x)

[[0]]ρ = 0

[[µ:E]]ρ = 2

[[ε(0):E]]ρ = [[E]]ρ

[[ε(c):E]]ρ =

�

0 if [[E]]ρ = 0

2 otherwise

[[E +F]]ρ = max([[E]]ρ; [[F]]ρ)

[[fix(x = E)]]ρ = the least fixed point of the function λd: [[E]]ρ[x 7! d]

where ρ : Var! f0;1;2g, and ρ[x 7! d] stands for the function that maps x to d

and agrees with ρ on all the other variables.

Note that, because of our requirement that expressions be well-formed, the

function λd: [[E]]ρ[x 7! d] used in the definition of the semantics of recursive ex-

pressions has always a unique fixed point. It is now simple to check that this is a

model for F , but

[[x+ ε(c):x]](λx:1) = 2 6= 1 = [[x]](λx:1)

and so it is not a model for E. 2

However, all the closed instantiations of (P) can be derived from F , as the fol-

lowing proposition shows.

PROPOSITION 12. For every P 2 TC0, F ` P = P+ ε(t):P.

PROOF. By Theorem 6, for some finite index set I, actions µi 2 Act, delays

ti 2 Tim and processes Pi 2 TC0:

G ` P = ∑
i2I

ε(ti):µi:Pi (19)

Now:

F ` P

= ∑
i2I

ε(ti):µi:Pi (19)

= ∑
i2I

ε(ti):(µi:Pi + ε((t + ti)� ti):µi:Pi) (AP, or MP if µi = τ)

= ∑
i2I

ε(ti):µi:Pi + ε(ti):ε((t + ti)� ti):µi:Pi (TD)

= ∑
i2I

ε(ti):µi:Pi + ε(ti +((t + ti)� ti)):µi:Pi (TA)

14

= ∑
i2I

ε(ti):µi:Pi + ε(t + ti):µi:Pi (t +(u� t) = u)

= ∑
i2I

ε(ti):µi:Pi + ε(t):ε(ti):µi:Pi (TA)

= ∑
i2I

ε(ti):µi:Pi +∑
i2I

ε(t):ε(ti):µi:Pi (S1,S2)

= ∑
i2I

ε(ti):µi:Pi + ε(t):∑
i2I

ε(ti):µi:Pi (TD,NP)

= P+ ε(t):P (19)

Thus F can show any closed instantiation of axiom (P). 2

Note that throughout the above proof we have been careful not to assume that the

monoidal operation + on the time domain is commutative. Although this is true

for most of the examples of time domain one encounters in the literature, it does

not hold for, e.g., the time domain of the countable ordinals (ω1;+;0).

6 Concluding remarks

In this paper, we have presented a complete axiomatization of timed bisimulation

equivalence over open terms with finite-state recursion in a generalization of the

regular subcalculus of Wang’s timed CCS. Our inference system for timed bisim-

ulation equivalence is obtained by combining an improved version of Wang’s

complete axiomatization for finite trees [21] with standard laws for recursively

defined processes. The proof of completeness of the proposed axiomatization

uses an adaptation of Milner’s classic arguments presented in [14, 16].

The axiomatization we have presented is parametric with respect to the cho-

sen time domain, and will hold for many of the models of time that have been

considered in the literature on timed process algebras, e.g., the natural numbers,

the non-negative rationals and the non-negative reals. The definition of time do-

main that we have chosen in this paper is due to Jeffrey, Schneider and Vaandrager

[12] and suits the purpose of this paper well. However, it is certainly not the only

one possible, and several ones have been proposed in the literature (see [4] for a

series of examples).

Complete axiomatizations of behavioural equivalences for several timed pro-

cess algebras have been presented in the literature; see, e.g., [6, 9, 13, 17, 18, 21]

for examples of such results. With the notable exception of the one presented in

[9], all the aforementioned axiomatizations are restricted to recursion-free pro-

cesses. Hennessy and Regan’s axiomatizationof their behavioural precongruence

over the language TPL includes an infinitary conditional equation, the so-called

ω-induction rule, whose validity is justified by the algebraicity [7] of their testing-

based semantics. To the best of our knowledge, the work reported in this paper is

the first to offer a finitary complete axiomatization for a class of timed behaviours

with finite-state recursion.

15

The axiomatization of strong bisimulation equivalence presented by Milner in

[14] is complete for arbitrary regular CCS expressions. Milner’s inference system

deals with unguarded recursive expressions by means of the law:

fix(x = E + x) = fix(x = E) (20)

Such a law, however, is not sound with respect to timed bisimulation. For ex-

ample, fix(x = a:0+ x) is not timed bisimulation equivalent to fix(x = a:0), as

the latter can delay whereas the former cannot. We conjecture that our complete

axiomatization of timed bisimulation can be extended to arbitrary timed regular

expressions by extending the language TC with a new constant 0 denoting the

time stop, i.e., a process that cannot perform any action, and, unlike 0, is not al-

lowed to delay. Using 0, we could then write a version of law (20) as follows:

fix(x = E + x) = fix(x = E +0)

The time stop process could then be axiomatized by means of the laws:

0+ ε(c):E = 0

0+ τ:E = τ:E

It is interesting to note that axiom (MP) is derivable from these two laws for 0.

References

[1] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects of

Computing Science, 3(2):142–188, 1991.

[2] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume 458 of

Lecture Notes in Computer Science. Springer-Verlag, 1990.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer

Science 18. Cambridge University Press, 1990.

[4] J. van Benthem. Time, logic and computation. In J.W. de Bakker, W.-P. de Roever, and

G. Rozenberg, editors, REX School/Workshop on Linear Time, Branching Time and Partial Or-

der in Logics and Models for Concurrency, Noordwijkerhout, volume 354 of Lecture Notes in

Computer Science, pages 1–49. Springer-Verlag, 1989.

[5] J. Davies and S. Schneider. An introduction to Timed CSP. Technical Monograph PRG-75,

Oxford University Computing Laboratory, Programming Research Group, August 1989.

[6] J.F. Groote. Specification and verification of real time systems in ACP. Report CS-R9015,

CWI, Amsterdam, 1990. An extended abstract appeared in L. Logrippo, R.L. Probert and H.

Ural, editors, Proceedings 10th International Symposium on Protocol Specification, Testing and

Verification, Ottawa, pages 261–274, 1990.

[7] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts, 1988.

[8] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of

the ACM, 32(1):137–161, 1985.

[9] M. Hennessy and T. Regan. A process algebra for timed systems. Report 5/91, Computer Sci-

ence Department, University of Sussex, 1992. To appear in Information and Computation.

[10] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood

Cliffs, 1985.

16

[11] U. Holmer, K.G. Larsen, and Wang Yi. Deciding properties of regular real timed processes.

Report 91–20, Institut for Electronic Systems, Department of Mathematics and Computer Sci-

ence, Aalborg University Centre, 1991. An extended abstract appeared in the Proceedings of

CAV ’91.

[12] A.S.A. Jeffrey, S. Schneider, and F.W. Vaandrager. A comparison of additivity axioms in timed

transition systems. Report CS-R9366, CWI, Amsterdam, 1993. Also available as Computer

Science Report 11/93, University of Sussex.

[13] A.S. Klusener. Completeness in real time process algebra. In J.C.M. Baeten and J.F. Groote,

editors, Proceedings CONCUR 91, Amsterdam, volume 527 of Lecture Notes in Computer Sci-

ence, pages 376–392. Springer-Verlag, 1991.

[14] R. Milner. A complete inference system for a class of regular behaviours. Journal of Computer

and System Sciences, 28:439–466, 1984.

[15] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,

1989.

[16] R. Milner. A complete axiomatisation for observational congruence of finite-state behaviors.

Information and Computation, 81(2):227–247, May 1989.

[17] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten and Klop

[2], pages 401–415.

[18] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application (revised

version). Technical Report RT-C26, LGI-IMAG, Grenoble, France, November 1991.

[19] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In K.G. Larsen

and A. Skou, editors, Proceedings of the Third Workshop on Computer Aided Verification, Aal-

borg, Denmark, July 1991, volume 575 of Lecture Notes in Computer Science, pages 376–398.

Springer-Verlag, 1992.

[20] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [2], pages 502–520.

[21] Wang Yi. A calculus of real time systems. PhD thesis, Chalmers University of Technology,

Göteborg, Sweden, 1991.

[22] Wang Yi. CCS + time = an interleaving model for real time systems. In J. Leach Albert,

B. Monien, and M. Rodrı́guez, editors, Proceedings 18th ICALP, Madrid, volume 510 of Lecture

Notes in Computer Science. Springer-Verlag, 1991.

17

