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Proof methodologies for behavioural equivalence in
Distributed 

A C, M H andJ R

A. We focus on techniques for proving behavioural equivalence between systems inD, a
distributed version of the in which processes may migrate between dynamically created
locations, and where resource access policies are implemented by means of capability types.

We devise a tractable collection of auxiliary proof methods, relying mainly on the use ofbisim-
ulations up-toβ-reductions, which considerably relieve the burden of exhibiting witness bisimula-
tions. Using such methods we model simple distributed protocols, such as crossing a firewall, the
interaction between a server and its clients, metaservers installing memory services, and address their
correctness in a relatively simple manner.

1 Introduction

Bisimulations [Mil89], and the related bisimulation equivalence, have been pro-
ved to be of central importance in the elaboration of semantic theories of pro-
cesses, and in developing verification techniques for them. The purpose of this
work is to demonstrate that may also be employed for the verification of dis-
tributed systems, even when the correctness depends on access control policies.

We focus on an abstract system description language calledD [HR02b], an
extension of the well-known [MPW92, SW01]. In this language a
system consists of a collection ofprocesses, or agents, distributed among differ-
entsites, where they can uselocal resources; these resources are modelled using
local versions of communication channels. Agents may migrate from
site to site, generate new local resources, or indeed new sites.

Following ideas originally formulated in [PS00],D can be endowed with a
system ofcapability types, with which access policies to both resources and sites
can be expressed. Since the behaviour of systems is dependent on the access
policy in force, a new theory of semantic equivalence is required to take this
dependency into account. This was developed in [HR02a, HMR04], where the
equivalence is expressed in the form of triples

I |= M ≈bis N

Intuitively this means that the systemsM andN exhibit the same behaviour, from
the point of view of a user constrained by the access policyI; formally,I is sim-
ply a type environment, giving, for each resource and location, the capabilities
which may be exercised by the user.

In this paper we show that this relativised notion of system behaviour can
be effectively employed to demonstrate the correctness of access protocols for



2 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

M,N ::= Systems
l~P� Located agents
M | N Composition
(new e : E) M Name Scoping
0 Termination

R,U ::= Processes, or Agents
u!〈V〉R Output
u?(X) R Input
goto v.R Migration
(newc c : C) R Local channel creation
(newloc k : K) R Location creation
if v1 = v2 then R else U Matching
R | U Parallelism
∗R Iteration
stop Termination

F 1. Syntax forD

distributed systems. All the examples considered are very simple; nevertheless,
we feel that they at least demonstrate the feasibility of this approach to system
verification.

In the next section we review the languageD, its type system, and the rela-
tivised notion of bisimulation equivalence. This is followed by an exposition of
some useful proof techniques, relying mainly on the use of bisimulations up-to
in the spirit of [SM92], which actually alleviate the burden of exhibiting witness
bisimulations. This is then followed by three sections, each considering a partic-
ular verification example. The final section is about related and future work.

2 D: a synopsis

In this section we recall the essential features of the languageD; readers are
referred to [HMR04, HR02b] for a more detailed description.

2.1 Syntax

The syntax of the language is given in Figure 1, and presupposes a set ofiden-
tifiers; these consist either of namesn,m,a,b, l, k, taken from some predefined
setNames, or variablesx, y, z, taken from a setVars. There are two syntactic
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categories, for systems, and agents. A typical system takes the form

(new e : E)(l~P� | k~Q�) | l~R�
This represents a system with two sites,l andk, with the agentsP andR running
at the former andQ at the latter; moreoverP andQ, although executing at dif-
ferent sites, share some private information,e, of typeE. The syntax for agents,
or processes, is an extension of that of the [SW01]. There are input
and output on local channels, parallelism, matching of values, iteration, and a
migration construct. For example, in the system

l~P | goto k.Q� | k~R�

the processQ can migrate froml to k, leading to the resulting system

l~P� | k~Q | R�
Finally, processes have the ability to create new instances of names (channels,
newc, and sites,newloc); their declaration types dictate the use to which these
will be put.

The values,V, communicated along channels consist of tuples ofsimple val-
ues, v. These, in turn, may beidentifiers, u, or structured values, of the form
u1@u2; the latter are used to represent channels which are not local to the site at
which the communication takes place. In turn, the input constructu?(X) R uses
patterns,X, to deconstruct incoming values; these may be taken to be values
constructed from variables, in which each variable has at most one occurrence.

For example, consider the following definition of a server

S⇐ s~req?(x, y@z)goto z.y!〈isprime(x)〉 stop�

which expects to receive a structured value of the form (i, c@l). This is a pair,
consisting of an integeri, and a return addressc@l, that is the name of a reply
channel,c, together with the location of that channel,l. The server then executes
the procedureisprime(−) on the incoming value,i, sends a process to the return
site, and delivers the result on the return channel there. The procedureisprimeis
not directly part of the language, but one can easily imagine an extension of it.
Such an extension could also supportlet expressions, in which case the body of
the server would be better represented as

req?(x, y@z)let b = isprime(x) in goto z.y!〈b〉 stop

thereby emphasising that the procedure is executed at the server’s site.
A typical client of such a server takes the form

C⇐ c~(newc r : R) r?(x) print!〈x〉 stop

| goto s.req!〈vc, r@c〉 stop�
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Base Types: base::= int | bool | unit | > | . . .
Value Types: A ::= base | C | C@loc | K

Local Channel types: C ::= r〈T〉 | w〈T〉 | rw〈T〉
Location Types: K ::= loc[c1 : C1, . . . , cn : Cn], n ≥ 0

(providedci = c j implies i = j)

Transmission Types: T ::= (A1, . . . ,An),n ≥ 0

F 2. Types forD - informal

This generates a new reply channel,r, at the declaration typeR, and awaits
input on this channel to be printed. Concurrently, it sends to the server site an
agent, which sends to the request channel the tuple consisting of some value,vc,
hopefully an integer, and the reply address,r@c. Then, running the combined
system

S |C (1)

should result in a boolean being printed at the client’s site, the value of which is
determined by the primality ofvc.

2.2 Typing

D is a capability based language, in the sense that the behaviour of processes
depends on the capabilities the various entities have received in their environ-
ment. Formally, these capabilities are represented as types, and the various cate-
gories of types we use are given in Figure 2. Apart from the standard base types,
and the specialtop type>, the main ones are

  : these are ranged over byC and can take the formrw〈T〉,
giving the ability to both read and write values of typeT, or the restricted
supertypesr〈T〉 andw〈T〉;

-  : these take the formC@loc, and a value of this type is
a structured value,c@l;

 : these take the formloc[c1 : C1, . . . , cn : Cn]; receiving a value
l of this type gives access to the channels, or resources,ci at typeCi , for
1 ≤ i ≤ n.

In this overview we omit one further category of types, that ofregistered names,
as they play no part in the current paper; as usual, the reader is referred to
[HMR04] for an explanation of their role in ensuring consistency between the



Proof methodologies for behavioural equivalence in Distributed 5

types of resources at multiple locations.
The types come equipped with asubtypingrelation, which is defined induc-

tively, from the standard requirements on channel types, andrecord subtypingon
location types

loc[c1 : C1, . . . cn : Cn] <: loc[c1 : C1, . . . ck : Ck], wheneverk ≤ n

Viewing types (intuitively) as sets of capabilities,T1 <: T2 means that the capa-
bilities of T2 are a subset of those ofT1.

The static typing of a systemM is with respect to atype environmentΓ,
giving the type of all the free names inM; for example, to type (1) we need
to specify the type ofreq at sites and the type ofprint at c. Formally, a type
environmentΓ consists of a consistent list of entries, which must take one of the
following forms

• u : loc, indicatingu is to be used as a location;

• u@w : C, indicating thatw is already known toΓ as a location, andu is a local
channel atw with typeC.

So, for example, we would expect the system (1) to be well-typed with respect
to the environment

∆ = s : loc, c : loc, req@s : S, print @c : w〈bool〉,
where, for the moment, we leave the typeS unspecified.

The main typing judgement

Γ ` M,

indicating thatM uses all its identifiers in accordance with the types designated
in Γ, is defined by induction on the structure ofM. The only interesting rule is

(ty-agent)

Γ `k P

Γ ` k~P�

which says thatk~P� is well-typed (relative toΓ) providedP is well-typed to run
at the locationk, Γ `k P.

This auxiliary typing judgement for agents needs to be parameterised relative
to the current location, because resources are located: they may be available at
one site and not another. For example, we would expect

∆, r@c : R 6`c req!〈vc, r@c〉 stop

because the channelreq exists at sites but not atc, whereas we could hope for

∆, r@c : R `s req!〈vc, r@c〉 stop

if the type ofreq at s is properly chosen.
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The rules for typing agents are more or less borrowed from the

[PS00], with the addition of a rule for migration. For example, (local) input and
output are handled by the rules

(ty-out)

Γ `w V : T
Γ `w P
Γ `w u : w〈T〉
Γ `w u!〈V〉P

(ty-in)

Γ, 〈X : T〉@w `w R
Γ `w u : r〈T〉
Γ `w u?(X) R

while that for migration is

(ty-go)

Γ ` u : loc
Γ `u R

Γ `w goto u.R

These rules, in turn, require the ability to assign types to identifiers, and more
generally values. For example, in order foru!〈V〉P to be well-typed to run at
w, (ty-out) dictates thatu must be known at sitew to be a channel with an
output capability at some transmission typeT, which can also be assigned to
V. Similarly, according to (ty-in), to run u?(X : T) R at w, u must be known
there with a read capability, and the residualR must be typeable with respect
to the environment augmented assuming the variables in the pattern bound to
values whose types are determined by the transmission typeT. We forgo the
exact explanation of how this augmented environment is constructed, that is the
notation〈X : T〉@w.

Referring back to the system (1), let us now see (informally) why it can be
typed with respect to∆. First notice that the channel generated by the client,r,
will be used by the server to send a boolean, and by the client itself to read a
boolean: so the declaration typeR should be set torw〈bool〉. Then

∆, r@c : R `s req!〈vc, r@c〉 stop

follows from (ty-out) provided the type associated withreq at s supports the
inference∆ `s req : w〈int ,Rw@loc〉, for some typeRw which can be assigned to
r; since we allow subtyping,Rw can be any supertype ofR. That is, informally
it can consist of any subset of the capabilities in the declaration typeR. This
judgement leads to

∆, r@c : R `c goto s.req!〈vc, r@c〉 stop

via the rule (ty-go), and eventually to that of∆ ` C.
On the server side, the non-local channel input toreq, which is bound toy,

must allow the sending of boolean values. So, establishing well-typing relies on
the inference∆ `s req : r〈int ,Rw@loc〉, with Rw set tow〈bool〉. Therefore, all
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that is required of∆ in order to type both the server and the client is to letS, the
type associated with the request channel, to berw〈 int ,w〈bool〉@loc 〉.

There is an interesting point to be made here. The client generates the reply
channelr with both read and write capabilities; only the latter is sent to the
server, viareq, and the former is retained for internal use. This use of restricted
capabilities provides a certain level of protection to the client, as it knows that
the reply from the server can not be usurped by any other client.

2.3 Behaviour

The behaviour of a system, that is the ability of its agents to interact with other
agents, depends on the knowledge these agents have of each others capabilities.
In the example just discussed we have seen the client generating a reply channel
with two capabilities, but only making one of these externally available; indeed,
the proper functioning of the client/server interaction depends on such decisions.

D 2.1 (C). A configurationconsists of a pairIBM, where

• I is a type environment which associates some type to every free name inM

• there is a type environmentΓ such thatΓ ` M andΓ <: I
This latter requirement means that ifI can assign a typeTI to a namen, then
Γ can assign a typeTΓ such thatTΓ <: TI. Again, viewing types as sets of
capabilities, this means thatTI, representing the knowledge of the external user,
is a subset ofTΓ, the actual set of capabilities used to type the systemM. �

So we define the behaviour in terms of actions over configurations; these are of
the form

I B M µ−−→ I′ B M′ (2)

where the labelµ can take any of the following forms

• τ: an internal action, requiring no participation by the user;

• (ẽ : Ẽ)k.a?V: the input of valueV along the channela, located at the sitek.
The bound names in (˜e) are freshly generated by the user;

• (ẽ : Ẽ)k.a!V: the output of valueV along the channela, located at the sitek.
The bound names in (˜e) are freshly generated by the environment.

The rules for defining these actions are given in Figure 3 and Figure 4, a slightly
different but equivalent formulation to that given in [HMR04]. The guiding prin-
ciple for (2) to happen, is thatM must be able to perform the actionµ, and the
user must have, inI, the capability to participate in the action. The rules use
some new notation for looking up the types associated with channels in envi-
ronments: the partial functionsIr (k,a) andIw(k,a) return the read, respectively
write, type associated with the channela at the locationk in I (of course these
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(m-in)

Iw(k,a) ↓ I `k V : Iw(k,a)

I B k~a?(X) R� k.a?V−−−−→ I B k~R{|V/X|}�

(m-weak)

I, 〈e : E〉 B M (d̃:D̃)k.a?V−−−−−−−→ I′ B M′

I B M (e:E d̃:D̃)k.a?V−−−−−−−−−−→ I′ B M′
bn(e) < I

(m-out)

Ir (k,a) ↓
I B k~a!〈V〉P� k.a!V−−−→ I, 〈V : Ir (k,a)〉@kB k~P�

(m-open)

I, 〈e : >〉 B M (d̃:D̃)k.a!V−−−−−−−→ I′ B M′

I B (new e : E) M (e:Ed̃:D̃)k.a!V−−−−−−−−−→ I′ B M′

(m-ctxt)

I B M µ−−→ I′ B M′

I B M | N µ−−→ I′ B M′ | N
I B N | M µ−−→ I′ B N | M′

bn(µ) < fn(N)

(m-new)

I, 〈e : >〉 B M µ−−→ I′, 〈e : >〉 B M′

I B (new e : E) M µ−−→ I′ B (new e : E) M′
bn(e) < µ

F 3. External actions-in-context forD

may not exist, andIw(k,a) ↓, for example, indicates that the write type is in-
deed defined). We extract names from entries in environments with the function
bn(−), defined bybn(u) = u andbn(u@w) = u; this is extended to actionsµ in
the obvious manner. Finally, we use the notationfn(−) for free variables.

In Figure 3, the rule (m-in) says thatI B k~a?(X) R� can perform the input
action k.a?V−−−−→ provided the user canwrite the value; that is,I has a write capability
ona atk, and has the knowledge to actually produceV. This, in conjunction with
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(m-weak), allows us to derive the following action from the serverS

∆ B S (r@c:R)α−−−−−−→ ∆, r@c : R B s~goto c.r!〈isprime(vc)〉 stop� (3)

whereα is the input actions.req?(vc, r@c), because

∆, r@c : R B S α−−→ ∆, r@c : R B s~goto c.r!〈isprime(vc)〉 stop�

Similarly, (m-out) requiresI to have areadcapability ona atk, in order for
k~a!〈V〉P� to be able to perform the obvious output; note that here the current
knowledge of the user,I, is augmented by whatever new knowledge which can
be gleaned from the received valueV. Intuitively, 〈V : T〉@k decomposes the
valueV, relative to the typeT, from the standpoint ofk; this last only comes into
play whenV contains instances of local channels, which are then interpreted as
channels atk. But the important point in (m-out) is that the type at whichV
is added toI is Ir (k,a), the reception type that the user currently has ona at k.
Thus (m-open) allows us to deduce

∆ B (new r@c : R) s~req!〈vc, r@c〉 stop� (r@c:R)γ−−−−−−→ ∆, r@c : Rw B s~stop� (4)

whereγ is the output actions.req!〈vc, r@c〉, because with (m-out) we can derive

∆, r@c : > B s~req!〈vc, r@c〉 stop� γ−−→ ∆, r@c : Rw B s~stop�

The use of> is simply to ensure that we have a valid configuration; but note that
the user has gained only the restricted capabilityRw on the new channelr, rather
than the more liberal declaration capabilityR, because the former is the type at
which the user can receive values alongreq.

The rules for the internal actions are given in Figure 4, and most are straight-
forward. We have labelled some asβ-actions, which will be useful in the next
section; but for the moment these labels can be ignored. The only interesting
rule is (m-comm), which formalisescommunication. Note that, in the hypothe-
ses of both variations, arbitrary user environments,I1 andI2, are allowed. This
may be surprising at first, but intuitivelyτ-actions should be independent of all
external knowledge. For example, we can use (3) and (4) above to derive

I B S | (new r@c : R) s~req!〈vc, r@c〉 stop� τ−−→
I B (new r@c : R) s~goto c.r!〈isprime(vc)〉 stop� | s~stop�

for an arbitraryI.

We now have a labelled transition system in which the states are configura-
tions, and we can apply the standard definition of (weak) bisimulation.
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(m-comm)

I1 B M (ẽ:Ẽ)k.a?V−−−−−−−→ I′1 B M′ I2 B N (ẽ:Ẽ)k.a!V−−−−−−−→ I′2 B N′

I B M | N τ−−→ I B (new ẽ : Ẽ)(M′ | N′)

(m-comm)

I1 B M (ẽ:Ẽ)k.a!V−−−−−−−→ I′1 B M′ I2 B N (ẽ:Ẽ)k.a?V−−−−−−−→ I′2 B N′

I B M | N τ−−→ I B (new ẽ : Ẽ)(M′ | N′)

(m-move)

I B k~goto l.P� τ−−→β I B l~P�

(m-c.create)

I B k~(newc c : C) P� τ−−→β I B (new c@k : C) k~P�

(m-l.create)

I B k~(newloc l : L) P� τ−−→β I B (new l : L) k~P�

(m-eq)

I B k~if v = v then P else Q� τ−−→β I B k~P�

(m-neq)

I B k~if v1 = v2 then P else Q� τ−−→β I B k~Q� (v1 , v2)

(m-split)

I B k~P | Q� τ−−→β I B k~P� | k~Q�

(m-unwind)

I B k~∗P� τ−−→β I B k~∗P | P�
F 4. Internal actions-in-context forD
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D 2.2 (B). We say a binary relation over configurations is
abisimulationif both it, and its inverse, satisfy the following transfer property

(IM B M) R (IN B N) (IM B M) R (IN B N)

implies

(IM′ B M′)

µ

?
(IM′ B M′) R (IN′ B N′)

µ̂

�

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Here we use standard notation, see [MPW92], withµ==⇒ representing τ−−→∗◦ µ−−→◦
τ−−→∗, and µ̂==⇒ meaning τ−−→∗, if µ is τ, and µ==⇒ otherwise. This allows a single

internal move to be matched by zero or more internal moves.
We let≈bis denote the largest bisimulation between configurations. �

Rather than writing (I B M) ≈bis (I B N), we use the more suggestive notation

I |= M ≈bis N

This can be viewed as a relation between systems, parameterised over type envi-
ronments which represent user’s knowledge of the systems’ capabilities.

It is this bisimilarity≈bis which is the object of our study: we aim to show
that, despite the complexity of its definition, tractable proof techniques can be
developed for it.

Finally, we should remark this is not an arbitrarily chosen version of bisimu-
lation equivalence. In [HMR04] its definition is justified in detail: it is shown to
be, in some sense, the largest reasonable typed equivalence betweenD systems.

3 Proof techniques

The basic method for showing that two systemsM andN are equivalent, relative
to an environmentI, is to exhibit a parameterised relationR such thatI|= MRN,
and demonstrate that it satisfies the requirements of being a bisimulation. In this
section we give a number of auxiliary methods, which can considerably relieve
the burden of exhibiting such relations.

The following Theorem is proved in [HMR04], and justifies a form of con-
textual reasoning.

T 3.1 (C).

• I |= M ≈bis N andI ` O imply I |= M |O≈bis N |O
• I, 〈e : E〉 |= M ≈bis N impliesI |= (new e : E) M ≈bis (new e : E) N �

We can also manipulate system descriptions. Let≡ be the least equivalence
relation which satisfies the rules in Figure 5, and is preserved by the constructs
− | − and (new e : E)(−); this is referred to asstructural equivalence.
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(s-extr) (new e : E)(M | N) ≡ M | (new e : E) N if bn(e) < fn(M)

(s-com) M | N ≡ N | M

(s-assoc) (M | N) |O ≡ M | (N |O)

(s-zero) M | 0 ≡ M
k~stop� ≡ 0

(s-flip) (new e : E) (new e′ : E′) M ≡ (new e′ : E′) (new e : E) M
if bn(e) < (e′ : E′), bn(e′) < (e : E)

F 5. Structural equivalence forD

P 3.2. M ≡ N impliesM ≈bis N. �

This means that we can employ the axioms in Figure 5 as equations for semantics
preserving manipulations of systems. For example, from now on, we will omit
the termination processstop, becausek~stop� ≡ 0 andM | 0 ≡ M.

Further equations can be obtained by considering the internal actions in
Figure 4. First recall that these actions do not change the environment of a
configuration, and therefore, for convenience, let us abbreviate from now on
I B M τ−−→ I B M′ to the simplerI B M τ−−→ M′. When internal actions are
β-annotated, they have the following very specialcommutative property.

L 3.3. SupposeIBM τ−−→∗β M′. Then, for every actionIBM µ−−→I′ BN,
there is a systemN′ such thatI′ B N τ−−→∗β N′ andI B M′ µ−−→ I′ B N′.

Proof: It is sufficient to prove this for the single labelled actionI B M τ−−→β M′,
for which a simple, but tedious induction on the derivation of the action can be
carried out. �

P 3.4. SupposeI B M τ−−→∗β N. ThenI |= M ≈bis N.

Proof: Let the parameterised relationR be defined by lettingIBMRN whenever

• I B M is a configuration

• eitherM = N or M τ−−→∗β N

The previous Lemma provides sufficient information to show thatR is a bisimu-
lation. The result therefore follows. �

This Proposition gives more valid equations for reasoning about systems. Typ-
ical examples, obtained just by examining the axioms in Figure 4 describing
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β-actions, include

k~P | Q� ≈bis k~P� | k~Q�
k~goto l.P� ≈bis l~P�

k~(newc c : C) P� ≈bis (new c@k : C) k~P�

But theseβ-labelled internal actions also provide us with a very powerful
method for approximating bisimulations, in the spirit of [JR04].

D 3.5 (B --β). A binary relation between configura-
tions is said to be abisimulation up-to-β if it satisfies the following transfer
properties

(IM B M) R (IN B N) (IM B M) R (IN B N)

implies

(IM′ B M′)

µ

?
(IM′ B M′) Al ◦ R ◦ Ar (IN′ B N′)

µ̂

�

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

(IN B N) R (IM B M) (IN B N) R (IM B M)

implies

(IN′ B N′)

µ

?
(IN′ B N′) Al ◦ R ◦ Ar (IM′ B M′)

µ̂

�

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

whereAl is the relation ( τ−−→∗β ◦ ≡), andAr is ≈bis; strictly speaking, these
relations are over systems, but they are lifted in the obvious manner to configu-
rations. �

The idea of these approximate bisimulations is that to match an action (IM B
M) µ−−→ (IM′ B M′) it is sufficient to find aβ-derivative of the residual (IM′ B
M′) τ−−→∗β (M′′) and a matching action (IN B N) µ̂==⇒ (IN′ B N′) such that, up-to
structural equivalence and bisimilarity, respectively, the pairs (IM′ B M′′) and
(IN′ B N′) are once more related. Intuitively, a configuration can represent all
configurations to which it can evolve usingβ-moves.

L 3.6. If P ≡ Q andIBP τ−−→βP′, then there existsQ′ such thatIBQ τ−−→β

Q′ andP′ ≡ Q′.

Proof: By induction on the derivation ofP ≡ Q. �

P 3.7. If (I B M) R (I B N), whereR is a bisimulation up-to-β, then
I |= M ≈bis N.
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Proof: We leave to the reader to check that the relation (≈bis ◦ R ◦ ≈bis) is a
bisimulation over configurations. The key properties for establishing this are the
two inclusions τ−−→β ⊆ ≈bis (Proposition 3.4) and≡ ⊆ ≈bis (Proposition 3.2),
Lemma 3.3 and transitivity, in Definition 3.5, of bothAl (due to Lemma 3.6)
andAr . The result then follows, since (≈bis ◦ R ◦ ≈bis) trivially containsR. �

4 Crossing a firewall

Let us consider thefirewall example, first proposed in [CG98] and studied at
length in [GC99, LS00, MN03] within versions of Mobile Ambients. Intuitively,
a firewall is a domain to which access is restricted: only agents which are per-
mitted, in some sense, by the firewall are allowed in. A simple example takes the
form

F ⇐ (new f : F) f ~P | ∗goto a.tell!〈 f 〉�
Here f is the name of the firewall, which is created with the capabilities described
in the location typeF, andP is some code which maintains the internal business
of the firewall. A typical example of the capabilities could be given by

F = loc[info : rw〈I〉, req : rw〈R〉]
which allow reading to and writing from two resourcesinfo andreq in f . Then
P could, for example, maintain appropriate services at the resources; of course,
it would also be able to use non-local resources it knows about in its current
environment.

The existence of the firewall is made known only to another domain,a, via
the information channeltell located there. An example is the following

A⇐ a~R | tell?(x) goto x.Q�

wherea is informed of f by inputing on the local channeltell. If we consider an
arbitrary type environmentΓ, we have the execution

Γ B F | A τ−−→∗ (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�) | a~R� (5)

so the codeQ is allowed to execute locally within the firewall.
Notice that the resources to whichQ has access within the firewall are con-

trolled by the capability type associated with the information channeltell. For
example, suppose inΓ the type associated with this channel is

rw〈Fr〉, Fr = loc[info : w〈I〉, req : r〈R〉]
ThenFr is a supertype of the declaration typeF: hence in (5),Q, having gained
entry into the firewall, can only write to resourceinfo and read fromreq.

Let us now consider the correctness of this simple protocol, which allows
access of one agent,Q, to the firewall. LetΓ be any type environment such that

Γ ` F | A (6)
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Then one might expect to be able to derive

Γ |= F | A ≈bis (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�) | a~R� (7)

But this happens not to be true, because of the implicit assumption that the infor-
mation channeltell in a can only be accessed by partners in the entry protocol,f
anda. But, in order for (6) to be true, we must haveΓ `a tell : rw〈Fr〉, and this
allows other agents in the environment access totell. For example, consider

Rogue⇐ b~goto a.tell!〈b〉�
and suppose that the only type inference fromΓ involving b is Γ ` b : loc; so
Γ is not aware of any resources atb. NeverthelessΓ ` Rogue, and therefore
Contextuality(Theorem 3.1) applied to (7) would give

Γ |= F | A | Rogue ≈bis

(new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�) | a~R� | Rogue

But this is obviously not the case, as the left-hand system can reduce via a series
of τ-steps (representing the interaction betweenA andRogue) to the state

Γ B F | a~R� | b~Q�
Under reasonable assumptions about the codeQ, the right-hand system has no
corresponding reduction to a similar state. On the left-hand side the codeQ, now
located atb, can not run, while on the right-hand side, no matter whatτ-steps are
made,Q will be able to execute atf .
Thus (7) can not be true.

However, our framework allows us to amend the correctness statement (7)
above, taking into account the implicit assumption about the information channel
tell. The essential point is that the protocol works provided thatonly the firewall
can write ontell. This can be formalised by proving the equivalence between the
two systems relative to a restricted environment, one which does not allow write
access totell.

First some notation. Let us writeΓ `max
k V : T to mean

• Γ `k V : T

• Γ `k V : T′ impliesT <: T′

In other words,T is thelargesttype which can be assigned toV. Now suppose
I is a type environment which satisfies

(i) I `max
a tell : r〈F〉

(ii) I ` a~R�

(iii) I ` (new f : F) f ~P�



16 Alberto Ciaffaglione, Matthew Hennessy and Julian Rathke

The import of the first requirement, which is the most important, is that systems
in the computational context can not write ontell. The other requirements, which
are mainly for convenience, ensure that the residual behaviour ata and f is well-
behaved, although a side-effect is that they also can not write ontell. Under these
assumptions, we prove

I |= F | A ≈bis (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�) | a~R� (8)

First note that (up-to structural equivalence)

I B F | A τ−−→β F | At | a~R�
via (m-split) and (m-ctxt), whereAt is a shorthand fora~tell?(x) goto x.Q�.
So, by Propositions 3.2 and 3.4, it is sufficient to prove

I |= F | At | a~R� ≈bis (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�) | a~R�

Here assumption (ii) comes in useful, as byContextualityit is now sufficient to
prove

I |= F | At ≈bis (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�)
Then the left-hand side can be manipulated using the structural equivalence rule
(s-extr), thereby reducing the proof burden to

I |= (new f : F)( f ~P | ∗goto a.tell!〈 f 〉� | At) ≈bis

(new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q�)
and another application ofContextualityreduces this further to

I f |= f ~P | ∗goto a.tell!〈 f 〉� | At ≈bis f ~P | ∗goto a.tell!〈 f 〉 | Q�
whereI f is a shorthand forI, 〈 f : F〉.

Now let Fg represent the systemf ~∗goto a.tell!〈 f 〉�. Then we have

• I f B f ~P | ∗goto a.tell!〈 f 〉� | At
τ−−→β f ~P� | Fg | At

• I f B f ~P | ∗goto a.tell!〈 f 〉 | Q� τ−−→∗β f ~P� | Fg | f ~Q�
So, further applications of Proposition 3.4,Contextualityand assumption (iii),
give the requirement

I f |= Fg | At ≈bis Fg | f ~Q� (9)

This we establish directly by exhibiting a particular bisimulation.
We define the parameterised relationR by letting

J |= M R N

whenever

(a) J B M is a configuration andN is the same asM

(b) orJ isI f and
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• M has the formFg | At | Πn (a~tell!〈 f 〉�)n

• N has the formFg | f ~Q� | Πn (a~tell!〈 f 〉�)n

whereΠn (a~tell!〈 f 〉�)n, for somen ≥ 0, meansn copies ofa~tell!〈 f 〉� run-
ning in parallel.

P 4.1. The parameterised relationR defined above is a bisimulation
up-to-β.

Proof: SupposeJ |= MRN. Let us consider all possible actions fromJ BM. In
fact, it is sufficient to consider the case (b) above, whenJ andM andN are of the
prescribed form. The actions fall into one of three categories (for convenience
we shortenΠn (a~tell!〈 f 〉�)n with Πn).

• HereFg is responsible, so the action takes the form

I f B M τ−−→β f ~∗goto a.tell!〈 f 〉 | goto a.tell!〈 f 〉� | At | Πn

But

I f B f ~∗goto a.tell!〈 f 〉 | goto a.tell!〈 f 〉� | At |Πn
τ−−→β Fg | a~tell!〈 f 〉� | At |Πn

and this can be matched, via clause (b), by

I f B N τ−−→∗β Fg | a~tell!〈 f 〉� | f ~Q� | Πn

becauseFg|a~tell!〈 f 〉�|At |Πn ≡ Fg|At |Πn+1, andFg|a~tell!〈 f 〉�| f ~Q�|Πn ≡
Fg | f ~Q� | Πn+1, and≡ ⊆ ≈bis (Proposition 3.2).

• The second possibility is that the third component,Πn (a~tell!〈 f 〉�)n, is re-
sponsible for the action, which must bea.tell! f . It is easy to see thatI f B N
can perform exactly the same action, to a related configuration in clause (b).

• Finally, the middle component,At, might be involved in the action. Note that
the action can not be external, as the actiona.tell?V (for some valueV) is not
allowed by the environment. So it must be a communication, of the form

I f B M τ−−→ Fg | a~goto f .Q� | Πn−1

But the followingβ-steps can be carried out starting from this configuration

I f BFg |a~goto f .Q� |Πn−1
τ−−→∗β Fg |a~tell!〈 f 〉� | f ~Q� |Πn−1 ≡ Fg | f ~Q� |Πn

and this can be matched in clause (a) by the empty sequence of internal ac-
tions fromI f B N.

Symmetrically, it is easy to see that every action fromJ B N can be matched by
one fromJ B M, possibly preceded by a number ofτ-actions: these latter are
required whenf ~Q� is responsible for the action to be matched. �

This, by using Proposition 3.7, completes our proof of (8) above.
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Note that the firewallF allows, in principle, multiple entries of agents from
a. So, for example, ifR, in (8), had the formR′ | tell?(x) goto x.Q′, then the
reasoning we have just completed could be repeated, to prove

I |= F | a~R� ≈bis (new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q′�) | a~R′�

Then, under the assumptionI ` (new f : F) f ~Q� and by transitivity of≈bis,
this can be combined with (8), to prove

I |= F | a~R′ | tell?(x) goto x.Q′ | tell?(x) goto x.Q� ≈bis

(new f : F)( f ~P | ∗goto a.tell!〈 f 〉 | Q′ | Q�) | a~R′�

where the domaina has managed to send two separate agents into the firewall.

5 A server and its clients

We consider in this section the canonical example of aserverand itsclients.
A server is a domain providing services to potentially arbitrary clients, as for
example the following, a generalisation of the one used as working example in
section 2

S⇐ s~∗req?(x, y@z)goto z.y!〈isprime(x)〉 | S′�
The service at resourcereq is here iterated, andS′ provides internal code to
setup and administrate the site. The channelreq awaits indefinitely an integer
and a located channel, checks whether the integer is a prime (according to the
convention, stated in section 2, that the procedureisprime is executed at the
server’s site), and returns the answer at the proffered address.

Typical clients of the server are domains taking the form

Ci ⇐ ci~(newc r : R) goto s.req!〈vi , r@ci〉 |C′i �
These generate a private channelr at the declaration typeR = rw〈bool〉, and
send a process to the server (whose address they need to know) asking for the
primality of an integer; concurrently, the agentC′i executes at the site.

As in the case of the firewall, the correctness of the protocol between the
serverS and its clientsCi depends on the proper management of the access to
the request channelreq: clients should only have write access, while the server
only needs read access. So the correctness of the protocol can be expressed as
an equivalence between two systems, relative to a restricted environment.

LetI be a type environment satisfying

(i) I `max
s req : w〈 int ,w〈bool〉@loc 〉

(ii) I ` s~S′�

(iii) I ` Ci
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The first requirement establishes thatthe computational context can not read on
req, while the following points ensure that the residual behaviour at the server
and the clients is well-behaved, with the side-effect that neitherS′ nor C′i can
read onreq.

First, let us show that one client interacts correctly with the server

I |= S |C1 ≈bis S | c1~(newc r : R) r!〈isprime(v1)〉 |C′1� (10)

Note that (up-to-structural equivalence)

I B S |C1
τ−−→∗β (new r@c1 : R) Sr | s~S′� | s~req!〈v1, r@c1〉� | c1~C′1�

where we useSr as a shorthand fors~∗req?(x, y@z)goto z.y!〈isprime(x)〉�, and

I B S | c1~(newc r : R) r!〈isprime(v1)〉 |C′1� τ−−→∗β
(new r@c1 : R) Sr | s~S′� | c1~r!〈isprime(v1)〉� | c1~C′1�

By Propositions 3.2, 3.4,Contextuality, and requirements (ii), (iii), it is therefore
sufficient to prove

Ir |= Sr | s~req!〈v1, r@c1〉� ≈bis Sr | c1~r!〈isprime(v1)〉�
whereIr is a shorthand forI, 〈r@c1 : R〉. We establish this equivalence by
exhibiting a particular parameterised relation, and showing that it satisfies the
requirements to be a bisimulation. LetR be the parameterised relation defined
by letting

J |= M R N

whenever

(a) J B M is a configuration andN is the same asM

(b) orJ isIr and

• M has the formSr | s~req!〈v1, r@c1〉� | Πn

• N has the formSr | c1~r!〈isprime(v1)〉� | Πn

whereΠn is a shorthand forΠn (s~req?(x, y@z)goto z.y!〈isprime(x)〉�)n

(c) orJ isI′r , where the domain ofI′r is a superset of that ofIr , and

• M has the formSr | s~req!〈v1, r@c1〉� | Πn | Π j∈J (k j~d j !
〈
isprime(i j)

〉
�)

• N has the formSr | c1~r!〈isprime(v1)〉� | Πn | Π j∈J (k j~d j !
〈
isprime(i j)

〉
�)

such thatI′r `max
s req : w〈 int ,w〈bool〉@loc 〉 andI′r `kj

d j : w〈bool〉 for

every j ∈ J. Here, the notationΠ j∈J (k j~d j !
〈
isprime(i j)

〉
�) means (different)

instances of systems running in parallel.
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P 5.1. The parameterised relationR defined above is a bisimulation
up-to-β.

Proof: SupposeJ |= M R N. The actions fromJ BM in the case (b) above fall
into one of three categories.

• First Sr is responsible

Ir BM τ−−→β s~∗req?(x, y@z)goto z.y!〈isprime(x)〉 |R′� | s~req!〈v1, r@c1〉� |Πn

whereR′ is a shorthand forreq?(x, y@z)goto z.y!〈isprime(x)〉. But

Ir B s~∗req?(x, y@z)goto z.y!〈isprime(x)〉 | R′� | s~req!〈v1, r@c1〉� | Πn
τ−−→β

Sr | Π1 | s~req!〈v1, r@c1〉� | Πn

and this can be matched by

Ir B N τ−−→∗β Sr | Π1 | c1~r!〈isprime(v1)〉� | Πn

because both configurations belong toR, clause (b), up-to structural equiva-
lence.

• The third component,Πn (s~req?(x, y@z)goto z.y!〈isprime(x)〉�)n, is responsi-
ble for the action, which is eithers.req?

〈
i j ,d j@k j

〉
or (e:E)s.req?

〈
i j ,d j@k j

〉
.

These actions correspond to the delivery of (new) data by the environment
(from which the system is allowed to learn infinitely new names), and are
followed by the action (m-move). However, it is easy to see thatIr B N can
perform exactly the same actions, to a related configuration in clause (c).

• Finally, the middle component,s~req!〈v1, r@c1〉�, might be involved in the
action, which must be a communication, of the form

Ir B M τ−−→ Sr | s~goto c1.r!〈isprime(v1)〉� | Πn−1

Then the followingβ-steps can be carried out

IrBSr |s~goto c1.r!〈isprime(v1)〉�|Πn−1
τ−−→∗βSr |Π1 |c1~r!〈isprime(v1)〉�|Πn−1

and this configuration can be matched, in clause (a), by the empty sequence
of actions fromIr B N.

Symmetrically, every action performed byIr BN can be matched byIr BM; for
example, consider the output action by the second component ofN

Ir B Sr | c1~r!〈isprime(v1)〉� | Πn
c1.r!〈isprime(v1)〉−−−−−−−−−−−−→ Ir B Sr | Πn

This can be easily matched byIr B M, via clause (a), usingτ-steps followed by
the same action.

Finally, it is not problematic to check that all configurations inR by virtue of
clause (c) can have their respective actions properly matched. �



Proof methodologies for behavioural equivalence in Distributed 21

This completes our proof of (10), that one client can interact correctly with
the server. Contextual reasoning can now be employed to generalise this result
to an arbitrary number of clients. For example, let us show

I |= S |C1 |C2 ≈bis S | Πi∈{1,2} ci~(newc r : R) r!〈isprime(vi)〉 |C′i � (11)

Because ofI ` C2 (requirement (iii) above),Contextualityapplied to (10) gives

I |= S |C1 |C2 ≈bis S | c1~(newc r : R) r!〈isprime(v1)〉 |C′1� |C2 (12)

On the other hand, repeating the analysis ofC1 onC2, we obtain

I |= S |C2 ≈bis S | c2~(newc r : R) r!〈isprime(v2)〉 |C′2�
But I ` C1 (again (iii)) also impliesI ` c1~(newc r : R) r!〈isprime(v1)〉 | C′1�,
and therefore, byContextuality

I |= S |C2 | c1~(newc r : R) r!〈isprime(v1)〉 |C′1� ≈bis

S | Πi∈{1,2} ci~(newc r : R) r!〈isprime(vi)〉 |C′i �
So we conclude (11) from (12), Proposition 3.2, and transitivity of≈bis.

It is then a simple matter to extend this reasoning, using induction, to show
that an arbitrary number of clients can be handled

I |= S | Πi∈{1,...,n} Ci ≈bis S | Πi∈{1,...,n} ci~(newc r : R) r!〈isprime(vi)〉 |C′i �
This we leave to the reader.

As a further example of the modularity of our proofs, let us consider a partic-
ular instantiation of the residual processes,S′ andC′i : we setS′ to stop andC′i
to r?(x) printi !〈x〉, whereprinti are local channels. For convenience we restrict
attention to two clients, and let us assume that they send the integer valuesv1 = 4
andv2 = 3, respectively, to the server. So we have

S′′ ⇐ s~∗req?(x, y@z)goto z.y!〈isprime(x)〉�
C′′1 ⇐ c1~(newc r : R) goto s.req!〈4, r@c1〉 | r?(x) print1!〈x〉�
C′′2 ⇐ c2~(newc r : R) goto s.req!〈3, r@c2〉 | r?(x) print2!〈x〉�

and we want to prove the following

I |= S′′ |C′′1 |C′′2 ≈bis S′′ | c1~print1!〈 f alse〉� | c2~print2!〈true〉�
This follows from (11) (the requirement (iii) holds for every residualC′i , soI is
supposed to take into account the local channelsprint1 andprint2, in the case) if
we can establish

I |= S′′ | Πi∈{1,2} ci~(newc r : R) r!〈isprime(vi)〉 | r?(x) printi !〈x〉� ≈bis

S′′ | c1~print1!〈 f alse〉� | c2~print2!〈true〉�
But Contextualitywith requirement (iii), as usual, allows us to simplify this fur-
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ther, to the tasks

I |= S′′ | c1~(newc r : R) r!〈isprime(4)〉 | r?(x) print1!〈x〉� ≈bis

S′′ | c1~print1!〈 f alse〉�

I |= S′′ | c2~(newc r : R) r!〈isprime(3)〉 | r?(x) print2!〈x〉� ≈bis

S′′ | c2~print2!〈true〉�
Note thatContextualitydoes not allow us to eliminateS′′ from these judgements,
sinceI ` S′′ is not true. Nevertheless, it is a simple matter to construct a
witnessing bisimulation to demonstrate directly these two equivalences, as the
reader can check.

6 Metaservers

In this section we describe amemory serviceby involving thenewloc operator of
D, which allows the creation of new instances of sites. A (meta)server contains
a resourcesetup, where requests are received, and installs the service at a new
site, thus providing personalised treatment to its clients.

A first version of the server receives a return address, generates a new lo-
cated memory cell, and installs some code there, meanwhile delivering the new
location name at the reply address

S⇐ s~∗setup?(y@z) (newloc m : M) goto m.Mem | goto z.y!〈m〉�
whereMem is the code running at the locationm, and for instance can take the
form

Mem⇐ (newc v : V) v!〈0〉 | ∗get?(y@z) v?(w) (goto z.y!〈w〉 | v!〈w〉)
| ∗put?(x, y@z) v?(w) (goto z.y! | v!〈x〉)

Here we are using the channelv as a restricted form of memory cell: the value
it contains (whose initial value is set to 0) disappears once it is read, therefore it
has to be reinstated. The methodsget andput can be seen as the canonical ways
to access the cell, therefore the declaration type of the new site can be set to

M = loc[get : Tg, put : Tp]

Notice that we have chosen this particular instantiation for the running codeMem
just for reasons of simplicity, as the proofs we are going to develop are, in prin-
ciple, independent of it.

Clients of the memory service generate a new reply channel, send a request
to the server, and wait for the server to deliver the new memory cell

Ci ⇐ ci~(newc r : R) goto s.setup!〈r@ci〉 | r?(x) Pi(x)�

wherePi(x) is parametric code which depends on (the name of) the new site,x,
andR = rw〈M〉.
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An alternative, slightly different version of the server leaves to the clients the
responsibility to create the memory cells, just installing the servicing code at the
proffered site

S′ ⇐ s′~∗setup′?(x, y@z) goto x.Mem | goto z.y!�

Correspondingly, clients generate an acknowledgement channel and a new loca-
tion, send a request to the server, and await the server to acknowledge the service
has been installed

C′i ⇐ ci~(newc t : T) (newloc mi : M) goto s′.setup′!〈mi , t@ci〉 | t?Pi(mi)�

whereT = rw〈unit 〉.
We want now to relate the two different approaches, therefore connecting the

behaviour of the two following systems, relative to a typing environmentI
I |= S |C1 |C2 (13)

I |= S′ |C′1 |C′2 (14)

Our goal is to establish that, from the point of view of the clients, under certain
hypotheses the two kinds of serversS andS′ lead to equivalent behaviour. This
means finding a suitable type environmentI such that

I |= S |C1 |C2 ≈bis S′ |C′1 |C′2 (15)

It is immediate to notice that the correctness of this protocol requires thatthe
computational context should have neither write nor read access to thesetup
andsetup′ channels. Thus, the equivalence can be proved relative to a restricted
environmentI, satisfying

I `max
s setup : > I `max

s′ setup′ : >
Now, the internal actions can be used to deduce a derivation from (13) and (14)
to the systems

I |= S | Πi∈{1,2} (new mi : M)(mi~Mem� | ci~Pi(mi)�) (16)

I |= S′ | Πi∈{1,2} (new mi : M)(mi~Mem� | ci~Pi(mi)�) (17)

Therefore we address (15) in three steps: first we prove that the two pairs of
systems (13),(16) and (14),(17) are equivalent; then we connect the systems (16)
and (17) by a technical lemma. That is

(i) I |= S | Πi∈{1,2} Ci ≈bis S | Πi∈{1,2} (new mi : M)(mi~Mem� | ci~Pi(mi)�)

(ii) I |= S′ | Πi∈{1,2} C′i ≈bis S′ | Πi∈{1,2} (new mi : M)(mi~Mem� | ci~Pi(mi)�)

(iii) I |= l~∗a?(x)P(x)� | Q ≈bis Q, for anyI,Q, l,a,P such thatI `max
l a : >

anda < fn(Q)

The proof of the point (iii) is straightforward, as a witness bisimulationR
can be promptly defined by lettingJ |= M R N whenever
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(a) J B M andJ B N are configurations

(b) J isI andM has the forml~∗a?(x)P(x)� | Πn (l~a?(x)P(x)�)n | N
which can be easily proved to be a bisimulation up-to-β.

We argue below both the proof of (i) (leaving the one of (ii), which is com-
pletely similar, to the reader) and how to get the proof of (15) from those of (i),
(ii), (iii). Let us start from the latter.

Using the equations (i) and (ii), the equivalence (15) can be reduced to

I |= S | Πi∈{1,2} Qi ≈bis S′ | Πi∈{1,2} Qi (18)

whereQi denotes (new mi : M)(mi~Mem� | ci~Pi(mi)�). It is natural now to
assume that the conditions required by the lemma (iii) are satisfied by the code
Qi (setup, setup′ < fn(Qi), in the case). Hence, it is possible to apply that lemma
to both the sides of the equation (18), thus obtaining an identity.

Finally, we address the proof of the point (i).
First notice that (up-to structural equivalence)

I B S | Πi∈{1,2} Ci
τ−−→∗β

(new r1@c1 : R, r2@c2 : R) S | Πi∈{1,2} (s~setup!〈r i @ci〉� | ci~r i?(x) Pi(x)�)

andS | Πi∈{1,2} Qi ≡ (new m1 : M,m2 : M) S | Πi∈{1,2} (mi~Mem� | ci~Pi(mi)�).
Therefore, by Propositions 3.2, 3.4, we reduce (i) to the following

I |= (new r1@c1:R, r2@c2:R) S | Πi∈{1,2} (s~setup!〈r i @ci〉� | ci~r i?(x) Pi(x)�) ≈bis

(new m1 : M,m2 : M) S | Πi∈{1,2} (mi~Mem� | ci~Pi(mi)�)

which we prove by exhibiting a particular bisimulation. Let us fix before some
shorthand notation

S!i , s~setup!〈r i @ci〉�
C?i , ci~r i?(x) Pi(x)�

Mi , mi~Mem�

C!i , ci~r i !〈mi〉�
CPi , ci~Pi(mi)�

B , (new m1,m2 : M) S | Πn | M1 |CP1 | M2 |CP2

Πn , Πn (s~setup?(y@z) (newloc m : M) goto m.Mem | goto z.y!〈m〉�)n

We define the parameterised relationR by letting

J |= PR Q

wheneverJ B P is a configuration andQ is the same asP, orJ is I andQ has
the formB andP has the form

(a) (new r1@c1 : R, r2@c2 : R) S | Πn | S!1 | S!2 |C?1 |C?2
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(b) or (new r1@c1 : R, r2@c2 : R,m1 : M) S | Πn | S!2 |C?2 | M1 |C!1 |C?1

(c) or (new r1@c1 : R, r2@c2 : R,m2 : M) S | Πn | S!1 |C?1 | M2 |C!2 |C?2

(d) or (new r2@c2 : R,m1 : M) S | Πn | S!2 |C?2 | M1 |CP1

(e) or (new r1@c1 : R,m2 : M) S | Πn | S!1 |C?1 | M2 |CP2

(f) or (new r1@c1 : R, r2@c2 : R,m1 : M,m2 : M) S |Πn |M1 |C!1 |C?1|M2 |C!2 |C?2

(g) or (new r2@c2 : R,m1 : M,m2 : M) S | Πn | M1 |CP1 | M2 |C!2 |C?2

(h) or (new r1@c1 : R,m1 : M,m2 : M) S | Πn | M1 |C!1 |C?1 | M2 |CP2

The relationR draws a directed graph, whose edges can be labelled by commu-
nications.

P 6.1. The parameterised relationR defined above is a bisimulation
up-to-β. �

We leave to the reader the task of proving the Proposition, as no extra critical
aspects arise with respect to the proofs detailed in the previous two sections.
Summing up, we have shown that

I |= S |C1 |C2 ≈bis S′ |C′1 |C′2
under the following assumptions

• I `max
s setup : > andI `max

s′ setup′ : >
• setup < fn(Mem) andsetup′ < fn(Mem)

• setup < fn(Pi) andsetup′ < fn(Pi)

It is then possible to consider an arbitrary number of clients. The correctness
of these can once more be addressed using the techniques, such asContextuality,
discussed in the previous sections.

7 Related and future work

Proofs of correctness of protocols or language translations are often carried out
with respect tocontextualequivalences [GC99, LS00]. Nevertheless, the use
of bisimulation-based notions of equivalences enables such proofs to be consid-
erably simplified. For instance, in [MN03], two up-to proof techniques (up-to
expansion and up-to context) are borrowed from the and adapted to
develop an algebraic theory and prove the correctness of the perfect firewall pro-
tocol [CG98]. Our paper tries to contribute to this second approach, using bisim-
ulations, extending their application to situations in which the environment plays
a significant role in system behaviour.

In this document, we have defined and illustrated a collection of methods
for proving bisimulation equivalences for distributed, mobile systems, modelled
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with theD calculus [HR02b]. In order to cope with bisimulation equivalence
in D [HMR04], it is natural to look for bisimulations up-to in the spirit of
[SM92]. More precisely, we have introduced in our workbisimulations up-to
β-reductions, which have been inspired by a similar approach to concurrent ML
[JR04]. This technique actually relieves the burden of exhibiting witness bisim-
ulations, and its feasibility has been proved to be successful, combined mainly
with Contextuality, for addressing the verification of sample access protocols,
such as crossing a firewall, the interaction between a server and its clients, and
metaservers providing memory services.

In the future, we plan to test further with the up-toβ-reduction and the auxil-
iary techniques we have devised, by dealing with more involved protocols, possi-
bly in the spirit of [US01]. That work uses a novel notion of coupled simulation
that, despite not coinciding with any contextual equivalence, allows the proof of
correctness of a simple central-forwarding-server algorithm.

We would like also to extend the results and techniques stated forD to the
more involvedSD [HRY04], which takes into account extra safety aspects
of distributed systems.
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