US

University of Sussex

Computer Science Report

Proof methodologies for behavioural
equivalence in Distributed ricaLcuLus

Alberto Ciaffaglione
Matthew Hennessy
Julian Rathke

Report 2005:03 April 2005

Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350-3170

Proof methodologies for behavioural equivalence in
Distributed picALcULUS

ALBERTO CIAFFAGLIONE, MATTHEW HENNESsY andJuLiaN RATHKE

AsstracT. We focus on techniques for proving behavioural equivalence between systBmsan
distributed version of theicaLcuLus in which processes may migrate between dynamically created
locations, and where resource access policies are implemented by means of capability types.

We devise a tractable collection of auxiliary proof methods, relying mainly on the ussiwi-
ulations up-tgs-reductions which considerably relieve the burden of exhibiting witness bisimula-
tions. Using such methods we model simple distributed protocols, such as crossing a firewall, the
interaction between a server and its clients, metaservers installing memory services, and address their
correctness in a relatively simple manner.

1 Introduction

Bisimulations [Mil89], and the related bisimulation equivalence, have been pro-
ved to be of central importance in the elaboration of semantic theories of pro-
cesses, and in developing verification techniques for them. The purpose of this
work is to demonstrate that may also be employed for the verification of dis-
tributed systems, even when the correctness depends on access control policies.

We focus on an abstract system description language dakeltHR02b], an
extension of the well-knowmicaLcurLus [MPW92, SWO1]. In this language a
system consists of a collection pfocessesor agents distributed among dlier-
entsites where they can udecal resourcesthese resources are modelled using
local versions obicaLcuLus communication channelé&gents may migrate from
site to site, generate new local resources, or indeed new sites.

Following ideas originally formulated in [PSO@p1 can be endowed with a
system otcapability typeswith which access policies to both resources and sites
can be expressed. Since the behaviour of systems is dependent on the access
policy in force, a new theory of semantic equivalence is required to take this
dependency into account. This was developed in [HR02a, HMRO04], where the
equivalence is expressed in the form of triples

I E M~=pisN

Intuitively this means that the systerwsandN exhibit the same behaviour, from
the point of view of a user constrained by the access pdljdgrmally, 1 is sim-
ply a type environment, giving, for each resource and location, the capabilities
which may be exercised by the user.

In this paper we show that this relativised notion of system behaviour can
be dfectively employed to demonstrate the correctness of access protocols for

2 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

M,N ::= Systems
[TP] Located agents
M| N Composition
(newe: E)M Name Scoping
0 Termination
RU := Processes, or Agents
u{V)R Output
u2(X)R Input
gotoVv.R Migration
(newcc:C) R Local channel creation
(newlock : K) R Location creation
if vi = V» then Relse U Matching
R|U Parallelism
*R Iteration
stop Termination

Ficure 1. Syntax forDer

distributed systems. All the examples considered are very simple; nevertheless,
we feel that they at least demonstrate the feasibility of this approach to system
verification.

In the next section we review the langudgm, its type system, and the rela-
tivised notion of bisimulation equivalence. This is followed by an exposition of
some useful proof techniques, relying mainly on the use of bisimulations up-to
in the spirit of [SM92], which actually alleviate the burden of exhibiting witness
bisimulations. This is then followed by three sections, each considering a partic-
ular verification example. The final section is about related and future work.

2 Drr: a synopsis

In this section we recall the essential features of the langDegereaders are
referred to [HMRO04, HRO02b] for a more detailed description.

2.1 Syntax

The syntax of the language is given in Figure 1, and presupposes aidehof
tifiers; these consist either of nameam, a, b, |, k, taken from some predefined
setNAMES, or variablesx, y, z, taken from a seVARs. There are two syntactic

Proof methodologies for behavioural equivalence in Distribeiedcurus 3

categories, for systems, and agents. A typical system takes the form

(newe: E)(I[PT | K[QD) | [RI]

This represents a system with two siteandk, with the agent® andR running

at the former and) at the latter; moreoveP and Q, although executing at dif-
ferent sites, share some private informatiemf typeE. The syntax for agents,

or processes, is an extension of that of shercuLus [SWO1]. There are input

and output on local channels, parallelism, matching of values, iteration, and a
migration construct. For example, in the system

I[P]gotok.Q] | K[R]
the proces€) can migrate front to k, leading to the resulting system

I[PT | KIQIRI

Finally, processes have the ability to create new instances of names (channels,
newc, and sitesnewloc); their declaration types dictate the use to which these
will be put.
The valuesyY, communicated along channels consist of tuplesiople val-
ues v. These, in turn, may bmlentifiers u, or structured values, of the form
UieUs; the latter are used to represent channels which are not local to the site at
which the communication takes place. In turn, the input constrg(ef) R uses
patterns,X, to deconstruct incoming values; these may be taken to be values
constructed from variables, in which each variable has at most one occurrence.
For example, consider the following definition of a server

S & g[req?(x, yez)goto zy!(isprimgXx)) stop]|

which expects to receive a structured value of the farmel). This is a pair,
consisting of an integer, and a return addressl, that is the name of a reply
channelg, together with the location of that channlelThe server then executes
the procedurésprimg-) on the incoming valud, sends a process to the return
site, and delivers the result on the return channel there. The prodsdtireeis

not directly part of the language, but one can easily imagine an extension of it.
Such an extension could also supdettexpressions, in which case the body of
the server would be better represented as

req?(X, yez)let b = isprimgx) in goto zy!{b) stop

thereby emphasising that the procedure is executed at the server’s site.
A typical client of such a server takes the form

C < c[[(newcr : R) r?(x) print!{x) stop
| goto s.req!{Vc, reC) stop]|

4 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Base Types: base::=int | bool | unit | T | ...
Value Types: A :=base| C | Celoc | K

Local Channeltypes: C:=r«T) | w(T) | rnw(T)
Location Types: K:=loc[c;:Cq,...,Ch:Cyh, n>0
(providedc; = c; impliesi =)

Transmission Types: T :=(A1,...,An),N>0

Ficure 2. Types forDer - informal

This generates a new reply channel,at the declaration typ®, and awaits
input on this channel to be printed. Concurrently, it sends to the server site an
agent, which sends to the request channel the tuple consisting of somewalue,
hopefully an integer, and the reply address;. Then, running the combined
system

S|C (1)

should result in a boolean being printed at the client’s site, the value of which is
determined by the primality of.

2.2 Typing

Dri is a capability based language, in the sense that the behaviour of processes
depends on the capabilities the various entities have received in their environ-
ment. Formally, these capabilities are represented as types, and the various cate:

gories of types we use are given in Figure 2. Apart from the standard base types,
and the speciabptype T, the main ones are

LOCAL CHANNEL TYPES. these are ranged over I@/and can take the formw(T),
giving the ability to both read and write values of typeor the restricted
supertypes(T) andw(T);

NON-LOCAL CHANNEL TYPES: these take the forr@eloc, and a value of this type is
a structured valuegel;

LOCATION TYPES. these take the forroc[c; : Cy,...,C, : Cy]; receiving a value
| of this type gives access to the channels, or resou;et, typeC;, for
1<i<n

In this overview we omit one further category of types, thategistered names
as they play no part in the current paper; as usual, the reader is referred to
[HMRO4] for an explanation of their role in ensuring consistency between the

Proof methodologies for behavioural equivalence in Distribeiedcurus 5

types of resources at multiple locations.

The types come equipped withsabtypingrelation, which is defined induc-
tively, from the standard requirements on channel typesresatd subtypingn
location types

loc[cy : C1,...Ch: Cy] <iloc[cy : Cq,...Ck: Ck], whenevek <n

Viewing types (intuitively) as sets of capabilities, <: T, means that the capa-
bilities of T, are a subset of those ©f.

The static typing of a systerM is with respect to dype environmenr,
giving the type of all the free names M; for example, to type (1) we need
to specify the type ofeq at sites and the type oprint atc. Formally, a type
environment consists of a consistent list of entries, which must take one of the
following forms

e U: loc, indicatingu is to be used as a location;

e UeW : C, indicating thatv is already known td as a location, andis a local
channel atv with typeC.

So, for example, we would expect the system (1) to be well-typed with respect
to the environment

A = s:loc, c:loc, regeS: S, printeC : w(bool),

where, for the moment, we leave the typeinspecified.
The main typing judgement

' M,

indicating thatM uses all its identifiers in accordance with the types designated
in I, is defined by induction on the structureMt The only interesting rule is

(TY-AGENT)

' P
I+ K[P]

which says thak[[P] is well-typed (relative td") providedP is well-typed to run
at the locatiork, I" +, P.

This auxiliary typing judgement for agents needs to be parameterised relative
to the current location, because resources are located: they may be available at
one site and not another. For example, we would expect

A, reC: R i/, req!{Vc, IeC) Stop
because the channglq exists at sites but not atc, whereas we could hope for
A, reC: R k¢ reql(Vve, reC) stop

if the type ofreq at sis properly chosen.

6 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

The rules for typing agents are more or less borrowed fronrithecuLus
[PS00], with the addition of a rule for migration. For example, (local) input and
output are handled by the rules

(TY-0UT)
', V:T (TY-IN)
', P IL(X:T)ewt, R
'k, u:w(T) 'k, u:r(T)
'k, uV)P '+, UAX)R
while that for migration is
(TY-GO)
I'tu:loc
'R
I'+, gotou.R

These rules, in turn, require the ability to assign types to identifiers, and more
generally values. For example, in order fd{V) P to be well-typed to run at
w, (TY-0ouT) dictates thau must be known at sitev to be a channel with an
output capability at some transmission typewhich can also be assigned to
V. Similarly, according to(y-IN), to runu?(X : T) R at w, u must be known
there with a read capability, and the resid&aiust be typeable with respect
to the environment augmented assuming the variables in the pattern bound to
values whose types are determined by the transmissionTypé&/e forgo the
exact explanation of how this augmented environment is constructed, that is the
notation{X : T)ew.

Referring back to the system (1), let us now see (informally) why it can be
typed with respect ta. First notice that the channel generated by the client,
will be used by the server to send a boolean, and by the client itself to read a
boolean: so the declaration typeshould be set tow(bool). Then

A, reC: R+, req!{Vve, reC) stop

follows from (ry-ouT) provided the type associated witbg at s supports the
inferenceA +, req : w(int, Ryeloc), for some typeR,, which can be assigned to
r; since we allow subtypingR,, can be any supertype &. That is, informally
it can consist of any subset of the capabilities in the declaration Ryp&his
judgement leads to

A, reC: R . goto sreq!{Vc, IeC) stop

via the rule {v-co), and eventually to that of + C.

On the server side, the non-local channel inputetpy which is bound toy,
must allow the sending of boolean values. So, establishing well-typing relies on
the inference +, req : Kint, Ryeloc), with R, set tow(bool). Therefore, all

Proof methodologies for behavioural equivalence in Distribeiedcurus 7

that is required of\ in order to type both the server and the client is t8gethe
type associated with the request channel, toAgant, w(booljeloc).

There is an interesting point to be made here. The client generates the reply
channelr with both read and write capabilities; only the latter is sent to the
server, viareq, and the former is retained for internal use. This use of restricted
capabilities provides a certain level of protection to the client, as it knows that
the reply from the server can not be usurped by any other client.

2.3 Behaviour

The behaviour of a system, that is the ability of its agents to interact with other
agents, depends on the knowledge these agents have of each others capabilities.
In the example just discussed we have seen the client generating a reply channel
with two capabilities, but only making one of these externally available; indeed,
the proper functioning of the cliefsierver interaction depends on such decisions.

Dermnition 2.1 (ConrFiGurATIONS). A configurationconsists of a paif M, where
e 7 is atype environment which associates some type to every free navhe in
e there is a type environmehtsuch thal" + M andI’ <: 1

This latter requirement means thatZifcan assign a typ&; to a namen, then

I' can assign a typ&r such thatTr <: Ty. Again, viewing types as sets of
capabilities, this means that, representing the knowledge of the external user,
IS a subset of -, the actual set of capabilities used to type the sydtém =

So we define the behaviour in terms of actions over configurations; these are of
the form

IcM-5 T >M (2)
where the label can take any of the following forms
e 7. an internal action, requiring no participation by the user,

e (8: E)ka?V: the input of valueV along the channe, located at the sitk.
The bound names ire)are freshly generated by the user;

e (&: E)kal!V: the output of valud/ along the channed, located at the sitk.
The bound names ire)are freshly generated by the environment.

The rules for defining these actions are given in Figure 3 and Figure 4, a slightly
different but equivalent formulation to that given in [HMRO4]. The guiding prin-
ciple for (2) to happen, is tha®l must be able to perform the actipn and the

user must have, i, the capability to participate in the action. The rules use
some new notation for looking up the types associated with channels in envi-
ronments: the partial function& (k, a) and7"(k, a) return the read, respectively
write, type associated with the chanaeht the locatiork in 7 (of course these

8 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(M-IN)

Ik, a) | T+ V:IVka)
7 > k[a?2(X) R] &% 7 & KIR(V/xH]

(M-WEAK)

I,(e:E)p> M GDka%, 77
I>M (e:E d:D)k.a?V. > M

bn(e) ¢ I

(M-ouUT)

I'(k,a) |
7> k[a(Vy P £&% 7, (V : I"(k, a))ek > K[P]]

(M-OPEN)

I, <e —|—> > M g&:ﬁgk.alv I/ > M/
I (newe: E) M (eEd:D)k.alV. T > M

(M-cTXT)

I>M-571">M

I>M|N-S 7'>M|N
I>NIM-5T7T">N | M

bn(u) ¢ fn(N)

(M-NEW)

I (e:THY>MLELIT' (e:T)> M
I>(newe:E)M -+ 7' > (newe: E) M’

bn(e) ¢ u

Ficure 3. External actions-in-context fdber

may not exist, and(k,a) |, for example, indicates that the write type is in-
deed defined). We extract names from entries in environments with the function
bn(-), defined bybn(u) = u andbn(uew) = u; this is extended to actionsin
the obvious manner. Finally, we use the notafiof-) for free variables.

In Figure 3, the ruleNi-IN) says thatl > k[a?(X) R] can perform the input
action<2%; provided the user canrite the value; that is/ has a write capability

onaatk, and has the knowledge to actually proddcerhis, in conjunction with

Proof methodologies for behavioural equivalence in Distribeiedcurus 9

(M-WEAK), allows us to derive the following action from the serger
A > S e A roc: R > s[goto c.ri{isprimg\ve)) stop]] (3)
whereq is the input actiors.req? (v, reC), because
A,reC:R>S -5 A, rec: R > s[goto c.ri{isprimgv.)) stop]

Similarly, (M-ouT) requires! to have aeadcapability ona atk, in order for
k[a!{V) P] to be able to perform the obvious output; note that here the current
knowledge of the user;, is augmented by whatever new knowledge which can
be gleaned from the received valMe Intuitively, (V : T)ek decomposes the
valueV, relative to the typ&, from the standpoint df; this last only comes into
play whenV contains instances of local channels, which are then interpreted as
channels ak. But the important point innf-ouT) is that the type at whicW
is added taf is I'(k, a), the reception type that the user currently hasatk.

Thus (M-oPEN) allows us to deduce

A > (newrecC : R) s[req!(ve, rec) stop]] {L2R% A rec: Ry > S[stop] (4)
wherey is the output actios.req!{Vvc, rec), because withnf-ouT) we can derive
A,reC: T > g[req!{V, rec) stop]] = A, recC : Ry, > S[stop]

The use ofT is simply to ensure that we have a valid configuration; but note that
the user has gained only the restricted capalf{{fyon the new channel rather
than the more liberal declaration capabilRy because the former is the type at
which the user can receive values alaag.

The rules for the internal actions are given in Figure 4, and most are straight-
forward. We have labelled some gsactions, which will be useful in the next
section; but for the moment these labels can be ignored. The only interesting
rule is (M-comMm), which formalisescommunication Note that, in the hypothe-
ses of both variations, arbitrary user environmefisandf,, are allowed. This
may be surprising at first, but intuitivelyractions should be independent of all
external knowledge. For example, we can use (3) and (4) above to derive

I >S|(newrec: R) s[req!(ve, rec) stop]] ——
I > (newrecC : R) s[goto c.ri{isprimg\.)) stop] | S[stop]]

for an arbitrary? .

We now have a labelled transition system in which the states are configura-
tions, and we can apply the standard definition of (weak) bisimulation.

10

Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(M-coMM)

-[1 > M gé:ﬁ!k.a?\/ I& > M’ IZ > N !éié!k.a!V Z-/z > N’

I>M|N-= 7> (newe: E) (M |N)

(M-cOMM)

Il > M gé:égk.a!v -Z-_{]_ > M’ IZ > N !é:ﬁgk.a?\/ 172 > N’

I>M|N- 7> (newe: E) (M |N)

(M-MOVE)

I > Klgoto|.P] =5 7 > I[P]

(M-C.CREATE)

I >k[(newcc: C) P] -4 I > (newcek : C)K[P]

(M-L.CREATE)

7 > kl[(newlocl : L) P] -4 7 > (newl : L)K[P]

(M-EQ)
I > K[if v=vthen P else Q] =>4 7 > K[P]

(M-NEQ)

I > K[if vi = vo then P else QI >4 7 > KIQI (V1 # Vo)

(M-SPLIT)

I >KIP|Qll -5 7 > KIPI KIQI

(M-UNWIND)

I > Kl[+Pl =>4 I > K[+P | P]

Ficure 4. Internal actions-in-context fdbe1

Proof methodologies for behavioural equivalence in Distribeted.cuLus 11

Dermnition 2.2 (BisimuLations). We say a binary relation over configurations is
a bisimulationif both it, and its inverse, satisfy the following transfer property

(Iml>|\/|)(R (INI>N) (IMDM)R (INI>N)
u implies i
(I > M) Iw>M)R (In >N)

Here we use standard notation, see [MPW92], withrepresenting—*o—+t>o
—»* and=% meaning—>*, if u is r, and=% otherwise. This allows a single
internal move to be matched by zero or more internal moves.

We let~y;s denote the largest bisimulation between configurations. m

Rather than writing{ > M) ~yis (Z > N), we use the more suggestive notation
IE M =g N

This can be viewed as a relation between systems, parameterised over type envi-
ronments which represent user’s knowledge of the systems’ capabilities.

It is this bisimilarity ~js which is the object of our study: we aim to show
that, despite the complexity of its definition, tractable proof techniques can be
developed for it.

Finally, we should remark this is not an arbitrarily chosen version of bisimu-
lation equivalence. In [HMRO4] its definition is justified in detail: it is shown to
be, in some sense, the largest reasonable typed equivalence bBivegstems.

3 Proof techniques

The basic method for showing that two systedhandN are equivalent, relative
to an environment, is to exhibit a parameterised relati®rsuch that’ = MRN,
and demonstrate that it satisfies the requirements of being a bisimulation. In this
section we give a number of auxiliary methods, which can considerably relieve
the burden of exhibiting such relations.

The following Theorem is proved in [HMRO4], and justifies a form of con-
textual reasoning.

THEOREM 3.1 (CONTEXTUALITY).
e TE M=xpsNandri+ OimplyT E M|O=pisN|O
o /. (e:E)E M =~psN implies? = (newe: E) M ~pis(newe: E)N n

We can also manipulate system descriptions. 2 bk the least equivalence
relation which satisfies the rules in Figure 5, and is preserved by the constructs
—| —and pewe: E)(-); this is referred to astructural equivalence

12 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(S-EXTR) (newe:E)(M|N)=M | (newe:E)N if bn(e) ¢ fn(M)
(s-com) MIN=N|M
(s-ASSOC) (MIN)|JO=M|(N]|O)
(S-ZERO) M|O=M
k[stop] = 0

(s-rLIP) (newe:E)(new€ :E')M = (new€ : E’)(newe: E)M
if bn(e) ¢ (¢ : E’), bn(¢) ¢ (e: E)

Ficure 5. Structural equivalence fder

ProposiTioN 3.2. M = N impliesM =ys N. [

This means that we can employ the axioms in Figure 5 as equations for semantics
preserving manipulations of systems. For example, from now on, we will omit
the termination processop, becausé[stop]] = 0 andM |0 = M.

Further equations can be obtained by considering the internal actions in
Figure 4. First recall that these actions do not change the environment of a
configuration, and therefore, for convenience, let us abbreviate from now on
I>M-5 1> M tothe simplerf > M —/— M’. When internal actions are
B-annotated, they have the following very specammutative property

Lemma 3.3. Supposd > M L>/'§ M’. Then, for every actiod > M -+ 1’ > N,
there is a system’ such thati’ > N L>/§ N andl >M -4 7' > N'.

Proof: It is sufficient to prove this for the single labelled actidm- M ——; M’,
for which a simple, but tedious induction on the derivation of the action can be
carried out. m

ProposiTion 3.4. Supposd > M é; N. ThenZ £ M =~ps N.

Proof: Let the parameterised relatigtbe defined by letting >MRN whenever
e 7> M is a configuration
e eitherM = N or M L>; N

The previous Lemma providesfigient information to show thaR is a bisimu-
lation. The result therefore follows. [

This Proposition gives more valid equations for reasoning about systems. Typ-
ical examples, obtained just by examining the axioms in Figure 4 describing

Proof methodologies for behavioural equivalence in Distribeted.cuLus 13
B-actions, include

KLP | QI ~bis KIPT | K[QI
kl[lgoto |.P] ~ypis [P]]
K[(newcc : C) P ~pis (new cek : C) K[P]
But theses-labelled internal actions also provide us with a very powerful
method for approximating bisimulations, in the spirit of [JR04].

Dermnition 3.5 (BisimuLations up-to-3). A binary relation between configura-
tions is said to be &isimulation up-tg8 if it satisfies the following transfer
properties

Im>M) R (In>N) (Im>M) R (In>N)
u implies i

(Lw > M) Iw > M) A oRoA (In>N)

In>N) R (Im>M) (In> N) R (Im>M)
u implies o

(I'n >N In>N) AloRoA (I > M)

where A, is the relation {—T—>; o =), andA; Is ~yjs; Strictly speaking, these
relations are over systems, but they are lifted in the obvious manner to configu-
rations. |

The idea of these approximate bisimulations is that to match an adfign(

M) 45 (I > M) it is suficient to find gB-derivative of the residualf{y. >

M) L>;; (M”) and a matching action/g > N) =% (7 > N’) such that, up-to
structural equivalence and bisimilarity, respectively, the pdifg & M”’) and

(I'n > N’) are once more related. Intuitively, a configuration can represent all
configurations to which it can evolve usiggmoves.

Lemma 3.6. If P = Q andl>P—zP’, then there existQ such thal >Q—>
Q andP' = Q'.

Proof: By induction on the derivation d® = Q. |

ProrosiTion 3.7. If (I > M) R (I > N), whereR is a bisimulation up-t@, then
1= M =pis N,

14 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Proof: We leave to the reader to check that the relatiogs(c R o ~pig) is a
bisimulation over configurations. The key properties for establishing this are the
two inclusions——; C ~pis (Proposition 3.4) anek C ~pis (Proposition 3.2),
Lemma 3.3 and transitivity, in Definition 3.5, of botf; (due to Lemma 3.6)
andA;. The result then follows, sincefis o R o ~pjg) trivially containsR. m

4 Crossing a firewall

Let us consider thérewall example, first proposed in [CG98] and studied at
length in [GC99, LS00, MNO3] within versions of Mobile Ambients. Intuitively,

a firewall is a domain to which access is restricted: only agents which are per-
mitted, in some sense, by the firewall are allowed in. A simple example takes the
form

F < (newf :F)f[P]|xgotoatell!{f)]

Heref is the name of the firewall, which is created with the capabilities described
in the location typd-, andP is some code which maintains the internal business
of the firewall. A typical example of the capabilities could be given by

F = loc[info : (1), req : r(R)]

which allow reading to and writing from two resourdef® andreq in f. Then
P could, for example, maintain appropriate services at the resources; of course,
it would also be able to use non-local resources it knows about in its current
environment.

The existence of the firewall is made known only to another donagivia
the information channetll located there. An example is the following

A < a[[R] tell?(X) goto X.Q]]

wherea is informed off by inputing on the local chann#ll. If we consider an
arbitrary type environment, we have the execution

I's>F|A-—5"(new f : F)(f[P|=+gotoatelll{f)| Q) | alRI] (5)

so the cod&) is allowed to execute locally within the firewall.

Notice that the resources to whi€hhas access within the firewall are con-
trolled by the capability type associated with the information chatedlel For
example, suppose inthe type associated with this channel is

rw{F:), Fr = loc[info : w(l), req : r{R)]

ThenF, is a supertype of the declaration typehence in (5)Q, having gained
entry into the firewall, can only write to resouricéo and read fronreq.

Let us now consider the correctness of this simple protocol, which allows
access of one agerf, to the firewall. Lef” be any type environment such that

TrF|A (6)

Proof methodologies for behavioural equivalence in Distribeted.cuLus 15

Then one might expect to be able to derive
I'E F|A =pis (new f : F)(f[P|*gotoatelll{f)| Q) | a[R] (7)

But this happens not to be true, because of the implicit assumption that the infor-
mation channetell in a can only be accessed by partners in the entry protdcol,
anda. But, in order for (6) to be true, we must have-, tell : rw(F,), and this
allows other agents in the environment accegsltoFor example, consider

Rogue < b[[goto a.tell'{b)]]

and suppose that the only type inference frbnmvolving b isT" + b : loc; so
I" is not aware of any resourceslat Nevertheles§ + Rogue, and therefore
Contextuality(Theorem 3.1) applied to (7) would give

I' E F | Al Rogue ~ypjs
(new f : F)(f[P|*gotoatelll(f)| Ql) | a[R] | Rogue

But this is obviously not the case, as the left-hand system can reduce via a series
of r-steps (representing the interaction betw@eaandRogue) to the state

I'>F|a[R] | b[Q]

Under reasonable assumptions about the @@die right-hand system has no
corresponding reduction to a similar state. On the left-hand side the(@au®v
located ab, can not run, while on the right-hand side, no matter whsteps are
made,Q will be able to execute at.

Thus (7) can not be true.

However, our framework allows us to amend the correctness statement (7)
above, taking into account the implicit assumption about the information channel
tell. The essential point is that the protocol works provided dimdy the firewall
can write ontell. This can be formalised by proving the equivalence between the
two systems relative to a restricted environment, one which does not allow write
access taell.

First some notation. Let us wrile+"®*V : T to mean

e I'H VT
e ' V:T impliesT <: T

In other wordsT is thelargesttype which can be assigned % Now suppose
I is a type environment which satisfies

(i) 7 +M®tell : r(F)
(i) 7+ a[R]
(i) I+ (newf :F)f[P]

16 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

The import of the first requirement, which is the most important, is that systems
in the computational context can not writetefi. The other requirements, which
are mainly for convenience, ensure that the residual behaviawarat f is well-
behaved, although a sidéfect is that they also can not write @#l. Under these
assumptions, we prove

TE F|A ~s (new f : F)(f[P|=gotoatell!{f)| Q) | a[RI] (8)
First note that (up-to structural equivalence)
I>F|A—DzF|AalR]

via (M-spLIT) and (1-cTXT), whereA; is a shorthand foa[tell?(x) goto x.Q]].
So, by Propositions 3.2 and 3.4, it isfBcient to prove

TE F|AaA[R] ~pis (new f : F)(f[[P| «gotoatell!(f)| Q) | alR]

Here assumption (ii) comes in useful, as®@gntextualityit is now suticient to
prove

TE F|A =ps (new f : F)(f[P| +goto a.tell!{f) | Q)

Then the left-hand side can be manipulated using the structural equivalence rule
(s-EXTR), thereby reducing the proof burden to

T E (new f : F)(f[P| +gotoatelll{)] | A) ~pis
(new f : F)(f[[P|=gotoatell'(f) | Q)

and another application @ontextualityreduces this further to
I E f[P]|*gotoatelll{f)] | A =pis f[P]|*gotoatell'(f)| Q]

where7 ¢ is a shorthand for, (f : F).
Now let F4 represent the systeffrf=goto a.telll(f)]. Then we have

o Ii> f[P|=gotoatell!(f)] | A ——>5z f[PT|FqglA
o It > f[P|+gotoatelll(f)| Q] <5 f[PI|Fq| fIQI

So, further applications of Proposition 3@pntextualityand assumption (iii),
give the requirement

IiE Fg|At ~bis Fg| fIQl (9)

This we establish directly by exhibiting a particular bisimulation.
We define the parameterised relati®my letting

JE MRN
whenever
(a) J > M is a configuration andll is the same aMm
(b) orJ is7¢ and

Proof methodologies for behavioural equivalence in Distribeted.cuLus 17
e M has the fornfFg | A | II, (aftell!(f))"
e N has the fornty | f[Q] | II, (a[tell!{f)])"

wherell, (a[tell!{ f)])", for somen > 0, means copies ofa[tell!{ f)] run-
ning in parallel.

ProrosiTion 4.1. The parameterised relatict defined above is a bisimulation
up-tog.

Proof: Suppose/ = MRN. Let us consider all possible actions frgim> M. In

fact, itis suficient to consider the case (b) above, wiieandM andN are of the
prescribed form. The actions fall into one of three categories (for convenience
we shorterd], (aftell'(f)])" with I1,,).

e HereFg is responsible, so the action takes the form
Ii> M 5 f[xgotoatelll(f) | gotoatelll(f)] | A | In
But
I¢ > f[+goto atell!(f) | gotoatelll(f)] | Ac|I1, ——=5 Fglaltelll(f)] | A | I,
and this can be matched, via clause (b), by
Ii> N L>[’§ Fqlaltell'(f)]1 | fIQI | I,

becausdgylaftell'{ f)[| AL, = FglAIln1, andFglaftelll(f)]I f[QNII, =
Fgl fIQI [IIhi1, and= C =yis (Proposition 3.2).

e The second possibility is that the third compondiy,(aftell!{ f)])", is re-
sponsible for the action, which must beell! f. It is easy to see that; > N
can perform exactly the same action, to a related configuration in clause (b).

¢ Finally, the middle componen#;, might be involved in the action. Note that
the action can not be external, as the actiaell?V (for some value/) is not
allowed by the environment. So it must be a communication, of the form

Ii>M — Fglalgoto f.QJ |1
But the followingg-steps can be carried out starting from this configuration
I+ >Fglalgoto f.QIl -1 —5 Fglaltell!(FN| fIQN TIn-1 = Fgl fIQNITI,

and this can be matched in clause (a) by the empty sequence of internal ac-
tions from7 ¢ > N.

Symmetrically, it is easy to see that every action frgmn+ N can be matched by
one fromJ > M, possibly preceded by a numberwohctions: these latter are
required wherf[Q] is responsible for the action to be matched. |

This, by using Proposition 3.7, completes our proof of (8) above.

18 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Note that the firewalF allows, in principle, multiple entries of agents from
a. So, for example, iR, in (8), had the fornR’ | tell(x) goto x.Q’, then the
reasoning we have just completed could be repeated, to prove

T E F|a[R] ~pjs (new f : F)(f[P|«gotoatell!(f) | Q1) | a[R1]

Then, under the assumptioh+ (new f : F) f[Q] and by transitivity ofxy;s,
this can be combined with (8), to prove

I E F|a[R |tell2(x) goto x.Q’ | tell?(X) goto X.Q] ~pis
(new f : F)(f[P|*gotoatell!l(f)| Q| QI) | alR1

where the domaia has managed to send two separate agents into the firewall.

5 A server and its clients

We consider in this section the canonical example gkeverand itsclients

A server is a domain providing services to potentially arbitrary clients, as for
example the following, a generalisation of the one used as working example in
section 2

S < g[«req?(X, Yez)goto zy!(isprimgXx)) | S'T

The service at resouraeq is here iterated, an®’ provides internal code to
setup and administrate the site. The chamaglawaits indefinitely an integer
and a located channel, checks whether the integer is a prime (according to the
convention, stated in section 2, that the procedspeime is executed at the
server’s site), and returns the answer at théfpred address.

Typical clients of the server are domains taking the form

Ci < ci[[(newcr : R) goto sreq!(vi,rec) | C/]

These generate a private channelt the declaration typ® = rw(bool), and
send a process to the server (whose address they need to know) asking for the
primality of an integer; concurrently, the agézjtexecutes at the site.

As in the case of the firewall, the correctness of the protocol between the
serverS and its clientsC; depends on the proper management of the access to
the request channetq: clients should only have write access, while the server
only needs read access. So the correctness of the protocol can be expressed &
an equivalence between two systems, relative to a restricted environment.

Let 7 be a type environment satisfying

() 7 +"req : w(int, w(bool)eloc)
(i) 7+ 95
(i) 7+ C

Proof methodologies for behavioural equivalence in Distribeted.cuLus 19

The first requirement establishes thia computational context can not read on
req, while the following points ensure that the residual behaviour at the server
and the clients is well-behaved, with the sidéset that neithes’ nor C/ can
read orreq.

First, let us show that one client interacts correctly with the server

I S|Cy =pis S|cil(newcr : R) riCisprimeglvy)) | Ci] (20)
Note that (up-to-structural equivalence)
I>S|C L>; (newreCy : R)S, | S[S'T | sIreq!(vi, reci)]l | ca[C11l
where we us&, as a shorthand fas[+req?(X, yez)goto zy! {isprimeg(x))], and
T > S|c[(newcr : R) riisprimgvy)) | C1] L>;
(newreCy : R) S, | S[S] | co[[r!(isprimevy))] | c1[C1]l

By Propositions 3.2, 3.4 ontextuality and requirements (ii), (iii), it is therefore
suficient to prove

I E Sy |slreql(vi, reCi)ll ~pis Sy | Callr!<isprime(vi))]l

where 7, is a shorthand fol7, (rec; : R). We establish this equivalence by
exhibiting a particular parameterised relation, and showing that it satisfies the
requirements to be a bisimulation. LBtbe the parameterised relation defined
by letting

JE MRN

whenever
(a) J > M is a configuration andll is the same abl
(b) orgJ is 1, and

e M has the forn5, | s[req!{vi, rec:)] | Il

e N has the fornt, | c,[[r!{isprimgvi))] | I,

wherell, is a shorthand fofl, (S[req?(x, yez)goto z.y!(isprimgx))])"

(c) orJ is I;, where the domain af; is a superset of that of,, and

e M has the fornS, | sfreq!(vs, recy)]l | I | ITjey (;l1d;!(isprime(i;))1)

o N has the forns; | cy[[risprime(vy))] | T | TTjey (k;[d;!{isprime(i ;) 1)
such thatZ; +"® req : w(int,w(bool)eloc) and I ki d; : w(bool) for

everyj € J. Here, the notatiofljc; (K; |[dj!<isprime(ij)>]]) means (dierent)
instances of systems running in parallel.

20 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

ProrosiTioN 5.1. The parameterised relatidt defined above is a bisimulation
up-tos.

Proof. Supposg/ E MR N. The actions frongy > M in the case (b) above fall
into one of three categories.

e FirstS, is responsible
I > M 5 s[+req?(x, yez)goto zy!(isprime(X)) | R] | s[req!{vy, rec)]l | I,
whereR’ is a shorthand foreq?(X, yez)goto zy!{isprimgx)). But

I > s[+req?(X, Yez)goto zy!(isprimgx)) | R | s[req!(vi, reci)]l | IIn =4
Sr [111 | s[req!{v1, reci)] | I,

and this can be matched by
Ir >N L’; Sr | 1y | cl[[r!<isprime(v1)>]] | I,

because both configurations belongdoclause (b), up-to structural equiva-
lence.

e The third componenti], (s[req?(x, yez)goto zy!(isprim&Xx))])", is responsi-
ble for the action, which is eitherreq?(i;, d;@k;) or (eE)sreqi;. d; @k;).
These actions correspond to the delivery of (new) data by the environment
(from which the system is allowed to learn infinitely new names), and are
followed by the actionNi-MOVE). However, it is easy to see that > N can
perform exactly the same actions, to a related configuration in clause (c).

e Finally, the middle componeng]req!{vi, recs:)]], might be involved in the
action, which must be a communication, of the form

I, >M -5 S, | s[gotocy.ri{isprimgvy))] | TT_1
Then the followings-steps can be carried out
I >S5Sy |g[goto cy.riisprimgvy))11Th-1 L>;Sr [Ty |Ca[[r!Cisprimgvo)) 11TTn-1

and this configuration can be matched, in clause (a), by the empty sequence
of actions fromZ, > N.

Symmetrically, every action performed By > N can be matched hy, > M; for
example, consider the output action by the second componéht of

This can be easily matched By > M, via clause (a), using-steps followed by
the same action.

Finally, it is not problematic to check that all configurationgiby virtue of
clause (c) can have their respective actions properly matched. |

Proof methodologies for behavioural equivalence in Distribeted.cuLus 21

This completes our proof of (10), that one client can interact correctly with
the server. Contextual reasoning can now be employed to generalise this result
to an arbitrary number of clients. For example, let us show

ITE S|C1|Cy =pis S|z Gill(newcr : R) riisprimgvi)) [C{T (11)
Because of + C, (requirement (iii) above)Contextualityapplied to (10) gives

ITE S|C1|Cs ~pis S|cill(newcr : R) ri{isprimgvy)) |Ci11Cx (12)
On the other hand, repeating the analysi€pbn C,, we obtain

IE S|Cy ~pis S|call(newcr : R) riisprimg(vy)) | C5]l
But 7 + Cy (again (iii)) also impliesl’ + ci[[(newcr : R) ri(isprimgvy)) | C11,
and therefore, b ontextuality
I ES|Cylcf(newcr : R) riisprimevi)) | C11l ~pis
S [Higr2 Gill(newer @ R) riisprimgv;)y | C/]]

So we conclude (11) from (12), Proposition 3.2, and transitivity .
It is then a simple matter to extend this reasoning, using induction, to show
that an arbitrary number of clients can be handled

..........

This we leave to the reader.

As a further example of the modularity of our proofs, let us consider a partic-
ular instantiation of the residual processgsandC;: we setS’ to stop andC/
to r?(x) print;!(x), whereprint; are local channels. For convenience we restrict
attention to two clients, and let us assume that they send the integer valuds
andv, = 3, respectively, to the server. So we have

S” & q[«req?(X, yez)goto zy! (isprimeXx))]
C{ < ci[(newcr : R) goto srreq!(4, recy) | r?(x) printy [{x)]
C) < col[(newcr : R) goto sreq!(3,reCz) | r?(X) printy!{x)]

and we want to prove the following
T ES"|CY|C) =pis S| cillprinty!(false] | co[print,!{true)]

This follows from (11) (the requirement (iii) holds for every residGalso is
supposed to take into account the local chanpeig,; andprint,, in the case) if
we can establish
I E S" |z Gill(newcr @ R) riisprimev;)) | r?(x) print! (X1 ~pis
S” | ciflprint ! false] | co[print,!{true)]

But Contextualitywith requirement (iii), as usual, allows us to simplify this fur-

22 Alberto Ciataglione, Matthew Hennessy and Julian Rathke
ther, to the tasks

I E S”|cf[(newcr : R) riKisprimg4)y | r?(X) print;!)] ~pis
S” | cyl[printy!(false]

I E S’ |cl(newcr : R) riKisprimg3)) | r?(X) print,! ()] ~pis
S” | co[print,!{true)]]

Note thatContextualitydoes not allow us to eliminat&” from these judgements,
sinceZ + S” is not true. Nevertheless, it is a simple matter to construct a
witnessing bisimulation to demonstrate directly these two equivalences, as the
reader can check.

6 Metaservers

In this section we describeraemory servicby involving thenewloc operator of
Dri1, which allows the creation of new instances of sites. A (meta)server contains
a resourcesetup, where requests are received, and installs the service at a new
site, thus providing personalised treatment to its clients.

A first version of the server receives a return address, generates a new lo-
cated memory cell, and installs some code there, meanwhile delivering the new
location name at the reply address

S & g[«setup?(yez) (newloc m: M) goto m.Mem | goto zy!(my]

whereMem is the code running at the locatiom and for instance can take the
form
Mem < (newcV : V) VI{0) | xget?(yez) v?(W) (goto zy!(w) | vI{w))
| xput?(X, Yez) V?(W) (goto zy! | VI({X))

Here we are using the channeas a restricted form of memory cell: the value
it contains (whose initial value is set to 0) disappears once it is read, therefore it
has to be reinstated. The methages$ andput can be seen as the canonical ways
to access the cell, therefore the declaration type of the new site can be set to

M = loc[get : Tg, put : Tp]

Notice that we have chosen this particular instantiation for the runningdede
just for reasons of simplicity, as the proofs we are going to develop are, in prin-
ciple, independent of it.

Clients of the memory service generate a new reply channel, send a request
to the server, and wait for the server to deliver the new memory cell

Ci < cil[(newcr : R) goto s.setup!(reci) | r2Ax) Pi(X)]l

whereP;(X) is parametric code which depends on (the name of) the newxsite,
andR = rw(M).

Proof methodologies for behavioural equivalence in Distribeted.cuLus 23

An alternative, slightly dterent version of the server leaves to the clients the
responsibility to create the memory cells, just installing the servicing code at the
proffered site

S’ & g[[xsetup’?(X, Yez) goto x.Mem | goto zy!]

Correspondingly, clients generate an acknowledgement channel and a new loca-
tion, send a request to the server, and await the server to acknowledge the service
has been installed

C < cill(newct: T) (newlocm : M) goto S'.setup’l{m;, teC;) | t?P;(m;)]]

whereT = rw(unit).
We want now to relate the twoftierent approaches, therefore connecting the
behaviour of the two following systems, relative to a typing environnient

TESI|C|C (13)
ITES|C]IC, (14)
Our goal is to establish that, from the point of view of the clients, under certain

hypotheses the two kinds of serv&andS’ lead to equivalent behaviour. This
means finding a suitable type environmgrguch that

TE SICCs ~pis S'ICLIC, (15)

It is immediate to notice that the correctness of this protocol requireghbat
computational context should have neither write nor read access teediup
andsetup’ channels Thus, the equivalence can be proved relative to a restricted
environment?, satisfying

I+ setup: T I +]®setup” : T

Now, the internal actions can be used to deduce a derivation from (13) and (14)
to the systems

T S| gz (new m : M)(m[Mem] | ¢ [[P;i(m)T) (16)
Ik S" [liga 2 (new my : M)(my[Mem]l | Gi[Pi(my)1) (17)

Therefore we address (15) in three steps: first we prove that the two pairs of
systems (13),(16) and (14),(17) are equivalent; then we connect the systems (16)
and (17) by a technical lemma. That is

() 7k S|ieur2 Ci ~pis S| (new my @ M)(mi[Mem] | ¢;[Pi(m)1)
(i) Tk S [igury C =pbis S’ | g2y (new my - M)(m[Mem] | G[[P; (m)T)
(i) I E I[=a?P)1|Q ~pis Q, forany”,Q,l,a PsuchthatZ +"**a: T

anda ¢ fn(Q)

The proof of the point (iii) is straightforward, as a witness bisimulatfon
can be promptly defined by letting = M R N whenever

24 Alberto Ciataglione, Matthew Hennessy and Julian Rathke
(@) g > M and g > N are configurations

(b) J is I andM has the form[+a?(x)P(3)] | TTn (I[226)PG)T)" | N

which can be easily proved to be a bisimulation uggto-

We argue below both the proof of (i) (leaving the one of (ii), which is com-
pletely similar, to the reader) and how to get the proof of (15) from those of (i),
(i), (ii)). Let us start from the latter.

Using the equations (i) and (ii), the equivalence (15) can be reduced to

TE S|y Qi ~pis S | Hicprzy Q (18)

where Q; denotes rfew my : M)(m[Mem] | ¢[[Pi(m)]). It is natural now to
assume that the conditions required by the lemma (iii) are satisfied by the code
Qi (setup, setup’ ¢ fn(Q;), in the case). Hence, it is possible to apply that lemma
to both the sides of the equation (18), thus obtaining an identity.

Finally, we address the proof of the point (i).
First notice that (up-to structural equivalence)

I>S | Hie{l,Z} Ci L)Z
(newrieCs @ R,r2eC; 1 R) S|Iicq12 (S[setup!(rieCi)] | Gil[riAX) Pi(X)1)

andS [icpz Q= (newmy : M,mp @ M) S| Tigir.2) (M [Mem] | ¢i[Pi(my)I).
Therefore, by Propositions 3.2, 3.4, we reduce (i) to the following

I | (newryaCyiR, 12aC2R) S| Ilierz) (SIsetup!(riecill | GillriAX) Pi(X)1) ~bis
(newmy : M,np 1 M) S [Tliga 2y (MIMem] | Gi[Pi(m)1)

which we prove by exhibiting a particular bisimulation. Let us fix before some
shorthand notation

Sii = sfsetup!(rieC)]

Ca = Gl AX) Pi(X)]
M; = m[Mem]
Cii = Gi[[rilKmy)]
Cp, = G[[Pi(m)]
B = (newmy,my: M)S|II,| M1 |Cp, | M2 | Cp,

I, = I, (s[setup?(yez) (newlocm: M) goto m.Mem | goto zy!{(m)])"
We define the parameterised relati®my letting
JE PRQ

wheneverJ > P is a configuration an@ is the same aPB, or 7 is 7 andQ has
the formB andP has the form

(@) (hewryecy : R,r2eC2 1 R) S|IIh[Si1|Si2 | Cor1]Coo

Proof methodologies for behavioural equivalence in Distribeted.cuLus 25
(b) or (newrieC; : R,r2eCy : R,My : M) S|II,|Sio | Coo| M1 | Cip | Coq
(c) or(newrjeCy : R,r2eCy : R,mp i M) S|II, | Sig | Cor1| M2 | Ciz | Co2
(d) or(newrseCy : R,y : M) S|II,| Sz | Co2| M1 | Cp,
(e) or hewrieCy : R,mp : M) S|II, | Siy | Cr1| M2 | Cp,
(f) or (newrieC: : R, r2eC; : R,my : M, mp : M) S[IIh| M1|Ci1|Cr1| M2|Ci2|Co2
(g) or(newrzeCy : R,my i M,mp : M) S |11 | M1 |Cp, | M2 | Ciz | Co2
(h) or (hewrieC; : R,my : M,mp : M) S|IIn | M1 | Cig | Cor| M2 | Chp,

The relationR draws a directed graph, whose edges can be labelled by commu-
nications.

ProrosiTioN 6.1. The parameterised relatidt defined above is a bisimulation
up-tog. u

We leave to the reader the task of proving the Proposition, as no extra critical
aspects arise with respect to the proofs detailed in the previous two sections.
Summing up, we have shown that

TE S|C1|Cy ~pis S'ICLICS
under the following assumptions
o [+Msetup: T ands rJ'**setup’ : T
e setup ¢ fn(Mem) andsetup’ ¢ fn(Mem)
e setup ¢ fn(P;) andsetup’ ¢ fn(P;)

It is then possible to consider an arbitrary number of clients. The correctness
of these can once more be addressed using the techniques, Slmft@stuality
discussed in the previous sections.

7 Related and future work

Proofs of correctness of protocols or language translations are often carried out
with respect tocontextualequivalences [GC99, LS00]. Nevertheless, the use
of bisimulation-based notions of equivalences enables such proofs to be consid-
erably simplified. For instance, in [MNO3], two up-to proof techniques (up-to
expansion and up-to context) are borrowed fromrkeLcuLus and adapted to
develop an algebraic theory and prove the correctness of the perfect firewall pro-
tocol [CG98]. Our paper tries to contribute to this second approach, using bisim-
ulations, extending their application to situations in which the environment plays
a significant role in system behaviour.

In this document, we have defined and illustrated a collection of methods
for proving bisimulation equivalences for distributed, mobile systems, modelled

26 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

with the Drr calculus [HRO2b]. In order to cope with bisimulation equivalence
in Det [HMRO4], it is natural to look for bisimulations up-to in the spirit of
[SM92]. More precisely, we have introduced in our wdrikimulations up-to
B-reductions which have been inspired by a similar approach to concurrent ML
[JRO4]. This technique actually relieves the burden of exhibiting witness bisim-
ulations, and its feasibility has been proved to be successful, combined mainly
with Contextuality for addressing the verification of sample access protocols,
such as crossing a firewall, the interaction between a server and its clients, and
metaservers providing memory services.

In the future, we plan to test further with the upgeeduction and the auxil-
lary techniques we have devised, by dealing with more involved protocols, possi-
bly in the spirit of [USO1]. That work uses a novel notion of coupled simulation
that, despite not coinciding with any contextual equivalence, allows the proof of
correctness of a simple central-forwarding-server algorithm.

We would like also to extend the results and techniques statdarfdo the
more involvedSareDr1 [HRYO04], which takes into account extra safety aspects
of distributed systems.

AcknowledgementsThe authors would like to acknowledge the financial
support of the two EU Global Computing projedtéikadoandMyths

References

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Prodza8SaCgSlecture
Notes in Computer Sciend878, Springer, 1998.

[GC99] Andrew D. Gordon and Luca Cardelli. Equational properties of mobile ambients. In
Proc. ofFoSSaC3_ ecture Notes in Computer Scient®78, Springer, 1999.

[HMRO4] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systeifiseoretical Computer Scien822(3),
2004.

[HRO2a] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in
the presence of subtypinglectronic Notes in Theoretical Computer Sciebde 2002.

[HRO2b] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents.Information and Computatioh73(1), 2002.

[HRYO4] Matthew Hennessy, Julian Rathke, and Nobuko YoshfaeDrr: a language for con-
trolling mobile code. In Proc. oFoSSaCSLecture Notes in Computer Scien2887,
Springer, 2004.

[JROA4] Alan Jéfrey and Julian Rathke. A theory of bisimulation for a fragment of concurrent
ML with local names.Theoretical Computer Scien823(1-3), 2004.

[LSO0] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In Proc. of
POPL, 2000.

[Mil89] Robin Milner. Communication and Concurrencirentice Hall, 1989.

[MNO3] Massimo Merro and Francesco Zappa Nardelli. Bisimulation proof methods for mobile
ambients. In Proc. dCALP, Lecture Notes in Computer Scier@gl9, Springer, 2003.

Proof methodologies for behavioural equivalence in Distribeted.cuLus 27

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes (I and

[PS00]
[SM92]
[SWO01]

[USO01]

I). Information and Computatiqri00(1,2), 1992.

Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymorphic
ricaLcuLus. Journal of ACM47(3), 2000.

Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In Proc.
of CONCUR Lecture Notes in Computer Scierg®0, Springer, 1992.

Davide Sangiorgi and David WalkeThe ricaLcuLus: a Theory of Mobile Processes
Cambridge University Press, 2001.

Asis Unyapoth and Peter Sewell. Nomadic pict: correct communication infrastructure
for mobile computation. In Proc. ¢fOPL, 2001.

